# Rates of Constant-Composition Codes that Mitigate Intercell Interference 

Yeow Meng Chee, Johan Chrisnata, Han Mao Kiah, San Ling, Tuan Thanh Nguyen, Van Khu Vu<br>School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore<br>Emails: \{ymchee, jchrisnata, hmkiah, lingsan, tuan3, vankhu001 \}@ntu.edu.sg


#### Abstract

For certain families of substrings $\mathcal{F}$, we provide a closed formula for the maximum size of a $q$-ary $\mathcal{F}$-avoiding code with a given composition. In addition, we provide numerical procedures to determine the asymptotic information rate for $\mathcal{F}$ avoiding codes with certain composition ratios. Using our procedures, we recover known results and compute the information rates for certain classes of $\mathcal{F}$-avoiding constant-composition codes for $2 \leqslant q \leqslant 8$. For these values of $q$, we find composition ratios such that the rates of $\mathcal{F}$-avoiding codes with constant composition achieve the capacity of the $\mathcal{F}$-avoiding channel.


## I. Introduction

Flash memories have become a popular nonvolatile storage of information owing to its advantage of high speed, low noise, low power consumption, compact form factor, and good physical reliability. The basic information storage element of a flash memory is called a cell, which consists of a floating-gate (FG) transistor. The amount of charge on an FG transistor is discretized into charge levels as a way to store information. The operation of injecting charge into an FG transistor to a desired level is called programming.

Multilevel cell (MLC) flash memories have cells with $q>2$ charge levels, with the ability to store $\log _{2} q$ bits per cell. More specifically, we use $q \mathrm{LC}$ to refer to cells with $q$ charge levels. The cells of a flash memory are further organized into blocks, each containing a constant number of cells. Hence, a block in a $q \mathrm{LC}$ flash memory stores a $q$-ary word (where symbol $i$ is used to represent charge level $i$ of a cell), and such a flash memory stores a collection of $q$-ary words. MLC technology increases the storage density of flash memories. However, precise programming is needed. There are two main challenges to reliable programming and storage: namely, intercell interference (ICI) and charge leakage.

Different techniques have been explored to mitigate ICI. Physical methods [1] and programming methods [2] have been investigated but the approach that is most effective has been the constrained coding method of Berman and Birk [3], [4], [5]. In their approach, certain words are forbidden to be stored, since the programming required to store such a word is highly unreliable, owing to ICI.

To mitigate the effect of charge leakage, a straightforward way is to adopt asymmetric error-correcting codes [6], [7]. Dynamic threshold techniques were later introduced by Zhou et al. [8] and extended by Sala et al. [9]; and the method is shown to be not only highly effective against asymmetric errors caused by charge leakage but also offer some protection against over-programming. In error-correcting schemes with dynamic threshold, the codes have constant composition, and in particular, the case when the codes are balanced (where the
number of times a symbol appears in a codeword is as close as possible) was studied in detail by Zhou et al. and Sala et al. [8], [9].

Recent approaches have combined constrained coding and dynamic threshold techniques [10], [11]. Before we give an account of these results, we introduce some necessary notations and terminology.

## A. Notations

Let $\Sigma \triangleq\{0,1, \ldots, q-1\}$ be an alphabet of $q \geqslant 2$ symbols. A $q$-ary word of length $n$ over $\Sigma$ is an element $u \in \Sigma^{n}$. The $i$ th coordinate of u is denoted $\mathrm{u}_{i}$, so that $\mathrm{u}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{n}\right)$. There is a natural correspondence between the data represented by the charge levels of a block of $n$ cells in a $q \mathrm{LC}$ flash memory and a $q$-ary word $\mathrm{u} \in \Sigma^{n}: \mathrm{u}_{i}$ is the charge level of the $i$ th cell in the block.
For a positive integer $n$, a composition of $n$ into $q$ parts is a $q$-tuple $\bar{w}=\left[w_{0}, w_{1}, \ldots, w_{q-1}\right]$ of nonnegative integers such that $\sum_{i=0}^{q-1} w_{i}=n$. A $q$-ary word is said to have composition $\bar{w}$ if the frequency of symbol $i \in \Sigma$ in u is $w_{i}$. The weight of a word $\mathrm{u} \in \Sigma^{n}$ with composition $\bar{w}$ is $w=\sum_{i=1}^{q-1} w_{i}$. A word $\mathrm{u} \in \Sigma^{n}$ is said to be balanced if it has composition $\bar{w}$ such that $w_{i} \in\{\lfloor n / q\rfloor,\lceil n / q\rceil\}$ for all $i \in \Sigma$.

A $q$-ary code of length $n$ is a nonempty subset $\mathcal{C} \subseteq \Sigma^{n}$. Elements of $\mathcal{C}$ are called codewords. The size of $\mathcal{C}$ is the number of codewords in $\mathcal{C}$. A code $\mathcal{C}$ is said to have constant composition $\bar{w}$, if each codeword in $\mathcal{C}$ has composition $\bar{w}$. A code is balanced if each of its codewords is balanced.

