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Abstract—Tandem duplication is the process of inserting a copy of
a segment of DNA adjacent to the original position. Motivated by
applications that store data in living organisms, Jain et al. (2017)
proposed the study of codes that correct tandem duplications. All
code constructions are based on irreducible words.

We study efficient encoding/decoding methods for irreducible
words. First, we describe an (`,m)-finite state encoder and show
that when m = Θ(1/ε) and ` = Θ(1/ε), the encoder has rate that
is ε away from the optimal. Next, we provide ranking/unranking
algorithms for irreducible words and modify the algorithms to
reduce the space requirements for the finite state encoder.

I. INTRODUCTION

Advances in synthesis and sequencing technologies have made
DNA macromolecules an attractive medium for digital informa-
tion storage. Besides being biochemically robust, DNA strands
offer ultrahigh storage densities of 1015-1020 bytes per gram of
DNA, as demonstrated in recent experiments (see [1, Table 1]).

These synthetic DNA strands may be stored ex vivo or in vivo.
When the DNA strands are stored ex vivo or in a non-biological
environment, code design takes into account the synthesising
and sequencing platforms being used (see [2] for a survey of the
various coding problems). In contrast, when the DNA strands are
stored in vivo or recombined with the DNA of a living organism,
we design codes to correct errors due to the biological mutations.

This work looks at the latter case, and specifically, examines
codes that correct errors due to tandem duplications. Tandem
duplications or repeats is one of the two common repeats found
in the human genome [3] and they are caused by slipped-strand
mispairings [4]. They occur in DNA when a pattern of one
or more nucleotides is repeated and the repetitions are directly
adjacent to each other. For example, consider the string or word
AGTAGTCTGC. The substring AGTAGT is a tandem repeat, and
we say that AGTAGTCTGC is generated from AGTCTGC by a
tandem duplication of length three.

Jain et al. [5] first proposed the study of codes that correct
errors due to tandem duplications. In the same paper, Jain et
al. used irreducible words (see Section I-A for definition) to
construct a family of codes that correct tandem duplications of
lengths at most k, where k ∈ {2, 3}. While these codes are
optimal in size for the case k = 2, these codes are not optimal
for k = 3, and in fact, Chee et al. [6] constructed a family of
codes with strictly larger size. Recently, Jain et al. [7] looked
at other error mechanisms, and studied the capacity of these
tandem-duplication systems in the presence of point-mutation
noise (substitution errors).

In this paper, we look at encoding/decoding methods for irre-
ducible words. In particular, we provide polynomial-time algo-
rithms that encodes either exactly the rates of irreducible words
or close to the asymptotic rates of irreducible words. While the
encoding/decoding algorithms are standard in constrained coding

[8] and combinatorics literature [9], our contribution is a detailed
analysis of the space and time complexities of the respective
algorithms. Before we state the main results of the paper, we go
through certain notations.

A. Notation and Terminology

Let [n] denote the set {1, 2, . . . , n}. Let Σq = {0, 1, · · · q−1}
be an alphabet of q > 2 symbols. For a positive integer n, let
Σnq denote the set of all words of length n over Σq , and let Σ∗q
denote the set of all words over Σq with finite length. Given two
words x,y ∈ Σ∗q , we denote their concatenation by xy.

We state the tandem duplication rules. For integers k 6 n and
i 6 n − k, we define Ti,k : Σnq → Σn+k

q such that Ti,k(x) =
uvvw, where x = uvw, |u| = i, |v| = k.

If a finite sequence of tandem duplications of length at most
k is performed to obtain y from x, then we say that y is a
6k-descendant of x, or x is a 6k-ancestor of y . Given a
word x, we define the 6k-descendant cone of x is the set of
all 6k-descendants of x and denote this cone by D∗6k(x).

Example 1. Consider x = 01210 over Σ3. We have
T1,3(x) = 01211210 and T0,2(01211210) = 0101211210. So,
0101211210 ∈ D∗63(x).

Definition 1 (6k-Tandem-Duplication Codes). A subset C ⊆ Σnq
is a 6k-tandem-duplication code if for all x,y ∈ C and x 6= y,
we have that D∗6k(x) ∩ D∗6k(y) = ∅. We say that C is an
(n,6k; q)-TD code.

