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Abstract—Subblock-constrained codes are an important class of
constrained codes, having applications in many diverse fields. In
this paper, we provide closed-form expressions for the best known
upper bounds on the asymptotic rates of subblock-constrained
codes for a range of relative distance values via a generalized
sphere-packing approach. In particular, we study binary subblock
energy-constrained codes (SECCs), characterized by the property
that the number of ones in each subblock exceeds a certain thresh-
old, and binary constant subblock-composition codes (CSCCs),
characterized by the property that the number of ones in each
subblock is constant. Improved bounds on the optimal asymptotic
rate for SECCs and CSCCs are obtained by applying a generalized
sphere-packing approach and judiciously choosing appropriate
constrained spaces for estimating asymptotic ball sizes. We also
use numerical examples to highlight the improvement.

I. INTRODUCTION

Subblock-constrained codes are a class of constrained codes
where each codeword is divided into smaller non-overlapping
subblocks, and each subblock satisfies a certain application de-
pendent constraint. Subblock-constrained codes have recently
gained attention as they are suitable candidates for applications
such as simultaneous energy and information transfer [1],
visible light communication [2], low-cost authentication [3],
and powerline communications [4]. In this paper, we discuss
two important subclasses of subblock-constrained codes.

The first subclass are the subblock energy-constrained codes
(SECCs) which ensure that the energy content in every sub-
block of each codeword exceeds a certain threshold [1], [5].
SECCs have application in simultaneous energy and informa-
tion transfer [5], and binary SECCs are characterized by the
property that the number of ones in each subblock is at least
ws [6], [7]. Bounds on the capacity and error exponent for
SECCs over noisy channels were presented in [1], while bounds
on the SECC code size and asymptotic rate, with minimum
distance constraint, were analyzed in [6], [7].

The second subclass of subblock-constrained codes that we
study are the constant subblock-composition codes (CSCCs).
Binary CSCCs have varied applications [2], [3], [8], and are
characterized by the property that each subblock in every
codeword has the same weight, i.e. each subblock has the same
number of ones. Bounds on the capacity and error exponent for
CSCCs over noisy channels were presented in [1], while bounds
on the CSCC code size and asymptotic rate, with minimum
distance constraint, were analyzed in [7], [9].

In this paper, we extend the results in [6], [7], [9] to present
the best known upper bounds on the asymptotic rates for SECCs

and CSCCs for a range of relative distance values. These results
are obtained by applying a generalized version of the sphere-
packing bound (Sec. II) to the above discussed subclasses of
subblock-constrained codes (Sec. III and Sec. IV, respectively).

We remark that an alternate approach to generalized sphere-
packing was presented in [10], [11], where bounds on the opti-
mal size of fixed blocklength constrained codes are presented.
However, the results in [10], [11] are obtained numerically
via solving certain linear programs, and are not useful in
providing upper bounds on the asymptotic rate of constrained
codes, when the blocklength tends to infinity. In contrast, we
provide improved bounds on the optimal asymptotic rates for
SECCs and CSCCs by applying a generalized sphere-packing
approach to judiciously choose appropriate constrained spaces
for estimating asymptotic ball sizes, which lead to closed-form
expressions for asymptotic bounds.

II. IMPROVED SPHERE-PACKING BOUNDS

We give a version of the sphere-packing bound in full
generality, and then specialize it to the class of codes that we
are interested in.

Let τ be a distance metric defined over Σn and pick S ⊆ Σn.
A subset C ⊆ S is an (n, d;S)-code if d = min{τ(x,y) :
x,y ∈ C , x 6= y} and we are interested in determining the
value A(n, d;S) , max{|C | : C is an (n, d;S)-code}.

Our theorem is motivated by Freiman’s and Berger’s methods
[12], [13] that improve the usual sphere-packing bounds for
constant weight codes. Choose S̃ ⊆ Σn, a subset possibly
different from S. For x ∈ S, define BS̃(x, t) , {y ∈
S̃ : τ(x,y) ≤ t} and when S̃ is the whole space Σn, we
drop the subscript and simply write B(x, t). Set V min

S,S̃ (t) ,
min{|BS̃(x, t)| : x ∈ S}.

