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Maximum Distance Separable Codes for
Symbol-Pair Read Channels
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Abstract—We study (symbol-pair) codes for symbol-pair read
channels introduced recently by Cassuto and Blaum (2010). A Sin-
gleton-type bound on symbol-pair codes is established and infinite
families of optimal symbol-pair codes are constructed. These codes
aremaximumdistance separable (MDS) in the sense that theymeet
the Singleton-type bound. In contrast to classical codes, where all
known -ary MDS codes have length , we show that -ary
MDS symbol-pair codes can have length . In addition, we
completely determine the existence of MDS symbol-pair codes for
certain parameters.

Index Terms—Codes for magnetic storage, maximal distance
separable, Singleton-type bound, symbol-pair read channels.

I. INTRODUCTION

S YMBOL-PAIR coding theory has recently been introduced
by Cassuto and Blaum [2], [3] to address channels with

high write resolution but low read resolution, so that individual
symbols cannot be read off due to physical limitations. An ex-
ample of such channels is magnetic-storage, where information
may be written via a high resolution process such as lithography
and then read off by a low resolution technology such as mag-
netic head.
The theory of symbol-pair codes is at a rudimentary stage.

Cassuto and Blaum [2], [3] laid out a framework for combating
pair-errors, relating pair-error correction capability to a new
metric called pair-distance. They also provided code construc-
tions and studied decoding methods. Bounds and asymptotics
on the size of optimal symbol-pair codes are obtained. More
recently, Cassuto and Litsyn [4] constructed cyclic symbol-pair
codes using algebraic methods, and showed that there exist
symbol-pair codes whose rates are strictly higher, compared to
codes for the Hamming metric with the same relative distance.
Yaakobi et al. [5] presented efficient algorithms for decoding
of cyclic symbol-pair codes.
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This paper continues the investigation of codes for
symbol-pair channels. We establish a Singleton-type bound
for symbol-pair codes and construct MDS symbol-pair codes
(codes meeting this Singleton-type bound). In particular, we
construct -ary MDS symbol-pair codes of length and
pair-distance and , where can be as large as .
In contrast, the lengths of nontrivial classical -ary MDS codes
are conjectured to be . In addition, we completely settle
the existence of MDS symbol-pair codes of length with
pair-distance , for certain parameters.
The rest of the paper is organized as follows. In Section II, we

introduce basic notation and definitions and derive a Singleton-
type bound for symbol-pair codes. In Section III, we make use
of interleaving and graph theoretic concepts to construct MDS
symbol-pair codes from classical MDS codes. Unfortunately,
such methods are inadequate to determine completely the ex-
istence of MDS symbol-pair codes. In Section IV, we introduce
other construction methods and give complete solutions in cer-
tain instances. Technical proofs are deferred to the Appendix.

II. PRELIMINARIES

Throughout this paper, is a set of elements, called sym-
bols. For a positive integer , denotes the ring .
The coordinates of are indexed by elements of , so
that .
A pair-vector over is a vector in . We emphasize

that a vector is a pair-vector through the notation ,
in lieu of . For any , the
symbol-pair read vector of is the pair-vector (over )

Obviously, each vector has a unique symbol-pair
read vector . However, not all pair-vectors
over have a corresponding vector in .
Let . The pair-distance between vectors and

is defined as

where denotes the usual Hamming distance. Cassuto and
Blaum [3] proved that is a metric space, and showed
the following relationship between pair-distance and Hamming
distance.
Proposition 2.1 (Cassuto and Blaum [3]): For

such that , we have
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In the extreme cases in which or , we have
.

A ( -ary) code of length is a set . Elements of
are called codewords. The code is said to have pair-dis-

tance if and we
denote such a code by -symbol-pair code. The size of an

-symbol-pair code is the number of codewords it con-
tains and the size of a symbol-pair code satisfies the following
Singleton-type bound.
Theorem 2.1. (Singleton Bound): Let and .

