
Rewritable Coset Coding for Flash Memories
Yeow Meng Chee∗, Han Mao Kiah†, and Punarbasu Purkayastha∗

∗School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
†Coordinated Science Lab, University of Illinois at Urbana-Champaign, USA

Emails: ymchee@ntu.edu.sg, hmkiah@illinois.edu, punarbasu@ntu.edu.sg

Abstract—Flash memory is a nonvolatile memory technology
that suffers from errors due to charge leakage, can tolerate limited
erasures, and where erasures have to be performed in large blocks.
We show that using cosets of a linear code can provide correction
against uniform charge leakage, and can enhance the rewritability
of flash memory which leads to fewer erasures. We introduce two
coset coding schemes that are generalizations of the scheme in
Jacobvitz et al. (2013). For the same worst case rewrite cost, we
show that coset codes can encode more information than rank
modulation codes. The average case performance of coset codes is
demonstrated via numerical simulations.

1. INTRODUCTION

Flash memory is a nonvolatile memory technology that has
become a dominant medium of storage over the past decade
in both consumer and enterprise applications. In this memory
technology charge is injected iteratively into a cell to bring the
charge to a desired level, and the level of the charge encodes the
bits that are to be recorded. Multilevel flash memory is used to
increase the density of information stored, and also to improve
the speed of reading and writing data to the memory. Despite
being a fast medium, multilevel flash memory technology
suffers from a couple of deficiencies that we describe below
briefly (see [1] for details).

(i) Resetting the charge level of a cell to the lowest level
corresponds to an erase operation. This erasure operation
can not be performed on individual cells, and instead
has to be performed on a block of about a million cells.
Therefore, it is a slow operation. Additionally, the number
of erasure operations that can be performed is limited to
about 105 erasures in the lifetime of the device.

(ii) Aging effects in flash memory may result in a uniform
drift of charge levels, which can lead to programming and
read errors because of the shift in threshold levels.

(iii) Random errors can occur during reading or writing be-
cause of the device characteristics.

(iv) Overshooting problem can arise in writing to a multilevel
flash memory, where the final programmed charge level
exceeds the desired charge level, if the process of charge
injection is not carefully controlled.

To overcome these limitations of flash memory, many dif-
ferent encoding techniques have been proposed over the past
several decades. In particular, the problem of erasure is handled
by modeling the flash memory as a write once memory (WOM)
if each cell can represent only a single bit, and a write
asymmetric memory (WAM) if each cell can represent more
than one bit of information. There is long precedent for codes
that have been studied for WOM and WAM type memories,
starting with the work of Rivest and Shamir [2], Cohen et al.

[3], and the more recent works by Jiang et al. [4], Yaakobi et
al. [5], and Jacobvitz et al. [6], [7]. The objective of all these
works is to maximize the number of rewrites that can be made;
or equivalently maximize the amount of information that can be
written if the number of times rewrites that can be performed
is bounded.

The problem of uniform charge leakage due to aging can
be addressed by using error correcting codes. In particular, the
study of rank modulation codes was initiated in Jiang et al.
[8], [9], and error scrubbing codes were studied in Jiang et al.
[10] to address this problem. The problem of large nonuniform
charge leakage was studied in Farnoud et al. [11].

Relatively fewer works are present which study codes that
can correct both random errors and also ensure rewritability. We
note a couple of works in this direction. The work of Cohen et
al. [3] studied binary error correcting codes for WOM, Yaakobi
et al. [5] studied WOM codes and their generalizations to WAM,
Jiang et al. [4] uses nested polar codes, Haymaker [12] uses
geometric constructions for WOM, Kurkoski [13] studies codes
arising from lattice structures, and Jacobvitz et al. [6], [7] uses
binary coset codes for error correction and rewrites. A specific
construction by Jiang et al. [8] also uses rank modulation codes
to address the problem of uniform charge leakage, errors due
to overshooting, and rewritability.

