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Importance of Symbol Equity in
Coded Modulation for Power Line Communications
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Abstract—The use of multiple frequency shift keying modula-
tion with permutation codes addresses the problem of permanent
narrowband noise disturbance in a power line communications
system. In this paper, we extend this coded modulation scheme
based on permutation codes to general codes and introduce an
additional new parameter that more precisely captures a code’s
performance against permanent narrowband noise. As a result,
we define a new class of codes, namely, equitable symbol weight
codes, which are optimal with respect to this measure.

Index Terms—Multiple frequency shift key modulation, power
line communications, narrowband noise, equitable symbol weight
codes.

1. INTRODUCTION

POWER line communications (PLC) is a technology that
enables the transmission of data over electric power lines.

It was started in the 1910’s for voice communication [2], and
used in the 1950’s in the form of ripple control for load and
tariff management in power distribution. With the emergence
of the Internet in the 1990’s, research into broadband PLC
gathered pace as a promising technology for Internet access
and local area networking, since the electrical grid infras-
tructure provides “last mile” connectivity to premises and
capillarity within premises. Recently, there has been a renewed
interest in high-speed narrowband PLC due to applications in
sustainable energy strategies, specifically in smart grids (see
[3]–[6]).

However, power lines present a difficult communications
environment and overcoming permanent narrowband distur-
bance has remained a challenging problem [7]–[9]. Vinck [7]
addressed this problem by showing that multiple frequency
shift keying (MFSK) modulation, in conjunction with the use
of a permutation code having minimum (Hamming) distance
d, is able to correct up to d−1 errors due to narrowband noise.
Since then, more general codes such as constant-composition
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codes (see [10]–[19]), frequency permutation arrays (see [18],
[20]), and injection codes (see [21]) have been considered as
possible replacements for permutation codes in PLC. Versfeld
et al. [22], [23] later introduced the notion of ‘same-symbol
weight’ (henceforth, termed as symbol weight) of a code
as a measure of the capability of a code in dealing with
narrowband noise. They also showed empirically that low
symbol weight cosets of Reed-Solomon codes outperform
normal Reed-Solomon codes in the presence of narrowband
noise and additive white Gaussian noise. Sizes of symbol-
weight spaces were investigated by Chee et al. [24] recently.

Unfortunately, symbol weight alone is not sufficient to
capture the performance of a code in dealing with permanent
narrowband noise. The purpose of the paper is to extend
the analysis of Vinck’s coded modulation scheme based on
permutation codes (see [7], [25, Subsection 5.2.4]) to gen-
eral codes. In the process, we introduce an additional new
parameter that more precisely captures a code’s performance
against permanent narrowband noise. This parameter is related
to symbol equity, the uniformity of frequencies of symbols in
each codeword. Codes designed taking into account this new
parameter, or equitable symbol weight codes, are shown to
perform better than general ones.

The current proposed standards, such as ITU-T Recommen-
dation G.9902 (G.hnem) and IEEE P1901.2, for communi-
cation over narrowband power line channel use Orthogonal
Frequency Division Multiplexing (OFDM) based modulation
schemes instead of FSK based schemes. In contrast to MFSK
scheme which uses only one frequency at a time, OFDM
uses multiple frequencies at the same time for transmitting
information. Preliminary results on extensions of the current
work to use multiple frequencies are presented in [26]. Further
investigations and comparisons with current OFDM based
schemes are an interesting avenue for future research. Finally,
we remark that the notion of symbol equity discussed in this
work is also applicable to systems where criss-cross types of
errors are encountered [27].

The outline of the rest of the paper is as follows. In Section
2 we introduce the basic definitions and notation. In Section
3 we introduce the noise model and the criterion under which
correct decoding can be performed. In particular, we introduce
a new parameter that captures how well a code can perform
under narrowband noise. In Section 4 we show that equitable
symbol weight codes are optimal with respect to this new
parameter. We present some simulation results in Section 5 to
compare the performance of equitable symbol weight codes
with other block codes previously studied in the literature.
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2. PRELIMINARIES

We denote the set of integers and positive integers by Z

and Z>0 respectively. We denote the set {1, . . . , n} by the
notation [n]. For a finite set X , the collection of all subsets
of X , or the power set of X , is denoted by 2X .

Let T be an index set and X be a set of symbols. We denote
a sequence or a vector with index set T by (ut : t ∈ T, ut ∈
X ). In contrast, we denote a multiset by angled brackets,
that is, 〈ut : t ∈ T 〉. For the latter, when more convenient,
the exponential notation 〈ut1

1 ut2
2 · · ·utn

n 〉 is used to describe a
multiset with exactly ti elements ui, i ∈ [n].

When |X | = q, a q-ary code C of length n over the alphabet
X is a subset of Xn. Elements of C are called codewords. The
size of C is the number of codewords in C. For i ∈ [n], the
ith coordinate of a codeword u is denoted by ui.

A. Symbol weight

Let u ∈ Xn. For σ ∈ X , wσ(u) is the number of times the
symbol σ appears among the coordinates of u, that is,

wσ(u) = |{i ∈ [n] : ui = σ}|.
The symbol weight of u is

swt(u) = max
σ∈X

wσ(u).

