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Abstract—Despite their exceptional error-correcting properties,
Reed-Solomon (RS) codes have been overlooked in distributed
storage applications due to the common belief that they have poor
repair bandwidth: A naive repair approach would require the whole
file to be reconstructed in order to recover a single erased codeword
symbol. In a recent work, Guruswami and Wootters (STOC’16)
proposed a single-erasure repair method for RS codes that achieves
the optimal repair bandwidth amongst all linear encoding schemes.
We extend their trace collection technique to cope with two erasures.

I. INTRODUCTION

A. Background

The repair bandwidth is an important performance metric of
erasure codes in the context of distributed storage [1]. In such a
system, for a chosen field F , a data vector in F k is mapped to
a codeword vector in Fn, whose entries are stored at different
storage nodes. When a node fails, the symbol stored at that node
is erased (lost). A replacement node (RN) has to recover the
content stored at the failed node by downloading information
from the other nodes. The repair bandwidth is the total amount of
information that the RN has to download in order to successfully
complete the repair process.

Reed-Solomon (RS) codes [2], which have been extensively
studied in theory [3] and widely used in practice, were believed
to have prohibitively high repair bandwidth. In a naive repair
scheme, recovering the content stored at a single failed node
would require downloading the whole file, i.e., k symbols over
F . The poor performance in repairing failed nodes of RS codes
motivated the introduction of repair-efficient codes such as re-
generating codes [1] and locally repairable codes [4], [5], [6].

Guruswami and Wootters [7] recently proposed a bandwidth-
optimal linear repair method based on RS codes. The key idea
behind their method is to recover a single erased symbol by
collecting a sufficiently large number of its (field) traces, each
of which can be constructed from a number of traces of other
symbols. As all traces belong to a subfield B of F and traces from
the same symbol are related, the total repair bandwidth can be
significantly reduced. The repair scheme obtained by Guruswami
and Wootters [7], however, only applies to the case of one erasure,
or in other words, one failed node.

B. Our Contribution

We propose an extension of the Guruswami-Wootters repair
scheme that can ensure recovery from two erasures. We provide
two distributed schemes for Reed-Solomon codes, both of which
use the same repair bandwidth per erasure as in the case of
a single erasure. In these repair schemes, the two RNs first
download repair data from all available nodes (Download Phase).
They subsequently collaborate to exchange the data in order to
complete the repair process at each node (Collaboration Phase).
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Fig. 1: A toy example illustrating the repair procedure for two
failed nodes in a four-node storage system based on a [4, 2] Reed-
Solomon code over F4. The stored file is

(
(a1, a2), (b1, b2)

)
∈

F2
4, where a1, a2, b1, and b2 are bits in F2. Suppose that Node 2

and Node 3 fail simultaneously. In the Download Phase, each re-
placement node first downloads two bits (along the solid arrows)
from the two available nodes, namely Node 1 and Node 4. In the
Collaboration Phase, the replacement nodes communicate with
each other to complete their own repair processes by exchanging
two extra bits (along the dashed arrows), computed based on the
previously downloaded bits.

The first scheme has a collaboration depth one, that is, in the
Collaboration Phase, the two RNs send out repair data to each
other simultaneously in one round. This scheme works whenever
the field extension degree t is divisible by the characteristic of
the field F . An example illustrating the first scheme is given in
Fig. 1. The second scheme has a collaboration depth two, that
is, in the Collaboration Phase, one RN receives the repair data
from the other RN, completes its repair process, and then sends
out its repair data to the other node. This scheme applies to all
field extension degrees.

C. Organization

The paper is organized as follows. We first provide relevant
definitions and introduce the terminology used throughout the
paper. We then proceed to discuss the Guruswami-Wootters repair
scheme for RS codes in the presence of a single erasure in
Section II. Our main results – repair schemes for RS codes in
the presence of two erasures – are presented in Section III. For
a thorough literature review on the related works on cooperative
regenerating codes and the motivation for repairing multiple
erasures, the interested reader is referred to our companion
paper [8].

