
Efficient Traffic Matrix Estimation for Data Center
Networks

Yan Qiao, Zhiming Hu, Jun Luo
Nanyang Technological University, Singapore - 639798

Email: {yqiao, zhu007, junluo}@ntu.edu.sg

Abstract—We address the problem of estimating the real-
time nature of traffic flows in data center networks, using
the light-weight SNMP data. Unlike the problem of estimating
the traffic matrix (TM) across origin-destination (OD) pairs
in ISP networks, the traffic flows across servers or ToR (Top
of Rack) switch pairs in data center networks are notoriously
more irregular and volatile. Although numerous methods have
been proposed in past several years to solve the TM estimation
problem in ISP networks, none of them could be applied to
data center networks directly. In this paper, we make the
first step to decompose the data center topology to several
clusters by leveraging the characteristics of prevailing data center
architecture, which makes TM inference problems in data center
networks easy to handle. We also state a lemma to obtain the
coarse-grained traffic characteristics of these clusters unbiasedly.
Two efficient TM inference algorithms are proposed based on the
decomposed topology and the coarse-grained traffic information,
which improves the state-of-the-art tomography methods without
requiring any additional instrumentation. Finally, comparing
with a recent representative TM inference algorithm through
intensive simulations, the results show that, i) the data center TM
inference problem could be well handled after the decomposition
step, ii) our two algorithms outperforms the former one in both
speed and accuracy.

I. INTRODUCTION

As data center networks become increasingly central in
cloud computing, both research and operations communities
have begun to explore how to better design and manage
them. The main topics include network structure design [1]
[2] [3], traffic engineering [4], capacity planning [5], anomaly
detection [6], etc. However, until recently, very little is known
about the characteristics of traffic flows within data center
networks. For instance, how do traffic volumes exchanged
by two servers or ToR switches vary with time? Which
server communicates to other servers the most in data center
networks? Actually the real-time traffic matrix across servers
or ToR switches is a critical input to all above network tasks.
Lack of this information impedes both research and operations.

With the increasing demands for the detailed flow level
information of data center networks, a few work started to
study the flow characteristics of the data centers in their hands
[7] [8] [9]. However, the main barrier for them is the difficulty
in flow data collection, for the flow level instrumentation
is unavailable in most data centers. Besides installing these
additional modules requires substantial development and lots
of administrative costs.

As the SNMP counters are ubiquitously available in all data
center network devices, it is natural to question whether we

could borrow the well known tomography methods, which
use link level information (such as SNMP bytes counters) to
infer the traffic matrices in ISP networks. Unfortunately both
Kandula’s experiments in real data center networks [9] and
our simulations validate that all existing tomography based
methods (which will be reviewed in Sec. II) perform poorly
in data center networks. This is due to the irregular behavior
of end-to-end flows in data center networks and the large
quantity of redundant routes between each pair of servers or
ToR switches.

In this paper, we demonstrate that the prevailing data center
network topologies (including conventional data center archi-
tecture [10], Fat-Tree [11], VL2 [2], etc.) can be divided into
several clusters, and the complexity of origin TM inference
problem can be reduced accordingly. Based on that, we design
two efficient algorithms to infer the traffic matrices across
these clusters and ToRs within each cluster with high accuracy.
Then we verify their performance in our experiments. More
specifically, this paper makes the following contributions to
the field of data center networking.

We decompose data center network into several clusters
to deal with the large quantity of possible routes between
OD pairs. By doing this, the complexity of the intractable
inference problem can be dramatically reduced, and tomogra-
phy methods are enabled to work on. We also state a lemma
with its proof that the total traffic that exchanged intra/inter
each clusters can be unbiasedly inferred from the link loads
on switches. Such coarse-grained traffic characteristics are of
great significance for the network administrators. For instance,
clusters with much more intra traffic may be better designed,
for the intra traffic often costs lower network and compu-
tational resources. And the administrators should pay more
attention to the clusters that communicate a lot with other
clusters, whose traffic may cause relative high network delay.

We propose two efficient algorithms to infer the detailed
inter and intra clusters’ traffic matrices. The first algorithm,
which is more appropriate to infer the TMs without explicit
structures, utilizes the coarse-grained traffic information to
calculate a hypothesis flow volume on each route and then
refine the assignments by a least square program. The second
one models the inference problem as a state-space network
which incorporates both the spacial and temporal structure of
TM, and updates the states of TM elements whenever a new
observation arrives.

Finally, we design several intensive experiments to validate

2

the performances of our two proposals. Through comparing
with a recent representative TM inference method, the exper-
imental results show that our two algorithms outperform the
former algorithms in both accuracy and speed, especially for
the large scale TMs.

The rest of the paper is organized as follows: we start in
Sec. II with the survey of related work; then the detailed
problem formulation is described in Sec. III; in Sec. IV, we
decompose the data center network topology to several clusters
and state a lemma to figure out the coarse-grained traffic
nature; we propose two efficient TM inference algorithms in
Sec. V and Sec. VI, respectively; and evaluate them through
simulations in Sec. VII; finally all the work in this paper is
concluded in Sec. VIII.

II. RELATED WORK

As data center networking has recently emerged as a topic of
interest, there are numerous studies working on approaches for
traffic engineering [4], anomaly detection [5], provisioning and
capacity planning [6], etc. However, almost no existing work
has devoted to the traffic measurement approaches, although
the estimation of traffic flows is a critical input to all above
network tasks.

