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Abstract—Typically called big data processing, processing large
volumes of data from geographically distributed regions with
machine learning algorithms has emerged as an important
analytical tool for governments and multinational corporations.
The traditional wisdom calls for the collection of all the data
across the world to a central datacenter location, to be processed
using data-parallel applications. This is neither efficient nor
practical as the volume of data grows exponentially. Rather than
transferring data, we believe that computation tasks should be
scheduled where the data is, while data should be processed
with a minimum amount of transfers across datacenters. In this
paper, we design and implement Flutter, a new task schedul-
ing algorithm that improves the completion times of big data
processing jobs across geographically distributed datacenters. To
cater to the specific characteristics of data-parallel applications,
we first formulate our problem as a lexicographical min-max
integer linear programming (ILP) problem, and then transform
it into a nonlinear program with a separable convex objective
function and a totally unimodular constraint matrix, which can
be solved using a standard linear programming solver efficiently
in an online fashion. Our implementation of Flutter is based
on Apache Spark, a modern framework popular for big data
processing. Our experimental results have shown that we can
reduce the job completion time by up to 25%, and the amount
of traffic transferred among datacenters by up to 75%.

I. INTRODUCTION

It has now become commonly accepted that the volume
of data — from end users, sensors, and algorithms alike —
has been growing exponentially, and mostly stored in geo-
graphically distributed datacenters around the world. Big data
processing refers to applications that apply machine learning
algorithms to process such large volumes of data, typically
supported by modern data-parallel frameworks such as Spark.
Needless to day, big data processing has become a routine in
governments and multinational corporations, especially those
in the business of social media and Internet advertising.

To process large volumes of data that are geographically
distributed, we will traditionally need to transfer all the data
to be processed to a single datacenter, so that they can be
processed in a centralized fashion. However, at times, such
traditional wisdom may not be practically feasible. First,
it may not be practical to move user data across country
boundaries, due to legal reasons or privacy concerns [1].
Second, the cost, in terms of both bandwidth and time, to move
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Fig. 1. Processing geo-distributed data locally by moving computation tasks:
an illustrating example.

large volumes of data across geo-distributed datacenters may
become prohibitive as the volume of data grows exponentially.

It has been pointed out that [1], [2], [3], rather than
transferring data across datacenters, it may be a better design
to move computation tasks to where the data is, so that data
can be processed locally within the same datacenter. Of course,
the intermediate results after such processing may still need
to be transferred across datacenters, but they are typically
much smaller in size, significantly reducing the cost of data
transfers. An example showing the benefits of processing
big data over geo-distributed datacenters is shown in Fig. 1.
The fundamental objective, in general, is to minimize the
job completion times in big data processing applications, by
placing the tasks at their respective best possible datacenters.
Yet, previous works (e.g., [3]) were designed with assumptions
that were often unrealistic — such as bottlenecks do not occur
on inter-datacenter links.

Intuitively, it may be a step towards the right direction to
design an offline optimal task scheduling algorithm, so that the
job completion times are globally minimized. However, such
offline optimization inevitably relies upon a priori knowledge
of task execution times and transfer times of intermediate
results, neither of which is readily available without complex
prediction algorithms. Even if such knowledge were available,
a big data processing job in Spark may involve a directed
acyclic graph (DAG) with hundreds of tasks; and optimal
solutions for scheduling such a DAG is NP-Complete in
general [4].

In this paper, we have designed and implemented Flutter,
a new system to schedule reduce tasks in Spark across data-



centers over the wide area. Our primary focus when design-
ing Flutter is on practicality and real-world implementation,
rather than on the optimality of our results. To be practical,
Flutter is first and foremost designed as an online scheduling
algorithm, making adjustments on-the-fly based on the current
job progress. Flutter is also designed to be stage-aware: it
minimizes the completion time of each stage in a job, which
corresponds to the slowest of the completion times of the
constituent tasks in the stage. A stage in Spark means a group
of independent tasks executing the same functions and having
the same shuffle dependencies [5].