A code has bounded symbol weight r if the maximum
symbol weight of all its codewords is r. A code C has constant
symbol weight r if all its codewords have symbol weight
exactly r. For any u ∈ Xn, observe that swt(u) ≥ �n/q�.
A code has minimum symbol weight if it has constant symbol
weight �n/q�.

A codeword u ∈ Xn is said to have equitable symbol weight
if wσ(u) ∈ {�n/q	, �n/q�} for all σ ∈ X . In other words, if
r = �n/q�, then every symbol appears r or r − 1 times in u.
If all the codewords of C have equitable symbol weight, then
the code C is called an equitable symbol weight code. Every
equitable symbol weight code is hence a minimum symbol
weight code.

B. Composition and Partition

The composition of u ∈ Xn is the sequence (wσ(u) :
σ ∈ X ), and the partition of u is the multiset 〈wσ(u) : σ ∈ X〉.

Fix a multiset of nonnegative numbers 〈cσ : σ ∈ X〉 such
that

∑
σ∈X cσ = n. A code C is a constant composition code

with composition (cσ : σ ∈ X ) if all words in C have
composition (cσ : σ ∈ X ). Similarly, a code C is a constant
partition code with partition 〈cσ : σ ∈ X〉 if all words in C
have partition 〈cσ : σ ∈ X〉.

Clearly, a constant composition code is necessarily a con-
stant partition code. The following example demonstrates that
the converse is not true.

Example 2.1. The code {(1, 2, 3), (2, 3, 4), (3, 4, 1), (4, 1, 2)}
is a constant partition code with partition 〈130〉, since in
each code word three symbols appear once each, and one
symbol does not appear. However, the words have different
compositions.

We show that an equitable symbol weight code is necessar-
ily a constant partition code with minimum symbol weight.

Codes with minimum symbol weight

Constant Partition Codes

Equitable Symbol Weight Codes

Constant Composition Codes

FPAs

Injection Codes

Permutation Codes

Fig. 1. Generalizations of permutation codes.

This follows from the next lemma that states that for any
u ∈ Xn having equitable symbol weight, the number of
symbols occurring with frequency �n/q� in u is uniquely
determined. Hence, the frequencies of symbols in an equitable
symbol weight codeword are as uniformly distributed as
possible and the partition of the codeword is fixed.

Lemma 2.1. Let u ∈ Xn, r = �n/q�, and t = qr−n. If u has
equitable symbol weight, then u has partition 〈rq−t(r − 1)t〉

Proof: Let x = |{σ ∈ X : wσ(u) = r}| and y = |{σ ∈
X : wσ(u) = r − 1}|. Then the following equations hold:

x+ y = q, and rx+ (r − 1)y = n.

Solving this set of equations gives the lemma.
Using the above notation, we observe that equitable symbol

weight codes are generalizations of certain classes of codes
which have been studied in PLC applications. For example,
if q|n, then an equitable symbol weight code has constant
partition 〈(n/q)q〉, which is known as a frequency permutation
array (FPA). If n ≤ q then an equitable symbol weight code
has constant partition 〈1n0q−n〉, which is called an injection
code. Finally, if n = q, then all definitions coincide to give
the definition of a permutation code.

C. Hamming Distance

Consider the space Xn with the distances between words
measured in terms of Hamming distance. A q-ary code of
length n and distance d is called an (n, d)q-code, while a q-
ary code of length n having bounded symbol weight r and
distance d is called an (n, d, r)q-symbol weight code, and a
q-ary equitable symbol weight code of length n and distance
d is called an (n, d)q-equitable symbol weight code.

Remark 1. The notion of symbol equity used here differs
from the notion of symbol equity that is used in Swart and
Ferriera [28]. In that work, the authors consider the code-
matrix of the code (the matrix whose rows consist of all the
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codewords), and show that an equal distribution of symbols
in each column of the code-matrix results in the maximum
possible separation between all the codewords. This notion of
symbol equity also appears in the computation of the Plotkin
bound on codes. In contrast, the symbol equity discussed
in this work considers the distribution of symbols in every
codeword of the code, i.e., in every row of the code-matrix.

3. CORRECTING NOISE WITH MFSK MODULATION

In coded modulation for power line communications [7], a
q-ary code of length n is used, whose symbols are modulated
using q-ary MFSK. The receiver demodulates the received
signal using an envelope detector to obtain an output, which
is then decoded by a decoder.

Four detector/decoder combinations are possible: classical,
modified classical, hard-decision threshold, and soft-decision
threshold (see [25] for details). A soft-decision threshold
detector/decoder requires exact channel state knowledge and is
therefore not useful if we do not have channel state knowledge.
Henceforth, we consider the hard-decision threshold detec-
tor/decoder here, since it contains more information about
the received signal compared to the classical and modified
classical ones. We remark that in the case of the hard-decision
threshold detector/decoder, the decoder used is a minimum
distance decoder.

