
String Concatenation Construction for Chebyshev
Permutation Channel Codes

Yeow Meng Chee∗, Han Mao Kiah∗, San Ling∗, Tuan Thanh Nguyen∗, Van Khu Vu∗, and Xiande Zhang†
∗School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
†School of Mathematical Sciences, University of Science and Technology of China, China

email: {ymchee, hmkiah, lingsan, nguyentu001, vankhu001}@ntu.edu.sg, drzhangx@ustc.edu.cn.

Abstract—We construct codes for the Chebyshev permutation
channels whose study was initiated by Langberg et al. (2015).
We establish several recursive code constructions and present
efficient decoding algorithms for our codes. In particular, our
constructions yield a family of binary codes of rate 0.643 when
r = 1. The upper bound on the rate in this case is 2/3 and the
previous highest rate is 0.609.

I. INTRODUCTION

Permutation channels have been proposed as a solution to
transmission networks that provide no guarantees on the in-
order delivery of information [1]. In addition to insertion,
deletion, and substitution errors, these channels have the effect
of delivering a random permutation of the message vector.
Examples include mobile ad hoc networks, vehicular networks,
delay tolerant networks, wireless sensor networks [2]. A
variety of permutation channel models have been studied under
different scenarios:

(i) timing channels [3] where information is being encoded
in the transmission times of messages, such as in queuing
theory [4] and in molecular communications [5];

(ii) degraded broadcast channels where input packets are
randomly permuted by selecting a permutation according
to a probability distribution [6], [7]; and

(iii) the bit-shift magnetic recording channels in standard
high-density magnetic recording systems [8], [9].

Recently, Langberg et al. [10] proposed the study of the
Chebychev permutation channel1. In this channel, general
vectors are transmitted and all symbols in the vector can
be displaced a limited number of r positions away from
their origins. In the same paper, Langberg et al. studied the
combinatorial properties of the channel and provided certain
direct and recursive code constructions.

We continue this investigation and provide new code con-
structions that improve the previous rates. Our constructions
make use of a recursive technique where we concatenate
several seed codes together. Langberg et al. used this technique
to construct a family of binary codes of rate 0.609 when r = 1
(see [10, Construction B]). We employ this technique in the
most general form and propose a prefixing construction that
yields a family of binary codes of rate 0.643 when r = 1.

1Langberg et al. [10] used the name `∞-limited permutation channel with
zero error for this channel.

Furthermore, in the case r = 1, using certain computation
techniques, we determine the optimal sizes of codes for lengths
up to 15.

II. PRELIMINARIES

For integers a ≤ b, let [a, b] denote the set {a, . . . , b}. Let
n be a positive integer and Sn be the set of all permutations
on the set [1, n]. For a permutation π ∈ Sn, let πi be the ith
component of π, that is, π = (π1, π2, . . . , πn).

For any two permutations π, π′ ∈ Sn, the `∞-distance is
defined as d∞(π, π′) = maxi∈[1,n] |πi − π′i|. If we denote the
identity permutation as Id = (1, 2, . . . , n), then the weight of
a permutation π ∈ Sn is defined as wt(π) = d∞(π, Id). The
`∞-distance is also known as the Chebyshev distance and has
been well studied, see for example [11].

The Chebyshev permutation channel (CPC) works as fol-
lows [10]. For a q-ary alphabet Σ = [0, q − 1], consider a
transmitted vector x = x1x2 . . . xn ∈ Σn. The r-bounded
Chebyshev permutation channel distorts x by applying to it
a permutation of weight at most r. Thus, the received vector
y = y1y2 . . . yn ∈ Σn satisfies y = πx for some permutation
π ∈ Sn with wt(π) ≤ r. For a vector x ∈ Σn, the ball of
radius r centered at x is given by Br(x) = {y ∈ Σn : y =
πx, π ∈ Sn, wt(π) ≤ r}.

Definition 1. Given an r-bounded CPC, two vectors x,x′ ∈
Σn are said to be confusable if Br(x)∩Br(x′) is nonempty.
They are not confusable, otherwise.

