Importance of Symbol Equity in Coded Modulation for Power Line Communications ISIT 2012

Han Mao Kiah
Joint Work with: Yeow Meng Chee, Punarbasu Purkayastha, Chengmin Wang

School of Physical and Mathematical Sciences,
Nanyang Technological Unversity

2 Jul, 2012

Outline

(1) Vinck's Coded Modulation Scheme
(2) An Additional Parameter $E_{\mathcal{C}}$
(3) Optimality of Equitable Symbol Weight Codes wrt $E_{\mathcal{C}}$

4 Summary

Coding for PLC

Coding for PLC

Coding for PLC

Coding for PLC

Outline

(1) Vinck's Coded Modulation Scheme
(2) An Additional Parameter $E_{\mathcal{C}}$
(3) Optimality of Equitable Symbol Weight Codes wrt $E_{\mathcal{C}}$

4 Summary

Transmission in general

Coded Modulation for PLC

A Coded Modulation Scheme

Let \mathcal{C}_{1} consist of the following words:

$(0,2,4,2,1,4,5,5,3,6)$	$(0,5,3,1,6,3,4,4,1,2)$	$(0,3,6,6,5,1,2,2,4,1)$
$(6,1,3,5,3,2,5,6,4,0)$	$(5,1,6,4,2,0,4,5,2,3)$	$(3,1,4,0,0,6,2,3,5,2)$
$(6,0,2,4,6,4,3,0,5,1)$	$(5,6,2,0,5,3,1,6,3,4)$	$(3,4,2,5,1,1,0,4,6,3)$
$(4,0,1,3,5,0,5,1,6,2)$	$(2,6,0,3,1,6,4,0,4,5)$	$(1,4,5,3,6,2,2,5,0,4)$
$(6,5,1,2,4,6,1,2,0,3)$	$(5,3,0,1,4,2,0,1,5,6)$	$(3,2,5,6,4,0,3,6,1,5)$
$(2,0,6,2,3,5,0,3,1,4)$	$(1,6,4,1,2,5,3,2,6,0)$	$(4,4,3,6,0,5,1,0,2,6)$
$(1,3,1,0,3,4,6,4,2,5)$	$(4,2,0,5,2,3,6,3,0,1)$	$(2,5,5,4,0,1,6,1,3,0)$

Then \mathcal{C}_{1} is a code of length 10 over alphabet $\Sigma=\{0,1,2,3,4,5,6\}$ with minimum distance 9 .

A Coded Modulation Scheme

Consider a codeword

$$
\mathbf{u}=(0,2,4,2,1,4,5,5,3,6)
$$

Time

Narrowband Noise

Narrowband noise results in certain frequencies being received at all timeslots. For example, narrowband noise occurs at frequency 2.

Frequency		Time									
	0	*	-	-	-	-	-	-	-	-	-
	1	-	-	-	-	*	-	-	-	-	-
	2	*	*	*	*	*	*	*	*	*	*
	3	-	-	-	-	-	-	-	-	*	-
	4	-	-	*	-	-	*	-	-	-	-
	5	-	-	-	-	-	-	*	*	-	-
	6	-	-	-	-	-	-	-	-	-	*

Signal Fading

Signal fading results in certain frequencies not being received at all timeslots. For example, signal fading occurs at frequency 5.

Frequency | $c\|c\| c\|c\| c\|c\| c\|c\| c\|c\| c\|c\|$ |
| :---: | :---: |\rightarrow

Impulse Noise

Impulse noise results in all frequencies being received at certain timeslots. For example, impulse noise occurs at the last timeslot.

Frequency		Time									
	0	*	-	-	-	-	-	-	-	-	*
	1	-	-	-	-	*	-	-	-	-	*
	2	-	*	-	*	-	-	-	-	-	*
	3	-	-	-	-	-	-	-	-	*	*
	4	-	-	*	-	-	*	-	-	-	*
	5	-	-	-	-	-	-	*	*	-	*
	6	-	-	-	-	-	-	-	-	-	*

Background Noise

Insertion noise results in certain frequencies being received at certain timeslots.
Deletion noise results in certain frequencies not being received at certain timeslots.