A substring of a word u is a word $\left(\mathrm{u}_{i+1}, \mathrm{u}_{i+2}, \ldots, \mathrm{u}_{i+\ell}\right) \in$ $\Sigma^{\ell}$, where $i \geqslant 0$ and $i+\ell \leqslant n$. Let $\mathcal{F}$ be a set of words over $\Sigma$. A word u is said to avoid $\mathcal{F}$ or $\mathcal{F}$-avoiding if no word in $\mathcal{F}$ is a substring of $u$. A code $\mathcal{C}$ is said to avoid $\mathcal{F}$ if every codeword in $\mathcal{C}$ avoids $\mathcal{F}$. We denote the set of all $q$-ary words of length $n$ that avoid $\mathcal{F}$ by $\mathcal{A}(n ; \mathcal{F})$.
The rate of a code $\mathcal{C}$ is $R \triangleq \log _{2}|\mathcal{C}| / n$, and intuitively, the rate measures the number of information bits stored in each multilevel cell. Henceforth, we adopt the notation log to mean logarithm base two.
Let $\mathcal{F}$ be a set of words over $\Sigma$. An $\mathcal{F}$-avoiding channel is a channel whose input codewords avoids $\mathcal{F}$. The capacity of an $\mathcal{F}$-avoiding channel or the capacity of the $\mathcal{F}$-constraint is given by the value

$$
C(\mathcal{F}) \triangleq \limsup _{n \rightarrow \infty} \frac{\log |\mathcal{A}(n ; \mathcal{F})|}{n}
$$

Recent approaches combine constrained coding and dynamic threshold techniques, leading to the consideration of codes that both avoid $\mathcal{F}$ and have constant composition. We denote an
$\mathcal{F}$-avoiding code of length $n$ and constant composition $\bar{w}$ by $\mathcal{C}(n ; \bar{w}, \mathcal{F})$. The maximum size of a $\mathcal{C}(n ; \bar{w}, \mathcal{F})$, that is, the size of the set of all $\mathcal{F}$-avoiding words of composition $\bar{w}$, is denoted by $A(n ; \bar{w}, \mathcal{F})$ and the set is denoted by $\mathcal{A}(n ; \bar{w}, \mathcal{F})$.

Let $\bar{\rho}=\left[\rho_{0}, \rho_{1}, \ldots, \rho_{q-1}\right]$ be a real-valued vector such that $\sum_{i=0}^{q-1} \rho_{i}=1$. Let $(\bar{w}(n))_{n=1}^{\infty}$ be a sequence of compositions of $n$ such that $\lim _{n \rightarrow \infty} w_{i}(n) / n=\rho_{i}$ for all $i \in \Sigma$. We define the asymptotic information rate of $(\bar{\rho}, \mathcal{F})$ to be

$$
R(\bar{\rho}, \mathcal{F}) \triangleq \limsup _{n \rightarrow \infty} \frac{\log A(n ; \bar{w}(n), \mathcal{F})}{n}
$$

and refer to $\bar{\rho}$ as the composition ratio.
Notice for the family of balanced codes, the sequence $\bar{w}(n)$ converges to the ratio $\bar{\rho}=[1 / q, 1 / q, \ldots, 1 / q]$. In this case, we write $R([1 / q, 1 / q, \ldots, 1 / q], \mathcal{F})$ simply as $R_{\text {bal }}(\mathcal{F})$.

## B. Previous Work

As mentioned earlier, a number of proposals for the avoidance set $\mathcal{F}$ have been put forth to mitigate the effects of ICI. In view of these proposals, we consider the following set of words over $\Sigma$. Fix $0 \leqslant a<b \leqslant q-1$ and let $\mathcal{J}(a, b) \triangleq\left\{\left(c_{1}, c_{2}, c_{3}\right): 0 \leqslant c_{2} \leqslant a\right.$ and $\left.b \leqslant c_{1}, c_{3} \leqslant q-1\right\}$.

Taranalli et al. [12] proposed the avoidance set $\mathcal{J}_{1}(q) \triangleq \mathcal{J}(q-$ $2, q-1$ ), while Qin et al. [10] proposed the avoidance set $\mathcal{J}_{2}(q) \triangleq \mathcal{J}(0, q-1)$.
Example 1. $\mathcal{J}_{1}(2)=\mathcal{J}_{2}(2)=\{(1,0,1)\}$. $\mathcal{J}_{1}(4)=$ $\{(3,0,3),(3,1,3),(3,2,3)\}$, while $\mathcal{J}_{2}(4)=\{(3,0,3)\}$.

In general, the capacity of the $\mathcal{F}$-constraint may be computed using the standard techniques detailed in [13]. For the purposes of mitigating ICI, the following results are known ${ }^{1}$.

Proposition 1 ([11], [14]).
(i) $C\left(\mathcal{J}_{1}(2)\right)=C\left(\mathrm{~J}_{2}(2)\right)=\log \lambda \approx 0.81137$, where $\lambda$ is the unique real root of the polynomial $X^{3}-2 X^{2}+X-1$.
(ii) $C\left(\mathcal{J}_{1}(4)\right) \approx 1.9374$.

For completeness, we state the following proposition without proof. Selected capacity values are provided in Table I, where we benchmark the rates of certain $\mathcal{J}(a, b)$-avoiding codes with constant composition.

Proposition 2. Fix $q$ and $0 \leqslant a<b \leqslant q-1$. We have $C(\mathcal{J}(a, b))=\log \lambda_{a, b}$, where $\lambda_{a, b}$ is the maximum real root of the polynomial $X^{3}-q X^{2}+(q-b)(a+1) X-(q-b)(a+1) b$.

The asymptotic rate of balanced $\mathcal{J}_{1}(2)$-avoiding codes were investigated by Qin et al. and in the same paper, they documented the asymptotic rate of balanced $J_{2}(3)$-avoiding codes.

Proposition 3 (Qin et al. [10]). $R_{\text {bal }}\left(\mathcal{J}_{1}(2)\right)=(\log 3) / 2 \approx$ 0.79428 and $R_{\text {bal }}\left(\mathcal{J}_{2}(3)\right) \approx 1.52576$.