Previous studies [7] [8] have exploited the traffic charac-
teristics within data center networks. The former focuses on
cloud data centers that host Web services as well as those
running MapReduce, while the latter considers more generic
data center networks such as enterprise and campus data
centers. Both of them collected packet traces by attaching a
dedicated packet sniffer to a SPAN port on the switches in data
centers. It is an impractical task to instrument the entire data
center network. Therefore, Benson in [8] selected a handful
of locations at random per data center and installed sniffers
on them.

Kandula et al. [9] studied the nature of data center traffic
on a single MapReduce data center. They firstly measure the
traffic on data center servers, providing socket level logs. They
also question that whether can traffic matrix be inferred from
link counters by tomography methods in data center networks
as they perform in the ISP counterpart? If they do so, the barri-
er to understand the traffic characteristics of data centers will
be lowered from the expensive instrumentation to analyzing
the more easily available SNMP link counters. Unfortunately,
they show with their evaluations that tomography performs
poorly for data center traffic, due to the following reasons.

i) Most existing topography based methods model the traffic
flows at the granularity of volumes exchanged by origin
and destination pairs, assuming that there is only one route
between an OD pair and the routing matrix will always
be constant over time. However, this assumption may be
violated in data center networks. There are a great number
of redundant routes in data center networks to deal with the
congestion, and choosing which route depends on the partic-
ular scheduling strategy within the network; ii) To address
the under-determined problem in network topography, some
methods make additional assumptions such as gravity traffic

Top-of-rack
switches

Aggregation
Switches

Core Switches

Internet

Fig. 1. An Example of Conventional Data Center Network Architecture
(adopted from Cisco [10])

model [12] and sparsity maximization [13], both of which
perform poorly in data center networks, since servers in data
centers do not have the same behaviors as terminals in ISP
networks; iii) Some proposals make use of historical flow
data or portion of flow information to estimate the current
flows [13] [14]. These methods suppose flow monitors (such as
Netflow) are available in network-wide, and can be turned on
if necessary. Actually most data center networks have not been
instrumented any flow monitor tools; iv) Methods that exploit
the spatio-temporal structure of traffic flows [13] often have
high time and space complexity, for the elements in the TM
were estimated simultaneously under the global constrains.
When TM is in large scale, these inference algorithms cost
extremely expensive time and space computational resources.
Moreover, when new observations or requirements arrive, they
need to start over again.

In this paper, we aim at designing an efficient tool to
infer the nature of data center flows with high accuracy
without requiring any additional instrumentations besides the
ubiquitous SNMP data collected by switches. With the new
powerful tool, the data center administrators could learn the
real-time network traffic details at any moment they need.

III. PROBLEM FORMULATION BACKGROUND

We consider a typical data center network as shown in
Fig. 1, consisting of ToR switches, aggregation switches and
core switches connecting with Internet. We can poll the
SNMP MIBs on the network switches for bytes/packets-in and
bytes/packets-out at granularities ranging from 1 minute to 30
minutes. The SNMP data can also be interpreted as switch
loads, which equals to the summation of volumes of flows
that traverse the corresponding switches. The traffic volumes
exchanged by servers or ToR switches over different time
periods form a traffic matrix (or TM). In this paper, we aim
at inferring the ToR TM from the switch loads.

We represent switches in the network as S =
{S1, S2, . . . , Sm}, where m is the number of switches. Let
Y = {Y1, Y2, . . . , Ym} denote the traffic loads collected by
SNMP counters on the switches, and X = {X1, X2, . . . , Xn}
denote the traffic flow volumes on the routes between ToR
switch pairs, where n is the number of all available routes
in data center networks. Xi(t) and Yj(t) represent the cor-
responding traffic at discrete time t. The correlation between

3

Cluster C1 Cluster C2

Core Switches

Y(Core1) Y(Core2)

Y(Agg1) Y(Agg2) Y(Agg3) Y(Agg4)

Y(ToR1)

Xin(C2) Xout(C2)

Xintra(C2)

Y(ToR4) Y(ToR5)
Y(ToR8)... ...

Fig. 2. Decomposing Fig. 1 to Two Clusters

X(t) and Y(t) can be formulated as

Y(t) = AX(t) (t = 1, ..., T) (1)

Here, A denotes the routing matrix, where each row represents
a switch and each column represents the flows’ routes. Aij = 1
when the route of Xj traverses the switch Si, and Aij = 0
otherwise. Although Eqn. (1) is a typical linear system, it is
very difficult to solve. Since the number of equations is much
less than the number of unknown variables, the problem is
highly ill-posed. Especially, the case for the conventional data
center topologies (as shown in Fig. 1) makes the problem
even worse—as many ToR switches connect to one or a few
high-degree aggregation switches, the number of available
switch measurements is small. For example in Fig. 1, the
network consists of 8 ToR switches, 4 aggregation switches
and 2 core switches. The number of possible routes between
all ToR switches is more than 100, while the number of
observations is only 14. Moreover, the number of routes grows
dramatically with the network scale. When the numbers of
corresponding switches double, the number of routes will grow
up to thousands. Hence, inferring TMs of data center networks
directly from Eqn. (1) is impractical. In the next section, we
will introduce a novel methodology which turns the intractable
problem into an easy-handle one.