Consider the alphabet Σ = [0, q − 1]. A vector x ∈ Σn

has composition (w0, . . . , wq−1) if wi is the number of oc-
currences of i in x for i ∈ Σ. If two vectors have different
compositions, then they are not confusable. For vectors with
the same composition, we consider the following mapping of
vectors into permutations.

Suppose x ∈ Σn has composition (w0, . . . , wq−1). For each
i ∈ Σ, let Li(j;x) be the jth occurrence of i in x and define
suppi(x) = (Li(1;x), . . . , Li(wi;x)). When wi = 0, the
vector suppi(x) is the empty vector. Define supp(x) ∈ Sn

to be the concatenation of suppi(x), i ∈ [0, q − 1], that is,

supp(x) = supp0(x)|supp1(x)| · · · |suppq−1(x).

Here, y|z denotes the concatenation of the vectors y and z.

Example 1. Let x = 001101000, x′ = 101000001. Then

supp0(x) = (1, 2, 5, 7, 8, 9), supp1(x) = (3, 4, 6),

supp0(x′) = (2, 4, 5, 6, 7, 8), supp1(x′) = (1, 3, 9).

Therefore,

supp(x) = (1, 2, 5, 7, 8, 9, 3, 4, 6),

supp(x′) = (2, 4, 5, 6, 7, 8, 1, 3, 9).

The following lemma provides a sufficient condition to
check if two vectors with the same composition are confusable.

Lemma 1. Let x,x′ ∈ Σn be two vectors with the same
composition. If d∞(supp(x), supp(x′)) ≥ 2r + 1, then x and
x′ are not confusable in an r-bounded CPC.

In Example 1, d∞(supp(x), supp(x′)) ≥ 3. Hence, x and
x′ are not confusable in the 1-bounded CPC by Lemma 1.

Remark 1. Langberg et al. defined d∞(supp(x), supp(x′))
to be the LPC∞-distance [10]. However, the condition in
Lemma 1 is not necessary. For example, consider r = 1,
x = 0011 and x′ = 1100. Since B1(c) = {0011, 0101}
and B1(c′) = {1100, 1010}, the vectors x and x′ are not
confusable by definition. However, supp(x) = (1, 2, 3, 4) and
supp(x′) = (3, 4, 1, 2). Thus d∞(supp(x), supp(x′)) = 2,
which does not satisfy the condition in Lemma 1.

The next lemma provides a necessary and sufficient condi-
tion for the confusability of two vectors.

Lemma 2. Let x = y|z and x′ = y′|z′ be two different
vectors of the same length. Suppose that y and y′ are
confusable. Then x and x′ are confusable if and only if z
and z′ are confusable.

Finally, we define the codes capable of correcting errors in
Chebyshev permutation channels.

Definition 2. A nonempty subset C ⊆ Σn is called an (n, r)q-
CPC code if any two distinct vectors from C are not confusable
in the r-bounded CPC. The rate of the code C is given by
logq |C|/n. For a family of codes Cn, the asymptotic rate is
given by limn→∞ logq |Cn|/n.

Given n, r and q, let Aq(n, r) denote the maximum size
that an (n, r)q-CPC code can have. A code attaining this size
is called optimal.

A. Previous Work

Previously known upper and lower bounds of Aq(n, r) for
general values of r are given below.

Theorem 1 (Langberg et al. [10]). Let n, q ≥ 2 and r ≥ 1
be integers. Then

Aq(n, r) ≤
(
q + r

q − 1

)dn/(r+1)e

.

When (2r + 1)|q,

Aq(n, r) ≥
(

q

2r + 1

)n

.

In particular, there is a code family whose asymptotic rate is
at least 1− logq(2r + 1).

For r = 1, an improved upper bound is given below.

Theorem 2 (Langberg et al. [10]). For q ≥ 2, and all 3|n,

Aq(n, 1) ≤
(
q + 2

(
q

2

)
+ 2

(
q

3

))n/3

.

As a consequence, A2(n, 1) ≤ 22n/3 for all 3|n.