Observe that the balanced $\mathcal{J}_{1}(2)$-avoiding codes have rates that fall short of over $2 \%$ of the capacity of the $\mathcal{J}_{1}(2)$-constraint. We state our question of interest: is there a ratio $\bar{\rho}$ where the asymptotic rate of $\mathcal{J}_{1}(2)$-avoiding codes with composition ratio $\bar{\rho}$ achieves capacity?

[^0]
## C. Our Contributions

Our first contribution is a closed formula for the number of $\mathcal{J}(a, b)$-avoiding words with composition $\bar{w}$.

Theorem 4. Fix $q, n, \mathcal{J}(a, b)$ with $a<b$ and $\bar{w}$. Then

$$
\begin{aligned}
& A(n ; \bar{w}, \mathcal{J}(a, b)) \\
& =\binom{s_{1}}{w_{0}, \cdots, w_{a}}\binom{s_{2}}{w_{a+1}, \cdots, w_{b-1}}\binom{s_{3}}{w_{b}, \cdots, w_{q-1}} \\
& \times \sum_{m=0}^{\min \left(s_{2}, s_{3}-1\right)}\binom{n-s_{3}-m}{s_{1}} B_{n}^{\left(m, s_{3}\right)},
\end{aligned}
$$

where $s_{1}=\sum_{i=0}^{a} w_{i}, s_{2}=\sum_{i=a+1}^{b-1} w_{i}, s_{3}=\sum_{i=b}^{q-1} w_{i}$, and

$$
\begin{equation*}
B_{n}^{\left(m, s_{3}\right)}=\binom{s_{3}-1}{m} \sum_{i=0}^{s_{3}-m-1}\binom{s_{3}-m-1}{i}\binom{n-s_{3}-m-i+1}{n-s_{3}-m-2 i} \tag{1}
\end{equation*}
$$

In the instance where $b=a+1$, we have $s_{2}=0$ and so we have only one summand in the outer summation. Therefore,

$$
A(n ; \bar{w}, \mathcal{J}(a, b))=\binom{s_{1}}{w_{0}, \cdots, w_{a}}\binom{s_{3}}{w_{b}, \cdots, w_{q-1}} B_{n}^{\left(0, s_{3}\right)} .
$$

We defer the proof of Theorem 4 to Section II and explain the significance of the term $B_{n}^{\left(m, s_{3}\right)}$ therein.

While it is difficult to derive a closed expression for $R(\bar{\rho}, \mathcal{J}(a, b))$ from Theorem 4 for general $\bar{\rho}$ and $\mathcal{J}(a, b)$, it is possible to compute numerically $R(\bar{\rho}, \mathcal{J}(a, b))$ for specific values. Our next contributions are numerical procedures that:

- determine the rates $R\left(\bar{\rho}, \mathcal{J}_{1}(q)\right)$ and $R\left(\bar{\rho}, \mathcal{J}_{2}(q)\right)$ for specific values of $\bar{\rho}$;
- find composition ratios $\bar{\rho}$ that yield high rates $R\left(\bar{\rho}, \mathcal{J}_{1}(q)\right)$ and $R\left(\bar{\rho}, \mathcal{J}_{2}(q)\right)$. Interestingly, these rates coincide with their respective channel capacity in certain cases.
Section III provides a detailed description of the procedure and the numerical computations of certain rates.


## II. Proof of Theorem 4

We enumerate the set of all $q$-ary $\mathcal{J}(a, b)$-avoiding words of composition $\bar{w}$, and hence, prove Theorem 4. To do so, we first enumerate binary words that obey certain properties in Section II-A, and then provide a mapping from these binary words to $q$-ary $\mathcal{J}(a, b)$-avoiding words in Section II-B .

## A. A Family of Binary Words

Let $0 \leqslant m \leqslant s_{3}$. Define $\mathcal{B}_{n}^{\left(m, s_{3}\right)}$ to be the set of words over the alphabet $\{\circ, \bullet\}$ of length $n$ with the following properties:
(i) each word has exactly $s_{3} \bullet$ 's;
(ii) each word has exactly $m$ substrings of the form $(\bullet, \odot, \bullet)$.

We demonstrate the following lemma.
Lemma 5. Let $0 \leqslant m \leqslant s_{3}-1$. Then

$$
\sum_{n \geqslant 0} \frac{\left|\mathcal{B}_{n}^{\left(m, s_{3}\right)}\right|}{\binom{s_{3}-1}{m}} X^{n}=\frac{X^{s_{3}+m}\left(1-X+X^{2}\right)^{s_{3}-m-1}}{(1-X)^{s_{3}-m+1}}
$$

To prove this lemma, we map $u \in \mathcal{B}_{n}^{\left(m, s_{3}\right)}$ to an integervalued $\left(s_{3}+1\right)$-tuple $\boldsymbol{d}_{\mathrm{u}}=\left(d_{1}, d_{2}, \ldots, d_{s_{3}+1}\right)$ such that $\left\{t_{j}=\right.$ $\left.\sum_{i=1}^{j} d_{i}: 1 \leqslant j \leqslant s_{3}\right\}$ is the set of coordinates where $\mathbf{u}_{t_{j}}=\bullet$, and $d_{s_{3}+1}=n-\sum_{i=1}^{s_{3}} d_{i}$.

Example 2. The word $u=(\bullet, \circ, \bullet, \bullet, \circ, \bullet, \bullet, \circ)$ belongs to $\mathcal{B}_{8}^{(2,5)}$, where $m=2, s_{3}=5, n=8$. Hence, $\boldsymbol{d}_{\mathrm{u}}=$ $(1,2,1,2,1,1)$ and $\{1,3,4,6,7\}$ is the set of coordinates where u has the symbol $\bullet$.