Theorem 1. Set t = b(d− 1)/2c. For any S̃ ⊆ Σn, if
V min
S,S̃ (t) ≥ 1, then

A(n, d;S) ≤ |S̃|
V min
S,S̃ (t)

. (1)

To prove this theorem, we show that the righthand side of
(1) corresponds to the objective value of a certain optimization
program. Before we provide the detailed proof, we make some
remarks on the computation aspects of Theorem 1.
• Choice of the space S̃. Following (1), we have that
A(n, d;S) ≤ minS̃⊆Σn |S̃|/V min

S,S̃ (t). However, the mini-
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mization problem of the right-hand side is computationally
infeasible as the number of choices for S̃ is exponential
in |S|. Hence, for specific spaces S, we choose a family
of subspaces S̃ and minimize the value of (1).

• Lower Bounding V min
S,S̃ (t). Suppose that S̃ and S are

given. To compute V min
S,S̃ (t), we have to look at |S|

spheres centered at the points in S. Since |S| is usually
exponential in n, determining the exact value of V min

S,S̃ (t)

remains difficult. Hence, in specific cases, we provide
a lower bound V ′ for V min

S,S̃ (t) and so, (1) implies that
A(n, d;S) ≤ |S̃|/V ′.

• In summary, to apply Theorem 1, we choose a family
of subspaces S̃ such that both |S̃| and V min

S,S̃ (t) can be
computed or estimated efficiently.

To prove Theorem 1, we apply a modified version of
generalized sphere-packing bound a la Fazelli et al. [11]. A
specialized version of the generalized bound was introduced
by Kulkarni and Kiyavash [10] in the context of deletion-
correcting code and since then, variants of their method were
applied to a myriad of coding problems (see [11] for a survey).
Fazeli et al. then studied their method in a general setup and
provided what is called the generalized sphere-packing bound.
We provide a short exposition and derivation of our modified
bound.

Fix d and set t = b(d− 1)/2c. Define T ,
⋃

x∈S B(x, t).
In other words, T is the set of all words whose distance is at
most t from some word in S.

We consider a binary matrix M whose rows are indexed by
S and columns are indexed by T . Set

Mx,y =

{
1 if τ(x,y) ≤ t,
0 otherwise.

Then A(n, d;S) can be upper bounded as follows:

A(n, d;S) ≤ max

{∑
x∈S

Xx : XM ≤ 1, Xx ∈ {0, 1} for x ∈ S

}
.

When we relax X to be a real-valued vector, we get

A(n, d;S) ≤ max

{∑
x∈S

Xx : XM ≤ 1, Xx ≥ 0 for x ∈ S

}
.

We have the following inequality via strong duality [14].

A(n, d;S) ≤ min

{∑
y∈T

Yy : MY ≥ 1, Yy ≥ 0 for y ∈ T

}
. (2)

Proof of Theorem 1: Abbreviate V min
S,S̃ (t) with V and we

consider the vector

Y =

{
1/V if y ∈ S̃,
0 otherwise.

We first show that vector Y above is a feasible point in
the optimization program (2). In other words, we claim that
MY ≥ 1. Indeed, for x ∈ S, let Mx denote the row of M
that corresponds to x. We have that

MxY = |BS̃∩T (x, t)|/V = |BS̃(x, t)|/V ≥ 1,

since V corresponds to the smallest ball volume.
To complete the proof, it remains to compute the objective

value that is
∑

y∈T Yy =
∑

y∈S̃∩T Yy ≤ |S̃|/V .

Remark: We point out the differences between (2) and the
upper bound derived by Fazelli et al. [11]. Specifically, in [11],
Fazelli et al. considered the binary MF whose rows are
indexed by S and columns are indexed by S and set Mx,y

to be one if and only if τ(x,y) ≤ t. Then their upper bound
is given by the optimal value of the following program.

min

∑
y∈S

Yy : MFY ≥ 1, Yy ≥ 0 for y ∈ S

 . (3)

Since MF is a submatrix of M obtained by deleting certain
columns of M , any feasible solution of (3) is also a feasible
solution of (2). Furthermore, in certain cases, Theorem 1
provides a strictly better upper bound than (3). Consider the
space C of all binary words of length n and weight w and set
d = 4, or equivalently, t = 1. Then MF is the identity matrix
whose rows and columns are indexed by C. Hence, the optimal
value of the program defined by (3) is

(
n
w

)
.

