▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Importance of Symbol Equity in Coded Modulation for Power Line Communications ISIT 2012

Han Mao Kiah Joint Work with: Yeow Meng Chee, Punarbasu Purkayastha, Chengmin Wang

School of Physical and Mathematical Sciences, Nanyang Technological Unversity

2 Jul, 2012

2 An Additional Parameter E_c

3 Optimality of Equitable Symbol Weight Codes wrt E_C

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ≣ のQ@

(ロ)、

Coding for PLC

Coding for PLC

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(ロ)、

Coding for PLC

Coding for PLC

(ロ)、

2 An Additional Parameter E_C

3 Optimality of Equitable Symbol Weight Codes wrt E_{C}

Transmission in general

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Summary

Coded Modulation for PLC

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Summary

A Coded Modulation Scheme

Let C_1 consist of the following words:

(0, 2, 4, 2, 1, 4, 5, 5, 3, 6)	(0, 5, 3, 1, 6, 3, 4, 4, 1, 2)	(0, 3, 6, 6, 5, 1, 2, 2, 4, 1)
(6, 1, 3, 5, 3, 2, 5, 6, 4, 0)	(5, 1, 6, 4, 2, 0, 4, 5, 2, 3)	(3, 1, 4, 0, 0, 6, 2, 3, 5, 2)
(6, 0, 2, 4, 6, 4, 3, 0, 5, 1)	(5, 6, 2, 0, 5, 3, 1, 6, 3, 4)	(3, 4, 2, 5, 1, 1, 0, 4, 6, 3)
(4, 0, 1, 3, 5, 0, 5, 1, 6, 2)	(2, 6, 0, 3, 1, 6, 4, 0, 4, 5)	(1, 4, 5, 3, 6, 2, 2, 5, 0, 4)
(6, 5, 1, 2, 4, 6, 1, 2, 0, 3)	(5, 3, 0, 1, 4, 2, 0, 1, 5, 6)	(3, 2, 5, 6, 4, 0, 3, 6, 1, 5)
(2, 0, 6, 2, 3, 5, 0, 3, 1, 4)	(1, 6, 4, 1, 2, 5, 3, 2, 6, 0)	(4, 4, 3, 6, 0, 5, 1, 0, 2, 6)
(1, 3, 1, 0, 3, 4, 6, 4, 2, 5)	(4, 2, 0, 5, 2, 3, 6, 3, 0, 1)	(2, 5, 5, 4, 0, 1, 6, 1, 3, 0)

Then \mathcal{C}_1 is a code of length 10 over alphabet $\Sigma=\{0,1,2,3,4,5,6\}$ with minimum distance 9.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

A Coded Modulation Scheme

Consider a codeword

$$\mathbf{u} = (0, 2, 4, 2, 1, 4, 5, 5, 3, 6)$$

Narrowband Noise

Narrowband noise results in certain frequencies being received at all timeslots. For example, narrowband noise occurs at frequency 2.

Time

	0	*	-	-	-	-	-	-	-	-	-
Frequency	1	-	-	-	-	*	-	-	-	-	-
	2	*	*	*	*	*	*	*	*	*	*
	3	-	-	-	-	-	-	-	-	*	-
	4	-	-	*	-	-	*	-	-	-	-
	5	-	-	-	-	-	-	*	*	-	-
	6	-	-	-	-	-	-	-	-	-	*

Signal Fading

Signal fading results in certain frequencies **not** being received at all timeslots. For example, signal fading occurs at frequency 5.

Time

			1 11110								
	0	*	-	-	-	-	-	-	-	-	-
Frequency	1	-	-	-	-	*	-	-	-	-	-
	2	-	*	-	*	-	-	-	-	-	-
	3	-	-	-	-	-	-	-	-	*	-
	4	-	-	*	-	-	*	-	-	-	-
	5	-	-	-	-	-	-	-	-	-	-
	6	-	-	-	-	-	-	-	-	-	*

Impulse Noise

Impulse noise results in all frequencies being received at certain timeslots. For example, impulse noise occurs at the last timeslot.

T:....