Let C be an (n, d)q-code over alphabet X , and let u =
(u1, . . . , un) be a codeword transmitted over the PLC channel
where the symbol ui is transmitted at discrete time instance
i for i ∈ [n]. The received signal (which may contain
errors caused by noise) is demodulated to give an output
v = (v1, v2, . . . , vn) in which each vi is a subset of X . The
errors that arise from the different types of noise in the channel
(see [25, pp. 222–223]) have the following effects on the
output of the detector.

(i) Narrowband noise at a particular frequency introduces
a symbol at several consecutive discrete time instances
of the transmitted signals. The narrowband noise affects
only a part of the transmission that occurs at discrete time
instances from i = 1 to i = n. Hence, narrowband noise
of duration l affects up to l consecutive positions in the
discrete time instances from i = 1 to i = n, depending
on whether the noise started prior to or during the
current transmission. Narrowband noise may be present
simultaneously at multiple frequencies corresponding to
different symbols.
Let 1 ≤ e ≤ q and l ∈ Z>0. If e narrowband noise
errors of duration l occur, then there is a set Y ⊆ X
consisting of e symbols, and e corresponding starting
instances {iσ ≤ n : σ ∈ Y} such that for σ ∈ Y ,

σ ∈ vi for max{1, iσ} ≤ i ≤ min{iσ + l − 1, n}.
(ii) A signal fading error results in the absence of a symbol

in the received signal. Let 1 ≤ e ≤ q. If e signal fading
errors occur, then there are e symbols, none of which
appears in any vi, that is, (∪ni=1vi) ∩ Y = ∅ for some
Y ⊆ X , |Y| = e.

(iii) Impulse noise results in the entire set of symbols being
received at a certain discrete time instance. Let 1 ≤ e ≤

n. If e impulse noise errors occur, then there is a set
Π ⊆ [n] consisting of e positions such that vi = X for
all i ∈ Π.

(iv) An insertion error results in an unwanted symbol in the
received signal. Let 1 ≤ e ≤ n(q − 1). If e insertion
errors occur, then there is a set Ω ⊆ [n]×X of size e
such that for each (i, σ) ∈ Ω, vi contains σ and σ �= ui.

(v) A deletion error results in the absence of a transmitted
symbol in the received signal. Let 1 ≤ e ≤ n. If
e deletion errors occur, then there is a set Π ⊆ [n]
consisting of e positions such that vi does not contain
ui for all i ∈ Π.

Both insertion and deletion errors are due to background noise.
This definition of insertion and deletion error is different from
the errors that arise in an “insertion-deletion channel” [29].

Example 3.1. Suppose u = (1, 2, 3, 4).
(i) Narrowband noise can start prior to or during the trans-

mission of u. Narrowband noise error of duration 4 at
symbol 1 starting at discrete time instance i = −1
results in detector output v = ({1}, {1, 2}, {3}, {4}),
while the same narrowband noise error starting at dis-
crete time instance i = 3 results in detector output
v = ({1}, {2}, {1, 3}, {1, 4}).

(ii) The same detector output can arise from different com-
binations of error types. A signal fading error of symbol
1 and a deletion error at position 1 would each result in
the same detector output of v = (∅, {2}, {3}, {4}).

Recall that 2X denotes the power set of X . For a codeword
u ∈ Xn and an output v ∈ (

2X
)n

, define

d(u, v) = |{i : ui /∈ vi}|.
Note that in this context, we identify c ∈ Xn with
({c1}, {c2}, . . . , {cn}) ∈

(
2X

)n
, so that d(u, c) gives the

Hamming distance between u and c. We also extend the
definition of distance so that for C ⊆ Xn, we have d(C, v) =
minu∈C d(u, v). Given v ∈ (2X )n, a minimum distance de-
coder (for a code C) outputs a codeword u ∈ C which has the
smallest distance to v, that is, a minimum distance decoder
returns an element of

argmin
u∈C

d(u, v) := {u ∈ C : d(u, v) ≤ d(u′, v) ∀u′ ∈ C}. (1)

In the following, we study the conditions under which a
minimum distance decoder outputs the correct codeword,
that is, when argmin

u′∈C
d(u′, v) = {u}. This is equivalent to

saying that the decoder correctly outputs u if and only if
d(C \ {u}, v) > d(u, v).

Let d′ = d(C \ {u}, u). Since C has distance d, we have
d′ ≥ d. Observe the following:

• Let 1 ≤ e ≤ n. If e impulse noise errors occur, then in
e coordinates all the symbols occur. Therefore, those e
coordinates do not contribute to the distance between v
and any codeword. Hence, we get

d(u, v) = 0 and d(C \ {u}, v) ≥ d′ − e.

• Let 1 ≤ e ≤ n(q − 1). If e insertion errors occur, then
there are at most e coordinates which do not contribute to
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the distance between v and some codeword in the code.
Hence, we get

d(u, v) = 0 and d(C \ {u}, v) ≥ d′ − e.

• Let 1 ≤ e ≤ n. If e deletion errors occur, then there are
exactly e coordinates where the transmitted codeword u
differs from v. Any other codeword still differs from v
in at least d′ coordinates. Therefore, we get

d(u, v) = e and d(C \ {u}, v) ≥ d′.