II. REPAIRING ONE ERASURE IN REED-SOLOMON CODES

We start by introducing relevant definitions and the notation
used in all subsequent derivations, and then proceed to review the
approach proposed by Guruswami and Wootters [7] for repairing
a single erasure/node failure in RS codes.
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A. Definitions and Notations
Let [n] denote the set {1, 2, . . . , n}. Let B = GF(pm) be the

finite field of pm elements, for some prime p and m ≥ 1. Let
F = GF(pmt) be a field extension of B, where t ≥ 1. We often
refer to the elements of F as symbols and the elements of B as
sub-symbols. We can also treat F as a vector space of dimension
t over B, i.e. F ∼= Bt, and hence each symbol in F may be
represented as a vector of length t over B. A linear [n, k] code C
over F is a subspace of Fn of dimension k. Each element of a
code is referred to as a codeword. The dual of a code C, denoted
C⊥, is the orthogonal complement of C.

Definition 1. Let F [x] denote the ring of polynomials over F .
The Reed-Solomon code RS(A, k) ⊆ Fn of dimension k over a
finite field F with evaluation points A = {α1, α2, . . . , αn} ⊆ F
is defined as:

RS(A, k) =
{(
f(α1), . . . , f(αn)

)
: f ∈ F [x],deg(f) < k

}
.

A generalized Reed-Solomon code, GRS(A, k,λ), where λ =
(λ1, . . . , λn) ∈ Fn, is defined similarly to a Reed-Solomon code,
except that the codeword corresponding to a polynomial f is now
defined as

(
λ1f(α1), . . . , λnf(αn)

)
, λi 6= 0 for all i ∈ [n]. It

is well known that the dual of an RS code RS(A, k), for any
n ≤ |F |, is a generalized RS code GRS(A,n − k,λ), for some
multiplier vector λ (see [3, Chp. 10]). Whenever clear from the
context, we use f(x) to denote a polynomial of degree at most
k − 1, which corresponds to a codeword of the RS code C =
RS(A, k), and p(x) to denote a polynomial of degree at most
n − k − 1, which corresponds to a dual codeword in C⊥. Since∑
α∈A p(α)(λαf(α)) = 0, we refer to such a polynomial p(x)

as a check polynomial for C. Note that when n = |F |, we have
λα = 1 for all α ∈ F . In general, as recovering f(α) is equivalent
to recovering λαf(α), to simplify the notation, we often omit the
factor λα in the equation above.

B. The Guruswami-Wootters Repair Scheme for One Erasure
Suppose that the polynomial f(x) ∈ F [x] corresponds to a

codeword in the RS code C = RS(A, k) and that f(α∗) is the
erased symbol, where α∗ ∈ A is an evaluation point of the code.

Given that F is a field extension of B of degree t, i.e. F =
GF(pmt) and B = GF(pm), for some prime p, one may define
the field trace of any symbol α ∈ F as TrF/B(α) =

∑t−1
i=0 α

|B|i ,
which is always a sub-symbol in B. We often omit the subscript
F/B for succinctness. The key points in the repair scheme
proposed by Guruswami and Wootters [7] can be summarized
as follows. Firstly, each symbol in F can be recovered from its t
independent traces. More precisely, given a basis u1, u2, . . . , ut
of F over B, any α ∈ F can be uniquely determined given the
values of Tr(ui α) for i ∈ [t], i.e. α =

∑t
i=1 Tr(uiα)u⊥i , where

{u⊥i }ti=1 is the dual (trace-orthogonal) basis of {ui}ti=1 (see, for
instance [9, Ch. 2, Def. 2.30]). Secondly, when n− k ≥ |B|t−1,
the trace function also provide checks that generate repair equa-
tions whose coefficients are linearly dependent over B, which
keeps the repair cost low.

Note that the checks of C are precisely those polynomials
p(x) ∈ F [x] with deg(p) < n − k. It turns out that for
n − k ≥ |B|t−1, we can define checks that take part in the
repair process via the trace function described above. For each
u ∈ F and α ∈ F , we define the polynomial

pu,α(x) = Tr
(
u(x− α)

)
/(x− α). (1)

By the definition of a trace function, the following lemma follows
in a straightforward manner.