			Time								
	0	*	-	-	-	-	-	-	-	-	*
Frequency	1	-	-	-	-	*	-	-	-	-	*
	2	-	*	-	*	-	-	-	-	-	*
	3	-	-	-	-	-	-	-	-	*	*
	4	-	-	*	-	-	*	-	-	-	*
	5	-	-	-	-	-	-	*	*	-	*
,	6	-	-	-	-	-	-	-	-	-	*

Background Noise

Insertion noise results in certain frequencies being received at certain timeslots. *Deletion noise* results in certain frequencies **not** being received at certain timeslots.

			I ime								
											-
	0	*	-	-	-	-	-	-	-	-	-
Frequency	1	-	-	-	-	*	-	-	-	-	-
	2	-	*	-	*	-	-	-	-	-	-
	3	-	-	-	-	-	-	-	-	*	-
	4	-	-	*	-	-	-	-	-	-	-
	5	-	-	-	-	-	-	*	*	-	-
	6	-	*	-	-	-	-	-	-	-	*

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Demodulator Output

Represent this output as

 $\bm{v} = \bigl(\{0,2\},\{2,6\},\{2,4\},\{2\},\{1,2\},\{2\},\{2\},\{2\},\{2,3\},\{0,1,2,3,4,5,6\}\bigr)$

Minimum distance decoding

Objective of Decoder

Output the unique codeword in ${\mathcal C}$ with the least distance from ${\boldsymbol v}$

For any $\mathbf{c} \in \Sigma^n$ and $\mathbf{v} \in (2^{\Sigma})^n$, let

$$d(\mathbf{c},\mathbf{v}) = |\{i:\mathbf{c}_i \notin \mathbf{v}_i\}|$$

So, when \mathbf{u} and \mathbf{v} are respectively,

$$\mathbf{u} = (0, 2, 4, 2, 1, 4, 5, 5, 3, 6)$$
$$\mathbf{v} = (\{0, 2\}, \{2, 6\}, \{2, 4\}, \{2\}, \{1, 2\}, \{2\}, \{2\}, \{2\}, \{2, 3\}, \{0, 1, 2, 3, 4, 5, 6\})$$
$$d(\mathbf{u}, \mathbf{v}) = 3$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

nac

Minimum distance decoding

Compute $d(\mathbf{c}, \mathbf{v})$ for all $\mathbf{c} \in C_1$.

 $(0, 2, 4, 2, 1, 4, 5, 5, 3, 6) \leftarrow 3$ $(0, 3, 6, 6, 5, 1, 2, 2, 4, 1) \leftarrow 6$ $(0, 5, 3, 1, 6, 3, 4, 4, 1, 2) \leftarrow 8$ $(6, 1, 3, 5, 3, 2, 5, 6, 4, 0) \leftarrow 8$ $(5, 1, 6, 4, 2, 0, 4, 5, 2, 3) \leftarrow 7$ $(3, 1, 4, 0, 0, 6, 2, 3, 5, 2) \leftarrow 7$ $(6, 0, 2, 4, 6, 4, 3, 0, 5, 1) \leftarrow 8$ $(5, 6, 2, 0, 5, 3, 1, 6, 3, 4) \leftarrow 6$ $(3, 4, 2, 5, 1, 1, 0, 4, 6, 3) \leftarrow 7$ $(4, 0, 1, 3, 5, 0, 5, 1, 6, 2) \leftarrow 9$ $(2, 6, 0, 3, 1, 6, 4, 0, 4, 5) \leftarrow 6$ $(1, 4, 5, 3, 6, 2, 2, 5, 0, 4) \leftarrow 7$ $(6, 5, 1, 2, 4, 6, 1, 2, 0, 3) \leftarrow 7$ $(5, 3, 0, 1, 4, 2, 0, 1, 5, 6) \leftarrow 8$ $(3, 2, 5, 6, 4, 0, 3, 6, 1, 5) \leftarrow 8$ $(2, 0, 6, 2, 3, 5, 0, 3, 1, 4) \leftarrow 7$ $(1, 6, 4, 1, 2, 5, 3, 2, 6, 0) \leftarrow 5$ $(4, 4, 3, 6, 0, 5, 1, 0, 2, 6) \leftarrow 8$ $(1, 3, 1, 0, 3, 4, 6, 4, 2, 5) \leftarrow 8$ $(4, 2, 0, 5, 2, 3, 6, 3, 0, 1) \leftarrow 7$ $(2, 5, 5, 4, 0, 1, 6, 1, 3, 0) \leftarrow 7$

Choose a codeword u' which attains the minimum distance and decode v to u'. In our example, v is correctly decoded to u.

