
Coding for Racetrack Memories
Yeow Meng Chee∗, Han Mao Kiah∗, Alexander Vardy†∗, Van Khu Vu∗, and Eitan Yaakobi‡

∗ School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
† Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA

‡ Department of Computer Science, Technion — Israel Institute of Technology, Haifa, 32000 Israel
Emails:{ymchee,hmkiah,vankhu001}@ntu.edu.sg.edu, avardy@ucsd.edu, yaakobi@cs.technion.ac.il

Abstract—Racetrack memory is a new technology which utilizes
magnetic domains along a nanoscopic wire in order to obtain ex-
tremely high storage density. In racetrack memory, each magnetic
domain can store a single bit of information, which can be sensed
by a reading port (head). The memory has a tape-like structure
which supports a shift operation that moves the domains to be
read sequentially by the head. In order to increase the memory’s
speed, prior work studied how to minimize the latency of the shift
operation, while the no less important reliability of this operation
has received only a little attention.

In this work we design codes which combat shift errors in race-
track memory, called position errors. Namely, shifting the domains
is not an error-free operation and the domains may be over-shifted
or are not shifted, which can be modeled as deletions and sticky
insertions. While it is possible to use conventional deletion and
insertion-correcting codes, we tackle this problem with the spe-
cial structure of racetrack memory, where the domains can be
read by multiple heads. Each head outputs a noisy version of the
stored data and the multiple outputs are combined in order to
reconstruct the data. Under this paradigm, we will show that it
is possible to correct, with at most a single bit of redundancy, d
deletions with d+1 heads if the heads are well-separated. Similar
results are provided for burst of deletions, sticky insertions and
combinations of both deletions and sticky insertions.

I. INTRODUCTION

Racetrack memory, also known as domain wall memory, is
an emerging non-volatile memory which is based on spintronics
technology. It attracts significant attention due to its promising
ultra-high storage density, even comparing to other spintronics
memory technologies such as STT-RAM [16].

A racetrack memory is composed of cells, also called do-
mains, which are positioned on a tape-like stripe and are sepa-
rated by domain walls. The magnetization of a domain is pro-
grammed to store a single bit value, which can be read by sens-
ing its magnetization direction. The reading mechanism is oper-
ated by a read-only port, called a head, together with a reference
domain. Since the head is fixed (i.e., cannot move), a shift op-
eration is required in order to read all the domains. Shifting the
cells is accomplished by applying a shift current which moves
the domain walls in one direction. Thus, shift operations move
all the domains one step either to the right or to the left. It is
also possible to shift by more than a single step by applying
a stronger current. When doing so, it is required to have more
than a single head to read the domain walls [9].

There are several approaches to enhance the shift operation
in order to reduce its time and energy consumption [13], [15].
However these mechanisms suffer from degraded reliability and
cannot ensure that domains are perfectly shifted so they are
aligned with the head. These errors, called position errors, can
be modeled as deletions and sticky insertions [16], which is the
motivation for this work. A deletion is the event where the do-
mains are shifted by more than a single domain location and
thus one of the domains is not read, which results with a dele-
tion of the bit stored in this domain. In case the domains were

not successfully shifted, then the same domain is read again
and we experience an insertion, however of the same bit. This
kind of insertion errors is also referred as repetition errors or
sticky insertions in a sticky channel [2], [8].

In this work we study codes which correct position errors in
racetrack memory. At first sight, this problem is not any differ-
ent than the well-studied problem of designing codes correcting
deletions and insertions [1], [5]. However, we take another ap-
proach to tackle the problem and leverage the special features
of racetrack memory, where it is possible to use more than a
single head in order to read the domains. Thus, each domain
is read more than once and the extra reads can be used in or-
der to correct the position errors during the reading process.
Since every head reads all the bits, we can treat every head as
a channel which returns a noisy version of the stored informa-
tion, and based on these noisy reads the information is decoded.
This model falls under the general framework by Levenshtein
of the reconstruction problem [6]. However, in our case, as op-
posed to the general one studied by Levenshtein, the position
errors are correlated and depend on the locations and distance
between the different heads.