It is not difficult to see that $\boldsymbol{d}_{\mathrm{u}}=\boldsymbol{d}_{\mathrm{u}^{\prime}}$ implies $\mathrm{u}=\mathrm{u}^{\prime}$. We observe further that for $\mathrm{u} \in \mathcal{B}_{n}^{\left(m, s_{3}\right)}$, the $\left(s_{3}+1\right)$-tuple $\boldsymbol{d}_{\mathrm{u}}$ has the following properties:
(C1) the sum of entries in $\boldsymbol{d}_{\mathrm{u}}$ is $n$;
(C2) exactly $m$ entries of $d_{2}, d_{3}, \ldots, d_{s_{3}}$ are two;
(C3) all entries except $d_{s_{3}+1}$ of $\boldsymbol{d}_{\mathrm{u}}$ are positive, and $d_{s_{3}+1}$ is nonnegative.
Conversely, for each $\left(s_{3}+1\right)$-tuple $\boldsymbol{c}$ that obeys the properties (C1), (C2) and (C3), there exists a $u \in \mathcal{B}_{n}^{\left(m, s_{3}\right)}$ such that $\boldsymbol{d}_{\mathrm{u}}=$ $c$. Therefore, the cardinality of $\mathcal{B}_{n}^{\left(m, s_{3}\right)}$ is equal to the number of $\left(s_{3}+1\right)$-tuples satisfying these properties.

From (C1) and (C3), such ( $s_{3}+1$ )-tuples are compositions of $n$ with $s_{3}+1$ parts and in general, the combinatorics of compositions have been well studied (see Heubach and Mansour [15] for a survey). If we impose restrictions for each part of the composition, we have what is known as compositions with restricted parts and the following theorem.
Theorem 6 (Folklore, see [15, Ch. 3]). Let $\boldsymbol{P}=$ $\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ be an ordered collection of subsets of integers. Define $\operatorname{Comp}(n ; \boldsymbol{P}) \triangleq\left\{\boldsymbol{c}=\left(c_{1}, c_{2}, \ldots, c_{k}\right): \sum_{j=1}^{k} c_{j}=\right.$ $n$ and $c_{j} \in P_{j}$ for $\left.1 \leqslant j \leqslant k\right\}$. Then

$$
\sum_{n \geqslant 0}|\operatorname{Comp}(n ; \boldsymbol{P})| X^{n}=\prod_{j=1}^{k} \sum_{i \in P_{j}} X^{i} .
$$

For each $\left(s_{3}+1\right)$-tuple $\boldsymbol{c}$ satisfying properties (C1), (C2) and (C3), we have $\binom{s_{3}-1}{m}$ ways to choose exactly $m$ entries of $c_{2}, c_{3}, \ldots, c_{s_{3}}$ to be two. Without loss of generality, we assume $c_{2}=c_{3}=\cdots=c_{m+1}=2$. Set $k=s_{3}+1$ and consider the ordered collection $\boldsymbol{P}$ be such that

$$
P_{j}= \begin{cases}\mathbb{Z}_{\geqslant 1}, & \text { if } j=1 \\ \{2\}, & \text { if } 2 \leqslant j \leqslant m+1 \\ \mathbb{Z}_{\geqslant 1} \backslash\{2\}, & \text { if } m+2 \leqslant j \leqslant s_{3} \\ \mathbb{Z}_{\geqslant 0}, & j=s_{3}+1\end{cases}
$$

where $\mathbb{Z}_{\geqslant t}$ denote the set of integers at least $t$. Then, we have

$$
\left|\mathcal{B}_{n}^{\left(m, s_{3}\right)}\right|=|\operatorname{Comp}(n ; \boldsymbol{P})|\binom{s_{3}-1}{m}
$$

Since $\sum_{i \in \mathbb{Z} \geqslant t} X^{i}=X^{t} /(1-X)$, we have

$$
\begin{aligned}
& \sum_{n \geqslant 0} \frac{\left|\mathcal{B}_{n}^{\left(m, s_{3}\right)}\right|}{\binom{s_{3}-1}{m}} X^{n}=\sum_{n \geqslant 0}|\operatorname{Comp}(n ; \boldsymbol{P})| X^{n} \\
& =\left(\frac{X}{1-X}\right)\left(X^{2}\right)^{m}\left(X+\frac{X^{3}}{1-X}\right)^{s_{3}-m-1}\left(\frac{1}{1-X}\right) \\
& =\frac{X^{s_{3}+m}\left(1-X+X^{2}\right)^{s_{3}-m-1}}{(1-X)^{s_{3}-m+1}}
\end{aligned}
$$

This completes the proof of Lemma 5. To compute $\left|\mathcal{B}_{n}^{\left(m, s_{3}\right)}\right|$, we extract the coefficient of $X^{n}$ and multiply it by $\binom{s_{3}-1}{m}$. For
convenience, we let $\left[X^{j}\right]\{g(X)\}$ denote the coefficient of $X^{j}$ in $g(X)$. Hence,

$$
\begin{aligned}
& {\left[X^{n}\right]\left\{X^{s_{3}+m}\left(1-X+X^{2}\right)^{s_{3}-m-1}(1-X)^{-s_{3}+m-1}\right\} } \\
= & {\left[X^{n-s_{3}-m}\right]\left\{\left(1-X+X^{2}\right)^{s_{3}-m-1}(1-X)^{-s_{3}+m-1}\right\} } \\
= & \sum_{i=0}^{s_{3}-m-1}\binom{s_{3}-m-1}{i}\left[X^{n-s_{3}-m-2 i}\right]\left\{(1-X)^{-2-i}\right\} \\
= & \sum_{i=0}^{s_{3}-m-1}\binom{s_{3}-m-1}{i}\binom{n-s_{3}-m-i+1}{n-s_{3}-m-2 i} .
\end{aligned}
$$

Setting $B_{n}^{\left(m, s_{3}\right)}=\left|\mathcal{B}_{n}^{\left(m, s_{3}\right)}\right|$ yields (1).