Frequency
Time

0	*	-	-	-	-	-	-	-	-	-
1	-	-	-	-	*	-	-	-	-	-
2	-	*	-	*	-	-	-	-	-	-
3	-	-	-	-	-	-	-	-	*	-
4	-	-	*	-	-	-	-	-	-	-
5	-	-	-	-	-	-	*	*	-	-
6	-	*	-	-	-	-	-	-	-	*

Demodulator Output

Frequency	012	Time									
		*	-	-	-	-	-	-	-	-	*
		-	-	-	-	*	-	-	-	-	*
		*	*	*	*	*	*	*	*	*	*
	3	-	-	-	-	-	-	-	-	*	*
	4	-	-	*	-	-	-	-	-	-	*
	5	-	-	-	-	-	-	-	-	-	*
	- 6	-	*	-	-	-	-	-	-	-	*

Represent this output as

$$
\mathbf{v}=(\{0,2\},\{2,6\},\{2,4\},\{2\},\{1,2\},\{2\},\{2\},\{2\},\{2,3\},\{0,1,2,3,4,5,6\})
$$

Minimum distance decoding

Objective of Decoder

Output the unique codeword in \mathcal{C} with the least distance from \mathbf{v}

For any $\mathbf{c} \in \Sigma^{n}$ and $\mathbf{v} \in\left(2^{\Sigma}\right)^{n}$, let

$$
d(\mathbf{c}, \mathbf{v})=\left|\left\{i: \mathbf{c}_{i} \notin \mathbf{v}_{i}\right\}\right|
$$

So, when \mathbf{u} and \mathbf{v} are respectively,

$$
\begin{gathered}
\mathbf{u}=\left(\begin{array}{cccccc}
0, & 2, & 4, & 2, & 1, & 4, \\
\mathbf{v}= & 5, \quad 5, & 3, & 6
\end{array}\{0,2\},\{2,6\},\{2,4\},\{2\},\{1,2\},\{2\},\{2\},\{2\},\{2,3\},\{0,1,2,3,4,5,6\}\right) \\
d(\mathbf{u}, \mathbf{v})=3
\end{gathered}
$$

Minimum distance decoding

Compute $d(\mathbf{c}, \mathbf{v})$ for all $\mathbf{c} \in \mathcal{C}_{1}$.

$$
\begin{array}{ccc}
(0,2,4,2,1,4,5,5,3,6) \leftarrow 3 & (0,5,3,1,6,3,4,4,1,2) \leftarrow 8 & (0,3,6,6,5,1,2,2,4,1) \leftarrow 6 \\
(6,1,3,5,3,2,5,6,4,0) \leftarrow 8 & (5,1,6,4,2,0,4,5,2,3) \leftarrow 7 & (3,1,4,0,0,6,2,3,5,2) \leftarrow 7 \\
(6,0,2,4,6,4,3,0,5,1) \leftarrow 8 & (5,6,2,0,5,3,1,6,3,4) \leftarrow 6 & (3,4,2,5,1,1,0,4,6,3) \leftarrow 7 \\
(4,0,1,3,5,0,5,1,6,2) \leftarrow 9 & (2,6,0,3,1,6,4,0,4,5) \leftarrow 6 & (1,4,5,3,6,2,2,5,0,4) \leftarrow 7 \\
(6,5,1,2,4,6,1,2,0,3) \leftarrow 7 & (5,3,0,1,4,2,0,1,5,6) \leftarrow 8 & (3,2,5,6,4,0,3,6,1,5) \leftarrow 8 \\
(2,0,6,2,3,5,0,3,1,4) \leftarrow 7 & (1,6,4,1,2,5,3,2,6,0) \leftarrow 5 & (4,4,3,6,0,5,1,0,2,6) \leftarrow 8 \\
(1,3,1,0,3,4,6,4,2,5) \leftarrow 8 & (4,2,0,5,2,3,6,3,0,1) \leftarrow 7 & (2,5,5,4,0,1,6,1,3,0) \leftarrow 7
\end{array}
$$