Lemma 1 ([7]). The polynomial pu,α(x) defined in (1) satisfies
the following properties.
(a) deg(pu,α) = |B|t−1 − 1; (b) pu,α(α) = u.

By Lemma 1 (a), deg(pu,α) = |B|t−1−1 < n−k. Therefore,
the polynomial pu,α(x) corresponds to a codeword of C⊥ and is
a check for C. Now let U = {u1, . . . , ut} be a basis of F over
B, and set

pi(x)
4
= pui,α∗(x) = Tr

(
ui(x− α∗)

)
/(x− α∗), i ∈ [t].

These t polynomials correspond to t codewords of C⊥. Therefore,
we obtain t equations of the form

pi(α
∗)f(α∗) = −

∑

α∈A\{α∗}

pi(α)f(α), i ∈ [t]. (2)

A key step in the Guruswami-Wootters repair scheme is to apply
the trace function to both sides of (2) to obtain t different repair
equations

Tr
(
pi(α

∗)f(α∗)
)

= −
∑

α∈A\{α∗}

Tr
(
pi(α)f(α)

)
, i ∈ [t]. (3)

According to Lemma 1 (b), pi(α∗) = ui, for i = 1, . . . , t.
Moreover, by the linearity of the trace function, we can rewrite (3)
as follows. For i = 1, . . . , t,

Tr
(
uif(α∗)

)
= −

∑

α∈A\{α∗}

Tr
(
ui(α−α∗)

)
×Tr

( f(α)

α− α∗
)
. (4)

The right-hand side sums of the equations (4) can be computed
by downloading the repair trace Tr

(
f(α)
α−α∗

)
from the node storing

f(α), for each α ∈ A\{α∗}. As a consequence, the t independent
traces Tr

(
uif(α∗)

)
, i = 1, . . . , t, of f(α∗) can be determined by

downloading one sub-symbol from each of the n − 1 available
nodes. The erased symbol f(α∗) can subsequently be recovered
from its t independent traces. By [10, Cor. 1], this scheme is
bandwidth-optimal when n = |F | and k = n(1− 1/|B|).

III. REPAIRING TWO ERASURES IN REED-SOLOMON CODES

We consider the same setting as in Section II-B, i.e. n− k ≥
|B|t−1, where B = GF(pm) and F = GF(pmt), and assume that
C is an RS code RS(A, k) over F . However, we now suppose
that two codeword symbols, say f(α∗) and f(α), are erased.
Two repair schemes are proposed, both of which use the same
bandwidth per erasure as in the case of a single erasure in [7].

A. General Idea

We first discuss the challenges associated with repairing two
erased symbols and then proceed to describe our strategy for
dealing with this repair scenario. A check p(x) is said to involve
a codeword symbol f(α) if p(α) 6= 0. When only one symbol
f(α∗) is erased, every check p(x) that involves f(α∗) can be
used to generate a repair equation as follows.

Tr
(
p(α∗)f(α∗)

)
= −

∑

α∈A\{α∗}

Tr
(
p(α)f(α)

)
. (5)

However, when two symbols f(α∗) and f(α) are erased, in
order to, say, recover f(α∗), we no longer have the freedom
to use every possible check that involves f(α∗). Indeed, those
checks that involve both f(α∗) and f(α) cannot be used in
a straightforward manner for repair, because we cannot simply
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compute the right-hand side sum of (5) without retrieving some
information from f(α).