For errors due to narrowband noise we introduce a quantity
that measures how many coordinates of any codeword in the
code are affected by the noise. Specifically, a narrowband
noise at the frequency corresponding to symbol σ can affect
up to n coordinates in a codeword, depending on the number
of times the symbol σ appears in the codeword. If narrowband
noise is present in the set of symbols Y ⊆ X , then the
maximum number of entries of any codeword c that can be
affected by the noise is

∑
σ∈Y wσ(c). Therefore, we define

E(e; C) � max
c∈C, Y⊆X , |Y|=e

∑
σ∈Y

wσ(c). (2)

The expression E(e; C) measures the maximum number of
coordinates, over all codewords in C that are affected by e
narrowband noise. Equation (2) assumes that the duration of
the narrowband noise is at least n and that it is present in
all the coordinates of the codeword transmitted. In general,
narrowband noise of duration l at symbol σ may not be present
for the full duration of the codeword. In Appendix A we show
that it suffices to consider narrowband noise of duration n
since it measures the maximum effect of narrowband noise
on the codewords.

Recall that d′ = d(C \ {u}, u). From the definition of
E(e; C), it is clear that the distance between any codeword,
other than the transmitted codeword u, and the output v de-
creases by E(e; C). Similarly, in the presence of a fading error
the distance between u and v increases by at most E(e; C).
Therefore we get the two conditions mentioned below.

• Let 1 ≤ e ≤ q. If e narrowband noise errors occur, then

d(u, v) = 0 and d(C \ {u}, v) ≥ d′ − E(e; C).
• Let 1 ≤ e ≤ q. If e signal fading errors occur, then

d(u, v) ≤ E(e; C) and d(C \ {u}, v) ≥ d′.

Hence, if we denote by eN, eF, eIMP, eINS, and eDEL the number
of errors due to narrowband noise, signal fading, impulse
noise, insertion, and deletion, respectively, we have

d(u, v) ≤ eDEL + E(eF; C),
d(C \ {u}, v) ≥ d′ − eIMP − eINS − E(eN; C).

Now,

d(u, v) − d(C \ {u}, v)
≤ (eDEL + E(eF; C))− (d′ − eIMP − eINS − E(eN; C))
= eDEL + eIMP + eINS + E(eF; C) + E(eN; C)− d′. (3)

Under the condition

eDEL + eIMP + eINS + E(eF; C) + E(eN; C) < d,

the inequality (3) reduces to d(u, v) < d(C \ {u}, v), which
implies correct decoding.

On the other hand, if

eDEL + eIMP + eINS + E(eF; C) + E(eN; C) ≥ d,

say eIMP = d, and u,w ∈ C is such that d(u,w) = d (since C
has distance d, u,w must exist), then d′ = d(C \ {u}, u) = d,
and we have d(u, v)−d(C \{u}, v) ≤ d−d′ = 0. In this case,
the correctness of the decoder output cannot be guaranteed.
We therefore have the following theorem.

Theorem 3.1. Let C be an (n, d)q-code over alphabet X . Let
eDEL, eIMP, eINS ∈ [n], eN, eF ∈ [q]. Then C is able to correct
eN narrowband noise errors, eF signal fading errors, eIMP

impulse noise errors, eINS insertion errors, and eDEL deletion
errors if and only if

eDEL + eIMP + eINS + E(eF; C) + E(eN; C) < d.

Therefore, the parameters n, q, d, and r (symbol weight) of
a code are insufficient to characterize the total error-correcting
capability of a code in a PLC system using MFSK, since
E(e; C) cannot be specified by n, q, d, and r alone. We now
introduce an additional new parameter that together with n, q,
and d, more precisely captures the error-correcting capability
of a code for PLC using MFSK.

Definition 3.1. Let C be a code of distance d. The narrowband
noise error-correcting capability of C is

c(C) = min{e : E(e; C) ≥ d}.
From Theorem 3.1 we infer that a code C can correct up

to c(C)−1 narrowband noise errors. In general, the minimum
value of c(C) is about d/r if all the symbols occur exactly r
times, and the maximum value of c(C) is at most d if all the
symbols appear once. Therefore, for a code C with bounded
symbol weight r, we have �d/r� ≤ c(C) ≤ min{d, q}.
However, the gap between the upper and lower bounds can be
large. Furthermore, the lower bound can be attained, giving
codes of low resilience against narrowband noise, as is shown
in the following example.

Example 3.2. The code

C = {(1, . . . , 1︸ ︷︷ ︸
r times

, 2, 3, 4, . . . , q), (2, . . . , 2︸ ︷︷ ︸
r times

, 1, 3, 4, . . . , q)}

is a (q+r−1, r+1, r)q-symbol weight code with narrowband
noise error-correcting capability c(C) = �d/r� = 2.

In the rest of the paper, we write E(C) when we want to
consider E(e; C) as a function of e, E(C) : [q] → [n], for a
specific code C. In the next section, we provide a tight upper
bound for c(C) and demonstrate that equitable symbol weight
codes attain this upper bound.