If is an -symbol-pair code, then .
Proof: Let be an -symbol-pair code with

and . Delete the last coordinates from all the
codewords of . Observe that any consecutive coordinates
contribute at most to the pair-distance. Since has pair-dis-
tance , the resulting vectors of length remain distinct
after deleting the last coordinates from all codewords. The
maximum number of distinct vectors of length over
an alphabet of size is . Hence, .
We call an -symbol-pair code of size max-

imum distance separable (MDS). In this paper, we construct
new infinite classes of MDS symbol-pair codes and completely
determine the existence of MDS symbol-pair codes for certain
parameters.

III. MDS SYMBOL-PAIR CODES FROM
CLASSICAL MDS CODES

In this section, we give several methods for deriving MDS
symbol-pair codes from classical MDS codes.
Note that is trivially an MDS -symbol-pair

code for all and and so, we consider codes of
pair-distance at least three.

A. MDS Symbol-Pair Codes and Classical MDS Codes

Recall that a classical MDS -code, is a -ary code of
length with Hamming distance and size . Exploiting
the relationship between pair-distance and Hamming distance,
we develop some general constructions for MDS symbol-pair
codes and determine the existence of all such codes with pair-
distance three.
Proposition 3.1: An MDS -code with is an

MDS -symbol-pair code.
Proof: Let be an MDS -code of size . By

Proposition 2.1, has pair-distance at least . Therefore,
meets the Singleton bound of Theorem 2.1.
The following corollary follows immediately from classical

MDS codes, mainly, Reed–Solomon codes and their extensions
(see [6]).
Corollary 3.1:
i) There exists an MDS -symbol-pair code for all

, , and .
ii) There exists anMDS -symbol-pair code for all

, , and .
iii) There exists an MDS -symbol-pair code whenever

is a prime power, and .
iv) There exists an MDS -symbol-pair code for all

, .

In particular, Corollary 3.1(iv) settles completely the existence
of MDS -symbol-pair codes.

B. MDS Symbol-Pair Codes From Interleaving Classical
MDS Codes

We use the interleaving method of Cassuto and Blaum [3] to
obtainMDS symbol-pair codes. Cassuto and Blaum showed that
a symbol-pair code with even pair-distance can be obtained by
interleaving two classical codes of the same length and distance.
Theorem 3.1 (Cassuto and Blaum [3]): If there exists an

-code of size and an -code of size , then
there exists a -symbol-pair code of size .
Interleaving classical MDS codes yield the following

corollary.
Corollary 3.2:
i) There exists an MDS -symbol-pair code for
all , , and .

ii) There exists an MDS -symbol-pair code for all
, , and .

iii) There exists an MDS -symbol-pair code when-
ever is a prime power, and .

iv) There exists an MDS -symbol-pair code for all
, .

v) There exists an MDS -symbol-pair code for all
, .

Corollary 3.2 (iv) and (v) settle the existence of MDS
-symbol-pair codes and MDS -symbol-pair codes

for even . In Section IV, we exhibit that such MDS codes
indeed exist for all and .

C. MDS Symbol-Pair Codes From Extending Classical
MDS Codes

MDS symbol-pair codes obtained by interleaving necessarily
have even length and distance. Furthermore, the length of
symbol-pair codes obtained is only a factor of two longer than
that of the input classical codes. In this section, we use graph
theoretical concepts to extend classical MDS codes of length
to MDS symbol-pair codes of length up to .
We use standard concepts of graph theory presented by Bondy

and Murty [7, Ch. 1–3]. Namely, a graph is a pair ,
where is a set of vertices and is a set of unordered pairs of
, called edges. The order of is , the number of vertices,

while the size of is , the number of edges.
A trail of length in is a list of vertices

such that for , and
for . The trail is said to be closed

if . A closed trail is a cycle if for
. The length of a shortest cycle in a graph is

called its girth.
On the other hand, a trail that transverses all edges in is

called an eulerian trail. If admits a closed eulerian trail, then
is said to be eulerian. Equipped with the concepts of girth and

eulerian trails, we introduce the next construction.
Proposition 3.2: Suppose there exists an MDS -code

and there exists an eulerian graph of order , size and girth
at least . Then, there exists an MDS
-symbol-pair code.
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Proof: Let be an eulerian graph of order , size and
girth at least , where . Consider a closed
eulerian trail , where ,