In contrast to substitution errors, deletions/sticky insertions
behave differentially. Namely, to successfully decode a substitu-
tion error, it is necessary to determine the location of the error.
However, for deletions/sticky insertions, the decoder can suc-
cessfully decode the correct codeword without determining all
the locations of the deletions/sticky insertions, since it could be
any bit which belongs to the run where each deletion/sticky in-
sertion has occurred. Assume first that the heads are adjacent
and on every cycle the domains are shifted by a single loca-
tion. Thus, if there are no position errors, the bit stored in each
domain is read twice. On the other hand, in the occurrence of
position errors, the deletions/sticky insertions in the two heads
are correlated. For example, if the ith bit is deleted in the first
head then the (i+1)-st bit is deleted in the second head. In case
these two deleted bits belong to the same run, then the noisy
words from the two heads are identical and thus we did not
benefit from the extra read by the additional head. On the other
hand, if the heads are well separated and there are no long runs
in the stored information, then the heads’ outputs will differ
and under this setup we will show how it is possible to correct
the position errors. Note that it is possible to correct a fixed
number of deletions and sticky insertions with a single head
while the rate of the codes approaches 1 and the redundancy
order is Θ(log(n)) [1], [5]. Hence, any code construction using
multiple heads should have rate approaching 1 and more than
that, improve the redundancy result of Θ(log(n)). However, this
should be accomplished while minimizing the distance between
the heads.

The rest of this paper is organized as follows. In Section II,
we formally define the model and problems studied in the paper,
namely the reading process in racetrack memory and codes cor-

2017 IEEE International Symposium on Information Theory (ISIT)

978-1-5090-4096-4/17/$31.00 ©2017 IEEE 619

recting deletions and sticky insertions using multiple heads. In
Section III, we construct codes correcting a single deletion using
two heads with approximately 0.36 redundancy bits, by requir-
ing the distance between the heads to be at least dlog(n)e+ 1.
In Section IV, we extend this construction for codes correcting
a burst of deletions where the length of the burst is either ex-
actly b or at most b. Another extension is given in Section V for
codes correcting multiple deletions. In this case our construc-
tion can correct d deletions using d + 1 heads with at most a
single bit of redundancy, by requiring the distance between ad-
jacent heads to be at least ddlog(n)e+ d(d+ 1)/2 + 1. In the
case the number of heads m is strictly less than d+1, we show
that it is possible to correct m−1 deletions with the heads, and
so the code should be able to correct the remaining d− (m−1)
deletions. In this section, we also report on several more results
we could not include due to the lack space. Some of the proofs
are omitted for the same reason.

II. PRELIMINARIES AND MODEL DEFINITIONS

Let F2 denote the binary field. For a positive integer n,
the set {1, 2, . . . , n} is denoted by [n]. Let u = (u1, . . . , un)
and v = (v1, . . . , vm) be two vectors of length n and m,
respectively. The concatenation of u and v is the vector
(u1, . . . , un, v1, . . . , vm) of length n + m, which is denoted
by u ◦ v. A subvector of a word u is a vector u[i1, i2] =
(ui1 , ui1+1, . . . , ui2) ∈ Fi2−i1+1

2 in which 1 6 i1 6 i2 6 n.
The length of this subvector is 1 6 i2 − i1 + 1 6 n. In case
i1 = i2 = i, we denote a subvector u[i, i] of length 1 by u[i]
to specify the i-th element of vector u.

Let ` and m be two positive integers where ` 6 m. Then,
a length-m vector v ∈ Fm

2 which satisfies vi = vi+` for all
1 6 i 6 m − ` is said to have period `. For a vector u ∈ Fn

2 ,
we denote by L(u, `) the length of its longest subvector which
has period `. Note that by definition L(u, `) > `, and for ` = 1,
L(u, 1) equals the length of the longest run in u.

Example 1. Let u = (u1, . . . , u9) = (0, 0, 1, 1, 0, 1, 0, 1, 1) ∈
F9
2. Since the longest run in u is of length two, we have
L(u, 1) = 2. The subvector u[4, 8] = (1, 0, 1, 0, 1) of u has
period 2 since u4 = u6 = u8 = 1 and u5 = u7 = 0. This is the
longest subvector of u of period 2, and hence L(u, 2) = 5. 2

For a length-n word u ∈ Fn
2 and i ∈ [n], we denote by

u(δi) the vector obtained by u after deleting its ith bit, that is,
u(δi) = (u1, . . . , ui−1, ui+1, . . . , un). For a set ∆ ⊆ {δi : i ∈
[n]}, we denote by u(∆) the vector of length n− |∆| obtained
from u after deleting all the bits specified by the locations in the
set ∆. In case ∆ = {δi, . . . , δi+b−1} then we denote the vec-
tor u(∆) by u(δ[i,b]) to specify a burst of b deletions starting
at the ith position.

