
On the Number of DNA Sequence Profiles for
Practical Values of Read Lengths

Zuling Chang∗, Johan Chrisnata†, Martianus Frederic Ezerman†, and Han Mao Kiah†

∗School of Mathematics and Statistics, Zhengzhou University, China
†School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

Emails: zuling chang@zzu.edu.cn, {jchrisnata, fredezerman, hmkiah}@ntu.edu.sg

Abstract—A recent study by one of the authors has demon-
strated the relevance of profile vectors in DNA-based data
storage. We provide exact values and lower bounds on the
number of profile vectors for finite values of alphabet size q,
read length `, and word length n. Consequently, we demonstrate
that for q ≥ 3 and n = qa`, a = o(`), the number of profile
vectors is at least qκn for some constant 0 < κ ≤ 1. In addition
to enumeration results, we provide a set of efficient encoding and
decoding algorithms for a family of profile vectors.

Index Terms—DNA-based data storage, profile vectors, Lyndon
words, synchronization.

1. INTRODUCTION

Despite advances in traditional data recording techniques,
the emergence of Big Data platforms and energy conservation
issues impose new challenges to the storage community in
terms of identifying high volume, nonvolatile, and durable
recording media. The potential for using macromolecules for
ultra-dense storage was recognized as early as in the 1960s.
Among these macromolecules, DNA molecules stand out due
to their biochemical robustness and high storage capacity.

In the last few decades, the technologies for synthesizing
(writing) artificial DNA and for massive sequencing (reading)
have reached unprecedented levels of efficiency and accu-
racy. Building upon the rapid growth of DNA synthesis and
sequencing technologies, two laboratories recently outlined
architectures for archival DNA-based storage [1], [2]. The
first architecture achieved a density of 700 TB/gram, while
the second approach raised the density to 2.2 PB/gram. To
further protect against errors, Grass et al. later incorporated
Reed-Solomon error-correction schemes and encapsulated the
DNA media in silica [3]. Yazdi et al. recently proposed a
completely different approach and provided a random access
and rewritable DNA-based storage system [4], [5].

More recently, to control specialized errors arising from
sequencing platforms, two families of codes were introduced
by Gabrys et al. [6] and Kiah et al. [7]. The former looks
at miniaturized nanopore sequencers such as MinION, while
the latter focuses on errors arising from high-throughput
sequencers such as Illumina. The latter forms the basis for this
work. In particular, we examine the concept of DNA profile
vectors introduced by Kiah et al. [7].

In this channel model, to store and retrieve information
in DNA, one starts with a desired information sequence
encoded into a sequence defined over the nucleotide alphabet

{A, C, G, T}. The DNA storage channel models a physical
process which takes as its input the sequence of length n, and
synthesizes (writes) it physically into a macromolecule string.
To retrieve the information, the user may proceed using several
read technologies. The most common sequencing process, im-
plemented by Illumina, makes numerous copies of the string or
amplifies the string, and then fragments all copies of the string
into a collection of substrings (reads) of approximately the
same length `, so as to produce a large number of overlapping
“reads”. Since the concentration of all (not necessarily) distinct
substrings within the mix is usually assumed to be uniform,
one may normalize the concentration of all subsequences by
the concentration of the least abundant substring. As a result,
one actually observes substring concentrations reflecting the
frequency of the substrings in one copy of the original string.
Therefore, we model the output of the channel as an unordered
subset of substrings (reads), and this set may be summarized
by its multiplicity vector, which we call the output profile
vector.

We assume a channel with neither synthesis nor sequencing
errors, and observe that it is possible for different strings to
have an identical profile vector. In other words, even without
errors, the channel may be unable to distinguish between
certain pairs of strings. Our task is then to enumerate all
distinct profile vectors for fixed values of n and ` over a q-ary
alphabet. In the case of arbitrary `-substrings, the problem of
enumerating all valid profile vectors was addressed by Jacquet
et al. in the context of “Markov types” [8]. Kiah et al. then
extended the enumeration results to profiles with specific `-
substring constraints so as to address certain considerations
in DNA sequence design [7]. In particular, for fixed values
of q and `, the number of profile vectors is known to be
Θ
(
nq

`−q`−1
)

.

