
Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Efficient Synchronization of Files in Distributed Storage Systems

Han Mao Kiah
joint work with Salim El Rouayheb (IIT), Sreechakra Goparaju (UCSD), and

Olgica Milenkovic (UIUC)

Coordinated Science Lab,
University of Illinois at Urbana-Champaign

Nov 5, 2014

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Problem Description: A [3,2]-MDS Code

Files (Data chunks) Storage Nodes

x1 x2 x3 x4 x5 x1 x2 x3 x4 x5

y1 y2 y3 y4 y5 x1 y2 y3 y4 y5

x1 x2 x3 x4 x5

+ + + + +

y1 y2 y3 y4 y5

Consider the two users with files x and y of length five over Fq.
Here, q is chosen based on the smallest number of consecutive, editable bits.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Problem Description: A [3,2]-MDS Code

Files Storage Nodes

x1 x2 x3 x4 x5 x1 x2 x3 x4 x5
oo

ss

y1 y2 y3 y4 y5 y1 y2 y3 y4 y5

x1 x2 x3 x4 x5

+ + + + +

y1 y2 y3 y4 y5

jj

Consider three storage nodes where nodes 1, 2 and 3 store user information x
and y, and parity information x + y, respectively.
Then the system is able to reconstruct both data files by accessing any two
nodes.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Problem Description: File Edits

Files Storage Nodes

x1 x2 x3 x4 ��x5 ? ? ? ? ?

��y1 y2 y3 y4 y5
? // ? ? ? ? ?

? ? ? ? ?

Suppose both files are subjected to a single symbol deletion.
What protocol should the users employ and what information do they have to
communicate to the three storage nodes so as to retain reconstruction
functionality with minimal data transmission cost?

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Problem Description: Retaining Reconstructability

To retain reconstruction functionality, one way is for the nodes to update their
respective contents to the following.

Files Storage Nodes (after update)

x1 x2 x3 x4 x1 x2 x3 x4

y2 y3 y4 y5 y2 y3 y4 y5

x1 x2 x3 x4

+ + + +

y2 y3 y4 y5

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Problem Description: Updating Nodes 1 and 2

To update the nodes 1 and 2, we do the following.

Files Storage Nodes (before update) Storage Nodes (after update)

x1 x2 x3 x4

pos∶5
// x1 x2 x3 x4 x5

update
// x1 x2 x3 x4

y2 y3 y4 y5

pos∶1
// y1 y2 y3 y4 y5

update
// y2 y3 y4 y5

x1 x2 x3 x4 x5

+ + + + +
y1 y2 y3 y4 y5

x1 x2 x3 x4

+ + + +
y2 y3 y4 y5

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Problem Description: Updating Node 3

What is the minimum communication complexity needed for node 3 to update
its content?

Files Storage Nodes (before update) Storage Nodes (after update)

x1 x2 x3 x4

?

&&

x1 x2 x3 x4 x5 x1 x2 x3 x4

y2 y3 y4 y5
?

))

y1 y2 y3 y4 y5 y2 y3 y4 y5

x1 x2 x3 x4 x5

+ + + + +
y1 y2 y3 y4 y5

update
//

x1 x2 x3 x4

+ + + +
y2 y3 y4 y5

It appears that one of the files have to transmit the entire string.

Main Contribution

Significant savings in communication complexity can be achieved via a change
in code structure.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Problem Description: Updating Node 3

What is the minimum communication complexity needed for node 3 to update
its content?

Files Storage Nodes (before update) Storage Nodes (after update)

x1 x2 x3 x4

?

&&

x1 x2 x3 x4 x5 x1 x2 x3 x4

y2 y3 y4 y5
?

))

y1 y2 y3 y4 y5 y2 y3 y4 y5

x1 x2 x3 x4 x5

+ + + + +
y1 y2 y3 y4 y5

update
//

x1 x2 x3 x4

+ + + +
y2 y3 y4 y5

It appears that one of the files have to transmit the entire string.