, and , for . Let be an
MDS -code and consider the -ary code of length ,

We claim that has pair-distance at least .
Indeed, pick any . Since , we have

. It follows that

since on the contrary there would exist at least edges
in such that

and for all . But since the number
of vertices such that is at most , these

edges must induce a subgraph (of order ) that contains
a cycle of length at most . This contradicts our assumption
that has girth at least .
Consequently, . Finally, observe

that , and hence is an MDS symbol-pair
code by Theorem 2.1.
Example 3.1: Consider the complete graph of order five,

whose vertex set is of . Hence, its edge set comprises all ten
unordered pairs of . The graph is eulerian as it admits the
closed eulerian trail, 01234024130. Trivially, the girth of is
three.
Hence, given an MDS -code and since sat-

isfies the conditions of Proposition 3.2, we have an MDS
-symbol-pair code.

More concretely, an MDS -symbol-pair code is given
by

Observe that when , anMDS -symbol-pair code
cannot be obtained via Corollary 3.1 or Corollary 3.2.
To apply Proposition 3.2, we need eulerian graphs of speci-

fied order, size, and girth. However, little is known about how
many edges an eulerian graph with a given number of vertices
and given girth can have. Novák [8], [9] proved tight upper
bounds on the number of edges in an eulerian graph of girth
four. Below, we establish the following results on the size of an
eulerian graph of order (of girth three), and those of girth four.
Proposition 3.3: Let and . Then,

there exists an eulerian graph of order and size , for
, except when .

Define

if even
if odd

Proposition 3.4: Let . Then, there exists an eulerian
graph of order , size , and girth at least four, for all

, , except when and
.

For , we have the following proposition.

Proposition 3.5:
i) For even , there exists an eulerian graph of order

, girth at least four, and size
.

ii) For odd , there exists an eulerian graph of order ,
girth at least four, and size .

We remark that Novák [8], [9] established the existence of
eulerian graph of order and girth at least four with size ex-
actly . In contrast, Propositions 3.4 and 3.5 provide an
eulerian graph of order and girth at least four for a spectrum
of sizes. Proofs for Propositions 3.3, 3.4, and 3.5 are deferred to
Appendix A.
Corollary 3.3: Let be a prime power, . Then, there

exists an MDS -symbol-pair code whenever
1) or , for odd;
2) or , for even.
Proof: Apply Propositions 3.2 and 3.3 to classical MDS

codes.
Corollary 3.4: Let be a prime power, . Then, there

exists an MDS -symbol-pair code whenever
1) , or and
even and , for odd;

2) , , for even.
Proof: Apply Propositions 3.2, 3.4, and 3.5 to classical

MDS codes.
These results show that in contrast to classical -ary MDS

codes of length , where it is conjectured that , we can
have -aryMDS symbol-pair codes of length with .

IV. CONSTRUCTION OF MDS SYMBOL-PAIR CODES WITH
SPECIFIC LENGTHS AND PAIR-DISTANCES AND THE EXISTENCE

OF MDS SYMBOL-PAIR CODES

Observe that while Section III constructs MDS symbol-pair
codes from classical MDS codes, the latter is usually defined
over a finite field, whose size is necessarily a prime power. Un-
fortunately, the set of prime powers has density zero in the set
of positive integers.
In contrast, for fixed and , we conjecture that the set of

alphabet sizes where an MDS -symbol-pair code exists
has density one. Specifically, we conjecture the following.
Conjecture: Fix . There exists a such that an

MDS -symbol-pair exists for all .
In this section, we verify the conjecture for the following set

of parameters.
1) and , for all ,
2) , for , and,
3) , for .
To this end, we utilize a recursive method that builds an

MDS symbol-pair code over a larger alphabet using MDS
symbol-pair codes defined over smaller alphabets. This re-
cursive construction is introduced formally in Section IV-C.
However, to seed this recursion, the MDS symbol-pair codes
given in Section III are insufficient. Therefore, we need addi-
tional MDS -symbol-pair codes, particularly when is
not a prime power. These codes are given in Sections IV-A and
IV-B.
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A. -Linear MDS Symbol-Pair Codes

We provide constructions for MDS -symbol-pair
codes for and for certain small values of ,
and . We remark that for even , MDS -symbol-pair
codes have been constructed in Corollary 3.2, and MDS