4. E(C) AND EQUITABLE SYMBOL WEIGHT CODES

In general, for a PLC system, narrowband noise may occur
with different durations. However, because of the result in
Lemma A.1, in the rest of this section we consider only
narrowband noise of duration n for analysis. In the rest of
the section, we then demonstrate the optimality of equitable
symbol weight codes with respect to parameter E(C).
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A. Relation with Symbol Weight and Partition

Symbol weight provides an estimate for E(C). Specifically,
if C is a code of length n with bounded symbol weight r, then
E(1; C) = r, and for e > 1 the minimum value possible is
r+ e− 1 if any other symbol occurs exactly once. Therefore,
E(e; C) ≥ min{n, r + e− 1}.

On the other hand, if C is a constant partition code with
partition 〈cσ : σ ∈ X〉, E(C) can be determined precisely.
Assume X = [q] and c1 ≥ c2 ≥ · · · ≥ cq, then E(e; C) is the
sum of e largest symbol weights in any codeword, i.e.,

E(e; C) =
e∑

i=1

ci for all e ∈ [q].

Further, suppose that C is an equitable symbol weight code.
Then from Lemma 2.1, C has constant partition 〈rq−t(r−1)t〉,
where r = �n/q� and t = qr − n. Hence,

E(e; C) =
{
re, if e ≤ q − t,

r(q − t) + (e− q + t)(r − 1), if q − t < e ≤ q.

B. Importance of Symbol Equity

For c(C) to be large, E(C) must grow slowly as a function
of e. We seek codes C for which E(C) grows as slowly as
possible. In this subsection we show that the minimum growth
of E(C) is achieved when the maximum symbol weight in any
codeword of the code is at most �n/q� , i.e., the symbols are
equitably distributed in any codeword. Fix n, q, and let Fn,q

be the (finite) family of functions

Fn,q = {E(C) : C is a q-ary code of length n}.
If f ∈ Fn,q , then f is a monotone increasing function with
f(q) = n. We say that f ≺ g if

there exists e′ ∈ [q] with f(e) = g(e) for e ≤ e′ − 1,

and f(e′) < g(e′). (4)

Define the total order � on Fn,q so that f � g if either
f(e) = g(e) for all e ∈ [q] or f ≺ g.

The following proposition states that the total order �, in
some sense, orders codes of same length and alphabet size in
accordance to their capabilities in a PLC system.

Proposition 4.1. Let C and C′ be (n, d)q-codes. Suppose
E(C) ≺ E(C′) with e′ satisfying equation (4). If E(e′; C) < d,
then there exists a set of errors that C is able to correct but C′
is unable to correct.

Proof: Consider e′ narrowband noise errors of duration
n and d−E(e′; C)− 1 impulse errors. Then E(e′; C) + (d−
E(e′; C)−1) < d, but E(e′; C′)+(d−E(e′; C)−1) ≥ d. The
proposition then follows from Theorem 3.1.

Hence we seek the least element in Fn,q with respect to the
total order �.

Proposition 4.2. Let f∗
n,q : [q]→ [n] be defined by

f∗
n,q(e) =

{
re, if 1 ≤ e ≤ q − t,
r(q − t) + (e− q + t)(r − 1), otherwise,

where r = �n/q� and t = qr − n. Then f∗
n,q is the unique

least element in Fn,q with respect to the total order �.

Proof: Since � is total, it suffices to establish that f∗
n,q �

f for all f ∈ Fn,q, and that f∗
n,q ∈ Fn,q.

Let f = E(C) ∈ Fn,q, where C is a q-ary code of length
n over the alphabet [q]. Let u ∈ C. By permuting symbols
if necessary, we may assume that w1(u) ≥ w2(u) ≥ · · · ≥
wq(u). We show that for all e ∈ [q],

e∑
i=1

wi(u) ≥ f∗
n,q(e). (5)

Suppose on the contrary that
∑e

i=1 wi(u) < f∗
n,q(e) for

some e ∈ [q]. If e ≤ q − t, then we have
∑e

i=1 wi(u) < re
and r − 1 ≥ we(u) ≥ wj(u) for j ≥ e+ 1. Hence,

n =

q∑
i=1

wi(u) < re+(q−e)(r−1) = qr−q+e ≤ qr−t = n,

a contradiction.
Similarly, when e > q − t, we have

∑e
i=1 wi(u) < r(q −

t)+(e−q+t)(r−1) and r−1 ≥ we(u) ≥ wj(u) for j ≥ e+1.
Hence,

n =

q∑
i=1

wi(u)

< r(q − t) + (e− q + t)(r − 1) + (q − e)(r − 1)

= qr − t = n,

also a contradiction. Hence, (5) holds. This then implies
E(e; C) ≥ f∗

n,q(e) for all e ∈ [q], and consequently f � f∗
n,q.

The proposition then follows by noting that f∗
n,q ∈ Fn,q,

since E(C) = f∗
n,q when C is a q-ary equitable symbol weight

code of length n.

Corollary 4.1. C is a q-ary equitable symbol weight code of
length n if and only if E(C) = f∗

n,q.

Proof: If C is a q-ary equitable symbol weight code of
length n, we have already determined that E(C) = f∗

n,q.
Hence, it only remains to show that E(C) = f∗

n,q implies C is
a q-ary equitable symbol weight code of length n. Let u ∈ C
and we follow the notation in the proof of Proposition 4.2.
Equality holds in (5) if and only if wi(u) = r for 1 ≤ i ≤ q−t
and wi(u) = r−1, otherwise. That is, u has equitable symbol
weight. Hence, C is an equitable symbol weight code.

