String Concatenation Construction for Chebyshev
Permutation Channel Codes

Yeow Meng Chee*, Han Mao Kiah*, San Ling*, Tuan Thanh Nguyen*, Van Khu Vu*, and Xiande Zhang!
*School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
School of Mathematical Sciences, University of Science and Technology of China, China
email: {ymchee, hmkiah, lingsan, nguyentu001, vankhu001} @ntu.edu.sg, drzhangx @ustc.edu.cn.

Abstract—We construct codes for the Chebyshev permutation
channels whose study was initiated by Langberg et al. (2015).
We establish several recursive code constructions and present
efficient decoding algorithms for our codes. In particular, our
constructions yield a family of binary codes of rate 0.643 when
r = 1. The upper bound on the rate in this case is 2/3 and the
previous highest rate is 0.609.

I. INTRODUCTION

Permutation channels have been proposed as a solution to
transmission networks that provide no guarantees on the in-
order delivery of information [1]. In addition to insertion,
deletion, and substitution errors, these channels have the effect
of delivering a random permutation of the message vector.
Examples include mobile ad hoc networks, vehicular networks,
delay tolerant networks, wireless sensor networks [2]. A
variety of permutation channel models have been studied under
different scenarios:

(i) timing channels [3] where information is being encoded
in the transmission times of messages, such as in queuing
theory [4] and in molecular communications [5];

(ii) degraded broadcast channels where input packets are
randomly permuted by selecting a permutation according
to a probability distribution [6], [7]; and

(iii) the bit-shift magnetic recording channels in standard
high-density magnetic recording systems [8], [9].

Recently, Langberg et al. [10] proposed the study of the
Chebychev permutation channel'. In this channel, general
vectors are transmitted and all symbols in the vector can
be displaced a limited number of r positions away from
their origins. In the same paper, Langberg et al. studied the
combinatorial properties of the channel and provided certain
direct and recursive code constructions.

We continue this investigation and provide new code con-
structions that improve the previous rates. Our constructions
make use of a recursive technique where we concatenate
several seed codes together. Langberg ef al. used this technique
to construct a family of binary codes of rate 0.609 when r = 1
(see [10, Construction B]). We employ this technique in the
most general form and propose a prefixing construction that
yields a family of binary codes of rate 0.643 when r = 1.

"Langberg er al. [10] used the name £oo-limited permutation channel with
zero error for this channel.

Furthermore, in the case » = 1, using certain computation
techniques, we determine the optimal sizes of codes for lengths
up to 15.

II. PRELIMINARIES

For integers a < b, let [a, b] denote the set {a,...,b}. Let
n be a positive integer and S,, be the set of all permutations
on the set [1,n]. For a permutation 7 € S,,, let 7; be the ith
component of 7, that is, 7 = (w1, ma,...,Tp).

For any two permutations m, 7’ € S, the £, -distance is
defined as doo (7, 7') = max;c(y) |7 — m;|. If we denote the
identity permutation as Id = (1,2,...,n), then the weight of
a permutation 7 € S, is defined as wt(w) = doo(m,Id). The
{,-distance is also known as the Chebyshev distance and has
been well studied, see for example [11].

The Chebyshev permutation channel (CPC) works as fol-
lows [10]. For a g-ary alphabet ¥ = [0,¢q — 1], consider a
transmitted vector * = x122...x, € X". The r-bounded
Chebyshev permutation channel distorts by applying to it
a permutation of weight at most r. Thus, the received vector
Y =11Y2...Yp € X" satisfies y = wx for some permutation
m € S, with wt(m) < r. For a vector & € X", the ball of
radius 1 centered at x is given by B.(x) = {y € X" : y =
7w, € Sp,wt(mw) < r}.

Definition 1. Given an r-bounded CPC, two vectors =, ' €
™ are said to be confusable if B,(x)N B, (x') is nonempty.
They are not confusable, otherwise.