Observation

The code C_1 was able to correct

- one narrowband noise error,
- one signal fading error,
- one impulse noise error,
- two background noise errors.

Another code with same parameters

Let C_2 consist of the following words:

Then \mathcal{C}_2 is a code of length 10 over alphabet $\Sigma=\{0,1,2,3,4,5,6\}$ with minimum distance 9.

Another code with same parameters

Let \mathcal{C}_2 consist of the following words:

Then \mathcal{C}_2 is a code of length 10 over alphabet $\Sigma=\{0,1,2,3,4,5,6\}$ with minimum distance 9.

But...

The correctness of the minimum distance decoder with code C_2 cannot be guaranteed if one narrowband noise error occurs.

Another code with same parameters

Suppose we transmit

and narrowband noise occurs at frequency 1. So, we receive

 $\mathbf{v} = (\{0,1\},\{0,1\},\{0,1\},\{0,1\},\{0,1\},\{0,1\},\{0,1\},\{0,1\},\{0,1\},\{0,1\},\{0,1\},\{1,6\}).$

But

$$d((0,0,0,0,0,0,0,0,0,0,0),\mathbf{v}) = 0$$

$$d((1,1,1,1,1,1,1,1,1,0),\mathbf{v}) = 0$$

and the minimum distance decoder is unable to give an output.

Conclusion

An additional parameter is required to determine the error-correcting capability of a code with respect to narrowband noise and signal fading.

2 An Additional Parameter E_C

3 Optimality of Equitable Symbol Weight Codes wrt E_{C}

Error-correction for narrowband noise

Let C be a *q*-ary code of length *n* over Σ .

Write a codeword \mathbf{u} as $(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$. Let $w_{\sigma}(\mathbf{u}) = |\{i : \mathbf{u}_i = \sigma\}|$ for $\sigma \in \Sigma$.

Definition

 $E_{\mathcal{C}}$ is a function $E_{\mathcal{C}}: \{1, \ldots, q\} \rightarrow \{1, 2, \ldots, n\}$, such that

$$E_{\mathcal{C}}(e) = \max_{\substack{|\Gamma|=e\\ r \in \Sigma}} \left(\max_{\mathbf{c} \in \mathcal{C}} \left\{ \sum_{\sigma \in \Gamma} w_{\sigma}(\mathbf{c}) \right\} \right)$$

Roughly speaking, $E_{\mathcal{C}}(e)$ measures the maximum number of coordinates, over all codewords in \mathcal{C} , affected by *e* narrowband noise and/or fading errors.

Determining $E_{\mathcal{C}}$

Example

Consider C_2 :

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6)	(1, 1, 1, 1, 1, 1, 1, 1, 1, 6)	(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6)
(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6)	(4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6)	(5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6)

Then

$$E_{\mathcal{C}_2}(1)=9, ext{ and } E_{\mathcal{C}_2}(e)=10 ext{ if } e\geq 2.$$

Definition

 $E_{\mathcal{C}}$ is a function $E_{\mathcal{C}}: \{1,\ldots,q\}
ightarrow \{1,2,\ldots,n\}$, such that

$$\mathsf{E}_{\mathcal{C}}(e) = \max_{\substack{|\Gamma|=e\\ \Gamma \subset \Sigma}} \left(\max_{\mathbf{c} \in \mathcal{C}} \left\{ \sum_{\sigma \in \Gamma} w_{\sigma}(\mathbf{c}) \right\} \right)$$

Determining $E_{\mathcal{C}}$

Example

Consider C_1 :