In this work, we use cosets of linear codes for handling
uniform charge leakage, for ensuring rewritability, and for error
correction in flash memory. We do not address the problem of
overshooting in this work. We assume that the process of careful
charge injection can mitigate the overshooting problem. We
assume that the flash memory has discrete charge levels. This is
a reasonable assumption since the charge is injected in discrete
quantities and the detection of different charge levels requires
a minimum separation between consecutive charge levels. Our
initial construction uses cosets formed from the subspace gener-
ated by the all-one vector to capture the phenomenon of uniform
charge leakage due to aging. Further errors due to random
charge leakage, or programming errors in individual cells can
be corrected by the linear code. The second coding scheme
builds up on this construction by dividing the total number of
levels into parts of size q each, and optimizing the charge level
of each cell individually. This scheme can be considered as a
generalization of the method in Jacobvitz et al. [7] to q-ary
codes. As noted in [7], the use of cosets implies that the same
information can be represented by a set of codewords. Hence,
we can optimize over this set of codewords so that the “cost”
of a rewrite is minimized. On the other hand, if we choose the
coset from a linear error-correcting code, the error-correcting

2014 IEEE International Symposium on Information Theory

978-1-4799-5186-4/14/$31.00 ©2014 IEEE 2082

capability of the coset code follows from that of the linear
code. Both these constructions differs from WOM and WAM
codes studied in [4], [5] in that the number of levels is not
restricted to the alphabet size of the code. Since our code is
designed to correct uniform charge leakage, we compare the
average number of rewrites with the average number of rewrites
in rank modulation. It is observed that using coset codes results
in larger number of rewrites on average, as compared to rank
modulation codes.

The rest of the paper is organized as follows. The next section
introduces some basic notations and definitions. Section 3 gives
the two coset coding schemes. Section 4 compares the two
constructions from Section 3. In this section we also compare
the properties of the code with that of a rank modulation code.
To compare the average number of rewrites we simulate the
performance of the rank modulation code and the coset codes.

2. PRELIMINARIES AND NOTATIONS

Throughout this paper, we let L, n, k and q denote positive
integers. In particular, q is assumed to be a prime or a power
of a prime. The set {1, 2, . . . , n} is denoted by [n] while the
integers modulo q and the finite field of order q are denoted
by Zq and Fq respectively. In this paper, we sometimes map
integers to elements in Fq . When q is prime, taking integers
modulo q clearly suffices. When q is not prime, we can consider
any bijective mapping φ : Zq → Fq and abuse our notation by
writing s mod q to mean φ(s mod q) for all integers s. Extend
this to vectors s ∈ Zn and we have s mod q , (si mod q)i∈[n]
to belong to Fnq . We denote the span of vectors v1, . . . , vM by
the notation 〈v1, . . . , vM 〉.

We consider the Write Asymmetric Memory (WAM) model
for storage where we consider that the charge levels can only
increase. The WAM consists of a block of n cells, where
each cell has L discrete levels, viz. states 0, . . . , L − 1. These
levels in a cell may correspond to the charge levels that can
be distinguished. In particular, we assume that two consecutive
charge levels l, l′ in a cell are separated by a safety margin, say
∆ such that if |l − l′| > ∆, then we can distinguish between
the two levels (see [6], [14]). A state vector is an element in
{0, . . . , L−1}n. We define a partial ordering on {0, . . . , L−1}n
via the relation s ≤ s′, for s, s′ ∈ {0, . . . , L − 1}n, if sj ≤ s′j
for all j ∈ [n]. Hence, a transition from s to s′ is valid if and
only if s ≤ s′.

Let C be a finite set of messages and let S ⊆ {0, . . . , L −
1}n be a set of encoded states. The quadruple (C, S, α, β) is
a coding scheme for WAM if for all c′ ∈ C and s ∈ S, the
following hold.

(i) α : S × C → S is an encoding function such that α(s, c′) ≥ s,
(ii) β : S → C is a decoding function, where β(α(s, c′)) = c′.

In other words, given the current state s, the function α encodes
a new codeword c′ to a state s′ such that the transition from s
to s′ is valid. On the hand, the function β decodes a state vector
s′ back to its original codeword c′.

Suppose we transition from state s to state s′. The cost of
rewrite γ(s→ s′) is defined as the difference of the maximum

of the two states, i.e.,

γ(s→ s′) , max
i∈[n]

s′i −max
j∈[n]

sj .