The bound in Theorem 2 is tight for n = 3. That is,
Aq(3, 1) = q+2

(
q
2

)
+2
(
q
3

)
, where the optimal code consists of

codewords of types aaa, aba, bab, abc and cba for all possible
distinct symbols a, b and c. No other values of Aq(n, r) are
known except when q = 2, r = 1 and n ∈ {1, . . . , 6, 9} [10].

When q = 2, r = 1, the highest known asymptotic rate is
0.609 [10].

B. Our Contributions

As mentioned earlier, we recursively build our codes by
concatenating certain seed codes. More formally, let C and D

be two codes. We define a new code C|D , {x|y : x ∈ C,y ∈
D}. If C has only one codeword x, then we write xD instead
of {x}|D. Using this simple idea, we build the following code
families with higher rates.

• In Section III, we introduce a prefixing construction to
build (n, 1)2-CPC codes that have asymptotic rate which
yields 0.643.

• In Section IV, we build two families of (n, r)q-CPC codes
for general q and r. The first family of codes improves the
size by a factor of (1.5)n/(2r−1), as compared to codes
given in Theorem 1. The second family of codes on the
other hand inherits certain local properties.

• For all code constructions, we provide accompanying
decoding algorithms that run in linear time.

III. BINARY CODES WITH r = 1

In this section, we focus on the binary case when r = 1.
We first give a prefixing construction for (n, 1)2-CPC codes.
This family of codes has an asymptotic rate of 0.643 that is
significantly higher than the previously known rate of 0.609
[10]. Next, we improve the lower bounds for A2(n, 1) for
small values of n via computer search.

A. Prefixing Construction

The main idea of our recursive construction is to attach
prefixes carefully to shorter codewords so that the set of the
longer words is a code in the 1-bounded CPC. The choice of
prefixes is illustrated by the example below.

Example 2. Consider the following optimal (6, 1)2-CPC code
C6 of size 16.

C6 = {000000, 000100, 000110, 000111,

111000, 111100, 111110, 111111,

100000, 100001, 100011,

011100, 011101, 011111,

001111, 110000}.

Using our notation, we may write C6 as,

C6 =000C3 ∪ 111C3 ∪ 1000C2 ∪ 0111C2

∪ {001111} ∪ {110000},

where C2 is a (2, 1)2-CPC code of size three, and C3 is a
(3, 1)2-CPC code of size four.

The observation in Example 2 can be generalized to the
following construction that builds up longer codes from shorter
ones.

Construction 1. Fix n. Suppose that Ck is a (k, 1)2-CPC code
for k < n. Define Cn recursively as follows:

Cn , 000Cn−3 ∪ 111Cn−3 ∪ 1000Cn−4 ∪ 0111Cn−4

∪ 001111Cn−6 ∪ 110000Cn−6.

Since Cn is the disjoint union of six component codes, the size
of Cn is given by

|Cn| = 2|Cn−3|+ 2|Cn−4|+ 2|Cn−6|. (1)

The next theorem shows that Cn is also an (n, 1)2-CPC
code. Since optimal codes of length less than six are known
[10], Construction 1 yields a family of codes for all n ≥ 6.

Theorem 3. For all n ≥ 6, the code Cn from Construction 1 is
an (n, 1)2-CPC code. The asymptotic rate of this code family
Cn is log2 λ ≈ 0.643, where λ is the largest real root of
x6 − 2x3 − 2x2 − 2.

Proof. Consider two distinct codewords c, c′ ∈ Cn and
we demonstrate that they are not confusable in the 1-
bounded CPC. For convenience, let P be the set of prefixes
{000, 111, 1000, 0001, 001111, 110000}. If c and c′ have same
prefix in P, then they are not confusable by Lemma 2.

Hence, it remains to consider the case when c and c′ have
different prefixes in P. We only check the case where c ∈
000Cn−3. The other cases can be similarly verified and we
omit them in this proof.
• If c′ ∈ 111Cn−3 ∪ 1000Cn−4 ∪ 110000Cn−6, then
d∞(supp(c), supp(c′)) ≥ 3 since L1(1; c) ≥ 4 and
L1(1; c′) = 1.