The gist of our approach is to first generate those checks
that only involve one codeword symbol, f(α∗) or f(α), but
not both. We show that there exist 2(t− 1) such checks, which
are used in the Download Phase. Each RN uses t − 1 checks
and downloads the corresponding n− 2 sub-symbols from each
available node. Apart from the t − 1 checks that involve f(α∗)
but not f(α), and the t − 1 checks that involve f(α) but not
f(α∗), we also introduce two additional checks that involve both
f(α∗) and f(α), which are useful in the Collaboration Phase. It
is not immediately clear how these last two checks can be used
at all. However, we prove that when the extension degree t is
divisible by the characteristic of the field F , each erased symbol
can be recovered at each RN using the aforementioned t checks,
at the cost of downloading in total n−1 sub-symbols from n−2
surviving nodes and from the other RN. In the first repair scheme,
the two RNs exchange their repair data simultaneously (parallel
repair), while in the second scheme, one node waits to receive
the data from the other node before sending out its own repair
data (sequential repair). By allowing one node to wait in the
Collaboration Phase, we obtain a repair scheme that works for
every field extension degree.

To identify check equations that involve one codeword symbol
f(α) but not the other symbol f(β), we first introduce a special
polynomial Qα,β(z), defined as follows:

Qα,β(z) = Tr
(
z(β − α)

)
, α 6= β. (6)

Let Kα,β denote the root space of Qα,β(z). Then

Kα,β = {z∗ ∈ F : Tr(z∗α) = Tr(z∗β)} . (7)

Lemma 2. The following statements hold for every α and β in
F , α 6= β.

(a) Kα,β ≡ Kβ,α. In other words, the polynomial Qα,β and
the polynomial Qβ,α have the same root spaces.

(b) dimB(Kα,β) = dimB(Kβ,α) = t− 1.

Proof. From (7), due to symmetry, Kα,β ≡ Kβ,α. As the trace
function is a linear mapping from F to B, its kernel K = {κ ∈
F : Tr(κ) = 0} is a subspace of dimension t− 1 over B (see [9,
Thm. 2.23]). Therefore, the root space of Qα,β(z) is Kα,β =

1
β−αK, which is also a subspace of dimension t−1 over B. �

We then use a root z∗ of the polynomial Qα,β(z) to define a
check equation according to (1).

pz∗,α(x) = Tr
(
z∗(x− α)

)
/(x− α).

The following properties of pz∗,α(x) will be used in our subse-
quent proofs.

Lemma 3. Suppose that α and β are two distinct elements of
F , and z∗ is a root of Qα,β(z) or Qβ,α(z) in F , i.e. z∗ ∈ Kα,β .
Then the following claim holds.

(a) pz∗,α(β) = 0.
Moreover, if the extension degree t is divisible by char(F ) then

(b) pu,α(β) is a root of Qα,β(z) and Qβ,α(z), for every u ∈ F .

Proof. Note that according to Lemma 2 (a), the root spaces of
Qα,β(z) and Qβ,α(z) are the same. The first claim is clear based
on the definitions of Qα,β(z) and pz∗,α(x). For the second claim,
it is sufficient to show that pu,α(β) is a root of Qα,β(z).

For simplicity, let ∆
4
= β − α and b

4
= Tr

(
u(β −

α)
)
∈ B. By definition of pu,α(x), we have pu,α(β) =

Tr
(
u(β − α)

)
/(β − α) = b/∆. By definition of Qα,β(z), we

also have Qα,β(z) = Tr
(
z(β − α)

)
= Tr(z∆). Therefore,

Qα,β
(
pu,α(β)

)
= Tr

(
(b/∆)∆

)
= Tr(b) = 0, because for

b ∈ B, we always have Tr(b) = tb = 0, whenever t is divisible
by the char(F ). Hence, pu,α(β) is a root of Qα,β(z). �

The following lemma restates what is shown in Section II-B.

Lemma 4. For α 6= α∗ and u ∈ F ,

Tr
(
pu,α∗(α)f(α)

)
= Tr

(
u(α− α∗)

)
Tr
( f(α)

α− α∗
)
. (8)

Hence, Tr
(
pu,α∗(α)f(α)

)
can be computed by downloading the

repair trace Tr
(
f(α)
α−α∗

)
from the node storing f(α).