## B. Mapping to $q$-ary Words

Finally, to complete the proof of Theorem 4, we take a word in $\mathcal{B}_{n}^{\left(m, s_{3}\right)}$ and replace the symbols in $\{\bullet, \circ\}$ with symbols in $\Sigma$. For convenience, we partition $\Sigma$ into three parts:
$\Sigma_{1}=\{0, \ldots, a\}, \Sigma_{2}=\{a+1, \ldots, b-1\}, \Sigma_{3}=\{b, \ldots, q-1\}$.
In addition, for $i=1,2,3$, we consider $\mathcal{E}_{i}$ to be a set of words over $\Sigma_{i}$ of length $s_{i}$ such that $\mathcal{E}_{1}, \mathcal{E}_{2}, \mathcal{E}_{3}$ are the sets of all words with compositions $\left[w_{0}, \ldots, w_{a}\right],\left[w_{a+1}, \ldots, w_{b-1}\right]$, and $\left[w_{b}, \ldots, w_{q-1}\right]$, respectively.
Example 3. Let $q=5, a=1, b=4$. So, $\Sigma_{1}=\{0,1\}$, $\Sigma_{1}=\{2,3\}$, and $\Sigma_{3}=\{4\}$. Furthermore, let $n=8$ with $\bar{w}=(1,1,1,2,3)$. Hence, $\left(s_{1}, s_{2}, s_{3}\right)=(2,3,3)$ and

$$
\begin{aligned}
& \mathcal{E}_{1}=\{(0,1),(1,0)\}, \\
& \mathcal{E}_{2}=\{(2,3,3),(3,2,3),(3,3,2)\}, \\
& \mathcal{E}_{3}=\{(4,4,4)\}
\end{aligned}
$$

For $\mathrm{u} \in \mathcal{B}_{n}^{\left(m, s_{3}\right)}$, we further define $T(\mathrm{u})$ to be the set of $n-s_{3}-m$ coordinates such that $t \in T(\mathbf{u})$ implies that $\mathbf{u}_{t}=0$, but $\left(\mathrm{u}_{t-1}, \mathrm{u}_{t}, \mathrm{u}_{t+1}\right) \neq(\bullet, \circ, \bullet)$. In other words, $T(\mathrm{u})$ is the set of $n-s_{3}-m$ o's in $\mathbf{u}$ that do not belong to the substrings $(\bullet, \circ, \bullet)$. Let $\mathcal{D}(\mathbf{u})$ be the collection of all subsets of $T(\mathbf{u})$ of size $s_{1}$.

Example 4. Let $\mathrm{u}=(\bullet, \circ, \bullet, \circ, \bullet, \circ, \circ, \circ)$ with $n=8, s_{3}=$ $3, m=2$. Then $T(\mathbf{u})=\{6,7,8\}$ and for $s_{1}=2$, we have $\mathcal{D}(\mathrm{u})=\{\{6,7\},\{6,8\},\{7,8\}\}$.

Next, we define the following collection of pairs:

$$
\mathcal{D}_{n}^{\left(m, s_{3}\right)} \triangleq\left\{(\mathrm{u}, D): \mathrm{u} \in \mathcal{B}_{n}^{\left(m, s_{3}\right)}, D \in \mathcal{D}(\mathrm{u})\right\} .
$$

Observe that $\left|\mathcal{D}_{n}^{\left(m, s_{3}\right)}\right|=B_{n}^{\left(m, s_{3}\right)}\binom{n-s_{3}-m}{s_{1}}$ and consider the following maps,


To define $\Phi_{1}$, consider $\mathrm{e}_{i} \in \mathcal{E}_{i}$ for $i=1,2,3, \mathrm{u} \in \mathcal{B}_{n}^{\left(m, s_{3}\right)}$ and $D_{1} \in \mathcal{D}(\mathbf{u})$. Let $D_{2}$ be the set of coordinates of $\circ$ in $u$ that do not belong to $D_{1}$. Then $\Phi_{1}\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3},\left(\mathrm{u}, D_{1}\right)\right)$ is the $q$-ary word obtained by substituting

- the $s_{1}$ ○'s of u at index set $D_{1}$ with $\mathrm{e}_{1}$,
- the $s_{2}$ o's of $u$ at index set $D_{2}$ with $\mathrm{e}_{2}$, and
- the $s_{3} \bullet$ 's of $u$ with $\mathrm{e}_{3}$.

Conversely, consider $v \in \mathcal{A}(n ; \bar{w}, \mathcal{J}(a, b))$ and we set $\Phi_{2}(\mathrm{v})=\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3},(\mathrm{u}, D)\right)$, where

- $\mathrm{e}_{i}$ is the subsequence of v whose symbols belong to $\Sigma_{i}$ for $i=1,2,3$,
- $u$ is the word obtained by substituting symbols in $\Sigma_{1} \cup \Sigma_{2}$ with $\circ$ and symbols in $\Sigma_{3}$ with $\bullet$, and
- $D$ is the set of indices with symbols in $\Sigma_{1}$.