This notion of the cost is used in [8], [9], [14], and as we discuss
below, it provides an analysis of the work in [6], [7].

3. COSET CODING FOR WAM

In this section we describe our coset coding scheme for
WAM that enables us to provide error correction, rewritability,
and address the problem of uniform charge leakage in flash
memory. To compare our schemes with existing schemes we
briefly discuss the schemes in Jacobvitz et al. [6], [7] and Jiang
et al. [8]. Consider codes of block length n. We formally define
the encoding function, provided the decoding function is β(s)
for s in the set of encoded states S. Assume that the current
state is s and that we want to add a codeword c′. Then the
encoding function α(s, c′) outputs a state s′ with the minimum
possible cost γ(s→ s′), and minimum cell changes.

A(s, c′) = arg min
s′∈S

(
max
i∈[n]

s′i

)
s.t. β(s′) = c′, s′ ≥ s,

α(s, c′) ∈ arg min
s′∈A(s,c′)

∑
i∈[n]

s′i − si. (1)

The problems of rewritability and error correction was ad-
dressed in [6], [7] by using binary linear coset codes to represent
the data. We rephrase their construction in our own words.
One possible realization of their scheme, called FlipMin, is by
considering a linear code C ⊂ Fn2 containing the all-one vector
j, and by defining

β(s) = s mod 2 +D,
α(s, c′) ∈ arg min

s′∈S
|{s′i 6= si : i ∈ [n]}| s.t. β(s′) = c′,

where D is a subspace of C containing j. Larger subspace D
potentially increases the average number of rewrites. Given a
new codeword c′ that is a representative of the coset c′+D, the
encoded word is determined by the following steps. Let c be the
previously written codeword. First, we determine the translate
set T = {c+ y : y ∈ c′+D}. Next, the translate that is used to
add the coset representative c′ into memory is determined by
picking any coset leader (of minimum weight) in the translate
set T . Hence, in this scheme, the set of possible codewords is
given by the set of the coset representatives, or equivalently, the
quotient space C/D.

Jacobvitz et al. showed that this procedure minimizes the
number of bit flips that occur in writing [7]. In the following
example, we illustrate the difference with the minimization
objective defined in (1).

Example 3.1. Let the current state be s = (2, 3, 3, 2) and the
codeword corresponding to it is c = 0110. The cosets

S1 = {0000, 0101, 1010, 1111}, S2 = {0001, 0100, 1011, 1110},
S3 = {0010, 0111, 1000, 1101}, S4 = {0011, 0110, 1001, 1100}.

partition the linear space F4
2 into four equal parts. In other

words, the sets {S1, S2, S3, S4} form the quotient space F4
2/S1.

2014 IEEE International Symposium on Information Theory

2083

Suppose that the new codeword belongs to S2. Then the
translate set is c + S2 = {0111, 0010, 1101, 1000}. There are
two representatives of minimum weight, namely, 0010, 1000,
both of which minimize the number of flipped bits. However,
as illustrated by Fig. 1, using 0010 increases the maximum
charge level by one to the new state s′ = (2, 3, 4, 2), or to
s′ = (4, 3, 4, 4). On the other hand, using the translate coset
leader 1000 implies that the maximum charge level stays the
same to give the new level s′ = (3, 3, 3, 2).

00101000

0

1

2

3

4

5

1110 0100

0110

0

1

2

3

4

5

0

1

2

3

4

5

0100
0

1

2

3

4

5

0010

(0)

(0)

(0)

(1)

(1)

(1)

(0)

(0)

(0)

(1)

(1)

(1)

(0)

(0)

(0)

(1)

(1)

(1)

(0)

(0)

(0)

(1)

(1)

(1)

Fig. 1. Levels when encoding using (1) in contrast to minimum bit flip

In Scheme A, described below, we generalize the method to
q-ary linear coset codes that are encoded using (1).
Scheme A: Let j be the all-one vector of length n. Consider
a linear code C[n, k + 1, d] of length n, dimension k + 1 and
mimimum distance d in Fnq , containing the all-one vector j. We
encode vectors from the coset code C = C/〈j〉 of size qk by
using (1). Let smin = mini∈[n] si. Then the decoding function
is given by

β(s) = φ
(
(si − smin)i∈[n]

)
+ 〈j〉.