Choose a codeword \mathbf{u}^{\prime} which attains the minimum distance and decode \mathbf{v} to \mathbf{u}^{\prime}. In our example, \mathbf{v} is correctly decoded to \mathbf{u}.

Observation

The code \mathcal{C}_{1} was able to correct

- one narrowband noise error,
- one signal fading error,
- one impulse noise error,
- two background noise errors.

Another code with same parameters

Let \mathcal{C}_{2} consist of the following words:

$$
\begin{array}{lll}
(0,0,0,0,0,0,0,0,0,6) & (1,1,1,1,1,1,1,1,1,6) & (2,2,2,2,2,2,2,2,2,6) \\
(3,3,3,3,3,3,3,3,3,6) & (4,4,4,4,4,4,4,4,4,6) & (5,5,5,5,5,5,5,5,5,6)
\end{array}
$$

Then \mathcal{C}_{2} is a code of length 10 over alphabet $\Sigma=\{0,1,2,3,4,5,6\}$ with minimum distance 9 .

Another code with same parameters

Let \mathcal{C}_{2} consist of the following words:

$$
\begin{array}{lll}
(0,0,0,0,0,0,0,0,0,6) & (1,1,1,1,1,1,1,1,1,6) & (2,2,2,2,2,2,2,2,2,6) \\
(3,3,3,3,3,3,3,3,3,6) & (4,4,4,4,4,4,4,4,4,6) & (5,5,5,5,5,5,5,5,5,6)
\end{array}
$$

Then \mathcal{C}_{2} is a code of length 10 over alphabet $\Sigma=\{0,1,2,3,4,5,6\}$ with minimum distance 9 .

But...

The correctness of the minimum distance decoder with code \mathcal{C}_{2} cannot be guaranteed if one narrowband noise error occurs.

Another code with same parameters

Suppose we transmit

$$
(0,0,0,0,0,0,0,0,0,6)
$$

and narrowband noise occurs at frequency 1 . So, we receive
$\mathbf{v}=(\{0,1\},\{0,1\},\{0,1\},\{0,1\},\{0,1\},\{0,1\},\{0,1\},\{0,1\},\{0,1\},\{0,1\},\{1,6\})$.

But

$$
\begin{aligned}
& d((0,0,0,0,0,0,0,0,0,6), \mathbf{v})=0 \\
& d((1,1,1,1,1,1,1,1,1,6), \mathbf{v})=0
\end{aligned}
$$

and the minimum distance decoder is unable to give an output.

Conclusion

An additional parameter is required to determine the error-correcting capability of a code with respect to narrowband noise and signal fading.

Outline

(1) Vinck's Coded Modulation Scheme
(2) An Additional Parameter $E_{\mathcal{C}}$
(3) Optimality of Equitable Symbol Weight Codes wrt $E_{\mathcal{C}}$

4 Summary

Error-correction for narrowband noise

Let \mathcal{C} be a q-ary code of length n over Σ.
Write a codeword \mathbf{u} as $\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right)$.
Let $w_{\sigma}(\mathbf{u})=\left|\left\{i: \mathbf{u}_{i}=\sigma\right\}\right|$ for $\sigma \in \Sigma$.