The size of C refers to |C|, while the rate of C is
given by (1/n) logq |C|. Given an infinite family {Cn :
Cn is of length n}∞n=1, its asymptotic rate is given by
limn→∞(1/n) logq |Cn|.

B. Irreducible Words

Of interest is a family of tandem-duplication codes constructed
by Jain et al. [5]. Crucial to the code construction is the concept
of irreducible words and roots.

Definition 2. A word is 6k-irreducible if it cannot be dedupli-
cated into shorter words with deduplications of length at most
k. We use Irr6k(n, q) to denote the set of all 6k-irreducible
words of length n over Σq . The 6k-ancestors of x ∈ Σ∗q that
are 6k-irreducible words are called the 6k-roots of x.

Construction 1 (Jain et al. [5]). For k ∈ {1, 2, 3} and n > k.
An (n,6k; q)-TD-code C(n,6k; q) is given by

C(n,6k; q) ,
n⋃
i=1

{ξn−i(x) | x ∈ Irr6k(i, q)} .

Here, ξi(x) = xzi, where z is the last symbol of x.
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We point out certain advantages of Construction 1.
(a) Almost optimal rates. Jain et al. demonstrated that Con-

struction 1 is optimal for k ∈ {1, 2}. However, when
k = 3, Chee et al. [6] provided constructions that achieve
almost twice the size in Construction 1 (see [6, Table I]).
Unfortunately, the asymptotic rate of the latter is the same
as Construction 1. Therefore, the set of irreducible words
gives the best known asymptotic rates for k = 3.
Furthermore, for q > 5 and k = 3, the asymptotic rates of
Construction 1 differs from a theoretical upper bound (see
[6, Proposition 4] and Table I) by at most 0.01. In other
words, Construction 1 is almost optimal in terms of rates.

(b) Linear-time decoding. Consider x ∈ C(n,6k; q) and we
read y ∈ D∗6k(x). To retrieve the codeword x, we simply
compute the 6k-root of y and extend the root if the root
is shorter than n. Jain et al. showed that there is at most
one root when k ∈ {1, 2, 3}, while Chee et al. provided
algorithms to compute these roots in linear time [6].

In view of these points, we study other practical aspects of
Construction 1. Specifically, we look at efficient encoding of
messages in Σ`q to codewords in x ∈ C(n,6k; q) for some ` <
n.

To this end, we look at the rates of C(n,6k; q). Let
I6k(n, q) , |Irr6k(n, q)|. Then the size of C(n,6k; q) is
given by

∑n
i=1 I6k(i, q). Let rate6k(n, q) and rate6k(q) de-

note the rate and asymptotic rate of C(n,6k; q), respectively.
In other words, rate6k(n, q) , (1/n) logq |C(n,6k; q)| and
rate6k(q) , limn→∞ rate6k(n, q). Jain et al. observed that⋃∞
n=1 Irr6k(n, q) is a regular language and hence,

rate6k(q) = lim
n→∞

logq I6k(n, q)

n
. (1)

Furthermore, using Perron-Frobenius theory (see [8]), Jain et
al. computed rate63(3) to be approximately 0.347934. In view
of (1), we look at encoding of the words in Irr6k(n) instead
and the extension of our encoding methods to C(n,6k; q) is
straightforward.

In this paper, we focus on the case k ∈ {2, 3} as the results
for k = 1 is well known. Specifically, the size of Irr61(n, q) is
given by q(q − 1)n−1 and linear-time encoding methods can be
obtained via differential coding (see for example, [8]).

C. Our Contributions

We first develop a recursive formula for I6k(n, q) and hence,
provide a formula for the asymptotic rate for C(n,6k; q). We
then provide two efficient encoding methods and use combina-
torial insights provided by the recursive formula to analyse the
space and time complexities.

Specifically, our main contributions are as follows.
(A) We compute rate6k(q) for all q and k ∈ {2, 3} in Section II.
(B) In Section III, we propose an (`,m)-finite state encoder

with rate `/m. Furthermore, we show that we can choose
the lengths ` and m to be small and yet come close to the
asymptotic rate. In particular, if we choose m = Θ(1/ε) and
` = Θ(1/ε), we showed that the rate is at least rate6k(q).
Here, the running time for the encoder is linear in codeword
length n for constant ε .