B. A Depth-One Repair Scheme for Two Erasures

The scheme comprises of two phases, the Download Phase,
where each RN contacts and downloads data from the other n−
2 available nodes, and the Collaboration Phase, where the two
RNs exchange the data, based on what they receive earlier in
the Download Phase. The main task is to design the data to be
exchanged during the two phases. This task can be completed
via a selection of proper check polynomials to be used by each
RN. We discuss the generation of these polynomials below.

Let Kα∗,α be the root space of the polynomial Qα∗,α(z).
By Lemma 2 (b), dimB(Kα∗,α) = t − 1. Let U =
{u1, u2, . . . , ut−1} ⊆ F and V = {v1, v2, . . . , vt−1} ⊆ F be
two arbitrary bases of Kα∗,α over B. We extend U and V to
obtain the two bases U ′ = {u1, . . . , ut} and V ′ = {v1, . . . , vt}
of F over B, respectively. For i ∈ [t], we set

pi(x)
4
= pui,α∗(x) = Tr

(
ui(x− α∗)

)
/(x− α∗), (9)

qi(x)
4
= pvi,α(x) = Tr

(
vi(x− α)

)
(x− α). (10)

Download Phase. In this phase, each RN contacts n − 2
available nodes to download repair data. To determine what
to download, the RN for f(α∗) uses the first t − 1 checks
p1, . . . , pt−1 to construct the following t− 1 repair equations.

Tr
(
pi(α

∗)f(α∗)
)

= −
∑

α∈A\{α∗}

Tr
(
pi(α)f(α)

)
, i ∈ [t− 1]. (11)

Similarly, the RN for f(α) creates the following repair equations.

Tr
(
qi(α)f(α)

)
= −

∑

α∈A\{α}

Tr
(
qi(α)f(α)

)
, i ∈ [t− 1]. (12)

By Lemma 3 (a), we have pi(α) = 0 and qi(α
∗) = 0 for all

i = 1, . . . , t− 1. Therefore, the right-hand sides of (11) and (12)
do not involve f(α∗) and f(α). As a result, each RN can recover
t− 1 independent traces of the corresponding erased symbol by
downloading n−2 sub-symbols (traces) from the available nodes.
Corollary 1, which follows directly from Lemma 4, formally
states this fact.

Corollary 1. In the Download Phase, the replacement node
for f(α∗) can recover t − 1 independent traces, namely
Tr
(
p1(α∗)f(α∗)

)
, . . . ,Tr

(
pt−1(α∗)f(α∗)

)
, by downloading n−

2 repair traces, i.e. Tr
(
f(α)
α−α∗

)
from the available node storing

f(α), for all α ∈ A \ {α∗, α}. A similar statement holds for
the replacement node for f(α), where the checks are qi and the
repair traces are Tr

(
f(α)
α−α

)
.
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Collaboration Phase. As one more independent trace of
each erased symbol is needed for a complete recovery, the two
RNs create two additional repair equations for f(α∗), f(α),
respectively.
Tr
(
pt(α

∗)f(α∗)
)

+ Tr
(
pt(α)f(α)

)

= −
∑

α∈A\{α∗,α}

Tr
(
pt(α)f(α)

)
. (13)

Tr
(
qt(α)f(α)

)
+ Tr

(
qt(α

∗)f(α∗)
)

= −
∑

α∈A\{α∗,α}

Tr
(
qt(α)f(α)

)
. (14)

It is clear that from the repair traces Tr
(
f(α)
α−α∗

)
, α ∈ A \

{α∗, α}, retrieved in the Download Phase, the RHS of (13)
can be determined. However, to determine the desired trace
Tr
(
pt(α

∗)f(α∗)
)
, the RN for f(α∗) needs to know the missing

trace Tr
(
pt(α)f(α)

)
, which would have been downloaded from

the node storing f(α) if it had not failed. The following lemma
states that for certain field extension degrees, this missing piece
of information can be created by the RN for f(α) based on what
it obtains in the Download Phase. It can then send this trace to
the RN for f(α∗) to help complete the recovery of that symbol.
A similar scenario also holds for f(α).