Many well-known families of linear codes contain j, includ-
ing the primitive narrow-sense Bose-Chaudhuri-Hocquenghem
codes, the extended Golay code, the Reed-Müller codes, and
the Reed-Solomon codes [15]. Uniform charge leakage in flash
memory translates all the elements of the coset by a constant
value and hence the codeword that is encoded is unchanged, and
efficient decoding and error correction is immediate because of
the use of linear codes.

The rewritability of the scheme can be determined from the
worst-case and average case analysis of the encoding operation.
It can be readily seen that the cost of increase is bounded by
q−1, i.e., γ(s→ s′) ≤ q−1. This determines the least number
of times we can rewrite a single cell.

Lemma 3.1. Using Scheme A, the number of rewrites is lower
bounded by

⌊
L−1
q−1

⌋
.

We determine an upper bound to the average cost that can be
numerically computed for small alphabet sizes. To determine

this, we first establish a sequence of lemmas. Define

Φ(c) , {φ−1(ci) : i ∈ [n]}.

Lemma 3.2. Suppose we add a vector c′ that has the smallest
cost out of all the possible vectors c′ + 〈j〉, and the previous
state was s. Let 0n be the all-zero vector. Then,

γ(s→ α(s, c′)) ≤ γ(0n → α(0n, c
′)) = max {i : i ∈ Φ(c′)}.

Define the average cost as the average over all possible states
s and cosets c′ + 〈j〉. By Lemma 3.2, this is upper bounded by
the average over all possible cosets c′ + 〈j〉, i.e.,

1

Lnqn−1

∑
s,c′

γ(s→ α(s, c′)) ≤ 1

qn−1

∑
c′∈Fnq /〈j〉

γ(0n → α(0n, c
′)).

The cost γ(0n → α(0n, c
′)) is determined by the alphabets

that occur in c̃′ ∈ c′ +D, as described in the lemma below.

Lemma 3.3. If γ(0n → α(0n, c
′)) = q − 1 − `, then a vector

c̃′ ∈ c′ + 〈j〉 with minimum cost satisfies

Φ(c̃′) = {i0 = 0, i1, i2, . . . , ip, ip+1 = q − 1− `}, (2)

where 0 < ij − ij−1 ≤ `+ 1, ∀j = 1, . . . , p+ 1.
Conversely, if c′ ∈ Fnq satisfies (2) then the minimum cost is

γ(0n → α(0n, c
′)) = q − 1− `.

Given ` ∈ {0, . . . , q− 1}, we next determine the distribution
of the alphabet elements in any vector c′ which satisfy the above
lemma. The answer stems from the count of vectors which are
run-length limited [16]. Let N`(m) be the set of `-sequences
of length m which do not have more than ` zeros between
two consecutive ones, and let N`(m) = |N`(m)| Then, N`(m)
satisfies a generalized Fibonacci sequence,

N`(m) =

{
2m, for 0 < m ≤ `,∑`+1
i=1 N`(m− i), for ` < m,

(3)

and an explicit construction can also be determined from a
recursive construction of the so-called cross-bifix-free codes
(see [16], [17]). Consider indicator vectors v = (v0, . . . , vq−1)
of length q where v0 = 1 = vq−1−`, and vi = 0, i =
q − `, . . . , q − 1, and (v1, . . . , vq−2−`) is an `-sequence. Then,
N`(q−2−`) is the set of such `-sequences, with the cardinality
given by (3). We first illustrate the lemmas by an example.

Example 3.2. Consider the vector u = 1147 ∈ Z4
8. We get

Φ(u) = {1, 4, 7}, and so it requires max Φ(u) = 7 levels
when writing. The coset u + 〈j〉 contains u′ = 2250 and
u′′ = 5503. The vectors u′ and u′′ require only five levels
since max Φ(u′) = 5 = max Φ(u′′). It can be verified that
this is the minimum possible cost of rewrite. The indicator
vectors of the alphabets that occur in u, u′, u′′ are respectively,
01001001, 10100100, 10010100. Here, ` = 2.