Consider the alphabet ¥ = [0,q — 1]. A vector & € X"
has composition (wo, ..., wq—1) if w; is the number of oc-
currences of ¢ in for ¢ € 3. If two vectors have different
compositions, then they are not confusable. For vectors with
the same composition, we consider the following mapping of
vectors into permutations.

Suppose & € X" has composition (wy, . . ., wq—1). For each
i€ X, let L;(j;x) be the jth occurrence of ¢ in « and define
supp;(z) = (L;(1;2),...,Li(w;;x)). When w; = 0, the
vector supp,(x) is the empty vector. Define supp(x) € S,
to be the concatenation of supp,(x), i € [0,q — 1], that is,

supp(x) = suppg(z)[supp; ()| - - - [supp,_; ().

Here, y|z denotes the concatenation of the vectors y and z.

Example 1. Let z = 001101000, =’ = 101000001. Then

Supp0($) = (172753 7a8,9)7 SUpp1($) = (37476)3
Suppo(w/) = (27475a65778)7 Suppl(m/) = (17379)

Therefore,

supp(x) = (1,2,5,7,8,9,3,4,6),
supp(z’) = (2,4,5,6,7,8,1,3,9).

The following lemma provides a sufficient condition to
check if two vectors with the same composition are confusable.

Lemma 1. Let ¢, &' € X™ be two vectors with the same
composition. If ds(supp(x),supp(x’)) > 2r + 1, then x and
x’ are not confusable in an r-bounded CPC.

In Example 1, do(supp(x),supp(2’)) > 3. Hence, & and
a’ are not confusable in the 1-bounded CPC by Lemma 1.

Remark 1. Langberg er al. defined du(supp(x),supp(z’))
to be the LPC.-distance [10]. However, the condition in
Lemma 1 is not necessary. For example, consider r = 1,
x = 0011 and &’ = 1100. Since Bi(c) = {0011,0101}
and Bp(c¢') = {1100,1010}, the vectors = and x’ are not
confusable by definition. However, supp(z) = (1,2,3,4) and
supp(z’) = (3,4,1,2). Thus do(supp(x),supp(z’)) = 2,
which does not satisfy the condition in Lemma 1.

The next lemma provides a necessary and sufficient condi-
tion for the confusability of two vectors.

Lemma 2. Let * = y|z and ' = y'|z’ be two different
vectors of the same length. Suppose that y and vy’ are
confusable. Then x and x' are confusable if and only if z
and z' are confusable.

Finally, we define the codes capable of correcting errors in
Chebyshev permutation channels.

Definition 2. A nonempty subset C C ¥ is called an (n,r),-
CPC code if any two distinct vectors from C are not confusable
in the r-bounded CPC. The rate of the code C is given by
log, |€|/n. For a family of codes C,, the asymptotic rate is
given by lim,, . log, [C,[/n.

Given n, r and ¢, let A,(n,r) denote the maximum size
that an (n,r),-CPC code can have. A code attaining this size
is called optimal.

A. Previous Work

Previously known upper and lower bounds of A4(n,r) for

general values of r are given below.

Theorem 1 (Langberg ef al. [10]). Let n, ¢ > 2 and r > 1
be integers. Then

q+r

[n/(r+1)]
q- 1)

Ay(n,r) < (

q,

q n
> .
Ay(n,r) > <2r—|— 1>

When (2r + 1)

In particular, there is a code family whose asymptotic rate is
at least 1 —log, (2r +1).

For r = 1, an improved upper bound is given below.

Theorem 2 (Langberg et al. [10]). For ¢ > 2, and all 3|n,

Ay(n,1) < <q + 2(3) + 2@))”/3.

As a consequence, Ag(n,1) < 22"/3 for all 3|n.