Lemma 5. If the field expansion degree t is divisible by the
characteristic of the fields F and B, then pt(α) is dependent
(over B) on the set {qi(α) : i ∈ [t − 1]}. Also, in this case,
qt(α

∗) is dependent (over B) on the set {pi(α∗) : i ∈ [t− 1]}.

Proof. Because of symmetry, it suffices to just prove the first
statement of the lemma. By Lemma 1 (b), we have qi(α) =
vi, for every i ∈ [t − 1]. Therefore, {qi(α) : i ∈ [t − 1]} =
{v1, . . . , vt−1} = V , which is a basis of the root space Kα∗,α of
the polynomial Qα∗,α(z). Therefore, in order to show that pt(α)
is dependent on V , it is sufficient to prove that pt(α) is a root
of Qα∗,α(z). But this follows immediately from Lemma 3 (b),
because pt(x) equals put,α∗(x) by its definition in Step 4. �

From the linearity of the trace function, we arrive at the
following corollary of Lemma 5.

Corollary 2. If the field expansion degree t is divisible by
the characteristic of the fields F and B, then the trace
Tr
(
pt(α)f(α)

)
can be written as a linear combination (over B)

of the traces in
{
Tr
(
qi(α)f(α)

)
: i ∈ [t − 1]

}
. Also, the trace

Tr
(
qt(α

∗)f(α∗)
)

can be written as a linear combination (over

B) of the traces in
{
Tr
(
pi(α

∗)f(α∗)
)

: i ∈ [t − 1]
}

. Moreover,
the coefficients of these combinations do not depend on f .

Note that by Lemma 4, the traces Tr
(
pt(α)f(α)

)
and

Tr
(
qt(α

∗)f(α∗)
)

can be determined based on the traces
Tr
(
f(α)
α−α∗

)
and Tr

(
f(α∗)
α∗−α

)
, respectively. Therefore, in the Col-

laboration Phase, the RNs can send their repair data to each other,
which matches precisely what they would have sent if they had
not failed. The graphical illustration of the two phases of this
scheme is depicted in Fig. 2. We refer to this as a depth-one
collaborative repair scheme because in the Collaboration Phase,
two RNs exchange repair data in one round and do not have to
wait for each other.
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Fig. 2: Illustration of the depth-one collaborative repair scheme
of two erasures for Reed-Solomon codes.

Lemma 6. In the Collaboration Phase, the replacement node for
f(α∗) can recover the t-th trace Tr

(
pt(α

∗)f(α∗)
)
, by download-

ing one repair trace Tr
(
f(α)
α−α∗

)
from the replacement node for

f(α). Similarly, the replacement node for f(α) can recover the
t-th trace Tr

(
f(α)
α−α

)
by downloading one repair trace Tr

(
f(α∗)
α∗−α

)

from the replacement node for f(α∗).

Theorem 1. The depth-one collaborative repair scheme can be
used to repair any two erased symbols of a Reed-Solomon codes
RS(A, k) at a repair bandwidth of n−1 sub-symbols per symbol,
given that n− k ≥ |B|t−1 and the characteristic of F divides t.

Proof. By Lemma 1 (b), pi(α∗) = ui and qi(α) = vi for i ∈ [t].
Recall that the sets U ′ = {u1, . . . , ut} and V ′ = {v1, . . . , vt}
are both linearly independent over B. Therefore, after the two
phases, each RN obtains t independent traces for each erased
symbol, Tr

(
uif(α∗)

)
, for f(α∗), and Tr

(
vif(α)

)
, for f(α), for

all i ∈ [t]. Thus, each erased symbol will have t independent
traces for its recovery. Each RN downloads n − 2 sub-symbols
in the Download Phase and one sub-symbol in the Collaboration
Phase, according to Corollary 1 and Lemma 6, which sum up to
a total repair bandwidth of n− 1 sub-symbols. �

Remark 1. In our repair scheme, each RN uses a bandwidth of
n− 1 sub-symbols, which is the same as the case of one erasure
in [7]. In a naive scheme, one RN first downloads kt sub-symbols
from some k available nodes, recover both erased symbols, and
then sends the corresponding symbol to the other RN. Its total
bandwidth used is kt+ t, which is worse than ours if k+1

n−1 ≥
2
t ,

i.e. when t is not small or the code has high rate.