Example 2. Let u = (0, 0, 1, 1, 0, 1, 0, 1, 1) ∈ F9
2, then

u(δ4) = (0, 0, 1, 0, 1, 0, 1, 1). For ∆ = {δ4, δ7, δ9} then
u(∆) = (0, 0, 1, 0, 1, 1), and u(δ[3,4]) = (0, 0, 0, 1, 1). 2

In this work, we assume that the information stored in the
racetrack memory is represented by a word u. The memory is
comprised of magnetizable cells which can store a single bit.
The information is read back from the cells by sensing their
magnetization direction using heads which are fixed in their po-
sitions; see Fig. 1. Since the heads are fixed in their locations,
the memory cells move so they can all be read by the heads.
This shifting operation is performed by applying a shift current

Fig. 1: Racetrack memory with multiple heads

which moves all the cells on each cycle one or more steps in
the same direction [9]. However, the shifting mechanism does
not work perfectly and may suffer from errors, called position
errors. That is, cells may be shifted by more than a single loca-
tion on each cycle or are not shifted. These position errors can
be modeled as deletions and sticky insertions. Namely, a single
deletion is the event where the cells are shifted by two loca-
tions instead of one and thus one of the bits is not read by the
head. In case the cells were shifted by some b + 1 > 2 loca-
tions, then b consecutive cells were not read and we say that a
deletion burst of size b has occurred. On the other hand, a sticky
insertion is the event where the cells were not shifted and the
same cell is read again and if this happens b > 1 times in a
row, we say that a burst of b sticky insertions has occurred.

We assume that there are several heads and each head reads
all the cells. In case there is only a single head, then the only
approach to correct the position errors is by using a code which
is capable of correcting deletions and sticky insertions. How-
ever, in case there are several heads, the cells are read multiple
times by each head and thus we study how this inherent redun-
dancy can be used to design better codes. The output of the
heads depend on their locations. For example, assume there are
three heads which are used to read the stored word u, where
the distance between the first two heads is t1 and the distance
between the last two heads is t2. If a deletion occurs at position
i in the first head then a deletion also occurs at position i+ t1
in the second head and another deletion at position i+t1+t2 in
the third head. Therefore, the output of the first, second, third
head is the vector u(δi),u(δi+t1),u(δi+t1+t2), respectively.

The goal in this paper is to design codes correcting posi-
tion errors in the reading process. We say that a code is an
m-head b-position-error-correcting code if it can correct b po-
sition errors using m heads. Similarly, we also define m-head b-
deletion-correcting codes, m-head b-sticky-insertion-correcting
codes, m-head b-burst-deletion-correcting codes, and m-head
b-burst-sticky-insertion-correcting codes. We note that the loca-
tions of the heads is also part of the code design. Since the area
for shifting the cells is constrained, the heads should not be too
far apart and the distance between adjacent heads should thus
be minimized. As always, the goal in designing these codes is
to minimize the redundancy of each code construction.

III. TWO-HEAD SINGLE-DELETION-CORRECTING CODES

In this section we study how to construct two-head single-
deletion-correcting codes. Our main result states that if the dis-
tance between the two heads is at least dlog(n)e+1 cells, where
n is the length of the codewords, then such codes exist with re-
dundancy of roughly 0.36 bits.

Construction 1. For all t 6 n, let C1(n, 1, t) be a code of length
n such that the length of the longest run of every codeword is at
most t. That is, C1(n, 1, t) = {c ∈ Fn

2 | L(c, 1) 6 t}.

The following theorem proves the correctness of this con-
struction.

2017 IEEE International Symposium on Information Theory (ISIT)

620

Theorem 2. The code C1(n, 1, t) is a two-head single-deletion-
correcting code when the heads are positioned t locations apart.