Using the count of the number of vectors whose alphabet
elements satisfy that their indicator vectors are `-sequences in
the first q−1−` coordinates (with the first and last coordinates
fixed to 1), we can derive an upper bound on the average cost.
This is shown by the next Proposition.

2014 IEEE International Symposium on Information Theory

2084

Proposition 3.1. Let n` = (n1, . . . , nq−2−`), 1(x) be an
indicator function, and 1(n`) = (1(ni > 0))i=1,...,q−2−`. Let

B(`) ,
∑

(n0,n`,nq−1−`)
n0,nq−1−`>0, 1(n`)∈N`(q−2−`)

(
n

n0,n`, nq−1−`

)
.

Then, for ` ≥
⌊
q
2

⌋
, B(`) = (q− `)n−2(q− `−1)n+(q− `−2)n,

and

1

qn−1

∑
c′

γ(0n → α(0n, c
′)) ≤ (q − 1)B(0)

qn−1q
+

q−2∑
`=1

q − 1− `
qn−1

B(`).

Proof: An outline of the proof goes as follows. The term
B(0) counts all words with Φ(c′) = {0, . . . , q − 1}. The
normalization by 1/q removes words in the same coset. This
normalization is not performed for ` > 0, and so we get an
upper bound. The cost of writing a vector that is present in the
count of B(`) is (q − `− 1).

The dominant term above is (q−1)B(0)
qn . For large n, the upper

bound converges to the worst case cost q − 1. Scheme A can
be generalized to a different scheme that we call Scheme B.
This new scheme is based on the observation that given a
codeword we can change the charge level of any individual
cell independently of the other cells; thus we can potentially
increase the average number of rewrites that can be performed.
This construction can also be viewed as a generalization of the
construction in [7] from binary to q-ary.
Scheme B: Consider C[n, k + δ, d] as a subspace of Fnq con-
taining the all-one vector j, and let D be a subcode of C
of dimension δ such that j ∈ D. We encode the coset code
C = C/D of size qk by using the encoding function in (1) and
the decoding function is given by

β(s) = s mod q +D.

Intuitively, Scheme B divides the total number of discrete
charge levels L into L/q parts, each part representing q distinct
levels, and each individual cell is increased to the next higher
part independently of the other cells. In particular, for q = 2 all
the even levels in Fig. 1 represent bit 0, and all the odd levels
represent bit 1. If q = 3, then the levels 0 and 3 represent 0,
levels 1 and 4 represent 1, and levels 2 and 5 correspond to 2.
This is a generalization of the method in [7] where the number
of levels is divided into distinct sets of size two. It differs from
the same work in the encoding because we do not minimize only
bit flips. The maximum increase in the level happens when the
cell transitions from level 0 mod q to (q−1) mod q, or i mod q
to (i−1) mod q, i = 1, . . . , q−1, which incurs a cost of q−1.
Thus, Lemma 3.1 holds for Scheme B. On the other hand, the
average number of rewrites of Scheme B is potentially better
than Scheme A. This is illustrated in Section 4-B.

4. COMPARISON OF CODING SCHEMES

In this section we compare the coding schemes Scheme
A and Scheme B against the rank modulation scheme of [8,
Construction 18]. In particular, we analyze the information rate
for the worst case cost, and the average number of rewrites
between the different schemes.

A. Comparison of Worst Case Behavior

To compare the worst case behavior of Scheme A and Scheme
B with the previous work that addresses the problem of uni-
form discharge, we first briefly introduce the rank modulation
scheme. The rank modulation coding scheme in [8] considers
permutation vectors as the codewords. Every permutation word
of length n corresponds to n distinct charge levels. In [8,
Construction 18] the following scheme is proposed for ensuring
that the code is optimal in minimizing the worst case rewrite
cost.
Construction 18: (see [8]) Let Sn denote the set of all
permutations of the set [n], and let [n]Pm denote the set of
all m-permutations of the set [n]. If γ(s → s′) ≤ m, then
nPm = n!/(n−m)! words are uniquely represented by all the
words in [n]Pm. Let a = (a1, . . . , am) ∈ [n]Pm. Define the
prefix set Pm(a) as the set of all permutations in Sn which
have a as a prefix. Then a vector a ∈ [n]Pm is encoded
to a permutation vector in the prefix set Pm(a) by choosing
the permutation which minimizes the maximum level in the
new state vector. Thus the rank modulation scheme encodes
log2