IV. DATA CENTER TOPOLOGIES DECOMPOSING

Due to the special architecture of prevailing data center
networks, the TM across ToR switches can be decomposed to
several smaller TMs. The possibility of the decomposition op-
eration is based on the locally tree-like structure of data center
topologies. For example in Fig.1 each ToR connects with two
aggregations. Then the two aggregation switches together with
4 ToR switches can form a conditional independent cluster.
That is to say, if we know the traffic flows that go in (or out
of) Agg1 and Agg2, the traffic flows that go in (or out of)
ToR1 ∼ ToR4 are independent to the traffic flows going in
(or out of) ToR5 ∼ ToR8. Hence, Fig. 1 can be decomposed
to two clusters as shown in Fig. 2. Therefore, the problem can
be turned into inferring the TM across clusters (inter inference)
and the TM across the ToR switches intra each cluster (intra
inference), both of which are much more determined than the
original problem.

Note that, although the inter and intra TMs that we aim to
estimate can reveal most of the traffic characteristics of data

center networks, we still could not obtain the traffic flows
directly if their ends are in different clusters. Instead, we
could learn from intra TM that how much traffic that originates
from ToRi and goes to another clusters and how much traffic
that originates from another cluster and enters in ToRj . We
could also learn from inter TM the detailed traffic flows across
clusters. We will carry the work on to estimate the TM across
ToRs in different clusters in our future work based on the intra
and inter TMs.

Actually, decomposing data center topology not only re-
duces the complexity of inference problem but also motivates
us to figure out the coarse-grained traffic characteristics for
each cluster, including the total traffic exchanged intra each
cluster, the total traffic going out of each cluster and the
total traffic entering into each cluster. In the rest part of this
section, we first give some definitions then state Lemma IV.1 to
demonstrate the coarse-grained traffic information of clusters
can be inferred unbiasedly from the loads on switches.

Taking Fig. 2 for example, we denote the loads on the core
switches and aggregation switches as Y(Core) and Y(Agg),
respectively. The bold letter means it is a set of variables.
Practically, it is easy to distinguish the “in” and “out” traffic
flows on ToR switches. We represent the “out” flows which
come from servers as Yout(ToR), and the “in” flows which
are transferred to servers as Yin(ToR). Obviously, the total
loads on ToR switches Y(ToR) = Yout(ToR)+Yin(ToR).

Suppose the underlying data center network can be de-
composed to s clusters which are grouped in C =
{C1, C2, . . . , Cs}. Y(AggCi

) denotes the traffic loads on
the aggregation switches in cluster Ci, and Yin(ToRCi

)
(Yout(ToRCi

)) are the “in” (“out”) loads on the ToRs within
cluster Ci.

Lemma IV.1. Suppose Xintra(Ci) is the total traffic ex-
changed intra the cluster Ci, Xin(Ci) is the total traffic
entering Ci from other clusters, and Xout(Ci) is the total
traffic going out of Ci. Then the following equations hold.

Xintra(Ci) (2)

=
∑

ToRk∈ToRCi

(Yin(ToRk) + Yout(ToRk))−
∑

Aggj∈AggCi

Y (Aggj)

Xin(Ci) (3)

=
∑

Aggj∈AggCi

Y (Aggj)−
∑

ToRk∈ToRCi

Yout(ToRk)

Xout(Ci) (4)

=
∑

Aggj∈AggCi

Y (Aggj)−
∑

ToRk∈ToRCi

Yin(ToRk)

Proof: From the ToRs’ “out” traffic aspect, we have∑
ToRk∈ToRCi

Yout(ToRk) = Xout(Ci) +Xintra(Ci) (5)

Similarly, from the ToRs’ “in” traffic aspect, we have∑
ToRk∈ToRCi

Yin(ToRk) = Xin(Ci) +Xintra(Ci) (6)

4

Combining Eqn. (5) and Eqn. (6), we have∑
ToRk∈ToRCi

(Yin(ToRk) + Yout(ToRk)) (7)

= Xin(Ci) +Xout(Ci) + 2 ·Xintra(Ci)

As we have known that the counters on aggregation switches
AggCi can only be triggered by the traffic exchanged within
the cluster, the traffic going out of the cluster and the traffic
entering into the cluster, which means∑

Aggj∈AggCi

Y (Aggj) (8)

= Xintra(Ci) +Xout(Ci) +Xin(Ci)

Thus we have ∑
ToRk∈ToRCi

(Yin(ToRk) + Yout(ToRk)) (9)

=
∑

Aggj∈AggCi

Y (Aggj) +Xintra(Ci)

Eqn. (9) can also be written as

Xintra(Ci) (10)

=
∑

ToRk∈ToRCi

(Yin(ToRk) + Yout(ToRk))−
∑

Aggj∈AggCi

Y (Aggj)

Thus Eqn. (2) has been proven. It is not difficult to learn from
(5), (6) and (8) that both (3) and (4) in Lemma IV.1 are also
true.

The coarse-grained traffic nature of clusters is unbiased and
simple in calculation. It is significant to the data center admin-
istrators and network designers for making more convincing
decisions based on the real-time traffic information.

V. TM INFERENCE METHOD BASED ON COARSE-GRAINED
TRAFFIC CHARACTERISTICS

In this section, we propose an efficient TM inference
algorithm based on the coarse-grained traffic characteristics
(TMBCT). The new algorithm first calculates a hypothesis set
of TM elements based on the coarse-grained traffic from Lem-
ma IV.1 and then refines the hypothesis using the constraints
of switch observations by least square program.

A. Hypothesis for TM Elements

The hypothesis for inter TM elements are calculated based
on the gravity traffic model [15]. As we mentioned in Sec. II,
traffic flows across servers or ToR switches in data center
networks are revealed to violate the gravity traffic model [9],
since the traffic flows are often irregular and burst. However,
the data center network after being decomposed operates in a
different situation. We found that traffic flows across clusters
are relatively smooth and steady. Moreover, the clusters and
cores are likely to play the same roles as the terminals and
routers in the Internet. The sub-networks intra clusters have
the similar situation as well. Thus, in this section we set the
hypothesis for TMs using the gravity traffic model, which will
be demonstrated feasible through the experiments in Sec. VII.