(C) Using bijections developed Section II, we provide a rank-
ing/unranking algorithm that encodes with rate equal to
(1/n) logq(Irr6k(n, q)) in Section IV. This algorithm runs
in O(n2) time using O(n2) space. Furthermore, this rank-
ing/unranking technique can be modified to reduce the space
requirement to O(m2) in the (`,m)-finite state encoder.

Due to space constraints, we present proofs and illustrate
examples for the case k = 2 and simply state the relevant results
for k = 3. The detailed proofs are deferred to the full paper.

II. ENUMERATING IRREDUCIBLE WORDS

In this section, we compute rate6k(q) for all q and k ∈ {2, 3}
by obtaining a recursive formula for I6k(n, q). While the
Perron-Frobenius theory (see [8]) is sufficient to determine the
asymptotic rates, the recursive formula is useful in the analysis
of the finite state encoder in Section III and the development of
the ranking/unranking methods in Section IV.

To this end, we partition the set of irreducible words into
two classes and provide bijections from irreducible words of
shorter lengths into them. Specifically, notice that the suffix of an
irreducible word is of the form either aba or abc, where a, b, c are
distinct symbols. Hence, we let Irr

(s)
6k(2, n, q) and Irr

(s)
6k(3, n, q)

denote the set of irreducible words with length-three suffixes that
have two and three distinct symbols, respectively.

In the case k = 2, we consider the following maps for n > 4,

φ : Irr62(n− 1)× [q − 2]→ Irr
(s)
62(3, n, q),

ψ : Irr62(n− 2)× [q − 2]→ Irr
(s)
62(2, n, q).

We first define φ. If x = x1x2 . . . xn−1 ∈ Irr62(n − 1) and
i ∈ [q − 2], set σ to be the ith element in Σq \ {xn−2, xn−1}.
Then set φ(x, i) = x1x2 . . . xn−1σ.

For ψ, let x = x1x2 . . . xn−2 ∈ Irr62(n− 2) and i ∈ [q − 2]
and set σ to be the ith element in Σq \ {xn−3, xn−2}. Then set
ψ(x, i) = x1x2 . . . xn−2σxn−2.

Proposition 1. The maps φ and ψ are bijections.

Proof. We construct the inverse map for φ. Specifically, we set
φ−1 : Irr

(s)
62(3, n, q)→ Irr62(n−1)×[q−2] such that φ−1(x) =

(x1 . . . xn−1, i), where i is the index of xn in Σq\{xn−2, xn−1}.
It can be verified that φ ◦φ−1 and φ−1 ◦φ are identity maps on
their respective sets. Similarly, the inverse map for ψ is given
by ψ−1 : Irr

(s)
62(2, n, q) → Irr62(n − 2) × [q − 2] such that

ψ−1(x) = (x1 . . . xn−2, i), where i is the index of xn−1 in
Σq \ {xn−3, xn−2}. �

The following corollary is then immediate.

Corollary 1. We have that I62(2, q) = q(q − 1), I62(3, q) =
q(q − 1)2, and

I62(n, q) = (q − 2)I62(n− 1, q) + (q − 2)I62(n− 2, q) (2)

for n > 4. Therefore, the asymptotic rate is rate62(q) = logq λ2,
where λ2 = (q − 2 +

√
q2 − 4)/2.

In the next section, we are interested in irreducible words with
certain prefixes or suffixes. Specifically, let p be a word of length
` < n. Then we denote the set of irreducible words of length n
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with prefix p by Irr
(p)
6k(p, n, q). The set of irreducible words of

length n with suffix p is denoted by Irr
(s)
6k(p, n, q).

Fix p. Notice that the maps φ and ψ simply appends one
and two symbols to words in their domains. Hence, if we apply
the maps to a word with prefix p, the image also has the same
prefix p. Therefore, both φ and ψ remain as bijections when
we restrict the domains and codomains to the irreducible words
with prefix p. In other words, we obtain a similar recursion for
Irr

(p)
62(p, n, q).