Main Contribution

Significant savings in communication complexity can be achieved via a change
in code structure.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Problem Description: Updating Node 3

What is the minimum communication complexity needed for node 3 to update
its content?

Files Storage Nodes (before update) Storage Nodes (after update)

x1 x2 x3 x4

?

&&

x1 x2 x3 x4 x5 x1 x2 x3 x4

y2 y3 y4 y5
?

))

y1 y2 y3 y4 y5 y2 y3 y4 y5

x1 x2 x3 x4 x5

+ + + + +
y1 y2 y3 y4 y5

update
//

x1 x2 x3 x4

+ + + +
y2 y3 y4 y5

It appears that one of the files have to transmit the entire string.

Main Contribution

Significant savings in communication complexity can be achieved via a change
in code structure.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Motivation

Applicable to distributed storage systems that store redundant coded copies of
files over a set of servers, disks or nodes connected through a communication
network.
Two key functionalities: reconstructablity and repairability of the system need
to be retained when the content of the files undergoes edits.
Examples: Dropbox, Sugarsync and dual deduplication protocols.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Related Work: Uncoded Domain

Single user and single node storing a replicate (uncoded) of the user’s file.
Assumes no knowledge of edits.

File Storage Node (before update) Storage Node (after update)

x1 x2 x3 x4
oo ? // x1 x2 x3 x4 x5

update
// x1 x2 x3 x4

▸ A. Tridgell, P. Mackerras (1996) “The rsync algorithm”

▸ T. Knauth, C. Fetzer (2013) “dsync: Efficient block-wise synchronization of multi-gigabyte
binary data”

▸ A. Orlitsky, K. Viswanathan (2003) “One-way communication and error-correcting codes”’

▸ R. Venkataramanan, H. Zhang, K. Ramchandran (2010) “Interactive low-complexity codes
for synchronization from deletions and insertions”

▸ See also next talk.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Related Work: Update Efficient Codes

Minimize number of nodes that need to be updated.
Edits vaguely viewed as substitutions.

Files Storage Nodes (before update) Storage Nodes (after update)

x1 x2 x3 x4 x′5

x′5 //

x′5
&&

x1 x2 x3 x4 x5
// x1 x2 x3 x4 x′5

y′1 y2 y3 y4 y5

y′1 //

y′1
**

y1 y2 y3 y4 y5
// y′1 y2 y3 y4 y5

x1 x2 x3 x4 x5
+ + + + +
y1 y2 y3 y4 y5

//
x1 x2 x3 x4 x′5+ + + + +
y′1 y2 y3 y4 y5

▸ A. S. Rawat, S. Vishwanath, A. Bhowmick, E. Soljanin (2011) “Update efficient codes for
distributed storage”

▸ A. Mazumdar, V. Chandar, G. W. Wornell (2014) “Update-efficiency and local repairability
limits for capacity approaching codes”

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Problem Revisited

This Work

▸ Focuses on updating coded copies of information with minimal data
transmission rates.

▸ Assume full knowledge of edits.

▸ Edits in the form of deletions and insertions.

Files Storage Nodes (before update) Storage Nodes (after update)

x1 x2 ⋯ ��x`

?

**

�y1 y2 ⋯ y`
? //

x1 x2 x`

+ + ⋯ +
y1 y2 y`

update
//

x1 x2 x`−1

+ + ⋯ +
y2 y3 y`

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Problem Revisited: Updating Node 3

What is the minimum communication complexity needed for node 3 to update
its content?

Files Storage Nodes (before update) Storage Nodes (after update)

x1 x2 ⋯ ��x`

?

**

�y1 y2 ⋯ y`
? //

x1 x2 x`

+ + ⋯ +
y1 y2 y`

update
//

x1 x2 x`−1

+ + ⋯ +
y2 y3 y`

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Problem Revisited: Updating Node 3

Files Storage Nodes (before update) Storage Nodes (after update)

x1 x2 ⋯ ��x`
jj

?