However, determining the coefficient for the dominating
term nq

`−q`−1

is a computationally difficult task. It has been
determined for only very small values of q and ` in [7],
[8]. Furthermore, it is unclear how accurate the asymptotic
estimate Θ

(
nq

`−q`−1
)

is for practical values of n. Indeed,
most current DNA storage systems do not use string lengths
n exceeding several thousands nucleotides (nts) due to the
high cost of synthesis. On the other hand, current sequencing
systems have read length ` between 100 to 1500 nts.

In this paper, we adopt a different approach and look for

lower bounds for the number of profile vectors given moderate
values of q, `, and n. Surprisingly, for fixed q ≥ 3 and
moderately large values n = qa` with a = o(`), the number
of profile vectors is at least qκn for some constant 0 < κ ≤ 1.
As an example, when q = 4 (the number of DNA nucleotide
bases) and ` = 100 (a practical read length), we show that
there are at least 40.753n distinct profile vectors for n ≤ 25600.
In other words, for practical values of read and word lengths,
we are able to obtain a set of distinct profile vectors with
strictly positive rates.

In addition to enumeration results, we demonstrate a set of
linear-time encoding and decoding algorithms for a family of
profile vectors.

2. PRELIMINARIES

Let JqK denote the set of integers {0, 1, . . . , q − 1} and
consider a word x = x1x2 · · ·xn of length n over JqK. For
1 ≤ i < j ≤ n, we denote the entry xi by x[i], the substring
xixi+1 · · ·xj of length (j − i + 1) by x[i, j], and the length
of x by |x|.

For ` ≤ n and 1 ≤ i ≤ n − ` + 1, we also call the
substring x[i, i + ` − 1] an `-gram of x. For z ∈ JqK`, let
p(x, z) denote the number of occurrences of z as an `-gram
of x. Let p(x, `) ,

(
p(x, z)

)
z∈JqK`

be the (`-gram) profile

vector of length q`, indexed by all words of JqK` ordered
lexicographically. Let F(x, `) be the set of `-grams of x. In
other words, F(x, `) is the support for the vector p(x, `).

Example 2.1. Let q = 2, n = 5 and ` = 2. Then
p(10001, 01) = p(10001, 10) = 1, while p(10001, 00) = 2.
So, p(10001, 2) = (2, 1, 1, 0) and F(10001, 2) = {00, 01, 10}.

Consider the words 00010 and 00101. Then p(10001, 2) =
p(00010, 2) while F(10001, 2) = F(00010, 2) = F(00101, 2).

As illustrated by Example 2.1, different words may have the
same profile vector. We define a relation on JqKn where x ∼ x′

if and only if p(x, `) = p(x′, `). It can be shown that ∼ is an
equivalence relation and we denote the number of equivalence
classes by Pq(n, `). We further define the rate of profile vectors
to be Rq(n, `) = logq Pq(n, `)/n. The asymptotic growth of
Pq(n, `) as a function of n is given as below.

Theorem 2.1 (Jacquet et al. [8], Kiah et al. [7]). Fix q ≥ 2
and `. Then

Pq(n, `) = Θ
(
nq

`−q`−1
)
.

Hence, limn→∞Rq(n, `) = 0.

Our main contribution is the following set of lower bounds
for Pq(n, `) for finite values of n, q and `.

Theorem 2.2. Fix q ≥ 2 and n ≥ `,
(i) If ` ≤ n < 2`, then

Pq(n, `) = qn −
∑

r|n−`+1

∑
t|r

(
r − 1

r

)
µ
(r
t

)
qt, (1)

where µ is the Möbius function.