Example 5. Let $q, a, b, n, \bar{w}$, and u be as defined in Examples 3 and 4. Consider $\mathrm{e}_{1}=(0,1), \mathrm{e}_{2}=(3,2,3)$, $\mathrm{e}_{3}=(4,4,4)$ and $D=\{6,8\}$. Then $\Phi_{1}\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3},(\mathrm{u}, D)\right)=(4,3,4,2,4,0,3,1)$. Conversely, if we set $v=(4,3,4,2,4,0,3,1)$, then $\Phi_{2}(v)$ recovers $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{u}$ and $D$.

Due to space constraints, we omit the detailed proof of the following lemma.

Lemma 7. Let $\Phi_{1}$ and $\Phi_{2}$ be defined as above. Then the composite maps $\Phi_{1} \circ \Phi_{2}$ and $\Phi_{2} \circ \Phi_{1}$ are identity maps on their respective domains. Therefore, $\Phi_{1}$ and $\Phi_{2}$ are bijections.

Combining Lemmas 5 and 7 yields Theorem 4.

## III. Rates of Constant-Composition $\mathcal{F}$-AVoiding Codes

In this section, we provide an efficient numerical procedure to determine the asymptotic information rates of certain ( $\bar{\rho}, \mathcal{F}$ )pairs. Before we evaluate these rates, the following proposition is an analogue of a result by Kayser and Siegel [11].

Proposition 8. Fix an avoidance set $\mathcal{F}$ over $\Sigma$. Then

$$
\lim _{n \rightarrow \infty} \max _{\sum w_{i}=n} \frac{\log A(n ; \bar{w}, \mathcal{F})}{n}=C(\mathcal{F}) .
$$

Proof. Let $D_{\text {max }}(n)=\max \left\{A(n ; \bar{w}, \mathcal{F}): \sum w_{i}=n\right\}$ for all $n$. Since $|\mathcal{A}(n ; \mathcal{F})|=\sum_{\sum w_{i}=n} A(n ; \bar{w}, \mathcal{F})$ and we have at most $n^{q}$ compositions of $n$ into $q$ parts, we have

$$
D_{\max }(n) \leqslant|\mathcal{A}(n ; \mathcal{F})| \leqslant n^{q} D_{\max }(n)
$$

Taking logarithms, dividing by $n$ and taking limits in $n$ yields the proposition.

Unfortunately, Proposition 8 does not guarantee the existence of a composition ratio $\bar{\rho}$ where $R(\bar{\rho}, \mathcal{F})=C(\mathcal{F})$. Indeed, if we set $\bar{w}(n) \in \arg \max _{\sum w_{i}=n} A(n ; \bar{w}(n), \mathcal{F})$, the sequences $w_{i}(n)$ need not converge for all $i \in \Sigma$.

However, we conjecture the existence of such a composition ratio $\bar{\rho}$. Furthermore, in the following subsections, we look at the avoidance sets $\mathcal{J}_{1}(q)$ and $\mathcal{J}_{2}(q)$ and verify numerically the existence of such $\bar{\rho}$.

In what follows, we consider the usual binary entropy function $H_{2}(p)=-p \log p-(1-p) \log (1-p)$ for $0 \leqslant p \leqslant 1$.

## A. Avoiding $\mathcal{J}_{1}(q)$

Our first theorem computes the asymptotic rate of a family of constant-composition codes.

Theorem 9. Fix $0 \leqslant x \leqslant 1$. Define the function $F_{1}$ so that

$$
\begin{aligned}
F_{1}(x, y) \triangleq & (1-x) \log (q-1) \\
& +x H_{2}(y)+(1-x-x y) H_{2}\left(\frac{1-x-2 x y}{1-x-x y}\right) .
\end{aligned}
$$

Let $\bar{\rho} \triangleq((1-x) /(q-1),(1-x) /(q-1), \ldots,(1-x) /(q-$ $1), x)$. Then the asymptotic rate $R\left(\bar{\rho}, \mathcal{J}_{1}(q)\right)$ is given by $\max _{0 \leqslant y \leqslant 1} F_{1}(x, y)$.
Proof. For each $n$, let $\bar{w}(n)$ be such that $w_{0}=\cdots=w_{q-2}=$ $\lfloor(1-x) n /(q-1)\rfloor$ and $w_{q-1}=n-(q-1) w_{0}$. We verify that the sequence $\bar{w}(n)$ converges to $\bar{\rho}$ componentwise.

Applying Theorem 4 with $a=q-2, b=q-1, s_{1}=$ $(q-1) w_{0}, s_{2}=0$ and $s_{3}=w_{q-1}$, we have the value of $A\left(n ; \bar{w}(n), \mathcal{J}_{1}(q)\right)$ given by

$$
\sum_{i=0}^{w_{q-1}-1}\binom{(q-1) w_{0}}{w_{0}, \cdots, w_{0}}\binom{w_{q-1}-1}{i}\binom{n-w_{q-1}-i+1}{n-w_{q-1}-2 i} .
$$

Let $D_{i}$ be the $i$ th summand for $0 \leqslant i \leqslant w_{q-1}-1$ and $y^{*} \in$ $\arg \max _{0 \leqslant y \leqslant 1} F_{1}(x, y)$. Then by Stirling's approximation,

$$
2^{n F_{1}(x, i / x n)-o(n)} \leqslant D_{i} \leqslant 2^{n F_{1}(x, i / x n)+o(n)} \text { for all } i
$$