(0, 2, 4, 2, 1, 4, 5, 5, 3, 6)	(0, 5, 3, 1, 6, 3, 4, 4, 1, 2)	(0, 3, 6, 6, 5, 1, 2, 2, 4, 1)
(6, 1, 3, 5, 3, 2, 5, 6, 4, 0)	(5, 1, 6, 4, 2, 0, 4, 5, 2, 3)	(3, 1, 4, 0, 0, 6, 2, 3, 5, 2)
(6, 0, 2, 4, 6, 4, 3, 0, 5, 1)	(5, 6, 2, 0, 5, 3, 1, 6, 3, 4)	(3, 4, 2, 5, 1, 1, 0, 4, 6, 3)
(4, 0, 1, 3, 5, 0, 5, 1, 6, 2)	(2, 6, 0, 3, 1, 6, 4, 0, 4, 5)	(1, 4, 5, 3, 6, 2, 2, 5, 0, 4)
(6, 5, 1, 2, 4, 6, 1, 2, 0, 3)	(5, 3, 0, 1, 4, 2, 0, 1, 5, 6)	(3, 2, 5, 6, 4, 0, 3, 6, 1, 5)
(2, 0, 6, 2, 3, 5, 0, 3, 1, 4)	(1, 6, 4, 1, 2, 5, 3, 2, 6, 0)	(4, 4, 3, 6, 0, 5, 1, 0, 2, 6)
(1, 3, 1, 0, 3, 4, 6, 4, 2, 5)	(4, 2, 0, 5, 2, 3, 6, 3, 0, 1)	(2, 5, 5, 4, 0, 1, 6, 1, 3, 0)

Then

$$E_{\mathcal{C}_1}(1) = 2, E_{\mathcal{C}_1}(2) = 4, \dots, E_{\mathcal{C}_1}(6) = 9, E_{\mathcal{C}_1}(7) = 10$$

Definition

 $E_{\mathcal{C}}$ is a function $E_{\mathcal{C}}:\{1,\ldots,q\}
ightarrow\{1,2,\ldots,n\}$, such that

$$E_{\mathcal{C}}(e) = \max_{\substack{|\Gamma|=e\\ \tau \subset \Sigma}} \left(\max_{\mathbf{c} \in \mathcal{C}} \left\{ \sum_{\sigma \in \Gamma} w_{\sigma}(\mathbf{c}) \right\} \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Error-correction for PLC

Proposition

Let C be a code of length n over alphabet Σ of size q with distance d. On transmission of any codeword, the code C is able to correct e_{NBD} narrowband noise errors e_{SFD} signal fading errors, e_{IMP} impulse errors noise, e_{INS} insertion errors and e_{DEL} deletion errors, if and only if the following holds:

 $e_{\mathsf{DEL}} + e_{\mathsf{IMP}} + e_{\mathsf{INS}} + E_{\mathcal{C}}(e_{\mathsf{SFD}}) + E_{\mathcal{C}}(e_{\mathsf{NBD}}) < d.$

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● 夕久⊙

Error-correction for PLC

Example

 C_1 was able to correct **one** narrowband noise error, **one** signal fading error, **one** impulse noise error, **two** background noise errors, because

$$e_{\text{DEL}} + e_{\text{IMP}} + e_{\text{INS}} + E_{C_1}(e_{\text{SFD}}) + E_{C_1}(e_{\text{NBD}})$$

= 1 + 1 + 1 + $E_{C_1}(1) + E_{C_1}(1)$
= 7
< 9 = d

 \mathcal{C}_2 was **unable** to correct **one** narrowband noise error

$$e_{\text{DEL}} + e_{\text{IMP}} + e_{\text{INS}} + E_{C_2}(e_{\text{SFD}}) + E_{C_2}(e_{\text{NBD}})$$
$$= E_{C_2}(1)$$
$$= 9 = d$$

Determining $E_{\mathcal{C}}$ for Permutation Codes

Example

When n = q, C is a *permutation code* if $w_{\sigma}(\mathbf{u}) = 1$ for all $\mathbf{u} \in C$ and $\sigma \in \Sigma$.

 $E_{\mathcal{C}}(e) = e$

if and only if $\ensuremath{\mathcal{C}}$ is a permutation code.