(ii) If n = qa−1` where 4 ≤ 2a ≤ `, then

Pq(n, `) ≥ (q − 1)q
a−1(`−a). (2)

We prove Equations (1) and (2) in Sections 3 and 4,
respectively.

Example 2.2. Setting q = 4, a = 5, ` = 100 in (2)
yields P4(25600, 100) ≥ 324320 ≈ 419273. In other words,
R4(25600, 100) ≥ 0.753. While (2) is stated for words of
length n = qa−1`, we modify the construction to obtain words
of length n where qa−2` < n < qa−1` for some a and when
` divides n. The details are given at the end of Section 4.
Hence, by varying a ∈ {2, 3, 4, 5} in (2), we have

R4(100n′, 100) ≥

0.753, for 64 < n′ ≤ 256;
0.761, for 16 < n′ ≤ 64;
0.768, for 4 < n′ ≤ 16;
0.777, for 1 < n′ ≤ 4.

Furthermore, from (1), we can compute that R4(n, 100) ≈ 1
for 100 ≤ n < 200.

We now provide an asymptotic analysis for the rates of
profile vectors. Let n be a function of `, or n = n(`) such
that n(`) increases with `. We then define the asymptotic rate
of profile vectors with respect to n via the equation

α(n, q) , lim
`→∞

Rq(n, `). (3)

Suppose that ` is a system parameter determined by current
sequencing technology. Then n = n(`) determines how long
we can set our codewords so that the information rate of the
DNA storage channel remains as α(n, q).

From Theorem 2.2, we derive the following results on the
asymptotic rates.

Corollary 2.3 (Asymptotic rates). Fix q ≥ 2.
(i) If n = bλ`c for some constant 1 ≤ λ < 2, then

α(n, q) = 1. (4)

(ii) If n = qa` with a = o(`), then

α(n, q) ≥ logq(q − 1). (5)

3. EXACT ENUMERATION OF PROFILE VECTORS

We extend the methods of Tan and Shallit [9], where the
number of possible F(x, `) was determined for ` ≤ n < 2`.
Specifically, we compute Pq(n, `) for ` ≤ n < 2`. Our strategy
is to first define an equivalence relation using the notions
of root conjugates so that the number of equivalence classes
yields Pq(n, `). We then compute this number using standard
combinatorial methods.

Definition 3.1. Let x be a q-ary word. A period of x is a
positive integer r such that x can be factorized as

x = uu · · · u︸ ︷︷ ︸
k times

u′, with |u| = r,u′ a prefix of u, and k ≥ 1.

Let π(x) denote the minimum period of x. The root of x
is given by r(x) = x[1, π(x)], which is the prefix of x with
length π(x). Two words x and x′ are said to be root-conjugate
if r(x) = uv and r(x′) = vu for some words u and v, or
r(x) is a rotation of r(x′).

Example 3.1. 10010010 has minimal period three and its root
is 100. Also, 01001001 has minimal period three and its root is
010. Therefore, 10010010 and 01001001 are root-conjugates.

Observe that two words that are root-conjugates necessarily
have the same minimal period and it can be shown that being
root-conjugates form an equivalence relation. In addition, we
have the following technical lemma.

Lemma 3.1. Let x be a word of length n with π(x) ≤ n−`+
1 ≤ `. Then for 1 ≤ i < j ≤ π(x), we have x[i, i+ `− 1] 6=
x[j, j + `− 1].

Proof. Suppose that x[i, i + ` − 1] = x[j, j + ` − 1]. Letting
k = j − i, we have x[s] = x[s + k] for i ≤ s ≤ i + ` − 1.
Since π(x) ≤ n − ` + 1 ≤ `, then x[s] = x[s + k] for 1 ≤
s ≤ π(x). Therefore, x[s] = x[s+d] for 1 ≤ s ≤ π(x) where
d = gcd(k, π(x)) ≤ k = j − i < π(x). In other words, x has
a period d < π(x), contradicting the minimality of π(x).