In contrast, we apply Theorem 1 by setting S̃ to be the
space of all binary words of length n and weight w+ 1. Then
V min
C,S̃ (1) = n−w. Therefore, the upper bound in Theorem 1 is(
n

w+1

)
/(n−w) =

(
n
w

)
/(w+ 1), which is a strict improvement.

In the following sections, we judiciously choose the space S̃
and apply Theorem 1 to improve the upper bound on the code
sizes for certain classes of codes.

III. SUBBLOCK ENERGY-CONSTRAINED CODES

Let S(m,L,ws) denote the space of all binary words
comprising of m subblocks, each subblock having length
L, with weight per subblock at least ws. A binary SECC
with codeword length n = mL, subblock length L, min-
imum distance d, and weight at least ws per subblock is
called an (m,L, d, ws)-SECC. We denote the maximum pos-
sible size of an (m,L, d, ws)-SECC by S(m,L, d, ws) ,
A(mL, d;S(m,L,ws)). Further, we introduce the notation(

L
≥ws

)
which we define as(

L

≥ ws

)
,

L∑
j=ws

(
L

j

)
.

A. Generalized Sphere Packing Bound for SECCs

We now present an upper bound on the optimal code size
for SECCs via the following proposition.

Proposition 1. For d ≤ 2m + 1, 0 ≤ m0 ≤ m, and t =
b(d− 1)/2c, we have

S(m,L, d, ws) ≤

(
L

≥ ws − 1

)m0
(

L

≥ ws

)m−m0

∑
t1,t2

t1+t2≤t

(
m0

t1

)(
m−m0

t2

)
Lt1(L− ws)

t2

.

(4)
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Proof: We will apply Theorem 1, and choose S̃ ⊂
{0, 1}mL to be the space where the first m0 subblocks have
weight at least ws − 1, and the remaining m −m0 subblocks
have weight at least ws, with fixed subblock length L. Thus
|S̃| =

(
L

≥ws−1

)m0( L
≥ws

)m−m0 , and using Theorem 1, it suffices
to show that

V min
S,S̃ (t) ≥

∑
t1,t2

t1+t2≤t

(
m0

t1

)(
m−m0

t2

)
Lt1(L− ws)

t2 . (5)

For x ∈ S(m,L,ws), let x[i] denote the ith subblock of x,
and hence x = (x[1]x[2] . . .x[m]). Let Λx be defined as

Λx , {y ∈ S̃ : τ(x,y) ≤ t, τ(x[i],y[i]) ≤ 1, i ∈ {1, . . . ,m}}.

Let y ∈ S̃ be such that t1 (resp. t2) subblocks out of the first
m0 (resp. last m −m0) subblocks of y differ in exactly one
bit from corresponding subblocks of x, with t1 + t2 ≤ t. Then
y ∈ Λx, and

|Λx| ≥
∑
t1,t2

t1+t2≤t

(
m0

t1

)(
m−m0

t2

)
Lt1(L− ws)

t2 .

Note that the inequality above holds for every x ∈
S(m,L,ws). Finally, the inequality in (5) follows because
Λx ⊆ BS̃(x, t) for every x ∈ S(m,L,ws).

We will apply Prop. 1 to provide an upper bound on the
asymptotic rate for SECCs. We are interested in the asymptotic
setting where the number of subblocks m tends to infinity,
minimum distance d scales linearly with m, and parameters L,
ws are fixed. In the following, the base for log is assumed to
be 2. Formally, for fixed 0 < δ < 1, the asymptotic rate for
SECCs is defined as

σ(L, δ, ws/L) , lim sup
m→∞

logS (m,L, bmLδc , ws)

mL
. (6)

The following theorem gives an upper bound on the SECC
rate σ(L, δ, ws/L).

