
Product Construction of Affine Codes
Yeow Meng Chee∗, Han Mao Kiah§, Punarbasu Purkayastha∗, Patrick Solé†‡
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Abstract—Binary matrix codes with restricted row and column
weights are a desirable method of coded modulation for power line
communication. In this work, we construct such matrix codes that
are obtained as products of affine codes - cosets of binary linear
codes. Additionally, the constructions have the property that they
are systematic. Subsequently, we generalize our construction to
irregular product of affine codes, where the component codes are
affine codes of different rates.

Index Terms—Product codes, Affine codes, Irregular product
codes, Power line communications.

1. INTRODUCTION

Product codes were introduced by Elias [1] and subsequently
generalized by Forney [2] to concatenated codes. Product codes
are a method of constructing larger codes from smaller codes
while retaining the good rates and good decoding complexity
from the smaller codes. The codewords of a product code can
be written as matrices with the rows belonging to the row
component code and the columns belonging to the column
component code. List decoding algorithms have also been
studied in this context in Barg and Zemor [3] where the min-
sum algorithm was shown to be amenable to list decoding of
product codes.

Product codes have been subsequently generalized to yield
codes obtained from product of nonlinear codes by Amrani [4],
and to multilevel product codes by Zyablov et al. [5]. Amrani
[4] gave the construction of product codes from component
nonlinear codes which are binary and systematic. The construc-
tion guarantees that all the columns of any codeword belong
to the column component code; however only the first few
rows corresponding to the systematic part of the column code
are guaranteed to belong to the row code. In the case where
one of the component codes is linear, Amrani [4] proposed
two soft-decision decoding algorithms. Irregular product codes,
introduced by Alipour et al. [7], are yet another generalization
of product codes where each row and column code can be a
code of different rate. Irregular product codes were introduced
to address the need for unequal error protection from bursty
noise when some parts of the codeword are more vulnerable to
burst errors than others.

In this work we study constructions of binary systematic
nonlinear product codes which are obtained as products of affine
codes – cosets of linear codes. In contrast to the work of Amrani
[4], our construction guarantees that all the rows belong to the

(affine) row code and all the columns belong to the (affine)
column code. One primary motivation for studying such class
of codes arises from a previous study on coded modulation
for power line channels by Chee et al. [8] that proposed a
generalization of the coded modulation scheme of Vinck [9].

Chee et al. [8] showed that binary matrix codes with bounded
column weights, in conjunction with multitone frequency shift
keying, can be used to counter the harsh noise characteristics
of the power line channel. Concatenated codes obtained from
the concatenation of constant weight inner codes with Reed-
Solomon outer codes were used to obtain families of efficiently
decodable codes with good rates and good relative distances. In
this work, we continue this line of investigation and introduce
systematic product codes with the additional restriction that the
row weights are also bounded. The restriction on the column
weight arises from the desire to be able to detect and correct
impulse noise that is present in the power line channel. The
restriction on the row weights allows one to detect and correct
narrowband noise. It is quite evident that product codes obtained
from the product of linear codes do not satisfy these restrictions.
The nonlinear codes studied in this paper are constructed to
satisfy these properties. The efficient decoding algorithms of
product codes are directly applicable to the constructions pre-
sented in this work. As a first step to the decoding process, we
subtract the coset representative that is used in the construction.
The coset representative is explicitly described, as explained in
the following sections.

The rest of the paper is organized as follows. In the next
section we introduce the basic definitions and notation that are
used throughout the rest of this paper. Section 3 discusses the
general construction of systematic codes which are products of
affine codes. Section 4 uses the construction in Section 3 to give
constructions of product codes with restricted row and column
weights. This is of interest because of its application to coded
modulation for power line channels. In Section 5, we extend
this construction to product codes which can provide unequal
error protection, where different rows and columns belong to
different row and column codes. This section generalizes the
irregular product code construction of Alipour et al. [7], where
the component codes are linear codes, to irregular product codes
where the component codes are affine codes.
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2. NOTATION AND DEFINITIONS