It follows that an equitable symbol weight code C gives
E(C) of the slowest growth rate. From Proposition 4.1, this
is the desired condition for correcting as many narrowband
noise and signal fading errors as possible.

We end this section with a tight upper bound on c(C).
Corollary 4.2. Let C be an (n, d)q-code. Then

c(C) ≤ min {e : f∗
n,q(e) ≥ d},

and equality is achieved when C is an equitable symbol weight
code.

Proof: Let c′ = min{e : f∗
n,q(e) ≥ d}. Observe that

E(c′; C) ≥ f∗
n,q(c

′) ≥ d.

Hence, by minimality of c(C), we have c(C) ≤ c′. The second
part of the statement follows from Corollary 4.1.
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The results in this section establish that an equitable symbol
weight code has the best narrowband noise and signal fading
error-correcting capability, among codes of the same distance
and symbol weight.

5. SIMULATION RESULTS

In this section, we study the performance of equitable sym-
bol weight codes in a simulated setup. The setup is as follows.
We transmit with a code of length n over alphabet X . Let p
be a real number between 0 and 1 and L = {bn : b ∈ [10]}.
We simulate a PLC channel with the following characteristics:

(i) for each σ ∈ X , narrowband noise error1 of duration
l ∈ L occurs at symbol σ with probability p,

(ii) for each σ ∈ X , a signal fading error occurs at symbol
σ with probability Q,

(iii) for each i ∈ [n], an impulse noise error occurs at
coordinate i with probability Q, and

(iv) for each (σ, i) ∈ X × [n], an insertion/deletion error
occurs at symbol σ and coordinate i with probability Q.

These errors occur independently.
We choose 105 random codewords (with repetition) from

each code to transmit through the simulated PLC channel. At
the receiver, we decode the detector output v to the codeword
u′ using the minimum distance decoder defined in equation
(1). The number of symbols in error is then d(u′, u) and the
symbol error rate is the ratio of the total number of symbols
in error to the total number of symbols transmitted.

Decoding with narrowband noise detection: Versfeld et al.
[22], [23] introduced a method to detect narrowband noise
in order to enhance the error correction capability of the
detector introduced in Section 3, when used with bounded
distance decoding. Based on the energy metrics obtained at
each time slot for each frequency, they first determine the
presence of narrowband interference and if so, the metrics of
the corresponding frequency are set to zero. Depending on the
detector/decoder combination, a signal is sent to the decoder.
Specifically, consider narrowband noise detection with the
use of an (n, d, r)-symbol weight code. If the number of
discrete time instances in which a particular symbol appears,
exceeds �(n+ r)/2	, the particular symbol is removed from
the coordinates in which it occurs. We describe an algorithm
to detect and remove narrowband noise in Algorithm 1.

A. Minimum Symbol Weight Codes

We exhibit the difference in performance between equitable
symbol weight codes and (non-equitable) minimum symbol
weight codes. Specifically, we consider the codes of various
lengths and relative distances in Table I.

In Fig. 2 we show the difference between the perfor-
mance of the codes for varying probability of narrowband
noise. The different plots correspond to the probability of
background noise, impulse noise and fading fixed at Q ∈
{0.1, 0.075, 0.05, 0.025, 0.01}. The solid lines correspond to
equitable symbol weight codes and the dotted lines correspond
to minimum symbol weight codes. Only for this particular

1The choice of L is similar to that of the narrowband noise model in the
setup of Verfeld et al. [22], [23].

Input: Detector Output, v ∈ (2X )n

Output: Modified v ∈ (2X )n

τ ← �(n+ r)/2	;
for σ ∈ X do

if |{i : σ ∈ vi}| > τ then
for i ∈ [n] do

vi ← vi \ {σ}
end

end
end

Algorithm 1: Narrowband noise detection with an
(n, d, r)-symbol weight code

simulation 107 codewords are transmitted. In the simulations
we detect the presence of narrowband noise2 using Algo-
rithm 1.

For the rest of the simulations we fix Q = 0.05. For
equitable and minimum symbol weight codes of size 1000,
the results of the simulation are displayed in Fig. 3. The solid
lines correspond to simulations in which we detect narrowband
noise and are labelled by “(NB)”. The dashed lines denote sim-
ulations without narrowband noise detection. From the results,
observe that ESW(25, 24, 2)17 and ESW(11, 6, 2)10 achieve
lower symbol error rates compared to MSW(25, 24, 2)17 and
MSW(11, 6, 2)10, respectively.

B. Cosets and Subcodes of Reed-Solomon Codes

Versfeld et al. [22], [23] showed empirically that using
narrowband detection, low symbol weight cosets of Reed-
Solomon codes outperform normal Reed-Solomon codes in
the presence of narrowband noise and additive white Gaussian
noise. We continue this investigation and observe the differ-
ence in performance between equitable symbol weight codes
and low symbol weight cosets of Reed-Solomon codes. In
addition, we consider subcodes of Reed-Solomon codes with
low symbol weight. In all these simulations we fix Q = 0.05,
and vary the probability p of narrowband noise.