Theorem 2. For 0 < δ < 2/L, we have

σ(L, δ, ws/L) ≤ R1 − α̂ν, (7)

where

R1 ,
log
(

L
≥ws

)
L

− h(δL/2)

L
− δ

2
log(L− ws) (8)

h(x) , −x log(x)− (1− x) log(1− x)

ν ,
δ

2
log

(
L

L− ws

)
− 1

L
log

[(
L

≥ws−1

)(
L
≥ws

) ] (9)

α̂ ,

{
0, if ν ≤ 0

1, if ν > 0
(10)

Proof: For 0 ≤ m0 ≤ m, let α = m0/m with t1 = btαc
and t2 = bt(1− α)c. Then t1 + t2 ≤ t, and it follows from (4)
that

S(m,L, d, ws) ≤

(
L

≥ ws − 1

)m0
(

L

≥ ws

)m−m0

(
m0

btαc

)(
m−m0

bt(1− α)c

)
Lbtαc(L− ws)bt(1−α)c

,

(11)

Combining (6) and (11), we get

σ(L, δ, ws/L) ≤
α

L
log

(
L

≥ ws − 1

)
+

1− α
L

log

(
L

≥ ws

)

− α

L
h

(
δL

2

)
− (1− α)

L
h

(
δL

2

)
− αδ

2
log(L)− (1− α)δ

2
log(L− ws).

By combining the coefficients of α, the above inequality can
be expressed as

σ(L, δ, ws/L) ≤ R1 − αν, (12)

where R1 and ν are given by (8) and (9), respectively. The
above bound on SECC rate holds for all α ∈ [0, 1], and hence
the right side in (12) is minimized by choosing α = α̂, with α̂
given by (10).

We observe that the upper bound on σ(L, δ, ws/L), given
by Theorem 2, can equivalently be expressed as

σ(L, δ, ws/L) ≤ min{R1, R1 − ν},

where R1 corresponds to the sphere packing bound on the
asymptotic rate σ(L, δ, ws/L) when space S̃ is chosen to be
S̃ = S(m,L,ws), while R1−ν corresponds to the sphere pack-
ing bound when space S̃ is chosen to be S̃ = S(m,L,ws−1).

Corollary 1. R1−ν, the upper bound on SECC rate obtained
by choosing S̃ = S(m,L,ws − 1), is less than R1, the upper
bound on SECC rate obtained by choosing S̃ = S(m,L,ws),
for the following range of δ values

2

L log[L/(L− ws)]
log

[(
L

≥ws−1

)(
L
≥ws

) ] < δ <
2

L
. (13)

Proof: Follows from (9).
An alternate sphere-packing bound was presented in [6],

where it was shown that σ(L, δ, ws/L), the asymptotic rate
for SECCs, is upper bounded by

σSP ,
log
(

L
≥ws

)
L

− h(δL/4)

L
− δ

4
log ((L− ws)(ws + 1)) .

(14)
Fig. 1 compares different sphere-packing bounds for the

SECC asymptotic rate σ(L, δ, ws/L) as a function of δ with
fixed L = 10, and ws = 5. As shows in Cor. 1, it is observed
in Fig. 1 that the upper bound given by R1− ν is less than R1

for δ > 2
L log[L/(L−ws)] log

[
( L
≥ws−1)
( L
≥ws

)

]
= 0.0821.

IV. CONSTANT SUBBLOCK-COMPOSITION CODES

A binary CSCC with codeword length n = mL, sub-
block length L, minimum distance d, and weight exactly
ws per subblock is called an (m,L, d, ws)-CSCC. We de-
note the space of all binary words comprising of m sub-
blocks, each subblock having length L, with weight exactly
ws per subblock, by C(m,L,ws). We denote the maximum
possible size of (m,L, d, ws)-CSCC by C(m,L, d, ws) ,
A (mL, d; C(m,L,ws)).
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Fig. 1: Comparison of sphere-packing upper bounds for the
SECC asymptotic rate σ(L, δ, ws/L).