So, ${\mathcal C}$ is able to correct \ldots if and only if

 $e_{\text{DEL}} + e_{\text{IMP}} + e_{\text{INS}} + e_{\text{SFD}} + e_{\text{NBD}} < d.$

Determining $E_{\mathcal{C}}$ for certain classes of codes

Example

When $n \leq q$, C is an *injection code* if $w_{\sigma}(\mathbf{u}) \leq 1$ for all $\mathbf{u} \in C$ and $\sigma \in \Sigma$.

$$E_{\mathcal{C}}(e) = egin{cases} e, & ext{if } e \leq n \ n, & ext{otherwise} \end{cases}$$

if and only if C is an injection code. In particular, when q = n, this gives $E_C(e) = e$ for all e if and only if C is a *permutation code*, that is, $w_{\sigma}(\mathbf{u}) = 1$ for all $\mathbf{u} \in C$ and $\sigma \in \Sigma$.

Example

When q|n, C is a frequency permutation array if $w_{\sigma}(\mathbf{u}) = n/q$ for all $\mathbf{u} \in C$ and $\sigma \in \Sigma$.

$$E_{\mathcal{C}}(e) = ne/q$$

if and only if C is a FPA.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ つへで

Determining $E_{\mathcal{C}}$ for certain classes of codes

Example

Let $\Sigma = \{1, \ldots, q\}$. Consider a vector (c_1, c_2, \ldots, c_q) with $c_1 \ge c_2 \ge \cdots \ge c_q$ such that $\sum_{j=1}^{q} c_j = n$. C is a *constant-composition code* if $w_j(\mathbf{u}) = c_j$ for all $\mathbf{u} \in C$ and $1 \le j \le q$. If C is constant-composition code, then

$$E_{\mathcal{C}}(e) = \sum_{i=1}^{e} c_i.$$

Consider \mathcal{C}_3 consist of the following words:

(0, 0, 0, 0, 1, 2, 3, 4, 5, 6)(1, 2, 3, 4, 0, 0, 0, 0, 5, 6)

Then,

$$E_{\mathcal{C}_3}(e)=e+3$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Determining $E_{\mathcal{C}}$ for certain classes of codes

Example

A codeword **u** has symbol weight *r*, where $r = \max_{\sigma \in \Sigma} w_{\sigma}(\mathbf{u})$.

A code has bounded symbol weight r if all its codewords have symbol weight at most r.

If C has bounded symbol weight r, then

$$E_{\mathcal{C}}(1) = r$$
, $E_{\mathcal{C}}(e) \geq \min\{n, r+e-1\}$.

Consider C_4 consist of the following words:

Then,

$$E_{\mathcal{C}_4}(e) = egin{cases} 2e, & ext{if } e \leq 5 \ 10, & ext{otherwise} \end{cases}$$

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

Determining $E_{\mathcal{C}}$ for certain classes of codes

Definition

A codeword **u** has equitable symbol weight if $w_{\sigma}(\mathbf{u}) \in \{\lfloor n/q \rfloor, \lceil n/q \rceil\}$ for any $\sigma \in \Sigma$. A code is an equitable symbol weight code if all the codewords have equitable symbol weight.

Example

If C is an equitable symbol weight code,

$$E_{\mathcal{C}}(e) = egin{cases} re, & ext{if } e \leq q - \ r(q-t) + (e-q+t)(r-1), & ext{otherwise}, \end{cases}$$

where $r = \lceil n/q \rceil$ and t = qr - n.