Definition

$E_{\mathcal{C}}$ is a function $E_{\mathcal{C}}:\{1, \ldots, q\} \rightarrow\{1,2, \ldots, n\}$, such that

$$
E_{\mathcal{C}}(e)=\max _{\substack{|\Gamma|=e \\ \Gamma \subset \Sigma}}\left(\max _{\substack{c \in \mathcal{C}}}\left\{\sum_{\sigma \in \Gamma} w_{\sigma}(\mathbf{c})\right\}\right)
$$

Roughly speaking, $E_{\mathcal{C}}(e)$ measures the maximum number of coordinates, over all codewords in \mathcal{C}, affected by e narrowband noise and/or fading errors.

Determining $E_{\mathcal{C}}$

Example

Consider \mathcal{C}_{2} :

$$
\begin{array}{lll}
(0,0,0,0,0,0,0,0,0,6) & (1,1,1,1,1,1,1,1,1,6) & (2,2,2,2,2,2,2,2,2,6) \\
(3,3,3,3,3,3,3,3,3,6) & (4,4,4,4,4,4,4,4,4,6) & (5,5,5,5,5,5,5,5,5,6)
\end{array}
$$

Then

$$
E_{\mathcal{C}_{2}}(1)=9, \text { and } E_{\mathcal{C}_{2}}(e)=10 \text { if } e \geq 2
$$

Definition

$E_{\mathcal{C}}$ is a function $E_{\mathcal{C}}:\{1, \ldots, q\} \rightarrow\{1,2, \ldots, n\}$, such that

$$
E_{\mathcal{C}}(e)=\max _{\substack{|\Gamma|=e \\ \Gamma \subset \Sigma}}\left(\max _{\substack{\mathbf{c} \in \mathcal{C}}}\left\{\sum_{\sigma \in \Gamma} w_{\sigma}(\mathbf{c})\right\}\right)
$$

Determining $E_{\mathcal{C}}$

Example

Consider \mathcal{C}_{1} :

$(0,2,4,2,1,4,5,5,3,6)$	$(0,5,3,1,6,3,4,4,1,2)$	$(0,3,6,6,5,1,2,2,4,1)$
$(6,1,3,5,3,2,5,6,4,0)$	$(5,1,6,4,2,0,4,5,2,3)$	$(3,1,4,0,0,6,2,3,5,2)$
$(6,0,2,4,6,4,3,0,5,1)$	$(5,6,2,0,5,3,1,6,3,4)$	$(3,4,2,5,1,1,0,4,6,3)$
$(4,0,1,3,5,0,5,1,6,2)$	$(2,6,0,3,1,6,4,0,4,5)$	$(1,4,5,3,6,2,2,5,0,4)$
$(6,5,1,2,4,6,1,2,0,3)$	$(5,3,0,1,4,2,0,1,5,6)$	$(3,2,5,6,4,0,3,6,1,5)$
$(2,0,6,2,3,5,0,3,1,4)$	$(1,6,4,1,2,5,3,2,6,0)$	$(4,4,3,6,0,5,1,0,2,6)$
$(1,3,1,0,3,4,6,4,2,5)$	$(4,2,0,5,2,3,6,3,0,1)$	$(2,5,5,4,0,1,6,1,3,0)$

Then

$$
E_{\mathcal{C}_{1}}(1)=2, E_{\mathcal{C}_{1}}(2)=4, \ldots, E_{\mathcal{C}_{1}}(6)=9, E_{\mathcal{C}_{1}}(7)=10
$$

Definition

$E_{\mathcal{C}}$ is a function $E_{\mathcal{C}}:\{1, \ldots, q\} \rightarrow\{1,2, \ldots, n\}$, such that

$$
E_{\mathcal{C}}(e)=\max _{\substack{|\Gamma|=e \\ \Gamma \subset \Sigma}}\left(\max _{\substack{\mathbf{c} \in \mathcal{C}}}\left\{\sum_{\sigma \in \Gamma} w_{\sigma}(\mathbf{c})\right\}\right)
$$