At their simplest, gravity models are based on the assump-
tion of a simple proportionality relationship [16]

Xij ∝ Y out
i · Y in

j (11)

Where Xij denotes the traffic from the ith end to the jth.
Y out
i denotes the total traffic going out at the ith end, while
Y in
j denotes the total traffic entering at the jth end.
1) Hypothesis for Inter TM: Since we have known the

out (in) traffic volumes of all clusters from Lemma IV.1, the
hypothesis of inter TM elements XH(Cij) can be formulated
by

XH(Cij) = Xout(Ci) ·
Xin(Cj)∑

Ck∈CXin(Ck)
(12)

Suppose Nc is the number of core switches. Since there
is only one hop on each route between cluster pairs, there
are Nc routes from Ci to Cj . We define a set of weights
w = {w1, . . . , wNc

} for the routes between two clusters,
where

∑Nc

i=1 wi = 1. For example, in Fig. 2, there are
two routes from C1 to C2 : C1 → Core1 → C2 and
C1 → Core2 → C2. If we suppose they have the equal weight,
then w1 = w2 = 1

2 . Thus the traffic allocated on the kth route
is wk ·XH(Cij).

2) Hypothesis for Intra TM: Similar to inter traffic flows,
we also model the intra traffic exchanged by ToR switches
as gravity traffic model. Different from inter traffic, there is a
portion of traffic that goes out of (or enters into) the cluster.
Therefore, we partition the total out (or in) loads on ToR
switches into two parts: traffic going to (or coming from) ToRs
outside the cluster (denoted by X(ToRout) or X(ToRin)) and
traffic going to (or coming from) ToRs within the cluster (equal
to Xout(ToR)−X(ToRout) or Xin(ToR)−X(ToRin)). We
also define a parameter θouti as the possibility that traffic goes
out of cluster Ci, and θini as the possibility of traffic comes
from other clusters, which can be calculated by

θouti =
Xout(Ci)∑

ToRj∈ToRCi
Xout(ToRj)

(13)

and
θini =

Xin(Ci)∑
ToRj∈ToRCi

Xin(ToRj)
(14)

The hypothesis for X(ToRout
i) and X(ToRin

i) are

XH(ToRout
i) = θouti ·Xout(ToRi) (15)

and
XH(ToRin

i) = θini ·Xin(ToRi) (16)

For the intra traffic flows, let XH(ToRij) denote the hypoth-
esis for traffic volumes from ToRi to ToRj within the cluster
Ck, which can be calculated by

XH(ToRij) = (1− θouti)Xout(ToRi) ·
(1− θini)Xin(ToRj)

Xintra(Ck)
(17)

Suppose there are Na aggregation switches in cluster Ck.
Then the number of available routes between ToRi and ToRj

within a cluster is Na as well, for there is only one hop on

5

each route. We define v = {v1, . . . , vNa
} as the weights of

routes that go through the corresponding aggregation switches,
where

∑Na

i=1 vi = 1. The traffic allocated on the kth route of
each hypothesis set is vk ·XH(ToRij), vk ·XH(ToRout

i) and
vk ·XH(ToRin

i). As well as w, the assignments to v depend
on the routing strategy applied to the underlying network.

B. Refine the Hypothesis TMs by Least Square Program

The intuition to refine the hypothesis of inter and intra
TM elements is finding the solution that is most close to the
hypothesis and subject to the switch loads we have observed.
This problem can be formulated as a least square program.

For the inter TM, the program can be formulated as

Minimize ||X(C)−XH(C)|| (18)

s.t. AinterX(C) = [Y(Core),Yout(C),Yin(C)]

where X(C) is the set of directed traffic flows from one cluster
to another, and XH(C) is its hypothesis value. Ainter is the
routing matrix where each column represents a directed route
between a cluster pair. Y(Core) is the set of loads on the
core switches, Yout(C) and Yin(C) are the sets of out and
in traffic of each cluster.

For the intra TM of cluster Ci, the program can be formu-
lated as

Minimize ||X(Ci)−XH(Ci)|| (19)

s.t. ACiX(Ci) = [Y(AggCi
),Y(ToRCi

)]

where, X(Ci) consists of the set of directed traffic volumes
exchanged by ToR switch pairs within cluster Ci, the traffic
from each ToR switches going out of Ci, and the traffic enter-
ing each ToR switch in Ci from other clusters. XH(Ci) is the
corresponding hypothesis values. ACi is the routing matrix,
where each column represents a directed route between two
ToR switches within Ci. Note that we denote a flow route from
ToRi going out of the cluster by a column that only contains
the source ToRi and the aggregation switches, and similarly
with the flow entering ToRi from other clusters. Y(AggCi

) is
the set of loads on aggregation switches. Y(ToRCi) consists
of total in and out traffic loads on ToR switches in Ci, the
total traffic entering in and going out of Ci, and the total
traffic exchanged intra Ci. || · || in Eqn. (17) and Eqn. (18) is
the L2 norm of the vector (i.e., the Euclidean distance).