Denote the finite field of order two by F2. A binary code C
of length n is a subset of Fn2 , while a binary linear code C of
length n is a linear subspace of Fn2 . The dimension of a linear
code C is given by the dimension of C as a linear subspace
of Fn2 . Elements of C are called codewords. Endow the space
Fn2 with the Hamming distance metric and for u ∈ Fn2 , the
Hamming weight of u is the distance of u from the all-zero
codeword. A code C ⊆ Fn2 is said to have distance d if the
(Hamming) distance between any two distinct codewords of C
is at least d. Moreover, a linear code C has distance d if the
weight of all nonzero codewords in C is at least d. A code of
length n and distance d is denoted as an (n, d) code. We use the
notation [n, k, d] to denote a linear code of length n, dimension
k and distance d.

Let m, n be positive integers and let Fm×n2 denote the set
of m by n matrices over F2. The transpose of a matrix M is
denoted by MT and we regard the vector u ∈ Fn2 as a row
vector or a matrix u in F1×n

2 . Hence, uT denotes a column
vector in Fn×12 . In addition, let 0n and jn denote the all-
zero and all-one vectors of length n respectively, while In and
0m×n denote the (n× n) identity and (m× n) all-zero matrix
respectively.

Let C be a linear [n, k, d] code. After a permutation of
coordinates, there exists a matrix A ∈ Fk×(n−k)2 such that each
codeword in C can be written as (x,xA), where x ∈ Fk2 is
called the information vector. The matrix (Ik|A) is said to be
a systematic encoder of C.

Let C1 and C2 be linear [n, k1, d1] and [n, k2, d2] codes
respectively. Suppose C1 ⊆ C2 and pick u ∈ C2. Then the set
of codewords C1 + u is a coset of C1 in C2. The collection of
all cosets of C1 in C2 is denoted by C2/C1. Moreover, any coset
in C2/C1 is a (n, d1) code of size 2k1 , and we call the coset an
affine [n, k1, d1] code.

Observe that if (Ik1 |A1) is a systematic encoder for C1
and u = (u1,u2) where u1 is of length k, then C1 + u =
C1+(0k,u2−u1A1). On the other hand, every coset in C2/C1
contains at most one element of the form (0k,a). Hence, for
every coset C1 + u, there is exactly one element of the form
(0k,a), and in this paper, we refer to this element as the coset
representative of C1 +u. The set of all coset representatives of
cosets in C2/C1 is denoted (C2/C1)rep.

We also consider the notion of systematicity for nonlinear
codes. Let C be a (matrix) code of size 2k. Then C is said to be
systematic of size 2k if there exists k coordinates such that C
when restricted to these k coordinates is Fk2 . Observe that if C is
a linear [n, k, d] code, then any affine code C +u is systematic
of size 2k.

A. Binary Matrix Codes

A binary (m× n)-matrix code C is a subset of Fm×n2 , while
a binary linear (m× n)-matrix code C is a linear subspace of
Fm×n2 , when considered as a vector space of dimension mn.
Regarding each matrix in Fm×n2 as a vector of length mn, we
have the definitions of Hamming distance, Hamming weight and

dimension. A linear (m× n)-matrix code of dimension K and
distance d is denoted by [m× n,K, d].

B. Classical Product Codes

The classical product code constructs binary matrix codes
from two binary linear codes. Given a linear [n, k, dC ] code C
and a linear [m, l, dD] code D, let (Ik|A) and (Il|B) be their
respective systematic encoders. The product code, denoted by
C ⊗ D, is then given by the (m × n)-matrix code (see [6, p.
568])

C ⊗ D ,


 M MA

BTM BTMA

 : M ∈ Fl×k2

 ,

where M corresponds to the information bits. It can be shown
that C⊗D is a linear [m×n, kl, dDdC ] code. Furthermore, C⊗D
has the following property that depends on the component codes
C and D.

Property (C,D). For every N ∈ C ⊗ D,
(i) every row of N belongs to C, and

(ii) every column of N belongs to D.

In this paper, we consider nonlinear component codes. Specif-
ically, let C′ be a nonlinear code of length n and size 2k and
D′ be a nonlinear code of length m and size 2l. We aim to
construct an (m×n)-matrix code C′⊗D′ of size 2kl such that
Property (C′,D′) holds.