Tan and Shallit proved the following result that character-
ized F(x, `) when |x| < 2`.

Lemma 3.2 (Tan and Shallit [9, Th. 15]). Suppose that ` ≤
n < 2` and x and x′ are distinct q-ary words of length n. Then
F(x, `) = F(x′, `) if and only if x,x′ are root-conjugates with
π(x) ≤ n− `+ 1.

Using Lemma 3.1, we extend Lemma 3.2 to characterize
the profile vectors when n < 2`.

Theorem 3.3. Let x and x′ be distinct q-ary words of length
n. If x,x′ are root-conjugates with π(x) | n − ` + 1, then
p(x, `) = p(x′, `). Conversely, if ` ≤ n < 2` and p(x, `) =
p(x′, `), then x,x′ are root-conjugates with π(x) | n− `+ 1.

Proof. Suppose that x and x′ are root-conjugates with π(x) =
r and n − ` + 1 = rs for some s. Then it can be verified
that F(x, `) = F(x′, `) = {x[i, i + ` − 1] : 1 ≤ i ≤ r}
and p(x, z) = p(x′, z) = s for all z ∈ F(x, `). Therefore,
p(x, `) = p(x′, `).

Conversely, let p(x, `) = p(x′, `). Then F(x, `) = F(x′, `).
By Lemma 3.2, we have that x,x′ are root-conjugates with
π(x) ≤ n − ` + 1. Let r = π(x). It remains to show that
r | n− `+ 1.

Suppose otherwise and let n− `+ 1 = rs+ t with 1 ≤ t ≤
r − 1. Let the roots of x and x′ be uv and vu, respectively.
Therefore, we can write x and x′ as

x =

s times︷ ︸︸ ︷
uv︸︷︷︸
r

uv︸︷︷︸
r

· · · uv︸︷︷︸
r

w︸︷︷︸
t+`−1

x′ =

s times︷ ︸︸ ︷
vu︸︷︷︸
r

vu︸︷︷︸
r

· · · vu︸︷︷︸
r

w′︸︷︷︸
t+`−1

We have the following cases.
(i) If 1 ≤ t < |u|, let z′ be the `-length prefix of x′. Since
|w′| = t + ` − 1 ≥ ` and z′ is a prefix of w′, we
have p(x′, z′) ≥ s+ 1. On the other hand, from Lemma
3.1, the `-gram of z′ can only appear after the first |u|
coordinates of w. However, |w|−|u| < t+(`−1)−t < `,
and so, there is no occurrence of z′ as an `-gram of w.
Therefore, p(x, z′) = s < p(x′, z′), contradicting the
assumption that p(x, `) = p(x′, `).

(ii) If |u| ≤ t ≤ r − 1, let z = x[|u|, |u| + ` − 1]. Since
|w| = t + ` − 1 ≥ |u| + ` − 1, we have p(x, z) ≥
s+ 1. With the same considerations as before, we check
that there is no occurence of z as an `-gram of w′, So,
p(x′, z) = s < p(x, z), a contradiction.

Therefore, we conclude t = 0 or r | n−`+1 as desired.

Hence, for ` ≤ n < 2`, we have x ∼ x′ if and only if x and
x′ are root-conjugates with π(x) | n− `+ 1 and we compute
the number of equivalence classes using this characterization.

A word is said to be aperiodic if it is not equal to any of its
nontrivial rotations. An aperiodic word of length r is said to
be Lyndon if it is the lexicographically least word amongst all
its r rotations. The number of Lyndon words [10] of length r
is given by L(r) =

(∑
t|r µ(r/t)qt

)
/r.

For any integer r | n− `+ 1 and any word x, if π(x) = r
and r(x) is its root, then r(x) is aperiodic and is a rotation of
some Lyndon word u(x). Let u(x) be the representative of the
equivalence class of x. Since there are r rotations of u(x), we
observe that there are r words in the equivalence class of x.
Therefore, we can compute the number of equivalence classes
to be

qn −
∑

r|n−`+1

(r − 1)L(r),

and, consequently, obtain (1).