Corollary 2. Let p ∈ Σ`q For n > `+ 2,∣∣∣Irr(p)
62(p, n, q)

∣∣∣ = (q − 2)
∣∣∣Irr(p)

62(p, n− 1, q)
∣∣∣

+ (q − 2)
∣∣∣Irr(p)

62(p, n− 2, q)
∣∣∣ . (3)

We conclude this section with the recursion for Irr63(n, q).

Proposition 2. We have that I63(3, q) = q(q−1)2, I63(4, q) =
q2(q − 1)(q − 2), I63(5, q) = q(q − 1)(q − 2)(q2 − q − 1) and

I63(n, q) = (q − 2)I63(n− 1, q) + (q − 3)I63(n− 2, q)

+ (q − 2)I63(n− 3, q) (4)

for n > 6. Therefore, rate63(q) = logq λ3, where λ3 is the
largest real root of equation x3−(q−2)x2−(q−3)x−(q−2) = 0.

We compute the values of rate6k(q) for k ∈ {2, 3} in Table I.
Let T (n, q) be the largest size of an (n,63; q)-TD code and
define τ(q) , (1/n) lim supn→∞ logq T (n, q). From [5], [6], we
have that that rate63(q) 6 τ(q) 6 rate62(q). Therefore, Table I
demonstrates that C(n,63; q) is almost optimal for q > 5.

q 3 4 5 6 7 8
rate62(q) 0.4380 0.7249 0.8280 0.8788 0.9081 0.9269
rate63(q) 0.3479 0.7054 0.8208 0.8753 0.9062 0.9258

TABLE I: The asymptotic information rates for k-irreducible
words for k ∈ {2, 3}

III. FINITE STATE ENCODER

For integers ` < m, an (`,m)-finite state encoder is triple
(S,E,L), where S is a set of states, E ⊂ S × S is a set of
directed edges, and L : E→ Σ`q × Σmq is an edge labeling.

To encode irreducible words, we choose m > 2k− 1, and set

S , Irr6k(m, q) and E , {(x,x′) : xx′ ∈ Irr6k(2m, q)}.

For x ∈ S, we define the neighbours of x to be N(x) ,
{x′ : (x,x′) ∈ E}. We also consider the quantity ∆6k(m, q) ,
min{|N(x)| : x ∈ S} and choose ` such that

∆6k(m, q) > q`. (5)

We now define the edge labelling L using this choice of `.
For x ∈ S, since |N(x)| > q`, we may use the set Σ` to index
the first q` words in N(x). Hence, for x′ ∈ S, if x′ is one of
the first q` words, we let yx′ ∈ Σ` denote the index. Otherwise,
we simply set yx′ = −. Therefore, for (x,x′) ∈ E, we set
L(x,x′) = (yx′ ,x′). Finally, we call this triple an (`,m)- finite
state encoder for irreducible words.

Example 2. Let k = 2, q = 3, m = 3. Then S = {010, 012, 020,
021, 101, 102, 120, 121, 201, 202, 210, 212}, and

N(010) = {201, 210, 212},
N(012) = {010, 012, 021, 101, 102}.

We verify that ∆62(3, 3) = 3 and so, we choose ` = 1. So, we
can set L to map the edges exiting the state 010 as follow:
(010, 201) 7→ (0, 201), (010, 210) 7→ (1, 210), (010, 212) 7→ (2, 212).

We represent the mapping L using the following lookup table.

x N(x)
0 1 2 – –

010 201 210 212 – –
012 010 012 021 101 102
020 102 120 121 – –
021 012 020 021 201 202
101 201 202 210 – –
102 010 012 101 102 120
120 102 120 121 210 212
121 012 020 021 – –
201 020 021 201 202 210
202 101 102 120 – –
210 120 121 201 210 212
212 010 012 021 – –

Here, to determine L(x,x′), we look at the row corresponding
to x and look at the column corresponding to x′. If the column
is yx′ , then L(x,x′) = (yx′ ,x′). So, L(012, 010) = (0, 010).

A. Encoding

Let s be a positive integer and set n = s`. Suppose the
message y = y1y2 . . .ys ∈ Σs`.