Practicality also implies that our algorithm in Flutter would
need to be efficient at runtime. Our problem of stage-aware
online scheduling can be formulated as a lexicographical min-
max integer linear programming (ILP) problem. A highlight
of this paper is that, after transforming the problem into a
nonlinear program, we show that it has a separable convex
objective function and a totally unimodular constraint matrix,
which can then be solved using a standard linear programming
solver efficiently, and in an online fashion.

To demonstrate that it is amenable to practical implementa-
tions, we have implemented Flutter based on Apache Spark,
a modern framework popular for big data processing. Our
experimental results on a production wide-area network with
geo-distributed servers have shown that we can reduce the
job completion time by up to 25%, and the amount of traffic
transferred among different datacenters by up to 75%.

II. FLUTTER: MOTIVATION AND PROBLEM FORMULATION

To motivate our work, we begin with a real-world experi-
ment, with Virtual Machines (VMs) initiated and distributed in
four representative regions in Amazon EC2: EU (Frankfurt),
US East (N. Virginia), US West (Oregon), and Asia Pacific
(Singapore). All the VM instances we used are m3.xlarge,
with 4 cores and 15 GB of main memory each. To illustrate the
actual available capacities on inter-datacenter links, we have
measured the bandwidth available across datacenters using the
iperf utility, and our results are shown in Table I.

From this table, we can make two observations with con-
vincing evidence. On one hand, when VMs in the same
datacenter communicate with each other across the intra-
datacenter network, the available bandwidth is consistently
high, at around 1 Gbps. This is sufficient for typical Spark-
based data-parallel applications [6]. On the other hand, band-
width across datacenters is an order of magnitude lower, and
varies significantly for different inter-datacenter links. For
example, the link with the highest bandwidth is 175 Mbps,
while the lowest is only 49 Mbps.

Our observations have clearly implied that transfer times
of intermediate results across datacenters can easily become
the bottleneck when it comes to job completion times, when
we run the same data-parallel application across different
datacenters. Scheduling tasks carefully to the best possible
datacenters is, therefore, important to utilize available inter-
datacenter bandwidth better; and more so when the inter-
datacenter bandwidth is lower and more divergent. Flutter is

first and foremost designed to be network-aware, in that tasks
can be scheduled across geo-distributed datacenters with the
awareness of available inter-datacenter bandwidths.

TABLE I
AVAILABLE BANDWIDTHS ACROSS GEO-DISTRIBUTED DATACENTERS.
EU US-East US-West Singapore
EU 946Mbps | 136Mpbs | 76.3Mbps | 49.3Mbps
US-East - 1.01Gbps | 175Mbps | 52.6Mbps
US-West - - 945Mbps 76.9Mbps
Singapore | - - - 945Mbps

To formulate the problem that we wish to solve with
the design of Flutter, we revisit the current task scheduling
disciplines in existing data-parallel frameworks that support
big data processing, taking Spark [5] as an example. In Spark,
a job can be represented by a Directed Acyclic Graph (DAG)
G = (V,€). Each node v € V represents a task; each directed
edge e € £ indicates a precedence constraint, and the length
of e represents the transfer time of intermediate results from
the source node to the destination node of e.

Scheduling all the tasks in the DAG to a number of worker
nodes — while minimizing the completion time of the job —
is known as a NP-Complete problem in general [4], and is
neither efficient nor practical. Rather than scheduling all the
tasks together, Spark schedules ready tasks stage by stage in an
online fashion. As it is a much more practical way of designing
a task scheduler, Flutter follows suit and only schedules the
tasks within the same stage to geo-distributed datacenters,
rather than considering all the ready tasks in the DAG. Here
we denote the set of tasks in a stage by N' = {1...n}, and
the set of datacenters by D = {1...d}.