**

OO
?
��

�y1 y2 ⋯ y`
oo ? //

x1 x2 x`

+ + ⋯ +
y1 y2 y`

update
//

x1 x2 x`−1

+ + ⋯ +
y2 y3 y`

Proposition

The total communication cost is at least (` − 1) symbols, or (` − 1) log q bits,
independent of the network topology between users and nodes.

Proof.

Fooling set method from communication complexity.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Problem Revisited: Updating Node 3

Simple scheme that achieves Ω(` log q) communication cost.

Files Storage Nodes (before update) Storage Nodes (after update)

x1 x2 ⋯ ��x`

x̃

**

�y1 y2 ⋯ y`

ỹ
//

x1 x2 x`

+ + ⋯ +
y1 y2 y`

update
//

x1 x2 x`−1

+ + ⋯ +
y2 y3 y`

Unsatisfactory solution

▸ We need only log ` bits to encode each deletion, but transmit ` log q bits.

▸ Problem arose due to inflexibility in code structure.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Problem Revisited: Updating Node 3

Simple scheme that achieves Ω(` log q) communication cost.

Files Storage Nodes (before update) Storage Nodes (after update)

x1 x2 ⋯ ��x`

x̃

**

�y1 y2 ⋯ y`

ỹ
//

x1 x2 x`

+ + ⋯ +
y1 y2 y`

update
//

x1 x2 x`−1

+ + ⋯ +
y2 y3 y`

Unsatisfactory solution

▸ We need only log ` bits to encode each deletion, but transmit ` log q bits.

▸ Problem arose due to inflexibility in code structure.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Intermediary Encoding

Consider a new intermediary encoding scheme, where we code “modified
versions of the files”. Here, A and B are ` × `-matrices.

Files Storage Nodes

x // xA //

##

xA

y // yB //

((

yB

xA + yB

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Intermediary Encoding

To retain reconstruction properties, we require the following.

Proposition

If A and B are invertible ` × `-matrices, then we have an [3,2]-MDS code.

Files Storage Nodes

x xAoo xAoo

rry yBoo yB

xA + yB

ll

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Synchronization Scheme

Before updates After Updates

Files Nodes Coding Matrices

x xA A

y yB B

xA + yB

Files Nodes Coding Matrices

x̃ x̃Ã Ã

ỹ ỹB̃ B̃

x̃Ã + ỹB̃

Idea behind approach

▸ Suppose x and y are edited and resulting files x̃, ỹ are of length `′.
▸ Users x and y modify respective matrices A and B to invertible `′ × `′

matrices Ã and B̃ according to edits made.

▸ Users transmit only locations and values of their edits.

▸ Storage nodes update respective information so that encoding with respect
to Ã and B̃ holds.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Synchronization Scheme

Before updates After Updates

Files Nodes Coding Matrices

x xA A

y yB B

xA + yB

Files Nodes Coding Matrices

x̃ x̃Ã Ã

ỹ ỹB̃ B̃

x̃Ã + ỹB̃

Idea behind approach

▸ Suppose x and y are edited and resulting files x̃, ỹ are of length `′.
▸ Users x and y modify respective matrices A and B to invertible `′ × `′

matrices Ã and B̃ according to edits made.

▸ Users transmit only locations and values of their edits.

▸ Storage nodes update respective information so that encoding with respect
to Ã and B̃ holds.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Synchronization Scheme

Before updates After Updates

Files Nodes Coding Matrices

x xA A

y yB B

xA + yB

Files Nodes Coding Matrices

x̃ x̃Ã Ã

ỹ ỹB̃ B̃

x̃Ã + ỹB̃

Idea behind approach

▸ Suppose x and y are edited and resulting files x̃, ỹ are of length `′.
▸ Users x and y modify respective matrices A and B to invertible `′ × `′

matrices Ã and B̃ according to edits made.