To encode y using an (`,m)-finite state encoder for irre-
ducible words, we do the following:

(I) Set x0 to the first word in S = Irr6k(m, q).
(II) For i ∈ [s], set xi to be the unique word such that

L(xi−1,xi) = (yi,xi).
(III) The encoded irreducible word is x = x1x2 . . .xs.

Example 3 (Example 2 continued). Let s = 3 and consider the
message y = 012. First, we set x0 = 010. Then x1 = 201 since
L(010, 201) = (0, 201). Similarly, x2 = 021 and x3 = 021.

Therefore, the encoded word x is 201021021.

Since the encoded word has length sm, the (`,m)-finite
state encoder for irreducible words has rate `/m. In the next
subsection, we see that ` and m can be chosen in such a way
that the rate `/m approaches rate6k(q) quickly.

B. Approaching the Asymptotic Information Rate

Pick ε > 0. We find suitable values for ` and m so that the
encoding rate satisfies

`/m > rate6k(q)− ε. (6)

In particular, we show that ` = Θ(1/ε) and m = Θ(1/ε)
suffice to guarantee (6).

Recall that ` and m are required to satisfy (5). Hence, we
determine ∆6k(m, q). Surprisingly, these values have the same
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recursive structure as I6k(m, q) and therefore, have the same
growth rate.

Proposition 3. We have that ∆62(3, q) = q(q − 2)2,
∆62(4, q) = (q − 2)2(q2 − q − 1), and for m > 5,

∆62(m, q) = (q−2)∆62(m−1, q)+(q−2)∆62(m−2, q). (7)

Proof. Observe that by symmetry, we have |N(x)| = |N(x′)|
for x,x′ ∈ Irr

(s)
62(2,m, q). Similarly, |N(y)| = |N(y′)| for

y,y′ ∈ Irr
(s)
62(3,m, q).

We first show that |N(x)| 6 |N(y)| for x ∈ Irr
(s)
62(2,m, q)

and y ∈ Irr
(s)
62(3,m, q). Without loss of generality, we assume

x ∈ Irr
(s)
62(010,m, q) and y ∈ Irr

(s)
62(210,m, q). Then the

neighbours of x and y are given by

N(x) =

x′ : 10x′ ∈
⋃

σ/∈{0,1}

Irr
(p)
62(10σ,m+ 2, q)

 , (8)

N(y) =

y′ : 10y′ ∈
⋃
σ 6=0

Irr
(p)
62(10σ,m+ 2, q)

 . (9)

Since N(x) ⊆ N(y), the inequality |N(x)| 6 |N(y)| follows.
Hence, ∆62(m, q) = |N(x)| where x ∈ Irr

(s)
62(010,m, q).

Since ∆62(m, q) =
∑
σ/∈{0,1}

∣∣∣Irr(p)
62(10σ,m+ 2, q)

∣∣∣, the
recursive equation (7) follows from Corollary 2. �

For k = 3, we state the recursive equation without proof.

Proposition 4. We have that

∆63(5, q) = (q − 2)(q2 − 2q − 1)2,

∆63(6, q) = (q − 1)(q5 − 6q4 + 9q3 + 4q2 − 8q − 9),

∆63(7, q) = (q − 2)(q6 − 6q4 + 9q3 + 4q2 − 8q − 10q + 3),

and for m > 8,

∆63(m, q) = (q − 2)∆63(m− 1, q) + (q − 3)∆63(m− 2, q)

+ (q − 2)∆63(m− 3, q). (10)

Recall that λ2 and λ3 are roots of the equations x2 − (q −
2)x− (q− 2) = 0 and x3− (q− 2)x2− (q− 3)x− (q− 2) = 0,
respectively.

Set κ2 such that ∆62(m, q) > κ2λ
m
2 for m ∈ {3, 4}.

Similarly, set κ3 so that ∆63(m, q) > κ3λ
m
3 for m ∈ {5, 6, 7}.

Then it follows from an inductive argument, (7) and (10) that

∆6k(m, q) > κkλ
m
k for all m. (11)

We are now ready to present the main theorem of this section.