This construction differs from the nonlinear product code
construction in Amrani [4] because we guarantee that all the
rows in every codeword belong to the row code C′.

3. PRODUCT CODES FROM AFFINE CODES

In this section, we provide the general construction of sys-
tematic matrix codes that are obtained as products of cosets of
linear codes, i.e., as products of affine codes. Throughout this
section, let C and D be binary linear [n, k, dC ] and [m, l, dD]
codes, respectively. We consider affine codes that are obtained
as cosets of the codes C and D, i.e., they are of the form C+u
and D+v, respectively, where u and v are of lengths n and m
respectively. In particular, we show that if both C and D contain
the all-one vector, then there exists an (m×n)-matrix code, that
is systematic of size 2kl with Property (C + u,D + v).

Let (Ik|A) and (Il|B) be systematic encoders for C and D
respectively. Without loss of generality, pick u = (0k,a) ∈
(Fn2/C)rep and v = (0l,b) ∈ (Fm2 /D)rep. Then a typical
element in C + u is of the form (x,xA + a) where x is the
information vector of length k. Similarly, a typical element in
D + v is of the form (x,xB+ b) where x is the information
vector of length l.

Define (C+u)⊗(D+v) to be the (m×n)-matrix code given
by (1). This is obtained by the encoding the first k columns by
D+v, followed by encoding all the rows by C+u. We observe
that for every N ∈ (C+u)⊗(D+v), each row of N belongs to
C+u. However, we can guarantee only that the first k columns
belong to D + v.
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(C + u)⊗ (D + v) ,


 M MA+ jTl a

BTM+ bT jk (BTM+ bT jk)A+ jTm−la

 : M ∈ Fl×k2

 . (1)

(C + u)⊗̃(D + v) ,


 M MA+ jTl a

BTM+ bT jk BT (MA+ jTl a) + bT jn−k

 : M ∈ Fl×k2

 . (2)

On the other hand, if we alter the definition given in (1) to
be (2), where we encode the first l rows by C + u, followed
by encoding all the columns using D + v, we have that every
column of N belongs to D+v for each N ∈ (C+u)⊗̃(D+v).

Therefore, the matrix code (C + u) ⊗ (D + v) meets our
requirements if

(BTM+ bT jk)A+ jTm−la = BT (MA+ jTl a) + bT jn−k, that is,

bT (jkA+ jn−k) = (BT jTl + jTm−l)a (3)

If (3) holds, then (C + u) ⊗ (D + v) (or equivalently, (C +
u)⊗̃(D+v)) is a coset of C ⊗D. That is, (C+u)⊗ (D+v) =
(C ⊗ D) +U, where

U ,

 0l×k jTl a

bT jk bT jkA+ jTm−la

 . (4)

Theorem 3.1. Let C and D be binary linear [n, k, dC ] and
[m, l, dD] codes, respectively and (Ik|A) and (Il|B) be their
corresponding systematic encoders. Pick u = (0k,a) ∈
(Fn2/C)rep and v = (0l,b) ∈ (Fm2 /D)rep. If in addition
(3) holds, then (C + u) ⊗ (D + v) defined by (1) is equal
to (C + u)⊗̃(D + v) defined by (2). Moreover, the code is
systematic of size 2kl and is a coset of C ⊗ D with Property
(C + u,D + v).

We now provide a sufficient condition for (3) to hold. Observe
that jn ∈ C if and only if jkA = jn−k, since jk(Ik|A) is
necessarily jn. Hence, jkA + jn−k = 0n−k and bT (jkA +
jn−k) = 0(m−l)×(n−k). Similar argument holds for BT jTl +
jTm−l. Hence, (3) holds and the coset representative U given by
(4) is

U =

 0l×k jTl a

bT jk bT jn−k + jTm−la

 ,

and is independent of matrices A and B. The following
corollary, that we refer to as Construction I, is now immediate.