▸ Users transmit only locations and values of their edits.

▸ Storage nodes update respective information so that encoding with respect
to Ã and B̃ holds.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Synchronization Scheme

Before updates After Updates

Files Nodes Coding Matrices

x xA A

y yB B

xA + yB

Files Nodes Coding Matrices

x̃
info // x̃Ã Ã

ỹ
info // ỹB̃ B̃

x̃Ã + ỹB̃

Idea behind approach

▸ Suppose x and y are edited and resulting files x̃, ỹ are of length `′.
▸ Users x and y modify respective matrices A and B to invertible `′ × `′

matrices Ã and B̃ according to edits made.

▸ Users transmit only locations and values of their edits.

▸ Storage nodes update respective information so that encoding with respect
to Ã and B̃ holds.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Synchronization Scheme

Before updates After Updates

Files Nodes Coding Matrices

x xA A

y yB B

xA + yB

Files Nodes Coding Matrices

x̃ x̃Ã Ã

ỹ ỹB̃ B̃

x̃Ã + ỹB̃

Idea behind approach

▸ Suppose x and y are edited and resulting files x̃, ỹ are of length `′.
▸ Users x and y modify respective matrices A and B to invertible `′ × `′

matrices Ã and B̃ according to edits made.

▸ Users transmit only locations and values of their edits.

▸ Storage nodes update respective information so that encoding with respect
to Ã and B̃ holds.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Synchronization Scheme

Before updates After Updates

Files Nodes Coding Matrices

x xA A

y yB B

xA + yB

Files Nodes Coding Matrices

x̃ x̃Ã Ã

ỹ ỹB̃ B̃

x̃Ã + ỹB̃

Idea behind approach

▸ Suppose x and y are edited and resulting files x̃, ỹ are of length `′.
▸ Users x and y modify respective matrices A and B to invertible `′ × `′

matrices Ã and B̃ according to edits made.

▸ Users transmit only locations and values of edits.

▸ Storage nodes update respective information so that encoding with respect
to Ã and B̃ holds.

Choose A and B to be Vandermonde matrices.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Synchronization Scheme

Consider a [3,2]-MDS code over F7.

Files Storage Nodes Intermediary coding matrices

x = (1,0,1,0,1) xA = (3,2,0,6,0) A =
⎛
⎜⎜⎜⎜⎜
⎝

1 1 1 1 1
1 2 4 1 2
1 3 2 6 4
1 4 2 1 4
1 5 4 6 2

⎞
⎟⎟⎟⎟⎟
⎠

y = (0,1,0,1,0) yB = (2,6,6,2,6) B =
⎛
⎜⎜⎜⎜⎜
⎝

1 1 1 1 1
1 2 4 1 2
1 3 2 6 4
1 4 2 1 4
1 5 4 6 2

⎞
⎟⎟⎟⎟⎟
⎠

xA + yB = (5,1,6,1,6)

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Synchronization Scheme

Consider the following edits.

Files Storage Nodes Intermediary coding matrices

x̃ = (1,0,1,0, �1) xA = (3,2,0,6,0) A =
⎛
⎜⎜⎜⎜⎜
⎝

1 1 1 1 1
1 2 4 1 2
1 3 2 6 4
1 4 2 1 4
1 5 4 6 2

⎞
⎟⎟⎟⎟⎟
⎠

ỹ = (�0,1,0,1,0) yB = (2,6,6,2,6) B =
⎛
⎜⎜⎜⎜⎜
⎝

1 1 1 1 1
1 2 4 1 2
1 3 2 6 4
1 4 2 1 4
1 5 4 6 2

⎞
⎟⎟⎟⎟⎟
⎠

xA + yB = (5,1,6,1,6)

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Synchronization Scheme

Modify the A and B.

▸ Remove the row corresponding to the deleted position.