Theorem 1. Let k ∈ {2, 3}. Set ck = rate6k(q) = logq λk. For
ε > 0, if we choose m and ` such that

` =

⌈
(ck − ε)(ck − logq κk)

ε

⌉
, (12)

m =

⌈
`− logq κk

ck

⌉
, (13)

then the (`,m)-finite state encoder has rate at least rate6k(q)−
ε.

Proof. We have to verify that (5) and (6) hold for the choice of
` and m. Now, (12) implies that ε` > (ck−ε)(ck− logq κk), and
equivalently, ε` > c2k − ck logq κk − εck + ε logq κk. It implies
that ck` > (c2k − ck logq κk + ck`) − ε(ck − logq κk + `) =
(ck−ε)(ck− logq κk+`). Thus, ck`/(`− logq κk+ck) > ck−ε.
Therefore,

`

m
>

`

1 + (`− logq κk)/ck
=

ck`

`− logq κk + ck
> ck − ε.

Thus, we verify (6). Next, from (11) and (13), we have that

∆6k(m, q) > κkλ
(`−logq κk)/ logq λk

k = q`.

Hence, we verify (5) and complete the proof. �

Therefore, to achieve encoding rates at least rate6k(q) − ε,
we only require ` = Θ(1/ε) and m = Θ(1/ε). If we naively
use a lookup table to represent (S,E,L), we require qΘ(1/ε)

space. Furthermore, using binary search, the (`,m)-finite state
encoder for irreducible words encodes in O(n/ε) time. In the
next section, we use combinatorial insights from (2) and (4) to
reduce the space requirement to O(1/ε2).

IV. RANKING/UNRANKING ALGORITHM

A ranking function for a finite set S of cardinality N is a
bijection rank : S → [N ]. Associated with the function rank
is a unique unranking function unrank : [N ] → S, such that
rank(s) = j if and only if unrank(j) = s for all s ∈ S and
j ∈ [N ]. In this section, we present an algorithm for ranking
and unranking Irr6k(n, q). For ease of exposition, we focus on
the case where k = 2 and defer the case k = 3 to the full paper.

The basis of our ranking and unranking algorithms is the
bijections φ and ψ defined in Section II. As implied by the
codomains of φ and ψ, for n > 4, we order the words in
Irr62(n, q) such that words in Irr

(s)
62(3, n, q) are ordered before

words in Irr
(s)
62(2, n, q). For words in Irr62(2, q) and Irr62(3, q),

we simply order them lexicographically. We illustrate the idea
behind the unranking algorithm through an example.

Example 4. Let n = 6 and q = 3. Then the values of I62(m, q)
are as follow.

m 2 3 4 5 6
I62(m, q) 6 12 18 30 48

Suppose we want to compute unrank(40). Proposition 1 gives

Irr62(6, 3) = φ(Irr62(5, 3)× [1]) ∪ ψ(Irr62(4, 3)× [1]).

Now, we are interested in the 40th word of Irr62(6, 3). Since
40 > I62(5, 3) = 30, the 40th word of Irr62(6, 3) is the image
of the 40− 30 = 10-th word in Irr62(4, 3) under ψ. Recursing
tells us that the 10-th word in Irr62(4, 3) is the 10-th element
in φ(Irr62(3, 3)× [1]). The 10-th element of Irr62(3, 3) is 202.
This gives

unrank(40) = ψ(φ(202, 1), 1)

= ψ(2021, 1) = 202101.

The formal unranking algorithm is described in Algorithm 1.
The corresponding ranking algorithm for Irr62(n, q) has a

similar recursive structure and is described in Algorithm 2.
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Algorithm 1 unrank(n, q, j)

Input: Integers n ≥ 2, q > 3, 1 ≤ j ≤ I62(n, q)
Output: x, where x is the codeword of rank j in Irr62(n, q)

if n ≤ 3 then
return j-th codeword in Irr62(n, q)

if j 6 (q − 2)I62(n− 1) then
j′ ← 1 + b(j − 1)/(q − 2)c
i← (j − 1) (mod q − 2) + 1
return φ(unrank(n− 1, q, j′), i)

else
j′ ← 1 + b(j − (q − 2)I62(n− 1)− 1)/(q − 2)c
i← (j − (q − 2)I62(n− 1)− 1) (mod q − 2) + 1
return ψ(unrank(n− 2, 3, j′), i)