-symbol-pair codes can be constructed by inter-
leaving classical repetition codes. Here, we construct MDS

-symbol-pair codes and MDS -symbol-pair codes
for all .
Throughout this section, we assume . Besides being

MDS, the codes constructed have -linearity.
Definition 4.1: A code is said to be -linear if

for all , and .
As with classical codes, a -linear code must contain the

zero vector . In addition, determining the minimum pair-dis-
tance of a -linear code is equivalent to determining the min-
imum pair-weight of a nonzero codeword.
Definition 4.2: The pair-weight of is

.
The proof of the following lemma is similar to the classical

case.
Lemma 4.1: Let be a -linear code. Then, has pair-

distance .
In the rest of the section, the -linear codes we construct are

of size . We describe such a code via a generator matrix in
standard form, that is, a matrix over of the form

so that each codeword is given by , where .
Proposition 4.1: Let and . Let be a -linear

code with generator matrix,

...
...
. . .

...
...

...

Then, is a -linear MDS -symbol-pair code.
Proof: It is readily verified that has size . Hence, by

Lemma 4.1, it suffices to show that for all ,

Write
and let

We have the following cases.
i) The case :
Then , and so .

ii) The case :
If for all , then ,
and so . If for some ,

, then either or is nonzero.
Otherwise,

which implies , a contradiction. Hence,
, and since or is nonzero, .

iii) The case :
If , then both and are nonzero. Hence,

. If for some , ,
then is nonzero and

and hence, .
This completes the proof.
Proposition 4.2: Let and let be a -linear code with

generator matrix

if is even,

otherwise.

Then is an MDS -symbol-pair code.
Proof: It is readily verified that has size . Hence, by

Lemma 4.1, it is also easy to see that the pair-weight of all
nonzero vectors in is .
Propositions 4.1 and 4.2 settle completely the existence of

MDS - and -symbol-pair codes, respectively. When
, the task is complex and hence, we determine

the existence only for a certain set of parameters.
The next two propositions provide an infinite class and some

small MDS symbol-pair codes required to seed the recursive
method in Section IV-C.
Proposition 4.3: Suppose that is odd prime and

. Let be a -linear code with generator matrix,

...
...
...
. . .

...
...

...
...

Then, is an MDS -symbol-pair code.
Proof: It is readily verified that has size . Hence, by

Lemma 4.1, it suffices to show that for all ,

Define , , and as follows:
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Write and let

We have the following cases.
1) The case :
Then and so, .

2) The case :
If for all , then
and so . Otherwise, for
some . Then either or is nonzero.
Otherwise,

implies that . Since is odd, , a
contradiction. Hence, .

3) The case :
a) Suppose that with .
If (mod 2), then either or is
nonzero, so . Otherwise,

implies that . Since is odd, , a con-
tradiction.
If (mod 2), then either or is
nonzero, so . Otherwise,

implies that . Since
is even and is prime, , a contradiction.

b) Suppose that for some .
If , then either or and hence,

. Otherwise, , then either or
and so, .

4) The case :
If , then both and are nonzero. So,

. Otherwise, for some
. Then both and are nonzero and hence,

.
This completes the proof.
Proposition 4.4: There exist -linear MDS -symbol-

pair codes for the following set of parameters:
i) ,
ii) , ,
iii) , .
Proof: Generator matrices for the respective codes are

given in Table I.

B. Family of MDS Symbol-Pair Codes via Development

We construct an MDS -symbol-pair code for all odd
primes . Similar to the concept of generator matrices, we obtain

TABLE I
GENERATOR MATRICES FOR -LINEAR MDS SYMBOL-PAIR CODES

a full set of codewords by developing a smaller subset of code-
words over some group. The concept of development is ubiqui-
tous in combinatorial design theory (see [10, Chs. VI and VII],)
and we construct the required MDS symbol-pair codes via this
method.
We define the notion of development formally. Proofs in this

section are deferred to Appendix B.
Definition 4.3: Let be even and be an Abelian additive

group. A -development -symbol-pair code is a set
of codewords in such that for distinct codewords , , the
following hold.
i) for

, , and,
ii) for

, .
Proposition 4.5: Let be even. Suppose is a -develop-

ment -symbol-pair code with .
For , , let

(1)

Then, is an MDS
-symbol-pair code.