Corollary 3.1 (Construction I). Let C and D be binary lin-
ear [n, k, dC ] and [m, l, dD] codes, respectively and (Ik|A)
and (Il|B) be their corresponding systematic encoders. Pick
u = (0k,a) ∈ (Fn2/C)rep and v = (0l,b) ∈ (Fm2 /D)rep. If in
addition jn ∈ C and jm ∈ D, then (C + u) ⊗ (D + v) defined

by (1) is systematic of size 2kl and is a coset of C ⊗ D with
Property (C + u,D + v).

Binary codes that contain the all-one vector are also called
self-complementary codes. Well-known examples of linear self-
complementary codes include the primitive narrow-sense Bose-
Chaudhuri-Hocquenghem codes, the extended Golay code and
the Reed-Müller codes [6].

4. VARIANTS OF CONSTRUCTION I

In this section, we adopt Construction I to certain nonlinear
component codes C′, D′ that are variants of cosets of linear
codes. Several well-known families of nonlinear codes such as
Nordstrom-Robinson, Delsarte-Goethals, Kerdock and Preparata
can be obtained as unions of cosets of linear codes (see [6, Ch.
15]). In general, it is difficult to achieve a matrix code with
Property (C′,D′) of size 2log |C

′| log |D′|. Instead we show that it
is possible to achieve a size of 2κ log |C′| log |D′| for some positive
constant κ < 1.

A straightforward generalization of Construction I to union of
cosets of linear codes can be achieved as follows. Let C1 and D1

be binary linear [n, k1, dC1 ] and [m, l1, dD1 ] such that jn ∈ C1
and jm ∈ D1. Let U ⊆ (Fn2/C1)rep and V ⊆ (Fm2 /D1)rep. Then
we consider the component codes C′ and D′, where

C′ =
⋃
u∈U
C1 + u, and D′ =

⋃
v∈V
D1 + v.

Then the (m× n)-matrix code defined by⋃
u∈U

⋃
v∈V

(C1 + u)⊗ (D1 + v). (5)

has Property (C′,D′). However, observe that the code has size
|U||V|2k1l1 = 2k1l1+log |U|+log |V|, while the sizes of C′ and D′
are |U|2k1 = 2k1+log |U| and |V|2l1 = 2l1+log |V| respectively.
Thus the size of the code obtained from (5) is less than
2log |C

′| log |D′| = 2(k1+log |U|)(l1+log |V|).

A. Product Construction of Expurgated Codes

We improve the size given by (5) when the union of cosets of
product codes has a certain structure. Specifically, we consider
the instance where the cosets form an expurgated code. We
describe this formally below.

In addition to the codes C1,D1, assume that C2 and D2 are
binary linear [n, k2, dC2 ] and [m, l2, dD2

] codes such that C1 ⊂
C2 and D1 ⊂ D2. We consider nonlinear component codes that
are obtained from expurgated codes C2 \ C1 and D2 \ D1. Our
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objective is therefore to construct an (m×n)-matrix code such
that Property (C2 \ C1,D2 \ D1) holds.

Clearly, C2 \ C1 and D2 \ D1 are union of cosets of C1 and
D1 with U = (C2/C1)rep \ {0n} and V = (D2/D1)rep \ {0m}
respectively. Then the construction described in (5) gives a code
with size (2k2−k1 − 1)(2l2−l1 − 1)2k1l1 ≈ 2k2−k1+l2−l1+k1l1 .

On the other hand, we improve this size via the following.

Construction IA. Consider two intermediary codes C3 and D3

of dimensions k2 − 1 and l2 − 1 respectively such that C1 ⊆
C3 ⊂ C2 and D1 ⊆ D3 ⊂ D2. Pick any u ∈ (C2 \ C3) and
v ∈ (D2 \ D3) and observe that

C3 + u ⊂ C2 \ C1 and D3 + v ⊂ D2 \ D1.

Applying Construction I to the cosets C3+u and D3+v yields a
matrix code (C3+u)⊗(D3+v) with Property (C3+u,D3+v),
and hence the Property (C2 \C1,D2 \D1). Furthermore, the size
of this code is 2(k2−1)(l2−1) and is significantly larger than the
straightforward construction from (5).