The bound in Theorem 2 is tight for n = 3. That is,
Aq(3,1) = q+2(%) +2(), where the optimal code consists of
codewords of types aaa, aba, bab, abc and cba for all possible
distinct symbols a, b and c. No other values of A,(n,r) are
known except when ¢ =2, r =1 and n € {1,...,6,9} [10].

When ¢ = 2, r = 1, the highest known asymptotic rate is
0.609 [10].

B. Our Contributions

As mentioned earlier, we recursively build our codes by
concatenating certain seed codes. More formally, let C and D
be two codes. We define a new code C|D = {z|y : x € C,y €
D}. If C has only one codeword x, then we write D instead
of {x}|D. Using this simple idea, we build the following code
families with higher rates.

o In Section III, we introduce a prefixing construction to
build (n, 1)2-CPC codes that have asymptotic rate which
yields 0.643.

o In Section IV, we build two families of (n, r),-CPC codes
for general ¢ and r. The first family of codes improves the
size by a factor of (1.5)"/(7=1) a5 compared to codes
given in Theorem 1. The second family of codes on the
other hand inherits certain local properties.

o For all code constructions, we provide accompanying
decoding algorithms that run in linear time.

III. BINARY CODES WITHr =1

In this section, we focus on the binary case when r = 1.
We first give a prefixing construction for (n, 1)2-CPC codes.
This family of codes has an asymptotic rate of 0.643 that is
significantly higher than the previously known rate of 0.609
[10]. Next, we improve the lower bounds for As(n,1) for
small values of n via computer search.

A. Prefixing Construction

The main idea of our recursive construction is to attach
prefixes carefully to shorter codewords so that the set of the
longer words is a code in the 1-bounded CPC. The choice of
prefixes is illustrated by the example below.

Example 2. Consider the following optimal (6, 1)-CPC code
Cg of size 16.

€ = {000000, 000100, 000110,000111,
111000, 111100, 111110, 111111,
100000, 100001, 100011,
011100,011101,011111,
001111, 110000}.

Using our notation, we may write Cg as,

Cs =000C3 U 111€5 U 1000C, U 0111€;
U {001111} U {110000},

where Gy is a (2,1)2-CPC code of size three, and C3 is a
(3,1)2-CPC code of size four.

The observation in Example 2 can be generalized to the
following construction that builds up longer codes from shorter
ones.

Construction 1. Fix n. Suppose that Cy, is a (k, 1)2-CPC code
for k < n. Define C, recursively as follows:

Cn £ 000C,,_5U111C,,_3 U 1000C,,—4 U0111C,,_4
U001111€,,_g U 110000€,,_g.

Since C,, is the disjoint union of six component codes, the size
of C,, is given by

|Cr| = 2|Cp_3| + 2|Cpr—s| + 2|Cpr_s]. (1)

The next theorem shows that C, is also an (n,1)3-CPC
code. Since optimal codes of length less than six are known
[10], Construction 1 yields a family of codes for all n > 6.

Theorem 3. For all n > 6, the code C,, from Construction 1 is
an (n,1)2-CPC code. The asymptotic rate of this code family
Cp is logy A = 0.643, where X is the largest real root of

28 — 223 — 222 — 2,

Proof. Consider two distinct codewords ¢,¢’ € €, and
we demonstrate that they are not confusable in the 1-
bounded CPC. For convenience, let P be the set of prefixes
{000, 111,1000,0001,001111,110000}. If ¢ and ¢’ have same
prefix in P, then they are not confusable by Lemma 2.

Hence, it remains to consider the case when ¢ and ¢’ have
different prefixes in P. We only check the case where ¢ €
000€,,_3. The other cases can be similarly verified and we
omit them in this proof.

o If ¢ € 111€,_3 U 1000C,,_4 U 110000C,,_g, then
doo (supp(e),supp(c’)) > 3 since Li(1l;¢) > 4 and
Li(1;¢) =1.

o If ¢ € 0111C,,_4, then do,(supp(c),supp(c’)) > 3 since
Lo(2;¢) =2 and Lo(2;¢) > 5.

o If ¢/ € 001111C,_g, then duo(supp(c),supp(c’)) > 4
since Lo(3;¢) =3 and Ly(3;¢') > 7.