▸ Remove the last column.

Files Intermediary coding matrices

x̃ = (1,0,1,0, �1) Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 �1
1 2 4 1 �2
1 3 2 6 �4
1 4 2 1 �4
�1 �5 �4 �6 �2

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

ỹ = (�0,1,0,1,0) B̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

�1 �1 �1 �1 �1
1 2 4 1 �2
1 3 2 6 �4
1 4 2 1 �4
1 5 4 6 �2

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Synchronization Scheme

Users transmit deleted values (log q bits) and positions (log ` bits).

Files Storage Nodes

x̃ = (1,0,1,0, �1)
val∶1,pos∶5

//

val∶1,pos∶5

))

xA = (3,2,0,6,0)

yB = (2,6,6,2,6)

ỹ = (�0,1,0,1,0) val∶0,pos∶1

//

val∶0,pos∶1

22

xA + yB = (5,1,6,1,6)

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Synchronization Scheme

Nodes update their values.

Storage Nodes Intermediary coding matrices

x̃→val∶1,pos∶5
//

(3,2,0,6, �0)
− (1,5,4,6, �2)
= (2,4,3,0, �5)

A =
⎛
⎜⎜⎜⎜⎜
⎝

1 1 1 1 1
1 2 4 1 2
1 3 2 6 4
1 4 2 1 4
1 5 4 6 2

⎞
⎟⎟⎟⎟⎟
⎠

ỹ→val∶0,pos∶1
//

(2,6,6,2, �6)
− (0,0,0,0, �0)
= (2,6,6,2, �6)

B =
⎛
⎜⎜⎜⎜⎜
⎝

1 1 1 1 1
1 2 4 1 2
1 3 2 6 4
1 4 2 1 4
1 5 4 6 2

⎞
⎟⎟⎟⎟⎟
⎠

x̃→val∶1,pos∶5

ỹ→val∶0,pos∶1

//
(5,1,6,1, �6)

− (1,5,4,6, �2)
= (4,3,2,2, �4)

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Synchronization Scheme

Edited files and storage nodes updated as desired.

Files Storage Nodes Intermediary coding matrices

x̃ = (1,0,1,0) x̃Ã = (2,4,3,0) Ã =
⎛
⎜⎜⎜
⎝

1 1 1 1
1 2 4 1
1 3 2 6
1 4 2 1

⎞
⎟⎟⎟
⎠

ỹ = (1,0,1,0) ỹB̃ = (2,6,6,2) B̃ =
⎛
⎜⎜⎜
⎝

1 2 4 1
1 3 2 6
1 4 2 1
1 5 4 6

⎞
⎟⎟⎟
⎠

x̃Ã + ỹB̃ = (4,3,2,2)

▸ Ã and B̃ remain Vandermonde and hence, invertible.

▸ Communication cost between each user and his connected node:
log q + log ` bits.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Synchronization Scheme

Edited files and storage nodes updated as desired.

Files Storage Nodes Intermediary coding matrices

x̃ = (1,0,1,0) x̃Ã = (2,4,3,0) Ã =
⎛
⎜⎜⎜
⎝

1 1 1 1
1 2 4 1
1 3 2 6
1 4 2 1

⎞
⎟⎟⎟
⎠

ỹ = (1,0,1,0) ỹB̃ = (2,6,6,2) B̃ =
⎛
⎜⎜⎜
⎝

1 2 4 1
1 3 2 6
1 4 2 1
1 5 4 6

⎞
⎟⎟⎟
⎠

x̃Ã + ỹB̃ = (4,3,2,2)

▸ Ã and B̃ remain Vandermonde and hence, invertible.

▸ Communication cost between each user and his connected node:
log q + log ` bits.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Extensions and Generalizations

▸ We can use permutation or Cauchy matrices, instead of Vandermonde
matrices, and achieve approximately the same communication complexity.