Proof: Let c = (c1, . . . , cn) ∈ C1(n, 1, t) be a stored code-
word of length n and assume that a single deletion occurred at
position i. Then, the outputs from the two heads are:

Head 1: c(δi) = (c1, . . . , ci−1, ci+1, . . . , cn),

Head 2: c(δi+t) = (c1, . . . , ci+t−1, ci+t+1, . . . , cn).

Consider the first i+ t− 1 bits in these two sequences:

Head 1: c(δi)[1, i+ t− 1] = (c1, . . . , ci−1, ci+1, ci+2, . . . , ci+t),

Head 2: c(δi+t)[1, i+t−1]=(c1, . . . , ci−1, ci, ci+1, . . . , ci+t−1).

We claim that c(δi)[1, i+ t− 1] 6= c(δi+t)[1, i+ t− 1]. Other-
wise, we will get that

ci = ci+1 = · · · = ci+t−1 = ci+t,

which implies that there is a run of length t + 1 in c in con-
tradiction to the construction of the code C1(n, 1, t). Let j1 be
the leftmost index that differs between c(δi)[1, i + t − 1] and
c(δi+t)[1, i+t−1]. Such an index exists since c(δi)[1, i+t−1] 6=
c(δi+t)[1, i+ t− 1] and so j1 6 i+ t− 1. Furthermore, j1 > i
since the first i− 1 bits in the outputs from the two heads are
the same as in the stored codeword. Note that j1 can be differ-
ent than i in case the ith bit which was deleted is in a middle
of a run and so the first occurrence where c(δi)[1, i + t − 1]
and c(δi+t)[1, i + t − 1] differ is only at the end of this run.
We conclude that c[1, j1] = c(δi+t)[1, j1] and c[j1 + 1, n] =
c(δi)[j1, n−1]. Hence, the original codeword c can be recovered
by concatenating the first j1 bits from c(δi+t) and the last n−j1
bits from c(δi). That is, c = c(δi+t)[1, j1]◦c(δi)[j1, n−1]. This
proof also provides a simple decoding algorithm for the code
C1(n, 1, t).

The next example demonstrates this code construction.
Example 3. Let n = 9, t = 3 and c = (0, 0, 1, 1, 0, 1, 0, 1, 1) be
a stored codeword in C1(n, 1, t). Let us assume that the outputs
from the two heads are:

Head 1: c(δ3) = (0, 0, 1, 0, 1, 0, 1, 1),

Head 2: c(δ6) = (0, 0, 1, 1, 0, 0, 1, 1).

Hence, j1 = 4 is the leftmost index that differs between the
two vectors and thus the stored codeword is decoded accord-
ing to c = c(δ6)[1, 4] ◦ c(δ3)[4, 8] = (0, 0, 1, 1, 0, 1, 0, 1, 1). 2

By a suitable mapping described in Section IV, the code
C1(n, 1, t) can be transformed into a code that satisfies the
(0, t− 1) Run Length Limited (RLL) constraint [3]. While effi-
cient encoding and decoding algorithms are known for codes
which satisfy the (0, t − 1) RLL constraint for fixed value of
t, the rates of these codes is strictly less than 1. Since we can
achieve codes with rate approaching 1 by simply using a sin-
gle head and a single-deletion-correcting code of redundancy
at most log(n + 1) [5], we are interested only in codes with
rate approaching 1 and will optimize their redundancy. Thus,
we follow a similar approach to the one taken in [12] for codes
correcting a burst of deletions and let t be a function of the
code length n. In particular, by choosing t = dlog(n)e + 1, it
was observed in [12], using the derivations from [10] and [11],
that the redundancy of the code C1(n, 1, dlog(n)e + 1) is
approximately 0.36, and for t = dlog(n)e + 2 efficient encod-
ing and decoding algorithms were recently found for these

codes using a single bit of redundancy [7]. We conclude this
discussion with the following corollary.
Corollary 3. There exists a two-head single-deletion-correcting
code when the heads are positioned t = dlog(n)e + 1 locations
apart with redundancy of approximately log(e)/4 ≈ 0.36 bits.

IV. CODES CORRECTING A BURST OF DELETIONS

In this section we study the setup where the domains are
over-shifted by more than a single location, so a burst of dele-
tions occurs in each head. We will focus on two cases: the
length of the burst is exactly b or at most b.