Error-correction for PLC

Proposition

Let \mathcal{C} be a code of length n over alphabet Σ of size q with distance d. On transmission of any codeword, the code \mathcal{C} is able to correct $e_{\text {NBD }}$ narrowband noise errors esFD signal fading errors, e emp impulse errors noise, e eins insertion errors and e eel deletion errors, if and only if the following holds:

$$
e_{\mathrm{DEL}}+e_{\mathrm{IMP}}+e_{\mathrm{INS}}+E_{\mathcal{C}}\left(e_{\mathrm{SFD}}\right)+E_{\mathcal{C}}\left(e_{\mathrm{NBD}}\right)<d
$$

Error-correction for PLC

Example

\mathcal{C}_{1} was able to correct one narrowband noise error, one signal fading error, one impulse noise error, two background noise errors, because

$$
\begin{aligned}
& e_{\mathrm{DEL}}+e_{\mathrm{IMP}}+e_{\mathrm{INS}}+E_{\mathcal{C}_{1}}\left(e_{\mathrm{SFD}}\right)+E_{\mathcal{C}_{1}}\left(e_{\mathrm{NBD}}\right) \\
& =1+1+1+E_{\mathcal{C}_{1}}(1)+E_{\mathcal{C}_{1}}(1) \\
& =7 \\
& <9=d
\end{aligned}
$$

\mathcal{C}_{2} was unable to correct one narrowband noise error

$$
\begin{aligned}
& e_{\mathrm{DEL}}+e_{\mathrm{IMP}}+e_{\mathrm{INS}}+E_{\mathcal{C}_{2}}\left(e_{\mathrm{SFD}}\right)+E_{\mathcal{C}_{2}}\left(e_{\mathrm{NBD}}\right) \\
& =E_{\mathcal{C}_{2}}(1) \\
& =9=d
\end{aligned}
$$

Determining $E_{\mathcal{C}}$ for Permutation Codes

Example

When $n=q, \mathcal{C}$ is a permutation code if $w_{\sigma}(\mathbf{u})=1$ for all $\mathbf{u} \in \mathcal{C}$ and $\sigma \in \Sigma$.

$$
E_{\mathcal{C}}(e)=e
$$

if and only if \mathcal{C} is a permutation code.
So, \mathcal{C} is able to correct ... if and only if

$$
e_{\mathrm{DEL}}+e_{\mathrm{IMP}}+e_{\mathrm{INS}}+e_{\mathrm{SFD}}+e_{\mathrm{NBD}}<d
$$

Determining $E_{\mathcal{C}}$ for certain classes of codes

Example

When $n \leq q, \mathcal{C}$ is an injection code if $w_{\sigma}(\mathbf{u}) \leq 1$ for all $\mathbf{u} \in \mathcal{C}$ and $\sigma \in \Sigma$.

$$
E_{\mathcal{C}}(e)= \begin{cases}e, & \text { if } e \leq n \\ n, & \text { otherwise }\end{cases}
$$

if and only if \mathcal{C} is an injection code.
In particular, when $q=n$, this gives $E_{\mathcal{C}}(e)=e$ for all e if and only if \mathcal{C} is a permutation code, that is, $w_{\sigma}(\mathbf{u})=1$ for all $\mathbf{u} \in \mathcal{C}$ and $\sigma \in \Sigma$.

Example

When $q \mid n, \mathcal{C}$ is a frequency permutation array if $w_{\sigma}(\mathbf{u})=n / q$ for all $\mathbf{u} \in \mathcal{C}$ and $\sigma \in \Sigma$.

$$
E_{\mathcal{C}}(e)=n e / q
$$

if and only if \mathcal{C} is a FPA.