Therefore, for all possible ¢, we have that

doo (supp(c),supp(c’)) > 3. By Lemma 1, ¢ and ¢’ are

not confusable. Thus C,, is an (n, 1)3-CPC code.

Now, the size of |C,,| satisfies the linear recurrence relation
(1). Therefore, following standard techniques (see for example
[12]), the asymptotic rate of this code family is given by
logy(A\) =~ 0.642803, where A is the largest real root of
% — 223 — 222 — 2. |

From the proof of Theorem 3, to decode a received vector
y to a codeword, we need to recursively determine the correct
prefixes (that belong to P) for y. More concretely, we have
the following decoding algorithm decode; for codes C,, that
runs in linear time.

Algorithm 1 Linear time decoder for C,, (Construction 1)

Input: y € By(x) for some x € C,
Output: decode;(y,n) such that decode;(y,n) = x
1: if n < 6 then
2: return x € C, such that y € B;(x)
3: if y1y2 = 00 and y3y4 # 11 then
4: return 000|decode;(ys + yalys---Yn,n — 3)
5. if Y1Y2 = 11 and Y3Ya # 00 then
6: return 111l|decode;(ys+ ys— L|lys...Yn,n —3)
7: if (y1y2y3 = 101 and y4y5 # 00) or y1y2ys = 011 then
8: return 0111|decode;(ys+ys — 1|y6-.-Yn,n —4)
9: if (y1y2ys = 010 and y4y5 7é 11) or y1y2ys = 100 then
10: return 1000|decode;(ys + y5|¥s - - - Yn,n — 4)
11: if Y1Y2Y3Yys = 0011 or Y1Y2Y3YalYys = 01011 then
12: return 001111|decode;(ys +y7 — llys ... Yn,n — 6)
13: if y1y2y3y4 = 1100 or y1y2y3y4ys = 10100 then
14: return 110000|decode;(ys + y7|Ys - - - Yn, 1 — 6)

Example 3. To illustrate Algorithm 1, consider the received
word y = 001110101001 of length 12. Since y has prefix
0011, we go to line 14 and compute decode;(y’,6) with y' =
001001. Next, since y’ has prefix 00 with y5y} # 11, we go to
line 4 and compute decode;(y”,3) with y” = 101. Finally,
since ¥y’ € B1(110), we have decode;(y”,3) = 110.

In summary, we have that

decode; (001110101001, 12)

= 001111|decode; (001001, 6)
= 001111]000|decode; (101, 3)
= 001111]000|110.

Direct application of Construction 1 with optimal codes of
length at most six [10, Table 1] yields two new optimal codes
of lengths eight and nine. From (1), we have |Cg| = 2|C5| +
2\(34|+2|(?2| = 46 and |€9| = 2|66|+2|65\+2|€'3| = 64, and
these values match the upper bounds provided in [10, Table
1]. Therefore, we have A3(8,1) =46 and A5(9,1) = 64.

B. Computation Results from Finding Maximum Cliques

In this subsection, we update the values of lower bound for
As(n, 1) via computer search. Langberg ef al. first constructed
a table of upper and lower bounds for As(n,1) [10, Table
1], where many values were obtained from computer search.
Langberg et al. then conjectured that optimal asymptotic rate

for r = 1 is 2/3 in [10], and that As(n,1) = 22*/3 for all
3|n. From their computations, they verified the conjecture for
n € {3,6,9}.

We continue this line of investigation and improve the lower
bounds on As(n, 1) for 7 < n < 16 (see Table I). In particular,
we determine As(n,1) for n < 15. To do so, we set up a
specific program that searches for the largest clique in a graph.