B. Matrix Codes with Restricted Column and Row Weights

In this section, we apply Construction IA to obtain matrix
codes with the additional property of bounded row and col-
umn weights. The motivation for studying such matrix codes
arises from the application to coded modulation for power line
communication channel. Consider a codeword N of a matrix
code. Each row of the matrix corresponds to transmission
over a particular frequency slot, while each column of the
matrix corresponds to a discrete time instance. Transmision
occurs at the frequency and time slots corresponding to a one
in the matrix. The effect of the different types of noises in
the powerline channel can be described briefly as follows. A
narrowband noise turns an entire row of N to ones, an impulse
noise turns an entire column of N to ones, a channel fade event
turns an entire row of N to zeros, and a background noise flips
an entry of N. We refer to [10] for an expanded description of
the types of noise that are present in the power line channel.

If any row of the matrix is an all-one vector then this row
is not distinguishable from an all-one row introduced by the
presence of narrowband noise. Similarly, an all-one column
is not distinguishable from impulse noise. Additionally, the
use of multi-tone frequency shift keying is adopted with the
understanding that the energy is concentrated on a small fraction
of the available frequencies (see [8]). Thus, it is desired that
every row and every column of the matrix contain at least a
single one, but it should not be an all-one vector. This requires
the use of codes whose codewords are matrices with bounded
column and row weights.

We use the following lemma that was crucial in proving the
so-called low symbol weight property (see [11, Proposition 1])
for q-ary affine codes.

Lemma 4.1. Let C be binary linear [n, k, d] code such that
〈jn〉 ⊂ C. Then the codewords in C\〈jn〉 have Hamming weight
bounded between d and n− d.

First, we illustrate via an example that the code obtained
by straightforward expurgation does not satisfy the systematic
property.

Example 4.1. Let C = D be the binary linear [4, 3, 2] code
consisting of all even weight codewords. Observe that C \ 〈j4〉
consists of six codewords of weight two and we are interested
in constructing a (4× 4)-matrix code whose matrices have row
weight two and column weight two.

A naive approach is to look at the (3×3) information matrix
and require all columns and rows to not belong to {03, j3}.
This approach fails as illustrated by the example codeword,(
I3 jT3
j3 1

)
which contains an all-one row even though each of

the component codewords in the first three rows and columns
have weight exactly two.

On the other hand, consider the binary linear [4, 2, 2] code
C3 = {04, j4, (1, 0, 1, 0), (0, 1, 0, 1)} and let u = (0, 0, 1, 1).
Then (C3 + u) ⊗ (C3 + u) yields a (4 × 4)-matrix code
whose matrices have row weight two and column weight two.
Furthermore, it is systematic of dimension four.

On the other hand, it can be obtained via computer search
that there are exactly 90 matrices in C ⊗ C that have constant
row weight two and constant column weight two. An exhaustive
computer search shows that there do not exist five coordinates
where a subset of these 90 matrices is systematic.

We proceed with the construction of matrix codes with
restricted row and column weights. Let C, D be binary linear
[n, k, dC ], and [m, l, dD] codes respectively. Suppose 〈jn〉 ⊂
C, and 〈jm〉 ⊂ D. Direct application of Construction IA
yields a systematic binary (m × n)-matrix code of dimension
(k − 1)(l − 1) whose matrices have

(i) row weight bounded between dC and n− dC ,
(ii) column weight bounded between dD and m− dD.

In Example 4.1 we showed that this construction gives more
desirable results and why naive methods of constructions do not
work. Because of the narrowband and impulse noise present in
the power line channel, we want codes with restricted column
and row weights. The following proposition gives the condition
under which the noises can be corrected.

Proposition 4.1. Let C, D be binary linear [n, k, dC ], and
[m, l, dD] codes respectively. Suppose 〈jn〉 ⊂ C, and 〈jm〉 ⊂ D.
Then (C \ 〈jn〉) ⊗ (D \ 〈jm〉) obtained using Construction IA
yields a systematic binary (m × n)-matrix code of dimension
(k − 1)(l − 1) whose matrices have

(i) row weight bounded between dC and n− dC ,
(ii) column weight bounded between dD and m− dD.