nPm ≤ m log2 n bits of information as state vectors.
In comparison, for q − 1 = m, and for m a constant,

a coset code C = Fnq /D, where D has constant dimension
δ (independent of n) has the same worst case rewrite cost.
However the size of the coset code is qn−δ, and so it encodes
(n − δ) log2 q bits of information on every write. The ratio of
the number of encoded bits is lower bounded as

log2 |C|
log2

nPm
≥ (n− δ) log2 q

m log2 n
=

(n− δ) log2 q

(q − 1) log2 n
→∞,

when n → ∞. Thus, the coset coding scheme can encode
asymptotically more information than the rank modulation
scheme for same maximum rewrite cost. Note that this scheme
uses the “entire space” in both the linear space and the permuta-
tion space and so provides no correction of random errors. Both
the schemes can provide error correction in case of uniform
charge leakage.

B. Comparison of Average Behavior

To compare the coset code constructions in Scheme B with
Construction 18, we first ensure that the total number of discrete
levels L are the same. Next, we ensure that the worst case cost
of both the schemes are the same. Therefore, we fix m = q− 1
and consider the optimal rank modulation code with this worst
case cost. Finally, we consider linear codes and permutation
codes of the same block length n. Given these constraints, we
determine the average number of times we are able to rewrite by
randomly choosing the next vector from the respective spaces.
In the case of rank modulation code, this random vector is
chosen by picking the best vector from the set Pm(a) where
a ∈ [n]Pm is randomly selected. For the linear code, a random
coset in Fnq /D is chosen, where j ∈ D.

Fig. 2 shows the performance of the different schemes for
L = 16, n = 8, q = 3, m = 2. Table I compares the parameters
of the codes that are being simulated. The number of rewrites
is averaged over 1000 trials. In each trial, we select words at

2014 IEEE International Symposium on Information Theory

2085

0 10 20 30 40 50
Number of rewrites

0

0.1

0.2

0.3

0.4

0.5
F

ra
ct

io
n

of
tr

ia
ls

Comparing Scheme B with Construction 18

Construction 18, m = 2
Scheme B, δ = 4
Scheme B, δ = 2

Fig. 2. Comparing Rank Modulation with Scheme B, L = 16, n = 8, q = 3

random and we count the number of times we can rewrite until
the level exceeds L. The horizontal axis shows the number
of rewrites and the vertical axis shows the frequency of that
number. The average number of rewrites of the rank modulation
codes is 6, which is significantly lower than the average number
of rewrites of the coset codes, viz. 22 for Scheme B with cosets
of D = 〈11110000, 00001111〉 and 38 for Scheme B with
cosets of D = 〈11000000, 00110000, 00001100, 00000011〉,
even though the codes have the same worst case cost of rewrites.

To compare the performance of Scheme A with Scheme B,
we consider the same coset code C = F8

3/D, with D = 〈j8〉.
The average number of rewrites in Scheme B is 18 which is
larger than the average of 14 in Scheme A, and 12 for F8

3; see
Fig. 3. We also compare the performance of Scheme B with
the FlipMin scheme in Fig. 3, for q = 2,D = 〈j8, (j4, 04)〉.
FlipMin achieves an average of 38.2 rewrites, while Scheme B
achieves 39.6 rewrites on average. Note that we increase the
charge level in each cell individually in FlipMin. The figure
also shows the effect of using different alphabets and cosets on
the rewrite performance of Scheme A and Scheme B.

TABLE I
TABLE COMPARING THE SIZES AND INFORMATION BITS OF THE CODES

USED IN THE DIFFERENT SCHEMES FOR n = 8

Scheme Coset dim./Prefix len. q Size Bits encoded

Construction 18 2 3 56 < 6
Scheme B 2 3 729 > 9
Scheme B 4 3 81 > 6

Scheme A/B 1 3 2187 > 11
Scheme B 0 3 6561 > 12

FlipMin/Scheme B 2 2 64 6

5. CONCLUSION

We introduce coset codes of linear codes to correct uniform
charge leakage, improve rewritability, and to correct random
errors in flash memory storage. It will be interesting to combine
and study coset codes which can also address the problem
of overshooting if we relax the requirement of careful charge
injection during writing in flash memory.