For a fixed value of n, we define a family of graphs
parametrized by the weight w, where 0 < w < n. In particular,
the graph G(n,w) consists of vertices which correspond to
the set of all binary words of length n and weight w. An
edge exists between two vertices, i.e., two words, if they are
not confusable. The algorithm MaxCliqueDyn [13] is then
used to determine the maximum size of the clique in these
graphs G(n,w). Since two words with different weights are
not confusable, the set of all words in these maximum cliques
form an (n, 1)3-CPC code. Hence, we determine As(n, 1) for
n < 15.

For n = 16, we apply Construction 1 to find A2(16,1) >
1644. We summarize the results in Table I and highlight the
optimal values in bold.

n Upper Bound | Lower Bound from [10] | New Lower Bound
3 4 4 4
4 8 8 8
5 12 12 12
6 16 16 16
7 30 28 30
8 46 42 46
9 64 64 64
10 116 104 116
11 178 157 178
12 256 246 256
13 450 388 450
14 696 594 696
15 1024 930 1024
16 1750 1454 1644

TABLE I: Upper and Lower Bounds on Aa(n,1)

IV. CODE CONSTRUCTION FOR GENERAL ¢ AND 7

In this section, we use the string concatentation method to
construct two families of g-ary codes in r-bounded CPC. The
first construction yields a family of codes with sizes larger than
those constructed in Theorem 1, while the second construction
yields a family of codes with good local properties.

A. General Code Constructions

For convenience, let g1 = |¢/2], ¢2 = [¢/2], ¥1 = [0,¢1 —
1] and 22 = [Q1,q - 1]
Construction 2. Let D; be a (2r —1,1),,-CPC code over ¥;
fori=1,2. Let

En = D1|D2|D1|Dy| - -+ |Dy,

n times
where 7 =1 if n is odd, j = 2, otherwise.

Theorem 4. For all integers n and q, the code &, from
Construction 2 is an (n(2r — 1),7),-CPC code. The decoder
for &, is given by Algorithm 2.

Proof Outline. To show that &, is an (n(2r — 1),r),-CPC
code, we demonstrate the correctness of Algorithm 2. In
particular, we suppose that a codeword = xi|xs]--- |z,
belongs to &,,. Hence, x; belongs to D if 7 is odd and Do,
otherwise. Let y = y, |y,| - - - |y,, € Br(x) and we prove that
the output of Algorithm 2 is indeed x, or, decodes(y) = x.

Using the notation in Algorithm 2, we prove the following
properties for all ¢ € [1,n],

0 YilYir1|Yirol - [Yn € Br(@il@iva|@ita| - |T0);

(i) z; € By(x;).
The proof is by induction and due to space constraints, we
omit the details of the proof. The theorem is then immediate
from the above properties. |

Algorithm 2 Decoder for &,

Input: y = y,|ys| - |y, € B,(x) for some x € &,
Output: decodes(y) such that decodes(y) = @
L y) <y,

2: for i € [1,n] do

3: j < 1ifdis odd, j < 2, otherwise

4: z; < subsequence of y}|y,;, formed by the first (2r — 1) entries in
5 Y;,, < subsequence that remains after removing z; from |y,

6: x; < the word decoded from z; using D

7: return xq|x2| - Ty

Example 4. Consider » = 1 in Construction 2. It is trivial that
an optimal (1,1),,-CPC code of size g; exists for ¢ = 1,2.
Therefore, by Theorem 4, there exists an (n, 1)q-CPC code of
size (q1)!™/?1(qo)"/?) ~ (q/2)™. In other words, this family
of codes has rate 1 — log, 2.

The previous known construction in Theorem 1 yields a
family of (n, 1),-CPC codes of size (¢/3)", or rate 1 —log, 3.
Therefore, Construction 2 improves the previous known lower
bound by a factor of (1.5)™ for all n.