Furthermore, (C \ 〈jn〉) ⊗ (D \ 〈jm〉) is a subcode of C ⊗ D,
and hence, is able to correct eNBD narrowband errors and eIMP

impulse noise errors, provided

eIMP < dC , and eNBD < dD.

5. IRREGULAR PRODUCT OF AFFINE CODES

The power line channel is known to be frequency selective
(see [10]), i.e., the noise in different frequency slots are of dif-
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ferent intensities. Thus, it is of interest to provide constructions
of codes that can provide different levels of error correction
over different frequencies. Such codes can be constructed as
product codes where the rows of the matrix correspond to
different row codes. Such codes have been studied earlier as
“Generalized Concatenated Codes” or “Multilevel Concatenated
Codes” (see Zyablov et al. [5] and Dumer [12]). The row codes,
which correspond to the row encoding, in these constructions
are defined over an extension field of the field of the column
code. As a result, although the resulting matrix code is linear
over the smaller field, the rows do not in general belong to the
row code. This makes it difficult to extend the construction to
product of affine codes.

Instead, we consider the case where the component codes
for each row and column are different and they are defined
over the binary field F2. Such product codes were termed
irregular product codes and were studied by Alipour et al.
[7]. Specifically, they demonstrated the following proposition.
Denote the set of integers {1, 2, . . . , n} by [n] for a positive
integer n.

Proposition 5.1 (Alipour et al. [7]). Let Ci be linear codes
of length n and dimension ki for i ∈ [m] and Dj be linear
codes of length n and dimension lj for j ∈ [m]. Suppose that
k1 ≤ k2 ≤ · · · ≤ km and l1 ≤ l2 ≤ · · · ≤ ln. Then there exists
a linear (m× n)-matrix code of dimension K, where

K ≤
n∑
j=1

lj∑
i=lj−1+1

max{ki − j + 1, 0}, where l0 = 0, (6)

and every codeword N satisfies the properties that

(i) the i-th row of N belongs to Ci for i ∈ [m], and
(ii) the j-th column of N belongs to Dj for j ∈ [n].

Furthermore, if C1 ⊆ C2 ⊆ · · · ⊆ Cm and D1 ⊆ D2 ⊆ · · · ⊆
Dn, we achieve equality in (6).

We apply Construction I directly to Proposition 5.1 to obtain
an irregular product of affine codes.

Proposition 5.2. In addition to the conditions of Prop. 5.1, let
jn ∈ Ci for i ∈ [m] and jm ∈ Dj for j ∈ [n]. Furthermore,
suppose there exist linear codes C and D such that

⋃m
i=1 Ci ⊂ C

and
⋃m
i=1Di ⊂ D, respectively. Let u = (0km ,a) ∈ C\

⋃m
i=1 Ci

and v = (0ln ,b) ∈ D \
⋃n
j=1Dj .

Then there exists an affine (m× n)-matrix code of size 2K

bounded by (6) and every codeword N in the code satisfies the
properties that

(i) the i-th row of N belongs to Ci + u for i ∈ [m], and
(ii) the j-th column of N belongs to Dj + v for j ∈ [n].

Furthermore, if C1 ⊆ C2 ⊆ · · · ⊆ Cm and D1 ⊆ D2 ⊆ · · · ⊆
Dn, we achieve equality in (6). Additionally, the weight of every
row of any codeword is bounded between dC and n− dC , and
of every column between dD and m − dD, where dC and dD
are the minimum distances of C and D respectively.

6. CONCLUSION

We provide new constructions of systematic nonlinear prod-
uct codes that are obtained by taking product of affine codes.
The constructions have the property that every row and every
column belongs to the row code and column code, respectively.
Subsequently, we show that it is possible to construct matrix
codes with restricted column and row weights. Although the
primary motivation for studying such matrix codes is for coded
modulation over power line channel, the constructions can
potentially be adapted to address other problems where such
codes are desired such as codes for memristor arrays and two-
dimensional weight-constrained codes [13], [14].
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