0 10 20 30 40 50
Number of rewrites

0

0.05

0.1

0.15

0.2

0.25

0.3

F
ra

ct
io

n
of

tr
ia

ls

Comparing FlipMin, Scheme A, and Scheme B

Scheme A, δ = 1, q = 3
Scheme B, δ = 1, q = 3
Scheme B, δ = 0, q = 3
FlipMin, δ = 2, q = 2
Scheme B, δ = 2, q = 2

Fig. 3. Comparing Schemes A, B and FlipMin for L = 16, n = 8

ACKNOWLEDGEMENT

This work was done while H. M. Kiah was a graduate student
at Nanyang Technological University. The authors thank the
anonymous reviewers for their constructive comments.

REFERENCES

[1] P. Cappelletti and C. Golla, Flash memories, Kluwer Academic Publishers,
1999.

[2] R. L. Rivest and A. Shamir, “How to reuse a write-once memory,”
Information and control, vol. 55, no. 1, pp. 1–19, 1982.

[3] G. Cohen, P. Godlewski, and F. Merkx, “Linear binary code for write-
once memories,” IEEE Trans. Inform. Th., vol. 32, no. 5, pp. 697–700,
May 1986.

[4] A. A. Jiang, Y. Li, E. En Gad, M. Langberg, and J. Bruck, “Joint rewriting
and error correction in write-once memories,” in IEEE Int. Symp. Inform.
Th. Proc., 2013, pp. 1067–1071.

[5] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, “Codes
for write-once memories,” IEEE Trans. Inform. Th., vol. 58, no. 9, pp.
5985–5999, September 2012.

[6] A. N. Jacobvitz, R. Calderbank, and D. J. Sorin, “Writing cosets of a
convolutional code to increase the lifetime of flash memory,” in 50th
Annual Allerton Conf. Commun., Control, Comput., 2012, pp. 308–318.

[7] A. N. Jacobvitz, A. R. Calderbank, and D. J. Sorin, “Coset coding to
extend the lifetime of memory,” in HPCA, 2013, pp. 222–233.

[8] A. A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation
for flash memories,” IEEE Trans. Inform. Th., vol. 55, no. 6, pp. 2659–
2673, 2009.

[9] E. En Gad, A. A. Jiang, and J. Bruck, “Compressed encoding for rank
modulation,” in IEEE Int. Symp. Inform. Th. Proc., 2011, pp. 884–888.

[10] A. A. Jiang, H. Li, and Y. Wang, “Error scrubbing codes for flash
memories,” in 11th Canadian Workshop Inform. Th., 2009, pp. 32–35.

[11] F. Farnoud, V. Skachek, and O. Milenkovic, “Error-correction in flash
memories via codes in the ulam metric,” IEEE Trans. Inform. Theory,
vol. 59, pp. 3003–3020, 2013.

[12] K. Haymaker and C. Kelley, “Geometric WOM codes and coding strate-
gies for multilevel flash memories,” Designs, Codes and Cryptography,
vol. 70, no. 1-2, pp. 91–104, 2014.

[13] B. M. Kurkoski, “Rewriting codes for flash memories based upon lattices,
and an example using the e8 lattice,” in IEEE GLOBECOM Workshops,
2010, pp. 1861–1865.

[14] A. A. Jiang and Y. Wang, “Rank modulation with multiplicity,” in 2010
IEEE GLOBECOM Workshops. IEEE, 2010, pp. 1866–1870.

[15] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam: North-Holland Publishing Co., 1977.

[16] D. Tang and L. Bahl, “Block codes for a class of constrained noiseless
channels,” Inform. and Control, vol. 17, no. 5, pp. 436 – 461, 1970.

[17] Y. M. Chee, H. M. Kiah, P. Purkayastha, and C. Wang, “Cross-bifix-free
codes within a constant factor of optimality,” IEEE Trans. Inform. Th.,
vol. 59, no. 7, pp. 4668–4674, July 2013.

2014 IEEE International Symposium on Information Theory

2086