VI. ADAPTIVE TM INFERENCE METHOD BASED ON
LINEAR STATE-SPACE MODEL

The TM inference method based on coarse-grained traffic
characteristics simply calculates a solution using the obser-
vations on current time slice. The historical observations and
solutions would not be used once a new observation set arrives.
However, motivated by the studies in [13] and [14], we found
in our experiments that the traffic flows over multiple time
periods also have a spatial and temporal structure as the
flows in ISP networks. To leverage this characteristics of TM
structure, we model the TM inference problem as a linear
state-space network which always incorporates both historical

t t+1

X1(t+1)

...
...

Predict

Xn(t+1)

Y1(t+1)

Ym(t+1)

X1(t)

...
...

Xn(t)

Y1(t)

Ym(t)

Smooth

Update

Fig. 3. Linear Space-state Model for TM Inference Problem

and fresh observations. We then design an efficient adaptive
inference algorithm based on the model to infer the TM with
a spatio-temporal structure.

A. Modeling

The linear state-space network is defined as{
X(t+ 1) = F ·X(t) +Q(t)

Y (t+ 1) = A ·X(t+ 1) + V (t+ 1)
(20)

where F is a known matrix, correlating the state X(t + 1)
with its state on the last discrete time t. Q is an i.i.d. Gaussian
process with covariance matrix σQ, indicating the uncertainty
of the relationship. Y (t+1) is the set of observations on time
t+1, which correlates X(t+1) by matrix A. V is also an i.i.d.
Gaussian process with covariance matrix σV , representing the
observation noise.

In our TM inference problem, we represent the inter (intra)
traffic flow on each route as a state, and the switch loads
together with the coarse-grained traffic of clusters as the
observations. The state-space network for the TM inference
problem is shown in Fig. 3, where Xi(t) denotes the traffic
on the ith route of inter (intra) networks, and Yj(t) is the
jth observation. The arrow connecting Xi(t) and Yj(t) means
Xi(t) contributes the total traffic of Yj(t). Our goal is to
estimate the states of X1(t) ∼ Xn(t), t = 1, . . . , T , given
the observations Y1(t) ∼ Ym(t), t = 1, . . . , T , where n
is the number of possible routes and m is the number of
observations.

B. A Variant Kalman Filtering Algorithm

Kalman filter is one of the best inference algorithms for
linear state-space network. It can achieve an optimal solution
to (20) under the assumption that the probability density of
the state at every time step is Gaussian. In our model, we
assume traffic state Xi(t) follows a Gaussian distribution
N(µi(t), σi(t)). We treat µi(t) as the estimation of state Xi(t),
and σi(t) as the uncertainty on the estimation. In the rest of
the paper, we use Xi(t) uniformly to represent both the state
and its mean value. Obviously, the observation Yj(t) follows
a multivariate Gaussian distribution.

The Kalman filtering includes two steps: predict and update.
The former predicts the states of traffic flows in the next

6

time slice based on their current states, and the latter updates
the predicted states with the new observations. In our traffic
inference method, we add a smooth step to the Kalman
filter to adjust the states on preceding time slices using their
new updated states in order to refine the TM structure. The
relationship of the three steps are shown in Fig. 3.

1) Predict Step: In the first step, the states of traffic flows
on the next time slice are calculated by

X(t+ 1) = FX(t) (21)

where F is the correlation among traffic flows on adjacent time
slices. The diagonal elements of F indicate a temporal corre-
lation within a single flow, while the off-diagonal elements
capture the spatial correlation across different traffic flows.

Meanwhile, the covariance of the states is calculated by

σ(t+ 1) = [σ2(t) + σ2
Q(t)]

1
2 (22)

where, Q(t) denotes the uncertainty about the matrix F. In
our experiments, we simply set F to a unit matrix and Q(t)
with zero mean and relative large covariance, which presents
a promising result.

2) Update Step: In this step, the states of flows will be
updated using the new observations. To learn the gap between
the states we expected and their ground truth, we first calculate
the deviation between the observations we expected and their
true values by

I(t+ 1) = Y(t+ 1)−AX(t+ 1) (23)

Here, I(t + 1) is called measurement innovation, which we
can use to adjust the predicted state of traffic flows by

X(t+ 1) = X(t+ 1) + K(t+ 1)I(t+ 1) (24)

Here, K(t+1) is called Kalman gain matrix, which is chosen
by minimizing the posteriori error covariance E(X̄(t + 1) −
X(t + 1))2, where X̄(t + 1) is the real states of the traffic
flows.

Through some regular linear algebra steps, the Kalman gain
K(t+ 1) can be written as

K(t+1) = [σ2(t+1)AT]·[Aσ2(t+1)AT+σ2
V (t+1)]−1 (25)

where AT is the transpose of A. The physical meaning of the
update step is that: we try to find an optimal state for the traffic
flow, which is a tradeoff between the predicted state and the
linear-equation constraints. If the uncertainty about the pre-
dicted state X is small enough, the Kalman filter will incline
to the predicted state rather than the observation constraints,
and vice versa. The filter keeps refining the uncertainty of the
states by measuring the performance of their prediction.

In some cases, the Kalman gain matrix calculated by Eqn.
(25) does not make any physical sense in our inference model,
for substituting it into Eqn. (24) may lead to negative traffic
volumes. Therefore, we modify (25) to a least square program
by

Minimize ||K(t+ 1)[Aσ2(t+ 1)AT]− σ2(t+ 1)AT ||
(26)

s.t. K(t+ 1)I(t+ 1) > −X(t+ 1)

The uncertainty of the states is updated by

σ(t+ 1) = [(I(t+ 1)−K(t+ 1)A)σ2(t+ 1)]
1
2 (27)

3) Smooth Step: In the last step, we use the new updated
states of traffic flows to smooth the preceding states backward.
The smooth process is formulated as

X̂(t) = X(t) + J(t+ 1)(X(t+ 1)− F ·X(t)) (28)

Here, X̂(t) represent the smoothed states of flows on the t
time slice. Similar to K, J is called Kalman smooth gain,
which can be calculated by

J(t+1) = [σ2(t) ·FT] · [F · σ2(t) ·FT + σ2
Q(t+1)]−1 (29)

where, FT is the transpose of F.
We also modify Eqn. (29) to be a least square problem to

eliminate the unreasonable results.