From Theorem 3.3, if x and x′ are root-conjugates with
π(x) | n− `+ 1, we have p(x, `) = p(x′, `) for all values of
n. In other words, the number of equivalence classes computed
above provides an upper bound for the number of profile
vectors. Formally, we have the following corollary.

Corollary 3.4. For n ≥ 2`,

Pq(n, `) ≤ qn −
∑

r|n−`+1

∑
t|r

(
r − 1

r

)
µ
(r
t

)
qt.

4. DISTINCT PROFILE VECTORS FROM ADDRESSABLE
CODES

Borrowing ideas from synchronization, we construct a set
of words with different profile vectors and prove (2). Here,
our strategy is to mimic the concept of watermark and
marker codes [11]–[13], where a ‘marker’ pattern is distributed
throughout a codeword. Due to the unordered nature of the
short reads, instead of a single ‘marker’ pattern, we consider
a set of patterns.

More formally, suppose that 2a ≤ ` ≤ n. Let A =
{u1,u2, . . . ,uM} ⊆ JqKa be a set of M sequences of length a.
Elements of A are called addresses. A word x = z1z2 · · · zM ,
where |zi| = ` for all 1 ≤ i ≤ M , is said to be (A, `)-
addressable if the following properties hold.
(C1) The prefix of length a of zi is equal to ui for all 1 ≤

i ≤M . In other words, zi[1, a] = ui.
(C2) zi[j, j + a − 1] /∈ A for all 1 ≤ i ≤ M and 2 ≤ j ≤

`− a+ 1.
Conditions (C1) and (C2) imply that the address ui ∈ A

appears exactly once as the prefix of zi and does not appear
as an a-gram of any substring zj with j 6= i. A code C is
(A, `)-addressable if all words in C are (A, `)-addressable.

Intuitively, given an (A, `)-addressable word x, we can
make use of the addresses in A to identify the position of
each `-gram in x and hence, reconstruct x. We formalize this
idea in the following theorem.

Theorem 4.1. Let A be a set of addresses of length a
and 2a ≤ `. Suppose that C is an (A, `)-addressable code.
For distinct words x,x′ ∈ C, we have F(x, `) 6= F(x′, `).
Therefore, p(x, `) 6= p(x′, `) and Pq(n, `) ≥ |C|.

Proof. Let x = z1z2 · · · zM and x′ = z′1z
′
2 · · · z′M be distinct

(A, `)-addressable words in C. Without loss of generality, we
assume z1 6= z′1. Observe that z1 ∈ F(x, `). To prove the
theorem, it suffices to show that z1 /∈ F(x′, `).

Suppose otherwise that z1 appears as an `-gram in x′. Since
u1 is a prefix of z1 with z1 6= z′1, by Conditions (C1) and
(C2), we have that

x′ = · · ·
|z1|=`︷ ︸︸ ︷

◦ ◦ ⊕ ⊕ · · · ⊕︸ ︷︷ ︸
|ui|=a

⊕⊕+ + · · · for some i 6= 1.

Here, ◦’s and +’s represent the `-grams z1 and z′i, respectively,
and ⊕’s indicate the symbols that are in the overlap of the
two `-grams. Since 2a ≤ `, ui must be in z1 as an a-gram,
contradicting Condition (C2).

To employ Theorem 4.1, we define the following set of
addresses,

A∗ ,

{
(u1, u2, . . . , ua) :

a∑
i=1

ui = 0 mod q

}
. (6)

So, A∗ is a set of M = qa−1 addresses and we list
the addresses as u1,u2, . . . ,uM . To construct an (A∗, `)-
addressable code, we consider the encoding map encode :
{1, 2, . . . , q − 1}(`−a)M → JqKM` given in Algorithm 1 and
define C to be the image of encode. Conversely, we consider
the decoding map decode : C → {1, 2, . . . , q − 1}(`−a)M
given in Algorithm 2.