A. Generalized Sphere Packing Bound for CSCCs

We will provide improved sphere-packing bounds for the
CSCC rate in the asymptotic setting where the number of
subblocks m tends to infinity, minimum distance d scales
linearly with m, but L and ws are fixed. Formally, for fixed
0 < δ < 1, the asymptotic rate for CSCCs with fixed subblock
length L, subblock weight parameter ws, number of subblocks
in a codeword m → ∞, and minimum distance d scaling as
d = bmLδc is defined as

γ(L, δ, ws/L) , lim sup
m→∞

logC(m,L, bmLδc, ws)

mL
. (15)

The asymptotic CSCC rate, γ(L, δ, ws/L), was studied
in [6], [7] and it was shown that γ(L, δ, ws/L) = 0 when
δ ≥ δ∗(ws/L), where δ∗(ws/L) is defined as

δ∗(ws/L) , 2
(ws

L

)(
1− ws

L

)
.

Further, in [7] the following sphere-packing upper bound on
γ(L, δ, ws/L) was presented.

Theorem 3 ( [7]). For 0 < δ < δ∗(ws/L), we have

γ(L, δ, ws/L) ≤ γSP (L, δ, ws/L), (16)

where γSP (L, δ, ws/L) is defined as

1

L
log

(
L

ws

)
−
(

1 + ũ− dũe
L

)
log

(
ws

dũe

)
−
(
dũe − ũ
L

)
log

(
ws

bũc

)
−
(
dũe − ũ
L

)
log

(
L− ws

bũc

)
−
(

1 + ũ− dũe
L

)
log

(
L− ws

dũe

)
− 1

L
h(dũe − ũ), (17)

where ũ , δL/4.

We will show that for certain parameters, the above result
can be improved by applying the generalized sphere packing
formulation in Theorem 1. The bound on the asymptotic CSCC
rate in Theorem 3 was obtained by estimating the ball size
in the space C(m,L,ws), and therefore corresponds to the

case where S̃ = S = C(m,L,ws). In Prop. 2, we present an
upper bound on the optimal CSCC code-size, C(m,L, d, ws),
by choosing the space S̃ = C(m,L,ws + 1).

Remark: For SECCs, we applied the generalized sphere-
packing approach to provide improved bound on the asymptotic
rate (see Corollary 1). This result, in turn, was obtained via
Prop. 1 by choosing S̃ to be the space where the first m0

subblocks have weight at least ws − 1, while the remaining
m−m0 subblocks have weight at least ws. On the other hand,
for CSCCs, an analogous approach of choosing S̃ to be the
space where the first m0 subblocks have weight exactly ws−1,
while the remaining m−m0 subblocks have weight exactly ws,
does not lead to improved bounds on the asymptotic rate, in
general, for δ < 2/L. However, we will show in Prop. 3 that
for δ in the vicinity of δ = 4/L, improved bounds for CSCCs
can be obtained by choosing S̃ = C(m,L,ws + 1) (rather than
the default space S̃ = C(m,L,ws)).

Proposition 2. For 2m < d ≤ 6m and L ≥ ws + 2, with
t = b(d− 1)/2c and t̃ = b(t−m)/2c, we have

C(m,L, d, ws) ≤
(

L
ws+1

)m
(
m
t̃

) [(
L−ws

2

)(
ws

1

)]t̃
(L− ws)m−t̃

. (18)

Proof: We will apply Theorem 1, where we choose S̃ =
C(m,L,ws + 1). Thus |S̃| =

(
L

ws+1

)m
, and using Theorem 1,

it suffices to show that

V min
S,S̃ (t) ≥

(
m

t̃

)[(
L− ws

2

)(
ws

1

)]t̃
(L− ws)

m−t̃, (19)

where the constrained CSCC space is S = C(m,L,ws). For
x ∈ S, let Λx consist of all words y ∈ S̃ which satisfy the
following two properties:

(i) t̃ subblocks of y differ from corresponding subblocks of
x in exactly three bit positions.

(ii) Remaining m− t̃ subblocks of y differ from correspond-
ing subblocks of x in exactly one bit position.