Minimize ||J(t+ 1)[Fσ2(t)FT + σ2
Q(t+ 1)]− σ2(t)FT ||

(30)
s.t. J(t+ 1) · [X(t+ 1)− F ·X(t)] > −X(t)

The uncertainty of the states in last discrete time should also
be refined by

σ̂(t) = [σ2(t)+J(t+1)(σ2(t)−σ2
Q(t+1))JT (t+1)]

1
2 (31)

Consider the scalability of the method, we only smooth the
flow states of the direct precursor rather than passing the
smooth step back to the beginning. In practice, the effect of
smooth operation becomes much weaker when it passes to the
last but one discrete time.

The coarse traffic based method and the linear state-space
based method are applicable to different network episodes. The
former one is more appropriate for the network whose TM
does not have an explicit structure, while the latter performs
better in the opposite situation.

C. Algorithm Pseudocode

Algorithm 1 describes the adaptive TM inference algorithm
based on linear state-space model (TMBLS). We set the initial
input states of traffic flows X(0) as the hypothesis of TM on
the first time slice, which is calculated by the method described
in Sec. V-A. The algorithm first predicts the state of X(t)
based on X(t− 1), and then updates the state of X(t) by the
observation Y(t). Finally, we perform the smooth backwards
to the flow states X(t − 1) using their corresponding new
states. Note that, algorithm 1 unifies both inter and intra TM
inference by substituting the input parameters by the inter or
intra TM parameters.

VII. SIMULATION

A. Experiment Setup

Topology: We adopt the conventional data center architec-
ture [10] to conduct our experiments, although our methods are
also applicable to other data center architectures such as Fat-
Tree [11], VL2 [2] and so on. The topology is a medium scale
data center with 32 ToR switches, 16 aggregation switches and

7

Algorithm 1 Adaptive TM Inference Algorithm Based on
Linear State-space Model)

1: procedure TMINFERENCE(X(0), Y(1 : k), A, F, σ(0),
σQ(0), σV (0),T)

2: for each t ∈ 1 : T do
3: [X(t)]← Predict(X(t− 1), σ(t− 1),σQ(t− 1))
4: [X(t),σ(t)]
5: ← Update(X(t),Y(t),σ(t), σV (t))
6: [X(t− 1),σ(t− 1)]
7: ← Smooth(X(t−1),X(t),σ(t−1),σ(t),σQ(t−1))
8: end for
9: end procedure

8 core switches. For a rack, there are 20 servers connecting
to each ToR switch, where the link capacities are set to be
1Gbps. At the meantime, the capacities of the links between
switches are also 1Gbps.

Traffic generation: We generate the traffic flows based on
the study of the traffic characteristics of data center networks
[7] [8] [9]. Specifically, we randomly select 1 ∼ 10 server(s)
under each ToR switch, and let them generate flows to all of
other servers; the numbers of packets within the flows that go
out of the cluster follow the distribution Log−Normal(4, 1),
while the numbers of packets for the flows exchanged within
a cluster follow Log−Normal(10, 1); the size of each packet
is around 1400 bytes. We use TCP flows to simulate the real
data center traffic since most of the data center traffic is TCP
traffic [17]. For routing strategies, we use both ECMP (equal
cost multiple path) and NIx-Vectors [18] (a source routing
traffic engineering method which aims to decrease the link
congestions). However, we found very little difference between
the two routing strategies. Therefore, we only report the results
for the prevailing ECMP strategy, and the weights of routes
between two ends are set to be equal.

Data Collections: We record the total number of packets
that enter and go out of each switch in the network every 5
minutes. We also record the total packets of flows on each
route in the corresponding time periods as the ground truth.

B. Algorithms and Metrics

We implement our two TM inference algorithms: TMBCT
and TMBLS, together with a recent representative TM in-
ference algorithm—Sparsity Regularized Matrix Factorization
(SRMF for short) [13] which leverages the Spatio-temporal
structure of traffic flows, and utilizes the compressive sensing
method to infer the missing data in TM by sparsity maxi-
mization. The TM inference problem that we aim to address
is a special case that all elements in TM are missing. In our
experiments, the SRMF algorithm can not provide a result in a
limited time (more than 24 hours) when apply it directly to the
data center tomography problem. For the number of columns
of the origin routing matrix is more than 15000 while the
number of its rows is only 56. Therefore, we apply all the
three algorithms on the decomposed data center topology, and

reconfigure the parameters of the TM inference problem based
on Lemma IV.1.

We quantify the performance of the three algorithms from
three aspects: The cumulative distribution of relative error
(CDRE), the mean relative error (MRE), and the computing
time.

The relative error (RE) is formulated as

REi =
|Xi − X̂i|

Xi
(32)

Here Xi denotes the true TM element and X̂i is the cor-
responding estimated value. The cumulative distribution of
relative error indicates the percentage of accurate results (or
deviated results).