Determining $E_{\mathcal{C}}$ for certain classes of codes

Example

Let $\Sigma=\{1, \ldots, q\}$. Consider a vector $\left(c_{1}, c_{2}, \ldots, c_{q}\right)$ with $c_{1} \geq c_{2} \geq \cdots \geq c_{q}$ such that $\sum_{j=1}^{q} c_{j}=n . \mathcal{C}$ is a constant-composition code if $w_{j}(\mathbf{u})=c_{j}$ for all $\mathbf{u} \in \mathcal{C}$ and $1 \leq j \leq q$.
If \mathcal{C} is constant-composition code, then

$$
E_{\mathcal{C}}(e)=\sum_{i=1}^{e} c_{i}
$$

Consider \mathcal{C}_{3} consist of the following words:

$$
\begin{aligned}
& (0,0,0,0,1,2,3,4,5,6) \\
& (1,2,3,4,0,0,0,0,5,6)
\end{aligned}
$$

Then,

$$
E_{\mathcal{C}_{3}}(e)=e+3
$$

Determining $E_{\mathcal{C}}$ for certain classes of codes

Example

A codeword \mathbf{u} has symbol weight r, where $r=\max _{\sigma \in \Sigma} w_{\sigma}(\mathbf{u})$.
A code has bounded symbol weight r if all its codewords have symbol weight at most r.
If \mathcal{C} has bounded symbol weight r, then

$$
E_{\mathcal{C}}(1)=r, \quad E_{\mathcal{C}}(e) \geq \min \{n, r+e-1\} .
$$

Consider \mathcal{C}_{4} consist of the following words:

$$
\begin{array}{lll}
(0,0,1,1,2,2,3,3,4,4) & (1,1,2,2,3,3,4,4,5,5) & (2,2,3,3,4,4,5,5,6,6) \\
(3,3,4,4,5,5,6,6,0,0) & (4,4,5,5,6,6,0,0,1,1) & (5,5,6,6,0,0,1,1,2,2) \\
(6,6,0,0,1,1,2,2,3,3) & &
\end{array}
$$

Then,

$$
E_{\mathcal{C}_{4}}(e)= \begin{cases}2 e, & \text { if } e \leq 5 \\ 10, & \text { otherwise }\end{cases}
$$

Determining $E_{\mathcal{C}}$ for certain classes of codes

Definition

A codeword \mathbf{u} has equitable symbol weight if $w_{\sigma}(\mathbf{u}) \in\{\lfloor n / q\rfloor,\lceil n / q\rceil\}$ for any $\sigma \in \Sigma$. A code is an equitable symbol weight code if all the codewords have equitable symbol weight.

Example

If \mathcal{C} is an equitable symbol weight code,

$$
E_{\mathcal{C}}(e)= \begin{cases}r e, & \text { if } e \leq q-t \\ r(q-t)+(e-q+t)(r-1), & \text { otherwise }\end{cases}
$$

where $r=\lceil n / q\rceil$ and $t=q r-n$.

Determining $E_{\mathcal{C}}$ for certain classes of codes

Recall \mathcal{C}_{1} :

$(0,2,4,2,1,4,5,5,3,6)$	$(0,5,3,1,6,3,4,4,1,2)$	$(0,3,6,6,5,1,2,2,4,1)$
$(6,1,3,5,3,2,5,6,4,0)$	$(5,1,6,4,2,0,4,5,2,3)$	$(3,1,4,0,0,6,2,3,5,2)$
$(6,0,2,4,6,4,3,0,5,1)$	$(5,6,2,0,5,3,1,6,3,4)$	$(3,4,2,5,1,1,0,4,6,3)$
$(4,0,1,3,5,0,5,1,6,2)$	$(2,6,0,3,1,6,4,0,4,5)$	$(1,4,5,3,6,2,2,5,0,4)$
$(6,5,1,2,4,6,1,2,0,3)$	$(5,3,0,1,4,2,0,1,5,6)$	$(3,2,5,6,4,0,3,6,1,5)$
$(2,0,6,2,3,5,0,3,1,4)$	$(1,6,4,1,2,5,3,2,6,0)$	$(4,4,3,6,0,5,1,0,2,6)$
$(1,3,1,0,3,4,6,4,2,5)$	$(4,2,0,5,2,3,6,3,0,1)$	$(2,5,5,4,0,1,6,1,3,0)$