A. Two-Head b-Burst-Deletion-Correcting Codes
Here we investigate codes correcting a burst of exactly b ad-

jacent deletions using two heads. Suppose we use two heads at
distance t to correct a burst of size b in the stored codeword
c = (c1, . . . , cn). Recall that for i ∈ [n] and b ∈ [n−i], the vec-
tor obtained from c after deleting the subvector c[i, i+ b−1] =
(ci, . . . , ci+b−1) is c(δ[i,b]). Therefore, we know that if the out-
put from the first head is c(δ[i,b]) for some i and b, then the
output from the second head is c(δ[i+t,b]), where the heads are
located t positions apart. The following is the construction of
such codes.
Construction 4. Let C2(n, b, t) be a code of length n such that
the length of the longest subvector which has period b of every
codeword c ∈ C2(n, b, t) is at most t. That is, C2(n, b, t) = {c ∈
Fn
2 | L(c, b) 6 t}.

The proof that this construction can correct a burst of deletion
of length b follows similar ideas from the proof of Theorem 2.

Theorem 5. The code C2(n, b, t) is a two-head b-burst-deletion-
correcting code when the heads are positioned t locations apart.

Next we turn to evaluate the size of the code C2(n, b, t). In
particular, as done in the previous section, we will find a value
of t for which the redundancy of the code will be approximately
0.36 bits. Let us start with the following definition.

Definition 6. Let u = (u1, . . . , um) ∈ Fm
2 be a length-m binary

vector. For b < m, the b-period check vector of u is the vector
pb(u) = (u1 +u1+b, . . . , um−b +um) ∈ Fm−b

2 of length m− b.

The following lemma can be readily verified.

Lemma 7. A word u contains a subvector of length t with period
b if and only if pb(u) contains a run of t− b zeroes.

For a vector u, we denote by L0(u) the length of the longest
run of zeroes in u. For example L0(0110100010) = 3. For all
n and t 6 n, we define the code R(n, t) to be

R(n, t) = {c ∈ Fn
2 |L0(u) 6 t}.

Using Lemma 7, we can construct a bijection between
C2(n, b, t) and the set Fb

2 × R(n − b, t − b) for n > b + 1.
Specifically, we define the following maps.

• Φ : C2(n, b, t) → Fb
2 × R(n − b, t − b), where Φ(u) =

(u[1, b],pb(u)).
• Ψ : Fb

2×R(n−b, t−b)→ C2(n, b, t), where Ψ(v,w) = u
and

ui =

{
vi, if i 6 b,

ui−b + wi−b, otherwise.

2017 IEEE International Symposium on Information Theory (ISIT)

621

In the context of error-correcting codes for tandem duplica-
tions [4], Jain et al. demonstrated Lemma 7 and the fact that Φ
and Ψ are bijections when t = 2b − 1. It is straightforward to
extend the proof for t > b. Hence, we have the following lemma
that is useful in evaluating the size of the code C2(n, b, t).

Lemma 8. For all n, b, t, |C2(n, b, t)| = 2b · |R(n− b, t− b)|.

The size of the code R(n, t) can be calculated using the re-
sults from Section III and by applying Lemma 8 for b = 1 to
get that for all n and t 6 n, |R(n, t)| = |C1(n+ 1, 1, t+ 1)|/2.
We can now conclude with the following corollary.
Corollary 9. For all n, b, t,

|C2(n, b, t)| = 2b · |C1(n− b+ 1, 1, t− b+ 1)|
2

.

According to Corollaries 3 and 9 we conclude the following.
Corollary 10. There exists a two-head b-burst-deletion-
correcting code when the heads are positioned t = dlog(n)e+ b
locations apart with redundancy of approximately log(e)/4 ≈
0.36 bits.

B. Correcting a Burst of Length at Most b
The goal of this section is to design a code correcting a burst

of at most b deletions using two heads. We follow the same
ideas presented thus far and use the following construction.

Construction 11. Let C3(n,6 b, t) be a code of length n which
is the intersection of the codes C2(n, `, t) for 1 6 ` 6 b. That is,

C3(n,6 b, t) = ∩b`=1C2(n, `, t)

= {c ∈ Fn
2 | L(c, `) 6 t, for all ` 6 b}.

Theorem 12. The code C3(n,6 b, t) can correct up to b consec-
utive deletions using two heads at distance t.