Example 1. Let q = 2, t = 2, n = 4, and k = 2. Let F4 =
{0, 1, ξ, ξ2}, where ξ2 + ξ + 1 = 0. Then {1, ξ} is a basis of
F = F4 over B = F2. Moreover, each element a ∈ F4 can
be represented by a pair of bits (a1, a2) where a = a1 + a2ξ.
Suppose the stored file is (a, b) ∈ F2

4. To devise a systematic
RS code, we associate with each file (a, b) ∈ F2

4 a polynomial
f(x) = fa,b(x)

4
= a+ (b− a)x. We have

f(0) = a1 + a2ξ = a,

f(1) = b1 + b2ξ = b,

f(ξ) = (a1 + a2 + b2) + (a1 + b1 + b2)ξ,

f(ξ2) = (a2 + b1 + b2) + (a1 + a2 + b1)ξ.

The four codeword symbols f(0), f(1), f(ξ), and f(ξ2) are
stored at Node 1, Node 2, Node 3, and Node 4, respectively,
as depicted in Fig. 1.
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Download Phase. Set

Q1,ξ(z)
4
= Tr

(
z(ξ − 1)

)
= ξz2 + ξ2z.

We choose two bases U = V = {ξ} of the root space of
Q1,ξ(z). Set p1(x) = Tr

(
ξ(x − 1)

)
/(x − 1) = ξ2x + 1, and

q1(x) = Tr
(
ξ(x−ξ)

)
/(x−ξ) = ξ2x+ξ2. RN2 (RN for Node 2)

downloads two bits from the two available nodes, namely a2 =
Tr
(
f(0)/(0−1)

)
from Node 1 and a2+b1+b2 = Tr

(
f(ξ2)/(ξ2−

1)
)

from Node 4. It then uses (11) to obtain the first trace
b1+b2 = Tr(ξf(1)) = 1×a2+1×(a2+b1+b2). Similarly, RN3
(RN for Node 3) also downloads a1 = Tr

(
f(0)/(0 − ξ)

)
from

Node 1 and a1 + a2 + b1 = Tr
(
f(ξ2)/(ξ2− ξ)

)
from Node 4. It

then recovers a2 + b1 = Tr(ξf(ξ)) = 1×a1 +1× (a1 +a2 + b1).
Collaboration Phase. RN2 sends b1 + b2 over to the RN3,

which, by Lemma 5, is the same as Tr
(
f(1)/(1 − ξ)

)
. Con-

versely, RN3 sends a2 + b1 over to RN2, which is the same as
Tr
(
f(ξ)/(ξ − 1)

)
. U and V are extended to the basis {ξ, ξ2}

of F4 over F2. Set p2(x) = Tr
(
ξ2(x − 1)

)
/(x − 1) = ξx + 1,

and q2(x) = Tr
(
ξ2(x− ξ)

)
/(x− ξ) = ξx. Now, RN2 has three

repair traces to recover the second trace of f(1) using p2, i.e.
b1 = Tr

(
ξ2f(1)

)
= 1×a2+0×(a2+b1+b2)+1×(a2+b1). Based

on the two traces b1 + b2 and b1, the erased symbol b = f(1)
can be recovered. Similarly, RN3 can recover the second trace
of f(ξ) as a1 + a2 + b2 = Tr

(
ξ2f(ξ)

)
= 0 × (a1) + 1 × (b1 +

b2) + 1× (a1 + a2 + b1), and then can recover f(ξ) completely.