Specifically, we consider the codes in Table II. See [22],
[23] for the construction of Reed-Solomon coset codes, de-
noted by RSC. The codes denoted by RSS are subcodes of
Reed-Solomon codes. They are obtained by expurgation of a
Reed-Solomon code and retaining only the codewords with
low symbol weight.

We note that it is not possible for equitable symbol weight
codes and Reed-Solomon coset codes of the same minimum
distance and length over the same alphabet to be of the same
size. Therefore, for each Reed-Solomon coset codes, we make
comparisons with an equitable symbol weight code of a larger
size, albeit with a smaller distance. However, these equitable
symbol weight codes have larger narrowband noise error-
correcting capabilities. In addition, we make comparisons with
subcodes of Reed-Solomon codes with parameters as close as

2As discussed in Section 3, after narrowband noise detection, the multival-
ued output is given directly to a minimum distance decoder. This deviation
from the setup by Versfeld et al. (where envelope detection and Viterbi
threshold ratio test is applied prior to decoding) means that the results are
independent of the choice of demodulation rule.
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TABLE I
COMPARISON OF EQUITABLE SYMBOL WEIGHT CODES AND MINIMUM SYMBOL WEIGHT CODES

Code Length Distance Narrowband noise
error-correcting capability

Symbol
weight

Alphabet
size Size Remarks

ESW(25, 24, 2)17 25 24 16 2 17 51 equitable symbol weight
MSW(25, 24, 2)17 25 24 12 2 17 51 minimum symbol weight
ESW(11, 6, 2)10 11 6 5 2 10 1000 equitable symbol weight
MSW(11, 6, 2)10 11 6 3 2 10 1000 minimum symbol weight

TABLE II
COMPARISON OF EQUITABLE SYMBOL WEIGHT CODES AND LOW SYMBOL WEIGHT COSETS AND SUBCODES OF REED-SOLOMON CODES

Code Length Distance Narrowband noise
error-correcting capability

Symbol
weight

Alphabet
size Size Remarks

ESW(7, 5, 1)8 7 5 5 1 8 336 equitable symbol weight
RSC(7, 6, 2)8 7 6 3 2 8 64 coset of Reed-Solomon code
RSS(7, 5, 2)8 7 5 3 2 8 336 subcode of Reed-Solomon code
ESW(7, 2, 1)8 7 2 2 1 8 20160 equitable symbol weight
RSC(7, 4, 4)8 7 4 1 4 8 4096 coset of Reed-Solomon code
RSS(7, 3, 2)8 7 3 2 2 8 20160 subcode of Reed-Solomon code

ESW(15, 11, 1)16 15 11 11 1 16 21120 equitable symbol weight
RSC(15, 13, 3)16 15 13 5 3 16 4096 coset of Reed-Solomon code
RSS(15, 12, 3)16 15 12 4 3 16 21120 subcode of Reed-Solomon code

possible to the corresponding equitable symbol weight codes.
In particular, we ensure that the subcodes and the equitable
symbol weight codes have the same size.

The results of the simulation are displayed in Fig. 4, where
we adopt similar conventions as in Fig. 3, and we make the
following observations.

(i) While narrowband noise detection in general improves
the performance of codes in PLC, it has negligible
effect on the performance of equitable symbol weight
codes. A natural question is if there is another parameter
that measures this improvement and if this parameter is
related to symbol equity.

(ii) Equitable symbol weight codes show larger improvement
over Reed-Solomon coset codes at higher narrowband
noise probabilities. This reflects the relevance of nar-
rowband noise error-correcting capabilities as a mea-
sure of performance when the effects of narrowband
interference are significant. In contrast, when the effects
of narrowband interference are negligible, the classical
Hamming distance parameter provides a better measure
of performance.

C. Simulation in the presence of cyclostationary noise

By definition, the parameter c(C) of a code C captures
the performance of the code in the presence of narrowband
noise and fading. It captures a “worst-case error” performance,
similar to how the minimum distance of a code determines
the worst-case error performance under bounded distance
decoding. A natural question arises about how a code C with
a narrowband noise error correcting capability c(C) performs
in the presence of cyclostationary noise (periodically varying
noise) compared to a code C′ with a lower value of c(C′).
We compare the performance of the equitable symbol weight
code ESW(25, 24, 2)17 and the minimum symbol weight code
MSW(25, 24, 2)17 under the presence of cyclostationary noise.