Example 4.1. For q = 4, a = 2, A∗ = {00, 13, 22, 31} by (6).
Consider ` = 5 and the data string c = (111, 123, 222, 321).
Applying Algorithm 1 to construct z1 with c1 = 111, we start
with z1 = 00. Then zbad = 0 and we choose the first element

Algorithm 1 encode(c,A∗)

Input: Data string c = c1c2 · · · cM ,
where ci ∈ {1, 2, . . . , q − 1}(`−a) for 1 ≤ i ≤M ,
and A∗ is defined by (6).

Output: x = z1z2 · · · zM ∈ JqKM`, where x is (A∗, `)-
addressable.

for 1 ≤ i ≤M do
zi ← ui (ui has length a)
for a+ 1 ≤ j ≤ ` do
zbad ← −

∑a−1
s=1 zi[j − s] mod q

(sum of the last a− 1 entries modulo q)
z ← ci[j − a]-th element of (JqK \ {zbad})
append zi with z

end for
end for
return z1z2 · · · zM

Algorithm 2 decode(z1z2 · · · zM)

Input: Codeword z1z2 · · · zM ∈ C.
Output: c1c2 · · · cM ∈ {1, 2, . . . , q − 1}(`−a)M .

for 1 ≤ i ≤M do
for a+ 1 ≤ j ≤ ` do
zbad ← −

∑a−1
s=1 zi[j − s] mod q

(sum of the last a− 1 entries modulo q)
ci[j− a]← the index of the element of (JqK \ {zbad})

end for
end for
return c1c2 · · · cM

of {1, 2, 3} to augment z1 to 001. In the next iteration, we
have zbad = 3 and augment z1 to 0010. Repeating this, we
then obtain z1 = 00101. More generally, we have

z1 = 00101, z2 = 13023, z3 = 22111, z4 = 31210,

and so, encode(c) = (00101, 13023, 22111, 31210) = x. We
check that x is indeed (A∗, `)-addressable.

We also verify that decode(x) in Algorithm 2 indeed
returns the data string c. Since there are 312 possible data
strings, |C| = 312 ≈ 49.51.

Algorithm 1 bears similarities with a linear feedback shift
register [14]. The main difference is that we augment our
codeword with a symbol that is not equal to the value defined
by the linear equation. This then guarantees that we have no a-
grams belonging to A∗. More formally, we have the following
proposition.

Proposition 4.2. Consider the maps encode, decode and
the code C defined by Algorithms 1 and 2. Then C is an
(A∗, `)-addressable code and decode ◦ encode(c) = c for
all c ∈ {1, 2, . . . , q − 1}(`−a)M . Hence, |C| ≥ (q − 1)M(`−a).
Furthermore, decode and encode computes their respective
strings in O(qM`) time.

Theorem 4.1 and Proposition 4.2 then yield (2) for n =
qa−1` and 2a ≤ `. In other words, for n = qa−1` and 2a ≤ `,
we have

Rq(n, `) ≥
(

1− a

`

)
logq(q − 1).

We now modify our construction to derive addressable codes
for all values of n ≤ qb`/2c−1`. Suppose that m = bn/`c.
Choose a =

⌈
logqm

⌉
+ 1 so that m ≤ qa−1. Use a subset

B∗ of A∗ of size m for the address set. A straightforward
modification of Algorithm 1 then yields (B∗, `)-addressable
words of the form

u1 ◦ ◦ · · · ◦︸ ︷︷ ︸
`−a

u2 ◦ ◦ · · · ◦︸ ︷︷ ︸
`−a

· · ·um ◦ ◦ · · · ◦︸ ︷︷ ︸
`−a

00 · · · 0︸ ︷︷ ︸
n−m`

.

The size of this (B∗, `)-addressable code can be computed
to be (q − 1)m(`−a)+max((t−a),0). We obtain the following
corollary.