C. A Depth-Two Repair Scheme for Two Erasures

We modify the depth-one repair scheme developed in the
previous subsection to obtain a depth-two scheme that works for
all field extension degrees. We still generate the checks p1, . . . , pt
and q1, . . . , qt as in the first scheme, given by (9) and (10),
respectively. However, the RN for f(α∗), instead of pi, uses the
following checks

p∗i (x)
4
= τpi(x), for all i = 1, . . . , t. (15)

where τ 4= q1(α)/pt(α) = v1/pt(α) is a nonzero constant, which
only depends on α∗, α, ut, and v1, and not on f . Note that
since ut /∈ Kα∗,α, pt(α) 6= 0. Hence, τ is well defined. Clearly,
deg(p∗i ) = deg(pi) < n − k and hence, p∗i (x) serve as check
polynomials of the code.

Lemma 7. The check polynomials p∗i (x) defined as in (15) satisfy
the following properties.

(P1) p∗1(α) = p∗t (α) = · · · = p∗t−1(α) = 0.
(P2) p∗t (α) = q1(α) = v1 6= 0.
(P3) {p∗1(α∗), . . . , p∗t (α

∗)} is a basis of F over B.

Proof. The first property (P1) holds because p∗i (α) = τpi(α)
and pi(α) = 0 for every i = 1, . . . , t − 1 by Lemma 3 (a).
Property (P2) is obvious. Property (P3) follows from the fact
that p∗i (α

∗) = τpi(α
∗), τ 6= 0, and that U ′ = {u1, . . . , ut} =

{p1(α∗), . . . , pt(α
∗)} is a basis of F over B. �

Download Phase. In this phase, the RN for f(α∗) uses the first
t− 1 checks p∗1, . . . , p

∗
t−1 to construct the t− 1 repair equations.

For i = 1, . . . , t− 1,

Tr
(
p∗i (α

∗)f(α∗)
)

= −
∑

α∈A\{α∗}

Tr
(
p∗i (α)f(α)

)

= −
∑

α∈A\{α∗}

Tr
(
ui(α− α∗)

)
Tr
( τf(α)

α− α∗
)
. (16)

By Lemma 7 (a), the RHS of (16) does not involve f(α). Thus,
the RN for f(α∗) can determine t− 1 traces Tr

(
p∗i (α

∗)f(α∗)
)
,

i ∈ [t − 1], of f(α∗) by downloading n − 2 sub-symbols
Tr
(
τf(α)
α−α∗

)
from the available nodes storing f(α), α ∈ A \

{α∗, α}. The RN for f(α) follows the same procedure as in
the first scheme (Section III-B).

Collaboration Phase. The last repair equation for f(α∗) is
Tr
(
p∗t (α

∗)f(α∗)
)
+Tr

(
p∗t (α)f(α)

)
= −

∑

α∈A\{α∗,α}

Tr
(
p∗t (α)f(α)

)

= −
∑

α∈A\{α∗,α}

Tr
(
ut(α− α∗)

)
Tr
( τf(α)

α− α∗
)
. (17)

Clearly, the RN for f(α∗) can compute the RHS of (17) based
on what it downloaded in the Download Phase. To obtain the
last trace Tr

(
p∗t (α

∗)f(α∗)
)
, it downloads Tr

(
p∗t (α)f(α)

)
from

the RN for f(α), which is possible because Tr
(
p∗t (α)f(α)

)
=

Tr
(
q1(α)f(α)

)
, due to Lemma 7 (P2), which is already available

at the RN for f(α). Then, due to Lemma 7 (P3), the RN for f(α∗)
has t independent traces of f(α∗) to recover this lost symbol. As
f(α∗) has been recovered, the RN for f(α) downloads the repair
trace Tr

(
f(α∗)/(α∗ − α)

)
from the RN for f(α∗) to compute

the trace Tr
(
qt(α)f(α)

)
, and then can recover f(α) completely.

Note that the RN for f(α∗) has to first receive the repair trace
from the RN for f(α) before computing and sending out its repair
trace for f(α). Theorem 2 summarizes the discussion.
Theorem 2. The depth-two collaborative repair scheme can be
used to repair any two erased symbols of a Reed-Solomon codes
RS(A, k) at a repair bandwidth of n−1 sub-symbols per symbol,
for every field extension degree, given that n− k ≥ |B|t−1.
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