The mean relative error (MRE) introduced by [19] can be
calculated by

MRE =
1

Nε
·
∑
Xi>ε

|Xi − X̂i|
Xi

(33)

The sum is taken over the flow volumes larger than a threshold
ε, and Nε is the number of elements that larger than ε. In our
experiments, we set ε to 10 packets, which can shield most
minor flows that we do not concern, such as some small ACK
flows. The algorithm’s MRE indicates the global deviation of
the estimation from the ground truth.

For the computing time, we concern the time period from
the time we input the inter and intra inference parameters to
the algorithms, to the time they output their estimation for all
TM elements. All three algorithms are implemented by Matlab
(R2012a) on 6-core Intel Xeon CPU @2.93GHz, with 12GB
of memory and the Mac OS X 10.6.5(10H574).

All the figures and tables below show results averaged over
10 runs.

C. Simulation Results

1) The Cumulative Distribution of Relative Error: Fig. 4
and Fig. 5 compare the CDRE of the three algorithms inferring
the TMs with different numbers of time slices. From the
figures we can see that both our two algorithms outperform
SRMF on all kinds of networks. The promising results are
partially due to our algorithms make use of the coarse-grained
flow information obtained by Lemma IV.1. Such as TMBCT
computes the hypothesis flow values based on the coarse-
grained data on every time slice, and TMBLS utilizes the
traffic information as its initial input.

From the figures, we can also find that the three algorithms
perform differently in intra TM inference and inter TM in-
ference: TMBLS and SRMF perform better in intra cluster
inference than in inter inference, while TMBCT performs
in the opposite way. This implies traffic exchanged within
each cluster has a relatively explicit structure than the traffic
exchanged inter clusters. And the inter TM inference problem
may be more appropriate for gravity traffic model.

We can see from Fig. 5, when the number of time slices
increases, the gap between SRMF and our two algorithms

8

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

R
E

TMBLS

SRMF

TMBCT

(a) Inference for Inter TM

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

R
E

TMBLS

SRMF

TMBCT

(b) Inference for Intra TM

Fig. 4. The Relative Error of the Three Algorithms for Inferring TM With
3 Time Periods

becomes even larger. That is to say, the performance of SRMF
degrades as TM elements expands, and it can not handle the
large quantity of missing data well. TMBLS performs even
better when TM gets larger, for the reason that it adaptively
updates the old TM elements when new observation arrives,
and it keeps refining the flow states and their uncertainty in
order to make a reasonable tradeoff between the estimations
and the observations. Thus as the time goes on, it could
capture the spacial and temporal structure of traffic flows more
accurately.

2) The Mean Relative Error: Fig. 6 compares the MRE of
the three algorithms. From the two figures we can see that
although TMBLS algorithm can accurately estimate most of
the TM elements in some cases, its average accuracy fails
to lead the two algorithms. That is to say a small part of
TMBLS’s results have a relative large deviation. However,
the MRE of TMBLS is going to converge as the number of
time slices increases. TMBCT has the best performance on
MRE, as it always recomputes the hypothesis flow volumes
using the new observations and the unbiased coarse-grained
traffic information. Therefore, the results with large deviation
could be adjusted timely when the new observations arrive.
In Fig. 6(a), SRMF performs better at the beginning of the
the time period. However, its MRE tends to be larger as the
time passes. For the reason that in data center network, the
larger TM with more time slices may not as sparse as the
corresponding smaller one. Therefore, the deviation between
the sparsest TM and the ground truth TM becomes larger when
time goes on. Moreover, the computing time of SRMF is also
unacceptable in large TM inference, that is why we did not
present the curve of SRMF in the long term period in Fig.
6(b).

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

R
E

TMBLS

SRMF

TMBCT

(a) Inference for Inter TM

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

R
E

TMBLS

SRMF

TMBCT

(b) Inference for Intra TM

Fig. 5. The Relative Error of the Three Algorithms for Inferring TM With
25 Time Periods

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

Number of Discrete Times

M
R

E

TMBLS

SRMF

TMBCT

(a) Short Term for the Three Algorithms

0 50 100 150 200 250
0

5

10

15

20

Number of Discrete Times

M
R

E

TMBLS

TMBCT

(b) Long Term for the Two Algorithms

Fig. 6. The Mean Relative Error for the Three (Two) Algorithms Over
Different Terms of Time Periods

3) Computing Time: Table I lists the computing times of the
three algorithms. We can see from Table I, TMBCT finishes
the inference much faster than the other two algorithms, and its
computing time seems not be affected much by the TM scale.
SRMF runs relatively faster when the scale of TM is small.
However, its computing time increases sharply when TM
becomes larger. When the number of time periods goes up to
100, SRMF cannot finish the inference within a day. Although
TMBLS runs relatively slower at the beginning, its computing
time grows linearly with the TM scale, which is one of the
most valuable advantages of TMBLS. That is to say, TMBLS

9

TABLE I
THE COMPUTING TIME OF THE THREE ALGORITHMS (SECONDS)

Number of
time slices

inter TM intra TM
5 10 24 42 100 5 10 24 42 100

TMBCT 0.01 0.01 0.03 0.05 0.18 0.10 0.34 0.40 0.56 0.81
TMBLS 12.59 22.88 50.81 89.46 200.90 5.58 11.85 26.73 53.46 102.54
SRMF 45.79 176.84 1528.71 6341.20 - 2.02 26.45 147.06 470.12 -

can be applied to on-line TM inference problem, where it
incorporates the new SNMP information and adjusts the direct
precursor at each round. We could estimate from Table I that
each round of updating (adjusting the last column and adding
a new column) needs about 2 seconds and 1.3 seconds for inter
TM inference and intra TMs inference, respectively. Therefore,
although TMBLS requires 200.90 seconds to infer the inter
TM over 100 time periods, actually it only takes 2 seconds
to update the 99 time-period TM. On the contrary, SRMF
algorithm can only be applied to the off-line inference problem
as it needs to start over on each discrete time period.