Therefore, to construct an MDS -symbol-pair
code, it suffices to construct a set of codewords, instead of
a set of codewords. Hence, for certain values of and ,
a computer search is effective to construct MDS symbol-pair
codes. In the instance when , we have the following
collection of -development MDS -symbol-pair codes.
Proposition 4.6: Let be prime with and .
Let consist of the following four codewords:
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Let be the following set of codewords:

where and

if ,
otherwise.

Then, is a -development -symbol-pair code.
In addition, when , a -development -symbol-

pair code is given by the following six codewords:

Therefore, applying Propositions 4.5 and 4.6, we have the
following existence result.
Corollary 4.1: There exists an MDS -symbol-pair

code for odd primes .

C. Complete Solution of the Existence of MDS Symbol-Pair
Codes for Certain Parameters

We settle completely the existence of MDS symbol-pair
codes for certain parameters.
In particular, define

and we establish the following.
Theorem 4.1: The following hold.
i) for and , or ,
ii) for , and,
iii) for .
Observe that Theorem 4.1(i) follows from the opening remark

in Section III, Corollary 3.1(iv), and Propositions 4.1 and 4.2.
For Theorem 4.1(ii) and Theorem 4.1(iii), we require the fol-
lowing recursive construction.
Proposition 4.7 (Product Construction): If there ex-

ists an MDS -symbol-pair code and an MDS
-symbol-pair code, then there exists an MDS
-symbol-pair code.

Proof: Let be an MDS -symbol-pair code over
for , 2. For and , let

.
Consider the code over ,

It is readily verified that and it remains to
verify that the minimum pair-distance is at least .

TABLE II
SOME MDS SYMBOL-PAIR CODES

Indeed for distinct ,

Proof of Theorem 4.1(ii) and (iii): Define

To show that , it suffices by Propo-
sition 4.7 to construct MDS -symbol-pair codes for

. The required MDS -symbol-pair codes are con-
structed in Section III, IV-A, and IV-B. We summarize the re-
sults in Table II.
Observe that trivially. However, when

, regard an -symbol-pair code as a
(classical) -code, whose size is at most seven by Plotkin
bound. Hence, an MDS -symbol-pair code whose size is
eight cannot exist and so, .

V. CONCLUSION

In this paper, we established a Singleton-type bound for
symbol-pair codes and constructed infinite families of optimal
symbol-pair codes. All these codes are of the maximum dis-
tance separable (MDS) type in that they meet the Singleton-type
bound. We also show how classical MDS codes can be extended
to MDS symbol-pair codes using eulerian graphs of specified
girth. In contrast with -ary classical MDS codes, where all
known such codes have length , we establish that -ary
MDS symbol-pair codes can have length . In addition, we
gave complete solutions to the existence of MDS symbol-pair
codes for certain parameters.

APPENDIX A
EULERIAN GRAPHS OF SPECIFIED SIZE AND GIRTH

We give detailed proofs of Propositions 3.3, 3.4, and 3.5. In
particular, we construct eulerian graphs with girth at least three
and four and specified sizes.
A graph is said to be even if the degree of each

vertex is even. Hence, we have the following characterization
of eulerian graphs due to Euler.
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TABLE III
EULERIAN GRAPHS OF SMALL SIZE WITH ORDER , GIRTH AT LEAST THREE

TABLE IV
EULERIAN GRAPHS OF SMALL SIZE WITH ORDER , GIRTH AT LEAST FOUR

Theorem A.1. (See [7, Th. 3.5]): Let be a connected
graph. Then is eulerian if and only if is an even graph.
Next, we define certain operations on graphs which aid us in

constructing even graphs.
i) Let be graphs defined on the same vertex set . We
denote the graph by and the
graph by . Suppose and are
even graphs. If and are edge-disjoint, then is
even and if in addition, is connected, then eulerian
by TheoremA.1. Similarly, if , then
is even and eulerian (if is connected).

ii) Let be a graph with vertices , and edge
. We subdivide edge (see [7, Sec. 2.3]) to

obtain the graph .
In other words, we add the vertex and replace the edge

with the edges and . Suppose is
an eulerian graph with order , size , and girth . Then
subdividing any edge of , we obtain an eulerian graph
with order , size and girth at least .