In this case we will not able to provide an exact approxima-
tion for the redundancy of the code C3(n,6 b, t) as in previous
cases. However, we will find a value of t for which the redun-
dancy of the code is at most a single bit. For this purpose, we
follow similar ideas to the ones presented by Schoeny et al. in
[12] when studying the redundancy of the so-called universal
RLL constraint. This result is stated in the next theorem.

Theorem 13. For all n, b, t,

|C3(n,6 b, t)| > 2n

(
1− n ·

(
1

2

)t−b
)
.

In particular, for t = dlog(n)e+b+1 the redundancy of the code
C3(n,6 b, t) is at most a single bit.

V. CODES CORRECTING MULTIPLE DELETIONS

In this section we move to the more challenging task of
correcting multiple deletions and construct m-head d-deletion-
correcting codes. For simplification, we first consider the case
d = 2 and show that the code C3(n,6 2, t1), which can cor-
rect a burst of at most two deletions by using two heads, is a
three-head double-deletion-correcting code, when the distance
between every adjacent heads is at least t = 2(t1 − 1). We
will then use this result as a building block for a more general
claim on codes which can correct d deletions using m heads.
While we do not design new code constructions, a key point
in the construction is finding the required minimum distance
between two adjacent heads for its success.

We start by presenting our result for the construction of three-
head double-deletion-correcting codes.

Theorem 14. The code C3(n,6 2, t1) is a three-head double-
deletion-correcting code when the distance between adjacent
heads is at least t = 2(t1 − 1).

Proof: Let c = (c1, . . . , cn) ∈ C3(n,6 2, t1) be the stored
codeword and t = 2(t1 − 1) be the distance between adjacent
heads. Let us assume that the two deletions occurred in the first
head are in positions i1, i2, where i1 < i2. Hence the deletions
in the second head are in positions i1 + t, i2 + t and in the third
head they are in positions i1 + 2t, i2 + 2t. That is, the outputs
from the three heads are:

Head 1: c(δi1 , δi2)

= (c1, . . . , ci1−1, ci1+1, . . . , ci2−1, ci2+1, . . . , cn),

Head 2: c(δi1+t, δi2+t)

= (c1, . . . , ci1+t−1, ci1+t+1, . . . , ci2+t−1, ci2+t+1, . . . , cn),

Head 3: c(δi1+2t, δi2+2t)

= (c1, . . . , ci1+2t−1, ci1+2t+1, . . . , ci2+2t−1, ci2+2t+1, . . . , cn).

We prove that it is possible to correct the two deletions by
explicitly showing how to decode them. This will be done in
three steps.

1) First, use the first two heads to correct the first deletion in
the first head.

2) Then, use the second and third heads to correct the first
deletion in the second head.

3) At this point, the first and second heads have only a single
deletion and thus we proceed to correct this deletion as
was done in Theorem 2.

In order to prove the first step, we show that c(δi1 , δi2)[1, i1+
t− 1] 6= c(δi1+t, δi2+t)[1, i1 + t− 1]. Assume in the contrary,
then we distinguish between the following two cases:

• Case 1: If i2 − i1 > t1 + 1 then the two subvectors

c(δi1 , δi2)[1, i1+t1−1]=(c1, . . . , ci1−1, ci1+1, . . . , ci1+t1),

c(δi1+t, δi2+t)[1, i1+t1−1]=(c1,. . . ,ci1−1, ci1 ,. . . ,ci1+t1−1)

are identical, so the subvector (ci1, ci1+1,. . . ,ci1+t1−1, ci1+t1)
forms a run of length t1 + 1, in contradiction to the con-
struction of the code C3(n,6 2, t1).

• Case 2: If i2 − i1 6 t1 then i1 + t = i1 + 2t1 − 2 >
i2 + t1 − 2. Therefore, the first i2 + t1 − 3 bits in the first
two heads, which are subvectors

c(δi1 , δi2)[1, i2 + t1 − 3]

= (c1, . . . , ci1−1, ci1+1, . . . , ci2−1, ci2+1, . . . , ci2+t1−1),

c(δi1+t, δi2+t)[1, i2 + t1 − 3]

= (c1, . . . , ci1−1, ci1 , . . . , ci2−2, ci2−1, . . . , ci2+t1−3),

are identical, which implies that (ci2−1, ci2 , . . . , ci2+t1−1)
is a subvector of length t1 +1 with period 2, again in con-
tradiction to the construction of the code C3(n,6 2, t1).