There is, however, one more complication when tasks within
the same stage are to be scheduled. The complication comes
from the fact that the completion time of a stage in data-
parallel jobs is determined by the completion time of the
slowest task in that stage. Without awareness of the stage that
a task belongs to, it may be scheduled to a datacenter with
a much longer transfer time to receive all the intermediate
results needed (due to capacity limitations on inter-datacenter
links), slowing down not only the stage it belongs to, but the
entire job as well.

More formally, Flutter should be designed to solve a
network-aware and stage-aware online reduce task scheduling
problem, formulated as a lexicographical min-max integer
linear programming (ILP) problem as follows:
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In our objective function (1), x;; = 1 indicates the assign-
ment of the i-th task to j-th datacenter; otherwise x;; = 0.
ci; is the transfer time to receive all the intermediate results,
computed in Eq. (4). e;; denotes the execution time of the i-th
task in the j-th datacenter. Our objective is to minimize the
maximum task completion time within a stage, including both
the network transfer time and the task execution time.

To achieve this objective, there are four constraints that we
will need to satisfy. The first constraint in Eq. (2) implies that
each task should be scheduled to only one datacenter. The
second constraint, Eq. (3), implies that the number of tasks
assigned to the j-th datacenter should not exceed the maximum
number of tasks f; that can be scheduled on the existing VMs
on that datacenter. Though it is indeed conceivable to launch
new VMs on-demand, it takes a few minutes in reality to
initiate and launch a new VM, making it far from practical.
The total number of tasks that can be scheduled depends on
the number of VMs that have already been initiated, which is
limited due to budgetary constraints.

The third constraint, Eq. (4), is to compute the transfer time
of the i-th task on j-th datacenter, where s; and dj represent
the number of inputs for the i-th task and the index of the
datacenter that has the k-th input, respectively. For example,
let mg, ; denote the amount of bytes that need to be transfered
from the dj-th datacenter to the j-th datacenter if the i-th
task is scheduled to the j-th datacenter. If dy = j, then
mgq,; = 0. We let b,, to denote the bandwidth between the
u-th datacenter and the v-th datacenter, and assume that the
network bandwidths Bgixg = {bus| u, v =1...d} across all
the datacenters can be measured, and are stable over a few
minutes. We can then compute the maximum transfer times
for each possible way of scheduling the i-th task. The last
constraint indicates that x;; is a binary variable.

III. NETWORK-AWARE TASK SCHEDULING ACROSS
GEO-DISTRIBUTED DATACENTERS

Given the formal problem formulation of our network-aware
task scheduling across geo-distributed datacenters, we now
study how we solve the proposed ILP problem efficiently,
which is the key for the practicality of Flutter in the real
data processing systems. In this section, we first propose to
transform the lexicographical min-max integer problem in our
original formulation into a special class of nonlinear program-
ming problem. We then further transform this special class of
nonlinear programming problem into a linear programming
problem (LP) that can be solved efficiently with standard linear
programming solvers.

A. Transform into a Nonlinear Programming Problem

The special class of nonlinear programs that can be trans-
formed into a LP should meet two conditions [7], a separable
convex objective function and a totally unimodular constraint
matrix. We will show how we transform our original formu-
lation to meet these two conditions.

1) Separable Convex Objective Function: A function is
separable convex if it can be represented as a summation of
multiple convex functions with a single variable. To make this
transformation, we first define the lexicographical order. Let
p and q represent two integer vectors of length k. We define
ﬁ and a as the sorted p and q with non-increasing order,
respectively. If p is lexicographically less than q, represented
by p < q, it means that the first non-zero item of ? — ﬁ
is negative. Then if p is lexicographically no greater than q,
denoted as p =< q, it is equivalent to p < q or B) =