Let $i^{*}=\left\lfloor x y^{*} n\right\rfloor$. Then we have $A\left(n ; \bar{w}(n), \mathcal{J}_{1}(q)\right) \geqslant D_{i^{*}} \geqslant$ $2^{n F_{1}\left(x, i^{*} / x n\right)-o(n)}$. Taking logarithms, dividing by $n$ and taking limits in $n$ yields the inequality $R\left(\bar{\rho}, \mathcal{J}_{1}(q)\right) \geqslant F_{1}\left(x, y^{*}\right)$.
On the other hand, we have $A\left(n ; \bar{w}(n), \mathcal{J}_{1}(q)\right) \leqslant$ $\sum_{i} 2^{n F_{1}(x, i / x n)+o(n)} \leqslant n 2^{n F_{1}\left(x, y^{*}\right)+o(n)}$. Taking logarithms, dividing by $n$ and taking limits in $n$, we obtain $R\left(\bar{\rho}, \mathcal{J}_{1}(q)\right) \leqslant$ $F_{1}\left(x, y^{*}\right)$. This completes the proof.

Example 6. Let $q=2$ and $x=1 / 2$. Then $\bar{\rho}=(1 / 2,1 / 2)$ and

$$
F_{1}\left(\frac{1}{2}, y\right)=\frac{1}{2}\left(H_{2}(y)+(1-y) H_{2}\left(\frac{1-2 y}{1-y}\right)\right) .
$$

Now, $F_{1}(1 / 2, y)$ is maximized when $y=1 / 3$ and achieves the value $(\log 3) / 2$. This yields $R_{\text {bal }}\left(\mathcal{J}_{1}(2)\right)$ and recovers the result in Qin et al. [10]. Continuing this example, we compute the rates $R_{\text {bal }}\left(\mathcal{J}_{1}(q)\right)$ for $2 \leqslant q \leqslant 8$ and tabulate these values in Table I.

## B. Avoiding $\mathrm{J}_{2}(q)$

The following is analogous to Theorem 9.
Theorem 10. Let $q \geqslant 3$ and fix $0 \leqslant x \leqslant(q-2) /(2 q-3)$. Define the function $F_{2}$ so that

$$
\begin{aligned}
& F_{2}(x, y, z) \\
& \triangleq \frac{(1-x)(q-2)}{q-1} \log (q-2) \\
& +(1-x-x y) H_{2}\left(\frac{1-x}{(q-1)(1-x-x y)}\right) \\
& +x H_{2}(y)+(x-x y) H_{2}(z) \\
& +(1-x-x y-z(x-x y)) H_{2}\left(\frac{1-x-x y-2 z(x-x y)}{1-x-x y-z(x-x y)}\right) .
\end{aligned}
$$

Let $\bar{\rho} \triangleq((1-x) /(q-1),(1-x) /(q-1), \ldots,(1-$ $x) /(q-1), x)$ Then the asymptotic rate $R\left(\bar{\rho}, \mathrm{~J}_{2}(q)\right)$ is given by $\max _{0 \leqslant y, z \leqslant 1} F_{2}(x, y, z)$.
Proof. The proof is similar to the proof of Theorem 9 and is omitted due to space constraints.

| $q$ | $R_{\text {bal }}\left(\mathcal{J}_{1}(q)\right)$ | $\rho_{q-1}$ | $R\left(\bar{\rho}, \mathcal{J}_{1}(q)\right)$ | $C\left(\mathcal{J}_{1}(q)\right)$ | $R_{\text {bal }}\left(\mathcal{J}_{2}(q)\right)$ | $\rho_{q-1}$ | $R\left(\bar{\rho}, \mathcal{J}_{2}(q)\right)$ | $C\left(\mathcal{J}_{2}(q)\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0.79248 | 0.41150 | 0.81137 | 0.81137 |  |  |  |  |
| 3 | 1.46127 | 0.25653 | 1.48353 | 1.48353 | 1.52576 | 0.29308 | 1.53145 | 1.53145 |
| 4 | 1.92207 | 0.19425 | 1.93743 | 1.93743 | 1.97589 | 0.22989 | 1.97758 | 1.97758 |
| 5 | 2.26928 | 0.15865 | 2.27945 | 2.27945 | 2.30984 | 0.18867 | 2.31046 | 2.31046 |
| 6 | 2.54732 | 0.13496 | 2.55420 | 2.55420 | 2.57805 | 0.15967 | 2.57832 | 2.57832 |
| 7 | 2.77921 | 0.11782 | 2.78403 | 2.78403 | 2.80304 | 0.13827 | 2.80317 | 2.80317 |
| 8 | 2.97821 | 0.10475 | 2.98169 | 2.98169 | 2.99713 | 0.12181 | 2.99719 | 2.99719 |

TABLE I: Rates of $\mathcal{J}_{1}(q)$ and $\mathcal{J}_{2}(q)$-avoiding codes with constant composition. Here, the composition ratio is $\bar{\rho}=$ $\left[\rho, \rho, \ldots, \rho, \rho_{q-1}\right]$, where $\rho=\left(1-\rho_{q-1}\right) /(q-1)$.

As before, for $3 \leqslant q \leqslant 8$, we compute $R_{\text {bal }}\left(\mathcal{J}_{2}(q)\right)$ and tabulate these results in Table I. Again, we recover the result $R_{\text {bal }}\left(\mathcal{J}_{2}(3)\right) \approx 1.52576$ in Qin et al. [10].

## C. Capacity-Achieving Codes with Constant Composition

Consider the functions $F_{1}$ and $F_{2}$ defined in Theorem 9 and Theorem 10, respectively. Since we are interested in constantcomposition codes with high rates, a natural approach is to maximize $F_{1}(x, y)$ in both variables $x$ and $y$, and $F_{2}(x, y, z)$ in all variables $x, y$ and $z$.