With these operations, we prove the stated propositions.
1) Proof of Proposition 3.3: The proposition is readily ver-

ified for . When , let and we
prove the proposition by induction. We first construct eulerian
graphs of small sizes and then inductively add edge-disjoint
Hamilton cycles to obtain eulerian graphs of the desired sizes.
Define the following collection of edge-disjoint Hamilton

cycles in .

TABLE V
DIFFERENCES FOR ,

a) When , let . For ,
the Hamilton cycle is given by

b) When , let . For
, the Hamilton cycle is given by

For , there exists two Hamilton cycles ,
, and a subgraph such that the following holds:
i) is a subgraph of ,
ii) is even with size and when , is con-
nected and hence, eulerian.

We give explicit constructions of , , in Table III.
Then, for , choose

such that . Let and choose
Hamilton cycles such that .
Then, is an eulerian graph of size since

is even, contains a Hamilton cycle and is hence connected.

2) Proof of Proposition 3.4: The proposition can be readily
verified for .
First, we prove for the case even.
Let and and we show that there exists

an eulerian graph of order , girth at least four and size , for
and even, except for . The proof

for even is similar to proof of Proposition 3.3.
Consider the following collection of edge-disjoint

Hamilton cycles in due to Dirac [11].
Let the vertex set and the partitions be

and ). Write as and for
, consider the Hamilton cycle given by

As in Proposition 3.3, for , there exists two
Hamilton cycles and and a subgraph such that
the following holds:
i) is a subgraph of ,
ii) is even with size and when , is con-
nected and hence, eulerian.

We give explicit constructions of , , and in
Table IV and the rest of the proof proceeds in the same manner.
Since the graphs constructed are subgraphs of , their
girths are at least four.
Recall that when is even. When

, and hence, the stated graphs are
constructed.
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TABLE VI
DIFFERENCES FOR AND

Fig. 1. Eulerian Graphs of order 9 and size 14, 16.

When , note that (defined on parti-
tions , ) is an eulerian graph with size

and girth at least four. Observe that
contains cycles of even length , namely,

. Hence, removing
a cycle of length , we obtain eulerian graphs with order and
girth at least four with size , .
Finally, when is odd, let be odd, with

and . Then, there exists an eulerian graph
with order , size , and girth at least four. Pick any
edge in and subdivide the edge to obtain an eulerian graph
with order , size , and girth at least four. This completes the
proof.

3) Proof of Proposition 3.5: Eulerian graphs with order
nine, girth four, and sizes 14, 16 are given in Fig. 1. For each
graph of order nine, subdivide any edge to obtain an eulerian
graph of order ten, girth four, and orders 15, 17. Denote these
graphs by , where is the order and is the size.
For , let . Then,

is a graph of order , girth four, and size , containing a
subgraph . Replacing the subgraph with

if is odd,
otherwise,

yields an eulerian graph of order , girth at least four with the
desired sizes.

APPENDIX B
MDS SYMBOL-PAIR CODES VIA DEVELOPMENT

We provide detailed proofs of propositions given in
Section IV-B.

1) Proof of Proposition 4.5: It is readily verified that
and so, it remains to show that has minimum pair-distance
.

Suppose otherwise that there exist distinct codewords
and in with

Then, there exist , , such that

Without loss of generality, assume . Suppose
. Then,

Hence,

contradicting Condition (i) in Definition 4.3.
Similarly, when ,

and so,

We derive a contradiction to Condition (ii) in Definition 4.3.
2) Proof of Proposition 4.6: We exhibit that is a

-development -symbol-pair code, by checking
the conditions of Definition 4.3.
The values of for , are given in Table V

and we verify that for

(2)

For Condition (i), note that when , (2) ensures that
the differences are distinct. Hence, it
remains to check when and these values are
given in Table VI.
For Condition (ii), if , then either ,

, , or since . Equation (2)
ensures that the values are distinct.
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