Example 5. Generalizing Example 4, we consider » > 1
in Construction 2 and D; to be the set of all possible
nondecreasing sequences of length 2r — 1 over %; for ¢ =
1,2. Hence, for ¢ = 1,2, D; is a (2r — 1,7),,-CPC code
and in particular, D; has size (q’;’r 21’1_2) Applying Theo-
rem 4, we obtain an (n(2r — 1),r),-CPC code &, of size

(q1+2'r—2) [n/2] (q2+2r—2) n/2] _ (q/2+27‘—2)n
2r—1 2r—1 ~ 2r—1 :
Again, the previous known lower bound in Theorem 1 yields

codes of size (g/(2r + 1))"2"=1). Therefore, via Stirling’s
approximation, Construction 2 improves the construction by a
factor of (1.5)™ for all n.

Furthermore, Algorithm 2 may be simplified and have its
running time reduced as shown in Algorithm 2.

Algorithm 2x Decoder for £,, in Example 5

Input: y = y,|ys| |y, € Br(x) for some & € &,

Output: decode(y) such that decode; (y) = «

Ly)

2: for i € [1,n] do

3: j < 1ifdisodd, j < 2, otherwise

4 z; < subsequence of y;|y,;, formed by the first (2r — 1) entries in X;
5 y;+1 <« subsequence that remains after removing z; from y/, [Yit1

6: x; < sorted z; in nondecreasing order

7: return xq|x2| - |Ty

B. Codes with Local Properties

The string concatenation method can be used to construct
CPC codes with local properties. In this setting, a message
vector x is transmitted over the r-bounded CPC and the
received vector y is stored in memory without any error-
correction. At a later time, a user would like to retrieve certain
parts of the message x by accessing only a limited portion
of the stored vector y. Our coding objective is to ensure the
correct retrieval of information, while minimizing the number
of coordinates accessed. Our construction is as follows.

Construction 3. Let ¢ > 2. Let 1 denote the all-ones vector
of length 2r + 1 and Fy = {A\1: X\ € X}. Suppose that F; is
an (n;,r),-CPC code for i € [1,(]. Let

Ge = F1|Fo|F2|Fo| - -+ |Fo|Te.

(2¢—1) blocks

Using similar idea as in the proof of Theorem 4, we state
the following result without proof.

Theorem 5. The code G, from Construction 3 is an (n,r)q-
CPC code withn = (2r+1)(¢—1)+ Zle n;. Furthermore,
suppose that x € Gy is transmitted and y € B,.(x) is received.
Using Algorithm 3, any coordinate of x can be correctly
decoded by accessing at most max;e [y ¢ ni+2r+2 coordinates
of y.

We adopt the following notation in Algorithm 3. A typical
code in G, is written as

x = 1|x(0,1)|T2|T(0,2)| - - [T(0,0=1) T 2)
Let y € B, (x) and we rewrite y as:

Y =Y1[Y00lY21Y02)| 1Y0.-1)|Ye- 3

Algorithm 3 Local decoder for G,

Input: y as defined by (2) and (3)
index ¢ € [1,4] U ({0} x [1,£—1])
Output: decodes3(y,) such that decodes(y,1) = x;
1: if 4 = (0,¢’) then

2: A« (r+ 1)st coordinate of yg ;1

3: return A1

4: else

5: Mg « (r -+ 1)st coordinate? of Y(0,i—1)

6: AR < (r+ 1)st coordinate of y g ;

7: y’ < substring of length m; + 2r by concatenating the last r
coordinates of ¥y ;_1), ¥; and the first 7 coordinates of y g ;)

8: z < subsequence that remains after removing » Ar’s and r AR’s
from 3y’

9: a; < the word decoded from z using F;

10: return x;

Example 6. Consider ¢ = 2 and r = 1. While Construction
3 is similar to Construction B in [10], the rate obtained
from the former is higher. Consider the same seed code J,
a (24,1)2-CPC code of size 50220 (see [10, Example 17]).
Apply Construction 3 by setting F; = F for all ¢ € [1,/]

2Due to space constraints, we omit the detailed steps in the algorithm when
the index ¢ assumes boundary values 1 and 4.

and we obtain the code G, to be a (27¢ — 3,1)3-CPC code
of size 21 . 50220¢. Then the asymptotic rate of this code
family is 0.615. On the other hand, using the same seed code,
Construction B yields a family with rate 0.609.