We do so for $2 \leqslant q \leqslant 8$ and present the results in Table I. Interestingly, for the corresponding values of $\bar{\rho}$, the rates $R\left(\bar{\rho}, \mathcal{J}_{1}(q)\right)$ and $R\left(\bar{\rho}, \mathcal{J}_{2}(q)\right)$ achieve capacity and we conjecture this to be true for all $q$. We give a precise formulation of our conjecture.

Conjecture 11. Consider the functions $F_{1}$ and $F_{2}$ defined in Theorem 9 and Theorem 10, respectively.
(i) $C\left(\mathcal{J}_{1}(q)\right)=\max \left\{F_{1}(x, y): 0 \leqslant x, y \leqslant 1\right\}$ for $q \geqslant 2$.
(ii) $C\left(\mathcal{J}_{2}(q)\right)=\max \left\{F_{2}(x, y, z): 0 \leqslant x, y, z \leqslant 1\right\}$ for $q \geqslant 3$.

Furthermore, for a set $\mathcal{F}$ of words over $\Sigma$, there exists a composition ratio $\bar{\rho}$ such that $R(\bar{\rho}, \mathcal{F})=C(\mathcal{F})$. When $\mathcal{F}=\mathcal{J}_{1}(q)$ and $\mathcal{F}=\mathcal{J}_{2}(q)$, we can even conjecture the precise form of the composition ratio.

## IV. Conclusion

We enumerated the set of all $\mathcal{F}$-avoiding words with a fixed composition for certain avoidance sets $\mathcal{F}$. Using this formula, we presented numerical procedures to determine the rates of $\mathcal{F}$-avoiding codes with certain composition ratios. We also determined the composition ratios that maximize the rates of $\mathcal{F}$-avoiding constant-composition codes for $\mathcal{F}=\mathcal{J}_{1}(q)$ or $\mathcal{F}=\mathcal{J}_{2}(q)$, and $2 \leqslant q \leqslant 8$. Interestingly, we observe that the $\mathcal{F}$-avoiding codes with the optimal composition ratio achieve the capacity of the $\mathcal{F}$-avoiding channel in all our numerical computations, and we conjecture this to be true in general.

The encoding and decoding algorithms for certain special classes of constant-composition $\mathcal{F}$-avoiding codes are discussed in our companion paper [16].

## Acknowledgement

The authors thank the anonymous reviewers and the TPC member for their constructive comments.

## References

[1] D. Kang, H. Shin, S. Chang, J. An, K. Lee, J. Kim, E. Jeong, H. Kwon, E. Lee, S. Seo et al., "The air spacer technology for improving the cell distribution in 1 Giga bit NAND flash memory," in IEEE Non-Volatile Semiconductor Memory Workshop, 2006, pp. 36-37.
[2] R. Fastow and S. Park, "Minimization of FG-FG coupling in flash memory," Feb. 7 2006, US Patent 6,996,004.
[3] A. Berman and Y. Birk, "Mitigating inter-cell coupling effects in MLC NAND flash via constrained coding," Proc. Flash Memory Summit, 2010.
[4] ——, "Error correction scheme for constrained inter-cell interference in flash memory," in Non-Volatile Memory Workshop, 2011.
[5] -_, "Constrained flash memory programming," in IEEE Proc. Int. Symp. Inform. Theory, 2011, pp. 2128-2132.
[6] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, "Codes for asymmetric limited-magnitude errors with application to multilevel flash memories," IEEE Trans. Inform. Theory, vol. 56, no. 4, pp. 1582-1595, 2010.
[7] E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf, "On codes that correct asymmetric errors with graded magnitude distribution," in IEEE Int. Symp. Inform. Theory, 2011, pp. 1056-1060.
[8] H. Zhou, A. Jiang, and J. Bruck, "Error-correcting schemes with dynamic thresholds in nonvolatile memories," in IEEE Int. Symp. Inform. Theory, 2011, pp. 2143-2147.
[9] F. Sala, R. Gabrys, and L. Dolecek, "Dynamic threshold schemes for multi-level non-volatile memories," IEEE Trans. Commun., vol. 61, no. 7, pp. 2624-2634, 2013.
[10] M. Qin, E. Yaakobi, and P. H. Siegel, "Constrained codes that mitigate inter-cell interference in read/write cycles for flash memories," IEEE J. Selected Areas in Commun., vol. 32, no. 5, pp. 836-846, 2014.
[11] S. Kayser and P. H. Siegel, "Constructions for constant-weight ICI-free codes," in Proc. IEEE Int. Symp. Inform. Theory. IEEE, 2014, pp. 14311435.
[12] V. Taranalli, H. Uchikawa, and P. H. Siegel, "Error analysis and inter-cell interference mitigation in multi-level cell flash memories," in IEEE Int. Conf. Commun. IEEE, 2015, pp. 271-276.
[13] K. A. S. Immink, Codes for mass data storage systems. Shannon Foundation Publisher, 2004.
[14] P. H. Siegel, "Constrained codes for multilevel flash memory," Aug 2015, North American School of Information Theory.
[15] S. Heubach and T. Mansour, Combinatorics of compositions and words. CRC Press, 2009.
[16] Y. M. Chee, J. Chrisnata, H. M. Kiah, S. Ling, T. T. Nguyen, and V. K. Vu, "Efficient encoding/decoding of capacity-achieving constant-composition ICI-free codes," 2016, preprint.


[^0]:    ${ }^{1}$ Berman and Birk computed $C(\mathcal{F})$ for a variety of avoidance sets $\mathcal{F}$ in the cases where $q \in\{4,8,16\}$ [5].