Our objective is to find a vector that is lexicographically
minimal over all the feasible vectors with its components
rearranged in a non-increasing order. In our problem, if p
is lexicographically no greater than q, then the vector p is
a better solution for our lexicographical min-max problem.
However, directly finding the lexicographically minimal vector
is not an easy task, we find out that we can use a summation of
exponents to preserve the lexicographical order among vectors.
Consider the following convex function g : Z* — R that has
the form of

k
i
=2k
=1

where A = {); | i = 1...k} is an integer vector with length
k. We prove that we can preserve the lexicographical order of
vectors through ¢ : Z*¥ — R by the following lemma’.
Lemma 1: Forp, q€ZF, p<q <= g¢(p) < ()
Proof: We first prove that p < q = g¢(p) < . We
assume that the index of the first positive element of ﬁ ﬁ

is 7. As both vectors only have integral elements, 7 > ?T
implies ?T > ?T + 1. Then we have:
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Hence the first part is proved.

We then show ¢(p) < g(q) = p < q and we assume r
is the index of first non-zero element in a—ﬁ, then ?Z = 7;‘

ISince scaling the coefficients of z;; would not change the optimal solution,
we can always make the coefficients to be integers.



for all 7 < r.
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Therefore if g(q) —g(p) > 0, then we have (k+1—1r) x T —
kPr > 0. For r = 1, it implies ¢y +1> Fp. If T < P
the previous inequation would not hold. ¢ » also does not
equal ?7. as r is the index of the first non-zero item in 3—5}
We then have 7r > ?T. Forr > 1, (k+1—r) xkdr—kPr >
0 implies logy(k + 1 — ) + ¢, > T, Because r > 1,
log, (k+1—r7) is less than 1 and q» # 7 because r is the
index of first non-zero item in  — ﬁ Thus we can also have
7T > ?T when r > 1. In sum, ?T > ?T for all » > 1. As
a result, it can be concluded that p < q.

Regarding to the equations, if ﬁ = ﬁ, it is straightforward
to see that g(q) = g(p). Now if g(q) = g(p), let us prove
whether we have P = . Without loss of generality, we can
assume that p < q when g(q) = g(p). While if p < q,
then we have g(p) < g(q) based on previous proofs, which
contradicts to the assumption. Thus if g(q) = g(p), we also
have _p) = a ]

Let h(X) denote the vector in the objective function of
our problem in Eq. (1). Then our problem can be denoted
by lex)r(nin (max h(X)). Based on Lemma 1, the objec-

tive function of our problem can be further replaced by
min g(h(X)), which is also

n d
. Zii(ciideis
min E E k i(cij J),
g

where k equals nd, which is the length of vectors in the
solution space of the problem in our formulation.

We can clearly see that each term of summation in Eq. (17)
is an exponential function, which is convex. Therefore this
new objective function consists of a separable convex objective
function. Now let us see whether the coefficients in the con-
straints of our formulation form a totally unimodular matrix.

2) Totally Unimodular Constraint Matrix: A totally uni-
modular matrix is an important concept because it can quickly
determine whether a LP is integral, which means that the LP
would only have integral optimum if it has any. For instance,
if a problem has the form of {mincz | AX < b, x > 0},
where A is a totally unimodular matrix and b is an integral
vector, then the optimal solutions for this problem must be
integral. The reason is that in this case, the feasible region
{z| AX <b, = > 0} is an integral polyhedron, which has
only integral extreme points. Hence if we can prove that the

a7)

coefficients in the constraints of our formulation form a totally
unimodular matrix, then our problem would only have integral
solutions. We prove that the coefficients of the constraints in
our problem formulation form a totally unimodular matrix by
the following lemma.

Lemma 2: The coefficients of the constraints (2) and (3)
form a totally unimodular matrix.