Let j1 be the leftmost index that c(δi1 , δi2) and c(δi1+t, δi2+t)
differ. It is possible to show that by concatenating the
first j1 bits in c(δi1+t, δi2+t) and the last n − 1 − j1
bits in c(δi1 , δi2), the resulting vector is c(δi2+k1

) =
c(δi1+t, δi2+t)[1, j1] ◦ c(δi1 , δi2)[j1, n − 2], where 0 6 k1 6
t1 − 2. In a similar method, it is possible to obtain the vec-
tor c(δi2+t+k2

), for 0 6 k2 6 t1 − 2. Lastly, in the third

2017 IEEE International Symposium on Information Theory (ISIT)

622

step we have two vectors c(δi2+k1
) and c(δi2+t+k2

), where
(i2 + t+ k2)− (i2 + k1) > (i2 + t)− (i2 + t1− 2) = t1. There-
fore, following the proof in Theorem 2, we can reconstruct the
codeword c, thereby correcting the two deletions.

The next example demonstrates the decoding procedure pre-
sented in Theorem 14.

Example 4. Let n = 11, t1 = 3, t = 4 and the stored codeword
is c = (0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1) ∈ C2(11,6 2, 3). Assume
that the outputs from the three heads are:

Head 1: c(δ1, δ3) = (0, 1, 0, 1, 1, 0, 1, 1, 1),

Head 2: c(δ5, δ7) = (0, 0, 1, 1, 1, 0, 1, 1, 1),

Head 3: c(δ9, δ11) = (0, 0, 1, 1, 0, 1, 1, 0, 1).

By comparing the outputs from the first two heads, we see that
j1 = 2 is the leftmost index that c(δ1, δ3) and c(δ5, δ7) differ.
Hence, we can obtain the vector

c(δ3) =c(δ5, δ7)[1, 2]◦c(δ1, δ3)[2, 9] = (0, 0, 1, 0, 1, 1, 0, 1, 1, 1).

Similarly, we find the leftmost index that c(δ5, δ7) and
c(δ9, δ11) differ which is j2 = 5 and obtain the vector

c(δ7) =c(δ9, δ11)[1, 5]◦c(δ5, δ7)[5, 9] = (0, 0, 1, 1, 0, 1, 0, 1, 1, 1).

Now, we can recover the original codeword by finding j3 = 4
as the leftmost index that c(δ3) and c(δ7) differ and recover
the stored codeword c to be

c = c(δ7)[1, 4] ◦ c(δ3)[4, 10] = (0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1).
2

Based on the cardinality result on the code C3(n,6 2, t1)
from Section IV we conclude with the following corollary.

Corollary 15. There exists a three-head double-deletion-
correcting code with at most a single bit of redundancy when the
distance between adjacent heads is at least t = 2(dlog(n)e+ 2).

The idea in the proof of Theorem 14 was to use every two
pairs of adjacent heads in order to correct the first deletion in
the first head in each pair. It turns that this basic procedure is
all we need in order to generalize the construction to m-head
d-deletion-correcting codes. Due to the lack of space we only
state here the results of these constructions.

Theorem 16. Let C be a (d −m + 1)-deletion-correcting code,
wherem 6 d+1. Then, the code C∩C3(n,6 d, t1) is anm-head
d-deletion-correcting code where the distance between adjacent
heads is t > t1+

∑d
k=1

(
(k−1)t1−k(k−1)/2+1

)
. In particular

under this setup, if t1 = dlog(n)e+ d+ 1 then:
1) There exists a (d+ 1)-head d-deletion-correcting code with

at most a single bit of redundancy
2) There exists a d-head d-deletion-correcting code with re-

dundancy at most dlog(n+ 1)e+ 1.

Lastly, we report on our results for the other cases solved in
this work, which we could not include their details.

Theorem 17.
1) The code C1(n, 1, t) can correct d bursts of sticky insertions

each of length at most t−1 using d+ 1 heads while the dis-
tance between adjacent heads is at least t. Specifically, for
t = dlog(n)e + 1, the redundancy of the code is approxi-
mately 0.36 bits.

2) The code C1(n, 1, t) is a two-head single-position-error-
correcting code when the distance between two heads is at
least t.