Determining $E_{\mathcal{C}}$ for certain classes of codes

$\mathsf{Recall}\ \mathcal{C}_1:$

(0, 2, 4, 2, 1, 4, 5, 5, 3, 6)	(0, 5, 3, 1, 6, 3, 4, 4, 1, 2)	(0, 3, 6, 6, 5, 1, 2, 2, 4, 1)
(6, 1, 3, 5, 3, 2, 5, 6, 4, 0)	(5, 1, 6, 4, 2, 0, 4, 5, 2, 3)	(3, 1, 4, 0, 0, 6, 2, 3, 5, 2)
(6, 0, 2, 4, 6, 4, 3, 0, 5, 1)	(5, 6, 2, 0, 5, 3, 1, 6, 3, 4)	(3, 4, 2, 5, 1, 1, 0, 4, 6, 3)
(4, 0, 1, 3, 5, 0, 5, 1, 6, 2)	(2, 6, 0, 3, 1, 6, 4, 0, 4, 5)	(1, 4, 5, 3, 6, 2, 2, 5, 0, 4)
(6, 5, 1, 2, 4, 6, 1, 2, 0, 3)	(5, 3, 0, 1, 4, 2, 0, 1, 5, 6)	(3, 2, 5, 6, 4, 0, 3, 6, 1, 5)
(2, 0, 6, 2, 3, 5, 0, 3, 1, 4)	(1, 6, 4, 1, 2, 5, 3, 2, 6, 0)	(4, 4, 3, 6, 0, 5, 1, 0, 2, 6)
(1, 3, 1, 0, 3, 4, 6, 4, 2, 5)	(4, 2, 0, 5, 2, 3, 6, 3, 0, 1)	(2, 5, 5, 4, 0, 1, 6, 1, 3, 0)

Example

Then \mathcal{C}_1 is an equitable symbol weight code of length 10 over alphabet $\Sigma=\{0,1,2,3,4,5,6\}$ with minimum distance 9 and

$$\mathsf{E}_{\mathcal{C}_1}(e) = egin{cases} 2e, & ext{if } e \leq 3 \ e+3, & ext{otherwise}. \end{cases}$$

2 An Additional Parameter E_C

3 Optimality of Equitable Symbol Weight Codes wrt E_C

4 Summary

◆□▶ ◆圖▶ ◆≧▶ ◆≧▶ ≧ ∽��?

Comparing $E_{\mathcal{C}}$

Fix *n* and *q*. Let $\mathcal{F}_{n,q}$ be the following family of functions,

 $\mathcal{F}_{n,q} := \{ E_{\mathcal{C}} : \mathcal{C} \text{ is a } q \text{-ary code of length } n \}$

Definition

Define an ordering relation on the finite family $\mathcal{F}_{n,q}$ as follows: $f \leq g$ if either f(e) = g(e) for all $1 \leq e \leq q$, or there exists an $1 \leq e' \leq q$ such that f(e) = g(e) for all $e \leq e' - 1$ and f(e') < g(e').

Intuitively, given two codes C and C', $E_C \leq E_{C'}$ means that C has better error-correcting capability than C' in PLC.

Summary

Comparing E_{C_1} and E_{C_2}

Conclusion

Therefore, C_1 has better error-correcting capability than C_2 in PLC.

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

Importance of symbol equity

Proposition

Let $f_{n,q}^*$ be defined as

$$f^*_{n,q}(e) = \left\{ egin{array}{cc} re, & ext{if } e \leq q-t, \ r(q-t)+(e-q+t)(r-1), & ext{otherwise}, \end{array}
ight.$$

where $r = \lceil n/q \rceil$ and t = qr - n. Then $f_{n,q}^*$ is the unique least element in $\mathcal{F}_{n,q}$ with respect to the total order \preceq .

Corollary

C is a q-ary equitable symbol weight code of length n if and only if $E_C = f_{n,q}^*$.

Importance of symbol equity

Definition

Let C be a code of distance d. The narrowband noise and signal fading error-correcting capability of C is

$$c(\mathcal{C}) = \min\{e : E_{\mathcal{C}}(e) \ge d\}.$$

A code C can correct up to c(C) - 1 narrowband noise and signal fading errors.

Corollary

Let C be an q-ary code of length n and distance d. Then

$$c(\mathcal{C}) \leq \min \{e : f_{n,q}^*(e) \geq d\},\$$

and equality is achieved when C is an equitable symbol weight code.

So, an equitable symbol weight code has the best narrowband noise and signal fading error-correcting capability, among codes of the same distance and symbol weight.

Simulation Results

Optimal Codes of Length 25 over alphabet of size 17 with minimum distance 24

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ つへで

2 An Additional Parameter E_C

3 Optimality of Equitable Symbol Weight Codes wrt E_{C}

Codes for PLC

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

999

Thank you for your attention!