The size of Λx is given by

|Λx| =
(
m

t̃

)[(
L− ws

2

)(
ws

1

)]t̃
(L− ws)

m−t̃.

For any y ∈ Λx, we observe that τ(x,y) = 3t̃+ (m− t̃) ≤ t,
and thus Λx ⊆ BS̃(x, t). Finally, the inequality in (19) follows
because BS̃(x, t) ≥ |Λx| for all x ∈ S.

The following theorem applies Prop. 2 to provide an upper
bound on the asymptotic rate for CSCCs.

Theorem 4. For 2/L < δ < 6/L ≤ δ∗(ws/L), we have

γ(L, δ, ws/L) ≤ γ́SP (L, δ, ws/L), (20)

where γ́SP (L, δ, ws/L) is defined as

1

L
log

(
L

ws + 1

)
−
(
δ

4
− 1

2L

)
log

[(
L− ws

2

)(
ws

1

)]
− 1

L
h

(
Lδ

4
− 1

2

)
−
(

3

2L
− δ

4

)
log(L− ws). (21)
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Proof: We will combine (15) and (18) to prove the
theorem. Towards this, note that when d scales as d = bmLδc,
and t̃ = b(t−m)/2c with t = b(d− 1)/2c, then we have

lim sup
m→∞

1

mL
log

[(
m

t̃

)]
=

1

L
h

(
Lδ

4
− 1

2

)
, (22)

lim sup
m→∞

t̃

mL
=

(
δ

4
− 1

2L

)
, (23)

lim sup
m→∞

m− t̃
mL

=

(
3

2L
− δ

4

)
. (24)

The proof is now complete by combining (22), (23), (24), with
(15) and (18).

Proposition 3. For L/2 ≤ ws < L− 1 and δ = 4/L, we have

γ́SP (L, δ, ws/L) < γSP (L, δ, ws/L)

Proof: When δ = 4/L, using (17) we get

γSP (L, 4/L,ws/L) =
1

L
log

(
L

ws

)
− 1

L
log ((L− ws)ws) .

(25)
On the other hand, using (21) we observe that
γ́SP (L, 4/L,ws/L) is equal to

1

L
log

(
L

ws + 1

)
− 1

2L
log
(
2(L− ws)

2(L− ws − 1)ws

)
=

1

L
log

(
L

ws

)
− 1

2L
log
(
2(ws + 1)2(L− ws − 1)ws

)
.

(26)

The proposition is now proved by comparing (25) and (26),
and observing that 2ws(L−ws−1) ≥ (L−ws)

2 when L/2 ≤
ws < L− 1.

Remark: As γ́SP (L, δ, ws) and γSP (L, δ, ws) are both con-
tinuous functions of δ, we observe that Prop. 3 implies that
for a certain interval around δ = 4/L, the upper bound on the
CSCC asymptotic rate given by γ́SP (L, δ, ws) is an improved
upper bound on the CSCC rate compared to γSP (L, δ, ws).

The above observation is depicted in Fig. 2 for the case
where L = 20 and ws ∈ {10, 14}. Fig. 2 shows that
γ́SP (L, δ, ws) < γSP (L, δ, ws) for a range of δ values around
δ = 4/L = 0.2.

V. REFLECTIONS

We provided closed-form expressions for best known upper
bounds on the asymptotic rates of SECCs and CSCCs for
a range of relative distance values via a generalized sphere-
packing approach. These bounds were obtained by judiciously
choosing appropriate constrained spaces for estimating asymp-
totic ball sizes.

Alternate approaches to generalized sphere-packing, pre-
sented in [10], [11], provide upper bounds on the size of fixed
blocklength constrained codes via numerically solving certain
linear programs. However, these results are not amenable to
providing closed-form expressions for the asymptotic rate. An
interesting area of future work would be to provide improved
bounds on the asymptotic rate for other classes of constrained
codes, apart from subblock-constrained codes, using the ap-
proach presented in our paper.
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Fig. 2: Comparison of sphere-packing upper bounds for the
CSCC asymptotic rate γ(L, δ, ws/L) for L = 20.
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