▸ Scheme easily extend to any [n, k]-MDS codes and more generally, any
linear regenerating and locally repairable codes.

▸ Has applications to data deduplication.

Storage Nodes (before dedup) Storage Nodes (after dedup)

x = (x1, x2, x3, x4, z) x̃ = (x1, x2, x3, x4)

y = (z, y2, y3, y4, y5) // ỹ = (y2, y3, y4, y5)

check(x,y) check(x̃, ỹ)

▸ More extensions: systematic encoding, encoding files of variable lengths,
non-uniform deletions, . . .

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Extensions and Generalizations

▸ We can use permutation or Cauchy matrices, instead of Vandermonde
matrices, and achieve approximately the same communication complexity.

▸ Scheme easily extend to any [n, k]-MDS codes and more generally, any
linear regenerating and locally repairable codes.

▸ Has applications to data deduplication.

Storage Nodes (before dedup) Storage Nodes (after dedup)

x = (x1, x2, x3, x4, z) x̃ = (x1, x2, x3, x4)

y = (z, y2, y3, y4, y5) // ỹ = (y2, y3, y4, y5)

check(x,y) check(x̃, ỹ)

▸ More extensions: systematic encoding, encoding files of variable lengths,
non-uniform deletions, . . .

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Extensions and Generalizations

▸ We can use permutation or Cauchy matrices, instead of Vandermonde
matrices, and achieve approximately the same communication complexity.

▸ Scheme easily extend to any [n, k]-MDS codes and more generally, any
linear regenerating and locally repairable codes.

▸ Has applications to data deduplication.

Storage Nodes (before dedup) Storage Nodes (after dedup)

x = (x1, x2, x3, x4, z) x̃ = (x1, x2, x3, x4)

y = (z, y2, y3, y4, y5) // ỹ = (y2, y3, y4, y5)

check(x,y) check(x̃, ỹ)

▸ More extensions: systematic encoding, encoding files of variable lengths,
non-uniform deletions, . . .

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Extensions and Generalizations

▸ We can use permutation or Cauchy matrices, instead of Vandermonde
matrices, and achieve approximately the same communication complexity.

▸ Scheme easily extend to any [n, k]-MDS codes and more generally, any
linear regenerating and locally repairable codes.

▸ Has applications to data deduplication.

Storage Nodes (before dedup) Storage Nodes (after dedup)

x = (x1, x2, x3, x4, z) x̃ = (x1, x2, x3, x4)

y = (z, y2, y3, y4, y5) // ỹ = (y2, y3, y4, y5)

check(x,y) check(x̃, ỹ)

▸ More extensions: systematic encoding, encoding files of variable lengths,
non-uniform deletions, . . .

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Storage Overhead

▸ In intermediary coding, a user needs to store the associated matrix A.
Hence, a user a priori requires `2 log q bits to store this matrix.

x = (1,0,1,0,1) A =

⎛
⎜
⎜
⎝

1 1 1 1 1
1 2 4 1 2
1 3 2 6 4
1 4 2 1 4
1 5 4 6 2

⎞
⎟
⎟
⎠

▸ This stringent storage requirement may be easily relaxed. We first store
the description of the initial matrices. Subsequently, to generate the
matrices A(s), it suffices for the users to store the modifications to the
initial matrices.

x = (1,0,1,0,1) A← 5 × 5 Vandermonde matrix over F7

x̃ = (1,0,1,0) Ã←A with fifth row removed

▸ Term this information the storage overhead per edit.

▸ Scheme V: storage overhead is log `.