• If c′ ∈ 0111Cn−4, then d∞(supp(c), supp(c′)) ≥ 3 since
L0(2; c) = 2 and L0(2; c′) ≥ 5.

• If c′ ∈ 001111Cn−6, then d∞(supp(c), supp(c′)) ≥ 4
since L0(3; c) = 3 and L0(3; c′) ≥ 7.

Therefore, for all possible c′, we have that
d∞(supp(c), supp(c′)) ≥ 3. By Lemma 1, c and c′ are
not confusable. Thus Cn is an (n, 1)2-CPC code.

Now, the size of |Cn| satisfies the linear recurrence relation
(1). Therefore, following standard techniques (see for example
[12]), the asymptotic rate of this code family is given by
log2(λ) ≈ 0.642803, where λ is the largest real root of
x6 − 2x3 − 2x2 − 2. �

From the proof of Theorem 3, to decode a received vector
y to a codeword, we need to recursively determine the correct
prefixes (that belong to P) for y. More concretely, we have
the following decoding algorithm decode1 for codes Cn that
runs in linear time.

Algorithm 1 Linear time decoder for Cn (Construction 1)

Input: y ∈ B1(x) for some x ∈ Cn

Output: decode1(y, n) such that decode1(y, n) = x
1: if n < 6 then
2: return x ∈ Cn such that y ∈ B1(x)
3: if y1y2 = 00 and y3y4 6= 11 then
4: return 000|decode1(y3 + y4|y5 . . . yn, n− 3)
5: if y1y2 = 11 and y3y4 6= 00 then
6: return 111|decode1(y3 + y4 − 1|y5 . . . yn, n− 3)
7: if (y1y2y3 = 101 and y4y5 6= 00) or y1y2y3 = 011 then
8: return 0111|decode1(y4 + y5 − 1|y6 . . . yn, n− 4)
9: if (y1y2y3 = 010 and y4y5 6= 11) or y1y2y3 = 100 then

10: return 1000|decode1(y4 + y5|y6 . . . yn, n− 4)
11: if y1y2y3y4 = 0011 or y1y2y3y4y5 = 01011 then
12: return 001111|decode1(y6 + y7 − 1|y8 . . . yn, n− 6)
13: if y1y2y3y4 = 1100 or y1y2y3y4y5 = 10100 then
14: return 110000|decode1(y6 + y7|y8 . . . yn, n− 6)

Example 3. To illustrate Algorithm 1, consider the received
word y = 001110101001 of length 12. Since y has prefix
0011, we go to line 14 and compute decode1(y′, 6) with y′ =
001001. Next, since y′ has prefix 00 with y′3y

′
4 6= 11, we go to

line 4 and compute decode1(y′′, 3) with y′′ = 101. Finally,
since y′′ ∈ B1(110), we have decode1(y′′, 3) = 110.

In summary, we have that

decode1(001110101001, 12)

= 001111|decode1(001001, 6)

= 001111|000|decode1(101, 3)

= 001111|000|110.

Direct application of Construction 1 with optimal codes of
length at most six [10, Table 1] yields two new optimal codes
of lengths eight and nine. From (1), we have |C8| = 2|C5| +
2|C4|+2|C2| = 46 and |C9| = 2|C6|+2|C5|+2|C3| = 64, and
these values match the upper bounds provided in [10, Table
1]. Therefore, we have A2(8, 1) = 46 and A2(9, 1) = 64.

B. Computation Results from Finding Maximum Cliques

In this subsection, we update the values of lower bound for
A2(n, 1) via computer search. Langberg et al. first constructed
a table of upper and lower bounds for A2(n, 1) [10, Table
1], where many values were obtained from computer search.
Langberg et al. then conjectured that optimal asymptotic rate

for r = 1 is 2/3 in [10], and that A2(n, 1) = 22n/3 for all
3|n. From their computations, they verified the conjecture for
n ∈ {3, 6, 9}.

We continue this line of investigation and improve the lower
bounds on A2(n, 1) for 7 6 n 6 16 (see Table I). In particular,
we determine A2(n, 1) for n 6 15. To do so, we set up a
specific program that searches for the largest clique in a graph.