Proof: A totally unimodular matrix is a m X r matrix
A={a;j |i=1...m, j=1...r} that meets the following
two conditions. First, all of its elements must be selected from
{-1, 0, 1}. It is straightforward to see that all the elements in
the coefficients of our constraints are 0 or 1, so it meets the
first condition. The second condition is that for any subset of
rows Z C {1...m}, it can be separated into two sets Zy,Zy
such that || > ;7 aij — > ;c7, aijll < 1. In our formulation,
we can take the variable X = {z;; |i=1...n, j=1...d}
as a nd x 1 vector, then we can write down the constraint
matrix in (2) and (3), respectively. We can then find out that
for these two matrices, the sum over all the rows in each matrix
both equal a 1 x nd vector whose entries are all equal to 1.
For any subset Z of the matrix formed by the co-efficients in
constraint (2) and (3), we can always assign the rows related to
(2) to 71, and the rows related to (3) to Z,. In this case, as both
> icz, @ij and ) 7 a;; are smaller than a 1xnd vector with
nd 1s, we will always have ||>°;, .7 aij — > iz aijl < 1.
Then this lemma got proven. |

B. Transform the Nonlinear Programming Problem into a LP

We have transformed our integer programming problem into
a nonlinear programming problem with a separable convex
function. We have also shown that the coefficients in the con-
straints of our formulation form a totally unimodular matrix.
Now we can further transform the nonlinear programming
problem into a LP based on the method proposed in [7]. In this
transformation, the optimal solutions would not change. The
key transformation is named A-representation as listed below.

f@) = f) (18)
heP

> == (19)

heP

=1 (20)
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where P is the set that consists of all the possible values of
x. Therefore in our case, P = {0,1}. As we can see that,
it introduces |P| extra variables ), in the transformation and
makes the original function to be a new function over A, and
x. As indicated in the formulation, A; could be any positive
real numbers and x equals the weighted combination of Aj,.
By applying A-representation to (17), we can easily get the
new form of our problem, which is a LP as listed below:
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(2),(3), (4), (5).

As P = {0,1}, we can further expand and simplify the
above formulation to get our final formulation as follows:

(26)
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(2),(3): (4), (5), (25)- (29)

We can clearly see that it is a LP with only nd variables,
where 7 is the number of tasks and d is the number of datacen-
ters. As it is a LP, it can be efficiently solved by standard linear
programming solvers like Breeze [8] in Scala [9], and because
the coefficients in the constraints form a totally unimodular
matrix, its optimal solutions for X are integral and exactly
the same as the solutions of the original ILP problem.

IV. DESIGN AND IMPLEMENTATION

After we discussed how our task scheduling problem can
be solved efficiently, we are now ready to see how we
implement it in Spark, a modern framework popular for big
data processing.

Spark is a fast and general distributed data analysis frame-
work. Different from disk-based Hadoop [10], Spark would
cache part of the intermediate results in memory, thus it would
greatly speed up iterative jobs as it can directly obtain the
outputs of the previous stage from the memory instead of
the disk. Now as Spark becomes more and more mature,
several projects designed for different applications are built
upon Spark such as ML1ib, Spark Streaming and Spark SQL.

All these projects rely on the core module of Spark, which
contains several fundamental functionalities of Spark including
Resilient Distributed Datasets (RDD) and scheduling.

To incorporate our scheduling algorithm in Spark, we over-
ride the scheduling modules to implement our algorithm. From
the top of the view, after a job is launched in Spark, the job
would be transformed into DAG of tasks and then be handled
by the DAG scheduler. After that, the DAG scheduler would
first check whether the parent stages of the final stage are
complete. If they are, the final stage is directly submitted
to the task scheduler for task scheduling. If not, the parent
stages of the final stage are submitted recursively until the
DAG scheduler finds a ready stage.

The detailed architecture of our implementation can be
seen in Fig. 2. As we can observe from the figure, after
the DAG scheduler finds a ready stage, it would create a
new TaskSet for that ready stage. Here if the TaskSet
is a set of reduce tasks, we would first obtain the output
information of the map tasks from the MapOutputTracker,
and then save it to this TaskSet. Then this TaskSet would be
submitted to the task scheduler and added to a list of pending
TaskSets. When the TaskSets are waiting for resources, the
SchedulerBackend, which is also the cluster manager, would
offer some free resources in the cluster. After receiving the
resources, Flutter would pick a TaskSet in the queue, and
determine which task should be assigned to which executor.
It also needs to interact with TaskSetManager to obtain the
description of the tasks, and later return these task descriptions
to the SchedulerBackend for launching the tasks. During the
entire process, getting the outputs of the map tasks and the
scheduling process are the two key steps; in what follows, we
will present more details about these two steps.