Scheme V: Synchronization scheme with intermediary encoding using Vandermonde matrices.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Storage Overhead

▸ In intermediary coding, a user needs to store the associated matrix A.
Hence, a user a priori requires `2 log q bits to store this matrix.

x = (1,0,1,0,1) A =

⎛
⎜
⎜
⎝

1 1 1 1 1
1 2 4 1 2
1 3 2 6 4
1 4 2 1 4
1 5 4 6 2

⎞
⎟
⎟
⎠

▸ This stringent storage requirement may be easily relaxed. We first store
the description of the initial matrices. Subsequently, to generate the
matrices A(s), it suffices for the users to store the modifications to the
initial matrices.

x = (1,0,1,0,1) A← 5 × 5 Vandermonde matrix over F7

x̃ = (1,0,1,0) Ã←A with fifth row removed

▸ Term this information the storage overhead per edit.

▸ Scheme V: storage overhead is log `.

Scheme V: Synchronization scheme with intermediary encoding using Vandermonde matrices.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Storage Overhead

▸ In intermediary coding, a user needs to store the associated matrix A.
Hence, a user a priori requires `2 log q bits to store this matrix.

x = (1,0,1,0,1) A =

⎛
⎜
⎜
⎝

1 1 1 1 1
1 2 4 1 2
1 3 2 6 4
1 4 2 1 4
1 5 4 6 2

⎞
⎟
⎟
⎠

▸ This stringent storage requirement may be easily relaxed. We first store
the description of the initial matrices. Subsequently, to generate the
matrices A(s), it suffices for the users to store the modifications to the
initial matrices.

x = (1,0,1,0,1) A← 5 × 5 Vandermonde matrix over F7

x̃ = (1,0,1,0) Ã←A with fifth row removed

▸ Term this information the storage overhead per edit.

▸ Scheme V: storage overhead is log `.

Scheme V: Synchronization scheme with intermediary encoding using Vandermonde matrices.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Storage Overhead and Communication Complexity Tradeoff

Scheme T Scheme V

Communication cost (` − 1) log q (worst case) log ` + log q

Storage overhead 0 log `

Scheme T: Synchronization scheme without intermediary encoding.

Scheme V: Synchronization scheme with intermediary encoding using Vandermonde matrices.

Storage overhead versus information storage

▸ Suppose d edits.

▸ Scheme V incur a total storage overhead of d log ` bits.

▸ File itself is of size ` log q bits.

▸ For desirable storage allocation properties, one would want d log ` = o(`)
or the number of edits to be o(`/ log `).

▸ Scheme V should be used only in the small/moderate edit regime.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Storage Overhead and Communication Complexity Tradeoff

Scheme T Scheme V

Communication cost (` − 1) log q (worst case) log ` + log q

Storage overhead 0 log `

Scheme T: Synchronization scheme without intermediary encoding.

Scheme V: Synchronization scheme with intermediary encoding using Vandermonde matrices.

Storage overhead versus information storage

▸ Suppose d edits.

▸ Scheme V incur a total storage overhead of d log ` bits.

▸ File itself is of size ` log q bits.

▸ For desirable storage allocation properties, one would want d log ` = o(`)
or the number of edits to be o(`/ log `).

▸ Scheme V should be used only in the small/moderate edit regime.

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Storage Overhead and Communication Complexity Tradeoff

Suppose that we are given a constraint on the storage overhead.
What is the minimum communication cost possible?

-

6
` log q

(` − 1) log q

log ` + log q

log `

log `

General edits

Deletions only

Scheme T
@@I

Scheme V

@@R

C
o

m
m

u
n

ic
a

ti
o

n
C

o
st

Storage Overhead

Hybrid Scheme

Lower Boundsu

u

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Conclusion

▸ Examined problem of synchronizing edits in a distributed storage
environment.

▸ Proposed synchronization schemes with low communication complexity
that made use of intermediary coding.

▸ Accommodates a broad family of coding schemes.

▸ More extensions of the edit models and an average case analysis is
presented in full paper.

▸ Full paper available at arxiv:

Synchronizing Edits in Distributed Storage Networks

Motivation Related Work Intermediary Encoding and Sync Scheme Tradeoff

Questions?

	Motivation
	Related Work
	Intermediary Encoding and Sync Scheme
	Tradeoff