It is notable that TMBLS and SRMF compute much faster
in intra TM inference problem than in the inter counterpart,
for the number of possible routes between all cluster pairs
is much larger than their intra routes. Therefore, their speeds
are correlative with the TM scale. However TMBCT performs
exactly the opposite way, due to its speed only correlates with
the total number of TM elements. And the total elements in
intra TM over all clusters are much more than the elements in
the inter TM. This also implies that decomposing the inference
problem into several smaller one greatly helps the structure
based methods to handle the problem.

VIII. CONCLUSION

In this paper we enabled the tomography based methods
to handle the TM inference problem for data center networks
from easy-collected SNMP data. We argued that the prevailing
data center network topologies can be decomposed into several
clusters. Hence the complexity of inference problem can be
dramatically reduced. We also stated a lemma to demonstrate
the coarse-grained traffic characteristic of each cluster can be
calculated unbiasedly using the SNMP data. Two efficient
algorithms were proposed to infer the structured and un-
structured TMs, respectively. Through comparing our two
algorithms with a recent representative TM inference method,
the experimental results showed that our two algorithms
outperform the former one in both accuracy and efficiency.
Moreover, our methods can make the online inference through
updating the TM elements on the last time period within a few
seconds, while the former method requires hours to start over
a new inference.

ACKNOWLEDGMENT

This work is supported in part by AcRF Tier 1 Grant RG
32/09.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, A Scalable, Commodity Data
Center Network Architecture SIGCOMM, pages 63C74, 2008.

[2] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.
A. Maltz, P. Patel, and S. Sengupta, VL2: a scalable and flexible data
center network SIGCOMM, 2009.

[3] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, BCube: A High Performance, Server-centric Network Architecture
for Modular Data Centers SIGCOMM 2009 Conference on Data
Communication, Barcelona, Spain, August 17 - 21 2009.

[4] M. Al-Fares, S. Radhakrishnan, B. Raghavan, W. College, N. Huang, and
A. Vahdat, Hedera: Dynamic flow scheduling for data center networks
NSDI 2010, San Jose, CA, USA, April 2010.

[5] P. Gill, N. Jain, N. Nagappan, Understanding Network Failures in Data
Centers: Measurement, Analysis, and Implications SIGCOMM11,
August 15-19, 2011, Toronto, Ontario, Canada.

[6] J. W. Jiang, T. Lan, S. Ha, M. Chen, M. Chiang, Joint VM Placement
and Routing for Data Center Traffic Engineering INFOCOM12, 25-30
March 2012, Princeton, NJ, USA.

[7] T. Benson, A. An, A. Akella, M. Zhang, Understanding Data Center
Traffic Characteristics WREN09, August 21, 2009, Barcelona, Spain.

[8] T. Benson, A. Akella, A. Akella, D. A. Maltz, Network Traffic Charac-
teristics of Data Centers in the Wild IMC10, November 1C3, 2010,
Melbourne, Australia.

[9] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, R. Chaiken, The Nature
of Datacenter Traffic: Measurements & Analysis IMC09, November
4C6, 2009, Chicago, Illinois, USA.

[10] Cisco Data Center Infrastructure 2.5 Design Guide,
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns107/c649/ccmi/
newlinegration/underline/space09186a008073377d.pdf.

[11] C. E. Leiserson,Fat-Trees: Universal Networks for Hardware-Efficient
Supercomputing, IEEE Trans. Computer, vol. 34, no. 10, pp. 892C901,
Oct. 1985.

[12] Y. Zhang, M. Roughan, N. Duffield, A. Greenberg, Fast Accurate
Computation of LargeScale IP Traffic Matrices from Link Loads SIG-
METRICS03, June 10C14, 2003, San Diego, California, USA.

[13] M. Roughan, Y. Zhang, W. Willinger, L. Qiu, Spatio-Temporal Com-
pressive Sensing and Internet Traffic Matrices (Extended Version)
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 3,
JUNE 2012

[14] A. Soule1, A. Lakhina2, N. Taft3, K. Papagiannaki, Traffic Matrices:
Balancing Measurements, Inference and Modeling SIGMETRICS05,
June 6C10,2005, Banff,Alberta,Canada.

[15] J. Kowalski and B. Warfield, Modeling traffic demand between nodes in
a telecommunications network, in ATNAC95, 1995.

[16] M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates,
Experience in measuring backbone traffic variability: Models, metrics,
measurements and meaning (extended abstract) ACM SIGCOMM
Internet Measurement Workshop, 2002.

[17] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B.
Prabhakar, S. Sengupta, M. Sridharan, Data center TCP (DCTCP) SIG-
COMM ’10 Proceedings of the ACM SIGCOMM 2010 conference New
York, NY, USA, 2010

[18] George F. Riley, Mostufa H. Ammar and Ellen W. Zegura Efficient
Routing Using NIx-Vectors IEEE Workshop on High Performance
Switching and Routing, pp: 25C27, 2001, Atlanta, GA, USA.

[19] Anders Gunnar, Mikael Johansson and Thomas Telkamp Traffic Matrix
Estimation on a Large IP Backbone—A Comparison on Real Data
IMC04 October 25C27, 2004, Taormina, Sicily, Italy.