3) The code C3(n,6 2, t1) is a three-head two-position-error-
correcting code when the distance between adjacent heads
is at least t = 3t1 − 2.

VI. ACKNOWLEDGEMENT

The research of Y. M. Chee was supported in part by the Sin-
gapore Ministry of Education under Research Grant MOE2015-
T2-2-086. The research of H. M. Kiah was supported in part
by the Singapore Ministry of Education under Research Grants
MOE2015-T2-2-086 and MOE2016-T1-001-156. The research
of Alexander Vardy was supported in part by the National Sci-
ence Foundation under Grant CCF-1405119. The research of
Eitan Yaakobi was supported in part by the Israel Science Foun-
dation (ISF) Grant 1624/14.

REFERENCES

[1] J. Brakensiek, V. Guruswami, and A. Zbarsky, “Efficient low-redundancy
codes for correcting multiple deletions,” arxiv:1507.06175v1, Jul. 2015.

[2] L. Dolecek and V. Anantharam, “Repetition error correcting sets: Explicit
constructions and prefixing methods,” SIAM Journal on Discrete Mathe-
matics, vol. 23, no. 4, pp. 2120–2146, Jan. 2010.

[3] K.A.S.Immink, “Codes for mass data storage systems”, 2nd
ed.Eindhoven, The Netherlands: Shannon Foundation Publishers, 2004.

[4] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Duplication-correcting
codes for data storage in the DNA of living organisms”, abs/1606.00397,
2016.

[5] V.I. Levenshtein, “Binary codes capable of correcting insertions, deletions
and reversals”, Dokl. Akad. Nauk SSSR, vol. 163, no. 4, pp. 845–848,
1965. English trans.: Sov. Phys. Dokl., vol. 10, no. 8, pp. 707–710. 1966.

[6] V.I. Levenshtein, “Efficient reconstruction of sequences,” IEEE Trans. Inf.
Theory, vol. 47, no. 1, pp. 2–22, Jan. 2001.

[7] M. Levy and E. Yaakobi, “Mutually uncorrelated codes for DNA storage,”
in Proc. IEEE Int. Symp. on Inform. Theory, Aachen, Germany, Jun. 2017.

[8] H. Mahdavifar and A. Vardy, “Nearly optimal sticky-insertion correcting
codes with efficient encoding and decoding,” in Proc. IEEE Int. Symp. on
Inform. Theory, Aachen, Germany, Jun. 2017.

[9] S.S. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall race-
track memory,” Science, vol. 320, no. 5873, pp. 190–194, 2008.

[10] M. F. Schilling, “The longest run of heads,” College Math. J, vol. 21,
no. 3, pp. 196–207, 1990.

[11] M. F. Schilling, “The surprising predictability of long runs,” Mathematics
Magazine, vol. 85, no. 2, pp. 141–149, 2012.

[12] C. Schoeny, A. Wachter-Zeh, R. Gabrys, and E. Yaakobi, “Codes for cor-
recting a burst of deletions or insertions,” to appear IEEE Trans. Inf.
Theory, 2017.

[13] Z. Sun, W. Wu, and H. Li, “Cross-layer racetrack memory design for
ultra high density and low power consumption,” in Design Automation
Conference (DAC), pp. 1–6, May 2013.

[14] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single
asymmetric errors (in Russian),” Automatika i Telemkhanika, vol. 161,
no. 3, pp. 288–292, 1965.

[15] R. Venkatesan, V. Kozhikkottu, C. Augustine, A. Raychowdhury, K. Roy,
and A. Raghunathan, “Tapecache: A high density, energy efficient cache
based on domain wall memory,” in Proc. of the 2012 ACM/IEEE Int.
Symp. on Low Power Electronics and Design (ISLPED), New York, NY,
pp. 185–190, 2012.

[16] C. Zhang, G. Sun, X. Zhang, W. Zhang, W. Zhao, T. Wang, Y. Liang, Y.
Liu, Y. Wang, and J. Shu, “Hi-fi playback: Tolerating position errors in
shift operations of racetrack memory,” 2015 ACM/IEEE 42nd Annual Int.
Symp. on Computer Architecture (ISCA), pp. 694–706, Ju. 2015.

2017 IEEE International Symposium on Information Theory (ISIT)

623