For a fixed value of n, we define a family of graphs
parametrized by the weight w, where 0 6 w 6 n. In particular,
the graph G(n,w) consists of vertices which correspond to
the set of all binary words of length n and weight w. An
edge exists between two vertices, i.e., two words, if they are
not confusable. The algorithm MaxCliqueDyn [13] is then
used to determine the maximum size of the clique in these
graphs G(n,w). Since two words with different weights are
not confusable, the set of all words in these maximum cliques
form an (n, 1)2-CPC code. Hence, we determine A2(n, 1) for
n 6 15.

For n = 16, we apply Construction 1 to find A2(16, 1) >
1644. We summarize the results in Table I and highlight the
optimal values in bold.

n Upper Bound Lower Bound from [10] New Lower Bound

3 4 4 4
4 8 8 8
5 12 12 12
6 16 16 16
7 30 28 30
8 46 42 46
9 64 64 64

10 116 104 116
11 178 157 178
12 256 246 256
13 450 388 450
14 696 594 696
15 1024 930 1024
16 1750 1454 1644

TABLE I: Upper and Lower Bounds on A2(n, 1)

IV. CODE CONSTRUCTION FOR GENERAL q AND r

In this section, we use the string concatentation method to
construct two families of q-ary codes in r-bounded CPC. The
first construction yields a family of codes with sizes larger than
those constructed in Theorem 1, while the second construction
yields a family of codes with good local properties.

A. General Code Constructions
For convenience, let q1 = bq/2c, q2 = dq/2e, Σ1 = [0, q1−

1] and Σ2 = [q1, q − 1].

Construction 2. Let Di be a (2r− 1, r)qi -CPC code over Σi

for i = 1, 2. Let

En = D1|D2|D1|D2| · · · |Dj︸ ︷︷ ︸
n times

,

where j = 1 if n is odd, j = 2, otherwise.

Theorem 4. For all integers n and q, the code En from
Construction 2 is an (n(2r − 1), r)q-CPC code. The decoder
for En is given by Algorithm 2.

Proof Outline. To show that En is an (n(2r − 1), r)q-CPC
code, we demonstrate the correctness of Algorithm 2. In
particular, we suppose that a codeword x = x1|x2| · · · |xn

belongs to En. Hence, xi belongs to D1 if i is odd and D2,
otherwise. Let y = y1|y2| · · · |yn ∈ Br(x) and we prove that
the output of Algorithm 2 is indeed x, or, decode2(y) = x.

Using the notation in Algorithm 2, we prove the following
properties for all i ∈ [1, n],

(i) y′i|yi+1|yi+2| · · · |yn ∈ Br(xi|xi+1|xi+2| · · · |xn);
(ii) zi ∈ Br(xi).

The proof is by induction and due to space constraints, we
omit the details of the proof. The theorem is then immediate
from the above properties. �

Algorithm 2 Decoder for En

Input: y = y1|y2| · · · |yn ∈ Br(x) for some x ∈ En

Output: decode2(y) such that decode2(y) = x
1: y′1 ← y1
2: for i ∈ [1, n] do
3: j ← 1 if i is odd, j ← 2, otherwise
4: zi ← subsequence of y′i|yi+1 formed by the first (2r − 1) entries in Σj

5: y′i+1 ← subsequence that remains after removing zi from y′i|yi+1

6: xi ← the word decoded from zi using Dj

7: return x1|x2| · · · |xn

Example 4. Consider r = 1 in Construction 2. It is trivial that
an optimal (1, 1)qi -CPC code of size qi exists for i = 1, 2.
Therefore, by Theorem 4, there exists an (n, 1)q-CPC code of
size (q1)dn/2e(q2)bn/2c ≈ (q/2)n. In other words, this family
of codes has rate 1− logq 2.

The previous known construction in Theorem 1 yields a
family of (n, 1)q-CPC codes of size (q/3)n, or rate 1− logq 3.
Therefore, Construction 2 improves the previous known lower
bound by a factor of (1.5)n for all n.