Corollary 4.3. For n ≤ qb`/2c−1`, suppose that n = m` + t
with 0 ≤ t < `. Set a =

⌈
logqm

⌉
+ 1 so that m ≤ qa−1.

Then Pq(n, `) ≥ (q − 1)m(`−a), or,

Rq(n, `) ≥
(
m(`− a)

n

)
logq(q− 1) ≈

(
1− a

`

)
logq(q− 1).

5. CONCLUSION

We adapted ideas from combinatorics of words and synchro-
nizing codes to provide exact values and lower bounds for the
number of profile vectors given moderate values of q, `, and
n. Surprisingly, for fixed q ≥ 3 and moderately large values
of n = qa` with a = o(`), the number of profile vectors is at
least qκn for some constant 0 < κ ≤ 1. Hence, for practical
values of read and word lengths, we are able to obtain a set
of distinct profile vectors with strictly positive rates.

In our future work, we want to investigate other functions
n = n(`) that guarantee a positive asymptotic rate of profile
vectors α(n, q) (see (3)) and to examine the number of profile
vectors with specific `-gram constraints a la Kiah et al. [7].

ACKNOWLEDGEMENT

The work of Z. Chang is supported by the Joint Fund
of the National Natural Science Foundation of China under
Grant U1304604. Research Grants TL-9014101684-01 and
MOE2013-T2-1-041 support M. F. Ezerman. The authors
thank the anonymous reviewers and members of the TPC
whose comments improved the presentation of this paper.

REFERENCES

[1] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital infor-
mation storage in DNA,” Science, vol. 337, no. 6102, pp. 1628–1628,
2012.

[2] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust,
B. Sipos, and E. Birney, “Towards practical, high-capacity, low-
maintenance information storage in synthesized DNA,” Nature, vol. 494,
pp. 77–80, 2013.

[3] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust
chemical preservation of digital information on DNA in silica with error-
correcting codes,” Angewandte Chemie International Edition, vol. 54,
no. 8, pp. 2552–2555, 2015.

[4] S. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A rewritable,
random-access DNA-based storage system,” Scientific Reports, vol. 5,
no. 14138, 2015.

[5] S. Yazdi, H. M. Kiah, E. R. Garcia, J. Ma, H. Zhao, and
O. Milenkovic, “DNA-based storage: Trends and methods,” arXiv
preprint arXiv:1507.01611, 2015.

[6] R. Gabrys, H. M. Kiah, and O. Milenkovic, “Asymmetric Lee distance
codes for DNA-based storage,” arXiv preprint arXiv:1506.00740, 2015.

[7] H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA sequence
profiles,” arXiv preprint arXiv:1502.00517, 2015.

[8] P. Jacquet, C. Knessl, and W. Szpankowski, “Counting Markov types,
balanced matrices, and Eulerian graphs,” IEEE Trans. Inform. Theory,
vol. 58, no. 7, pp. 4261–4272, 2012.

[9] S. Tan and J. Shallit, “Sets represented as the length-n factors of a
word,” in Combinatorics on Words. Springer, 2013, pp. 250–261.

[10] R. C. Lyndon, “On Burnside’s problem,” Transactions of the American
Mathematical Society, vol. 77, no. 2, pp. 202–215, 1954.

[11] F. Sellers, “Bit loss and gain correction code,” Information Theory, IRE
Transactions on, vol. 8, no. 1, pp. 35–38, 1962.

[12] N. Kashyap and D. L. Neuhoff, “Codes for data synchronization with
timing,” in Proc. Data Compression Conference. IEEE, 1999, pp. 443–
452.

[13] M. C. Davey and D. J. MacKay, “Reliable communication over chan-
nels with insertions, deletions, and substitutions,” IEEE Trans. Inform.
Theory, vol. 47, no. 2, pp. 687–698, 2001.

[14] S. W. Golomb, Shift register sequences. Aegean Park Press, 1982.