The setup is as follows. A model for cyclostationary noise
in the power line channel is presented in [30]. Gaussian noise
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Fig. 2. Comparison of equitable symbol weight codes (solid lines) and
minimum symbol weight codes (dashed lines) with varying probabilities of
noise.

is generated with instantaneous variance

σ2(t) = 0.23 + 1.38

∣∣∣∣sin
(
2π

t

TAC
− 0.10

)∣∣∣∣1.91
+ 7.17

∣∣∣∣sin
(
2π

t

TAC
− 0.61

)∣∣∣∣157000 ,
where TAC = 1/60 s is the period of the mains voltage. The
instantaneous variance has a period of TAC/2, and has an
average variance of one, when averaged over this period. The
generated Gaussian noise is then passed through a filter with
amplitude response H(f) =

√
a/2e−a|f |/2., where a = 1.2×

10−5. Let the alphabet of the codes be the set [17]. We require
17 individual center frequencies to represent each symbol from
the alphabet. The transmitted signals are modulated according
to the sinusoidal waves

sm(t) =

√
2Es

Ts
cos(2πfmt), t ∈ [0, Ts),m ∈ [17],
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Fig. 3. Comparison of equitable and minimum symbol weight codes.

where Es is the symbol energy, Ts is the symbol time period,
and fm are the center frequencies. The time period of each
symbol is taken to be Ts = 1/9 × TAC/2, and the signal
is sampled at the rate 500 × 1080Hz, which is slightly
above 500 kHz. This sampling rate is chosen to give the
same integral number of samples in each TAC/2 period. The
center frequency corresponding to the symbol m is taken to
be 10.8m kHz, for m ∈ [17]. This maintains a frequency
separation of 10.8 kHz that is an integral multiple of 1/Ts

and ensures a correlation of zero between the different signal
waveforms. At each center frequency we use a square-law
detector and declare one if it detects an energy greater than
Es/4, otherwise it declares a zero3. While decoding, the codes
detect the presence of narrowband noise using Algorithm 1.
The output of the simulation is presented in Fig. 5. The
horizontal axis corresponds to the signal to average noise ratio
(in dB), where the average noise power spectral density is
denoted by N0. We observe that the equitable symbol weight
codes outperform minimum symbol weight codes when the
noise process is cyclostationary.

6. CONCLUSION

We have introduced a new code parameter that captures
the error-correcting capability of a code with respect to
narrowband noise and signal fading. Equitable symbol weight
codes are shown to be optimal with respect to this parameter
when code length, alphabet size and distance are fixed. We
also provide simulations that show equitable symbol weight
codes achieve lower symbol error rates as compared to their
non-equitable counterparts. These results motivate the study
of equitable symbol weight codes as a viable option to handle
narrowband noise and signal fading in a PLC channel.

APPENDIX A
NARROWBAND NOISE OF DIFFERENT DURATIONS AND

E(e; C)
In this Appendix we show that it suffices to consider

narrowband noise of length n instead of smaller lengths since

3This threshold is similar to the threshold used in [7].
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Fig. 4. Comparison of equitable symbol weight codes and low symbol weight
cosets and subcodes of Reed-Solomon codes.

it measures the maximum effect of narrowband noise on the
codewords. For integers k, n, k ≤ n, we use the notation
[k, n] � {k, . . . , n}. Therefore, given n and for an integer
iσ ≤ n, we can write

{
i : max{1, iσ} ≤ i ≤ min{iσ + l −

1, n}} = [iσ, iσ + l − 1] ∩ [n]. For errors due to narrowband
noise, we define the following quantity for Y ⊂ X , l ∈ Z>0,
c ∈ C,

E(Y; l, c) = max
iσ≤n:σ∈Y

|{i : i ∈ [iσ, iσ + l − 1] ∩ [n], ci = σ}| .
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The quantity E(Y; l, c) measures the maximum number of
coordinates in c that can be affected by narrowband noise of
duration l at symbols in Y .

Let L ⊂ Z>0. We consider the following quantity as a
function in e,

E(L, C) : [q]→ [n],

E(e;L, C) = max
Y⊆X , |Y|=e, l∈L, c∈C

E(Y; l, c),

then E(e;L, C) measures the maximum number of coordi-
nates, over all codewords in C, that can be affected by e
narrowband noise of duration l ∈ L. The following lemma
states that it suffices to consider the maximum duration when
determining the performance of a code in a PLC.

Lemma A.1. Let C be a q-ary code of length n. Consider
L ⊂ Z>0 and define n′ = min{n,maxL}. Then

E(L, C) = E({n′}, C).
Proof: Let l′ = maxL and fix l ∈ L and e ∈ [q].

Observe that since [i, i+ l − 1] ⊆ [i, i+ l′ − 1] for i ≤ n,

E(Y; l, c) ≤ E(Y; l′, c) for c ∈ C, Y ⊂ X .
Hence, E(e; {l}, C) ≤ E(e; {l′}, C) and so, E(e;L, C) ≤
E(e; {l′}, C).

In addition, since [i, i+ l − 1] ∩ [n] ⊆ [n] for i ≤ n,

E(Y; l, c) ≤ E(Y;n, c) for c ∈ C, Y ⊂ X .
Similar argument shows that E(e;L, C) ≤ E(e; {n}, C). Since
l′ ∈ L, we have E(e;L, C) ≥ E(e; {l′}, C) and the lemma
follows.

The following is now immediate.

Corollary A.1. Let C be a q-ary code of length n. For L ⊂
Z>0,

E(e;L, C) ≤ E(e; {n}, C) for all e ∈ [q].

Therefore, E(L, C), which measures the maximum effect
of narrowband noise on codewords, is maximized when L =
{n}. Hence, we assume that only narrowband noise of duration
n occurs.
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