Example 5. Let n = 6 and q = 3 as before. Suppose we want to
compute rank(202101). Since 202101 ∈ Irr

(s)
62(2, 6, 3), we have

that 202101 is obtained from applying ψ to 2021 ∈ Irr62(4, 3).
Again, since 2021 ∈ Irr

(s)
62(3, 6, 3), we have that 202 is obtained

from applying φ to 202 ∈ Irr62(3, 3). Therefore,

rank(202101) = rank(2021) + I62(5, 3)

= rank(202) + I62(5, 3)

= 10 + 30 = 40

Algorithm 2 rank(n, q,x)

Input: n ≥ 2, q > 3 and irreducible word x of length n
Output: j, where 1 ≤ j ≤ I62(n, q), the rank of x in Irr62(n, q)

if n ≤ 3 then
return rank(x) in Irr62(n, q)

if xn 6= xn−2 then
x′ ← x1x2 . . . xn−1

i← the index of xn in Σq \ {xn−2, xn−1}
return (rank(n− 1, q,x′)− 1)(q − 2) + i

else
x′ ← x1x2 . . . xn−2

i← the index of xn−1 in Σq \ {xn−3, xn−2}
return (rank(n−2, q,x′)−1)(q−2)+ i+(q−2)I62(n−1, q)

The set of values of {I62(m, q) : m 6 n} required in
Algorithms 1 and 2 can be precomputed based on the recurrence
(2). Since the numbers I62(m, q) grow exponentially, these n
stored values require O(n2) space.

Next, Algorithms 1 and 2 involve O(n) iterations and each
iteration involves a constant number of arithmetic operations.
Therefore, Algorithms 1 and 2 involve O(n) arithmetics opera-
tions and have time complexity O(n2).

A. Reducing the Space Requirement for the Finite State Encoder

As discussed earlier, a naive implementation of the (`,m)-
finite state encoder in Section III requires qΘ(m) space (assuming
` = Θ(m)). Here, we modify our unranking algorithm to reduce
the space requirement O(m) integers or O(m2) bits.

Recall the notation in Section III. In particular, let xi−1 ∈
Irr62(m, q) and yi ∈ Σ`q . Our encoding task is to determine the
irreducible word xi in N(xi) whose index corresponds to yi.
Equivalently, if j is the rank of yi ∈ Σ`q , then our task is to find
xi such that its rank in N(xi−1) is j. Since xi−1 is irreducible
and using symmetry, we assume that xi−1 ∈ Irr

(s)
62(010,m, q)

or xi−1 ∈ Irr
(s)
62(210,m, q). Furthermore, (8) and (9) imply

that N(xi1) corresponds to a union of 62-irreducible words
with prefixes of the form 10σ. Therefore, it suffices to provide
ranking/unranking algorithms for Irr

(p)
62(10σ,m, q).

Since (3) implies that Irr
(p)
62(10σ,m, q) has the same recursive

structure as Irr62(m, q), we can modify Algorithms 1 and 2 to
unrank and rank Irr

(p)
62(10σ,m, q).

To rank/unrank Irr
(p)
62(10σ,m, q) require O(m) precomputed

integers. Assuming q is constant, we require only O(m) integers
or O(m2) bits. Hence, the running time is increased to O(m2).

V. CONCLUSION

For k ∈ {2, 3} and all q, we provided an explicit recursive
formula for Irr6k(n, q) and hence, derived the expressions for
rate6k(q).

We design efficient encoders/decoders for Irr6k(n, q).
(i) We provide an (`,m)-finite state encoder and showe that

for all ε > 0, if we choose m = Θ(1/ε) and ` = Θ(1/ε),
the encoder achieves rate that is at least rate6k(q) − ε.
The implementation of the finite state encoder with a
lookup table runs in O(n/ε) time and requires qΘ(1/ε)

space. However, if we use the ranking/unranking method in
Section IV, the encoder runs in O(n/ε2) time and requires
O(1/ε) space.

(ii) We provide an unranking algorithm for irreducible
words whose encoding rate is (1/n) logq(Irr6k(n, q)) >
rate6k(q). The encoder runs in O(n2) time and requires
O(n2) space.
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