Example

Then \mathcal{C}_{1} is an equitable symbol weight code of length 10 over alphabet
$\Sigma=\{0,1,2,3,4,5,6\}$ with minimum distance 9 and

$$
E_{\mathcal{C}_{1}}(e)= \begin{cases}2 e, & \text { if } e \leq 3 \\ e+3, & \text { otherwise }\end{cases}
$$

Outline

(1) Vinck's Coded Modulation Scheme
(2) An Additional Parameter $E_{\mathcal{C}}$
(3) Optimality of Equitable Symbol Weight Codes wrt $E_{\mathcal{C}}$

4 Summary

Comparing $E_{\mathcal{C}}$

Fix n and q. Let $\mathcal{F}_{n, q}$ be the following family of functions,

$$
\mathcal{F}_{n, q}:=\left\{E_{\mathcal{C}}: \mathcal{C} \text { is a } q \text {-ary code of length } n\right\}
$$

Definition

Define an ordering relation on the finite family $\mathcal{F}_{n, q}$ as follows: $f \preceq g$ if either $f(e)=g(e)$ for all $1 \leq e \leq q$, or there exists an $1 \leq e^{\prime} \leq q$ such that $f(e)=g(e)$ for all $e \leq e^{\prime}-1$ and $f\left(e^{\prime}\right)<g\left(e^{\prime}\right)$.

Intuitively, given two codes \mathcal{C} and $\mathcal{C}^{\prime}, E_{\mathcal{C}} \preceq E_{\mathcal{C}^{\prime}}$ means that \mathcal{C} has better error-correcting capability than \mathcal{C}^{\prime} in PLC.

Comparing $E_{\mathcal{C}_{1}}$ and $E_{\mathcal{C}_{2}}$

Conclusion
Therefore, \mathcal{C}_{1} has better error-correcting capability than \mathcal{C}_{2} in PLC.

Importance of symbol equity

Proposition

Let $f_{n, q}^{*}$ be defined as

$$
f_{n, q}^{*}(e)=\left\{\begin{array}{cl}
r e, & \text { if } e \leq q-t \\
r(q-t)+(e-q+t)(r-1), & \text { otherwise }
\end{array}\right.
$$

where $r=\lceil n / q\rceil$ and $t=q r-n$. Then $f_{n, q}^{*}$ is the unique least element in $\mathcal{F}_{n, q}$ with respect to the total order \preceq.

Corollary

\mathcal{C} is a q-ary equitable symbol weight code of length n if and only if $E_{\mathcal{C}}=f_{n, q}^{*}$.

Importance of symbol equity

Definition

Let \mathcal{C} be a code of distance d. The narrowband noise and signal fading error-correcting capability of \mathcal{C} is

$$
c(\mathcal{C})=\min \left\{e: E_{\mathcal{C}}(e) \geq d\right\}
$$

A code \mathcal{C} can correct up to $c(\mathcal{C})-1$ narrowband noise and signal fading errors.

Corollary

Let \mathcal{C} be an q-ary code of length n and distance d. Then

$$
c(\mathcal{C}) \leq \min \left\{e: f_{n, q}^{*}(e) \geq d\right\}
$$

and equality is achieved when \mathcal{C} is an equitable symbol weight code.
So, an equitable symbol weight code has the best narrowband noise and signal fading error-correcting capability, among codes of the same distance and symbol weight.

Simulation Results

Optimal Codes of Length 25 over alphabet of size 17 with minimum distance 24

Outline

(1) Vinck's Coded Modulation Scheme
(2) An Additional Parameter $E_{\mathcal{C}}$
(3) Optimality of Equitable Symbol Weight Codes wrt $E_{\mathcal{C}}$

4 Summary

Codes for PLC

Thank you for your attention!