While the rate of this code family is not as high as the family
of codes constructed by Construction 1, the codes constructed
in this example enjoy certain local properties. Specifically,
suppose that the message © € G, is transmitted and y is
received. Using Algorithm 3, we are able to retrieve any bit
of x by reading at most 28 consecutive bits in y for all values
of /.

V. CONCLUSION

Using string concatenation, we have constructed codes
capable of correcting errors in the Chebyshev permutation
channel. In addition to higher rates, our codes have linear time
decoding algorithms and a particular class of codes possesses
good local properties.

For the special case ¢ = 2, r = 1, we have verified
the conjecture that As(n,3) = [22"/3] for n < 15 and
constructed a family of codes with rates 0.643. Unfortunately,
the conjecture remains open.

ACKNOWLEDGEMENT

This work was done while X. Zhang was a research fellow
at Nanyang Technological University.

The authors thank the anonymous reviewers and the TPC
member for their constructive comments.

REFERENCES

[1] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data networks.
Prentice-Hall International New Jersey, 1992, vol. 2.

[2] M. Kovacevic and D. Vukobratovic, “Multiset codes for permutation
channels,” arXiv preprint arXiv:1301.7564, 2013.

[3] M. Kovacevic and P. Popovski, “Zero-error capacity of a class of timing

channels,” IEEE Trans. Inform. Theory, vol. 60, no. 11, pp. 6796-6800,

2014.

V. Anantharam and S. Verdu, “Bits through queues,” IEEE Trans. Inform.

Theory, vol. 42, no. 1, pp. 4-18, 1996.

S. Kadloor, R. S. Adve, and A. W. Eckford, “Molecular communication

using brownian motion with drift,” IEEE Trans. NanoBioscience, vol. 11,

no. 2, pp. 89-99, 2012.

[6] J. M. Walsh and S. Weber, “Capacity region of the permutation channel,”

in 46th Ann. Allerton Conf. Commun. Control Comput.. 2008, pp. 646—

652.

J. M. Walsh, S. Weber, and C. W. Maina, “Optimal rate—delay tradeoffs

and delay mitigating codes for multipath routed and network coded

networks,” IEEE Trans. Inform. Theory, vol. 55, no. 12, pp. 5491-5510,

2009.

[8] S. Shamai and E. Zehavi, “Bounds on the capacity of the bit-shift
magnetic recording channel,” IEEE Trans. Inform. Theory, vol. 37, no. 3,
pp- 863-872, 1991.

[9] V. Y. Krachkovsky, “Bounds on the zero-error capacity of the input-
constrained bit-shift channel,” IEEE Trans. Inform. Theory, vol. 40,
no. 4, pp. 1240-1244, 1994.

[10] M. Langberg, M. Schwartz, and E. Yaakobi, “Coding for the £~ -limited
permutation channel,” in Proc. Int. Symp. Inform. Theory. 2015, pp.
1936-1940.

[11] M. Deza, and T. Huang, “Metrics on permutations, a survey,” in J.
Combinatorics Inform. Syst. Sciences. Citeseer, 1998.

[12] D. E. Knuth, R. L. Graham, and O. Patashnik, Concrete mathematics.
Adison Wesley, 1989.

[13] J. Konc, and D. Janezi¢, “An improved branch and bound algorithm
for the maximum clique problem,” MATCH Commun. Math. Com-
put. Chem., 2007, vol. 58, pp. 569-590, http://www.sicmm.org/~konc/
maxclique.

[4

=

[5

—_

[7

—