Example 5. Generalizing Example 4, we consider r > 1
in Construction 2 and Di to be the set of all possible
nondecreasing sequences of length 2r − 1 over Σi for i =
1, 2. Hence, for i = 1, 2, Di is a (2r − 1, r)qi -CPC code
and in particular, Di has size

(
qi+2r−2

2r−1

)
. Applying Theo-

rem 4, we obtain an (n(2r − 1), r)q-CPC code En of size(
q1+2r−2

2r−1

)dn/2e(q2+2r−2
2r−1

)bn/2c ≈
(
q/2+2r−2

2r−1

)n
.

Again, the previous known lower bound in Theorem 1 yields
codes of size (q/(2r + 1))n(2r−1). Therefore, via Stirling’s
approximation, Construction 2 improves the construction by a
factor of (1.5)n for all n.

Furthermore, Algorithm 2 may be simplified and have its
running time reduced as shown in Algorithm 2∗.

Algorithm 2∗ Decoder for En in Example 5
Input: y = y1|y2| · · · |yn ∈ Br(x) for some x ∈ En

Output: decode∗2(y) such that decode∗2(y) = x
1: y′1 ← y1
2: for i ∈ [1, n] do
3: j ← 1 if i is odd, j ← 2, otherwise
4: zi ← subsequence of y′i|yi+1 formed by the first (2r − 1) entries in Σj

5: y′i+1 ← subsequence that remains after removing zi from y′i|yi+1

6: xi ← sorted zi in nondecreasing order
7: return x1|x2| · · · |xn

B. Codes with Local Properties

The string concatenation method can be used to construct
CPC codes with local properties. In this setting, a message
vector x is transmitted over the r-bounded CPC and the
received vector y is stored in memory without any error-
correction. At a later time, a user would like to retrieve certain
parts of the message x by accessing only a limited portion
of the stored vector y. Our coding objective is to ensure the
correct retrieval of information, while minimizing the number
of coordinates accessed. Our construction is as follows.

Construction 3. Let ` > 2. Let 1 denote the all-ones vector
of length 2r + 1 and F0 = {λ1 : λ ∈ Σ}. Suppose that Fi is
an (ni, r)q-CPC code for i ∈ [1, `]. Let

G` = F1|F0|F2|F0| · · · |F0|F`︸ ︷︷ ︸
(2`−1) blocks

.

Using similar idea as in the proof of Theorem 4, we state
the following result without proof.

Theorem 5. The code G` from Construction 3 is an (n, r)q-
CPC code with n = (2r+ 1)(`− 1) +

∑`
i=1 ni. Furthermore,

suppose that x ∈ G` is transmitted and y ∈ Br(x) is received.
Using Algorithm 3, any coordinate of x can be correctly
decoded by accessing at most maxi∈[1,`] ni+2r+2 coordinates
of y.

We adopt the following notation in Algorithm 3. A typical
code in G` is written as

x = x1|x(0,1)|x2|x(0,2)| · · · |x(0,`−1)|x`. (2)

Let y ∈ Br(x) and we rewrite y as:

y = y1|y(0,1)|y2|y(0,2)| · · · |y(0,`−1)|y`. (3)

Algorithm 3 Local decoder for G`

Input: y as defined by (2) and (3)
index i ∈ [1, `] ∪ ({0} × [1, `− 1])

Output: decode3(y, i) such that decode3(y, i) = xi

1: if i = (0, i′) then
2: λ← (r + 1)st coordinate of y(0,i′)
3: return λ1
4: else
5: λL ← (r + 1)st coordinate2 of y(0,i−1)
6: λR ← (r + 1)st coordinate of y(0,i)

7: y′ ← substring of length ni + 2r by concatenating the last r
coordinates of y(0,i−1), yi and the first r coordinates of y(0,i)

8: z ← subsequence that remains after removing r λL’s and r λR’s
from y′

9: xi ← the word decoded from z using Fi

10: return xi

Example 6. Consider q = 2 and r = 1. While Construction
3 is similar to Construction B in [10], the rate obtained
from the former is higher. Consider the same seed code F,
a (24, 1)2-CPC code of size 50220 (see [10, Example 17]).
Apply Construction 3 by setting Fi = F for all i ∈ [1, `]

2Due to space constraints, we omit the detailed steps in the algorithm when
the index i assumes boundary values 1 and `.

and we obtain the code G` to be a (27` − 3, 1)2-CPC code
of size 2`−1 · 50220`. Then the asymptotic rate of this code
family is 0.615. On the other hand, using the same seed code,
Construction B yields a family with rate 0.609.

While the rate of this code family is not as high as the family
of codes constructed by Construction 1, the codes constructed
in this example enjoy certain local properties. Specifically,
suppose that the message x ∈ G` is transmitted and y is
received. Using Algorithm 3, we are able to retrieve any bit
of x by reading at most 28 consecutive bits in y for all values
of `.

V. CONCLUSION

Using string concatenation, we have constructed codes
capable of correcting errors in the Chebyshev permutation
channel. In addition to higher rates, our codes have linear time
decoding algorithms and a particular class of codes possesses
good local properties.

For the special case q = 2, r = 1, we have verified
the conjecture that A2(n, 3) =

⌊
22n/3

⌋
for n 6 15 and

constructed a family of codes with rates 0.643. Unfortunately,
the conjecture remains open.

ACKNOWLEDGEMENT

This work was done while X. Zhang was a research fellow
at Nanyang Technological University.

The authors thank the anonymous reviewers and the TPC
member for their constructive comments.

REFERENCES

[1] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data networks.
Prentice-Hall International New Jersey, 1992, vol. 2.

[2] M. Kovacevic and D. Vukobratovic, “Multiset codes for permutation
channels,” arXiv preprint arXiv:1301.7564, 2013.

[3] M. Kovacevic and P. Popovski, “Zero-error capacity of a class of timing
channels,” IEEE Trans. Inform. Theory, vol. 60, no. 11, pp. 6796–6800,
2014.

[4] V. Anantharam and S. Verdu, “Bits through queues,” IEEE Trans. Inform.
Theory, vol. 42, no. 1, pp. 4–18, 1996.

[5] S. Kadloor, R. S. Adve, and A. W. Eckford, “Molecular communication
using brownian motion with drift,” IEEE Trans. NanoBioscience, vol. 11,
no. 2, pp. 89–99, 2012.

[6] J. M. Walsh and S. Weber, “Capacity region of the permutation channel,”
in 46th Ann. Allerton Conf. Commun. Control Comput.. 2008, pp. 646–
652.

[7] J. M. Walsh, S. Weber, and C. W. Maina, “Optimal rate–delay tradeoffs
and delay mitigating codes for multipath routed and network coded
networks,” IEEE Trans. Inform. Theory, vol. 55, no. 12, pp. 5491–5510,
2009.

[8] S. Shamai and E. Zehavi, “Bounds on the capacity of the bit-shift
magnetic recording channel,” IEEE Trans. Inform. Theory, vol. 37, no. 3,
pp. 863–872, 1991.

[9] V. Y. Krachkovsky, “Bounds on the zero-error capacity of the input-
constrained bit-shift channel,” IEEE Trans. Inform. Theory, vol. 40,
no. 4, pp. 1240–1244, 1994.

[10] M. Langberg, M. Schwartz, and E. Yaakobi, “Coding for the `∞-limited
permutation channel,” in Proc. Int. Symp. Inform. Theory. 2015, pp.
1936–1940.

[11] M. Deza, and T. Huang, “Metrics on permutations, a survey,” in J.
Combinatorics Inform. Syst. Sciences. Citeseer, 1998.

[12] D. E. Knuth, R. L. Graham, and O. Patashnik, Concrete mathematics.
Adison Wesley, 1989.

[13] J. Konc, and D. Janežič, “An improved branch and bound algorithm
for the maximum clique problem,” MATCH Commun. Math. Com-
put. Chem., 2007, vol. 58, pp. 569–590, http://www.sicmm.org/∼konc/
maxclique.