A. Obtaining Outputs of the Map Tasks

Flutter needs to compute the transfer time to obtain all the
intermediate results for each reduce task if it is scheduled to
one datacenter. Therefore, obtaining the information about the
outputs of map tasks including both the locations and the sizes
is a key step towards our goal. Here we will first introduce
how we obtain the information about the map outputs.

A MapOutputTracker is designed in the driver of Spark
to let reduce tasks know where to fetch the outputs of the
map tasks. It works as follows. Each time when a map task
finishes, it would register the sizes and the locations of its
outputs to the MapOutputTracker in the driver. Then if the
reduce tasks want to know the locations of the map outputs,
it will send messages to the MapOutputTracker directly to
get the information.

In our case, we can obtain the output information of map
tasks in the DAG scheduler through the MapOutputTracker,
as the map tasks have already registered its output information
to the MapOutputTracker. We then save the output infor-
mation of map tasks to the TaskSet of reduce tasks before
submitting the TaskSet to the task scheduler. Therefore the
TaskSet would carry the output information of the map tasks
and be submitted to the task scheduler for task scheduling.



B. Task Scheduling with Flutter

The task scheduler serves as a “bridge” that connects tasks
and resources (executors in Spark). On one hand, it will keep
receiving TaskSets from the DAG scheduler. On the other
hand, it would be notified if there are newly available resources
by the SchedulerBackend. For instance, each time when a
new executor joins the cluster or an executor has finished
one task, it would offer its resources along with its hardware
specifications to the task scheduler. Usually, multiple offers
from several executors would reach the task scheduler at the
same time. After receiving these resource offers, the task
scheduler then starts to use its scheduling algorithm to the
pick up the right pending tasks that are most suited to the
offered resources.

In our task scheduling algorithm, after we receive the
resource offers, we first pick a TaskSet in the sorted list of
TaskSets and check whether it has shuffle dependency. In
other words, we want to check whether tasks in this TaskSet
are reduce tasks. If they are, we need to do two things.
The first is to get the output information of the map tasks
and calculate the transfer times for each possible scheduling
decision. We do not consider the execution time of the tasks
in the implementation because the execution times of the tasks
in a stage are almost uniform. The second is to figure out the
amount of available resources on each datacenter by analyzing
received resource offers. After these two steps, we feed these
information to our linear programming solver, and the solver
would return an index of the most suitable datacenter for
each reduce task. Finally, we randomly choose a host that has
enough resource for the task on that datacenter and return the
task description to the SchedulerBackend for launching the
task. If the TaskSet does not have shuffle dependency, the
default delay scheduling [11] would be adopted. Thus each
time, when there are new resource offers, and the pending
TaskSet is a set of reduce tasks, Flutter would be invoked.
Otherwise, the default scheduling strategy is used.

V. PERFORMANCE EVALUATION

In this section, we will present our experimental setup in
geo-distributed datacenters and detailed experimental results
on real-world workloads.

A. Experiemental Setup

We first describe the testbed we used in our experiments,
and then briefly introduce the applications, baselines and
metrics used throughout the evaluations.

Testbed: Our experiments are conducted on 6 datacenters
with a total of 25 instances, among which two datacenters
are in Toronto. The other datacenters are located at various
academic institutions: Victoria, Carleton, Calgary and York.
All the instances used in the experiments are m.large, which
has 4 cores and 8 GB of main memory. The bandwidth
capacities among VMs in these regions are measured by iperf
and are shown in Table II.

The distributed file system used in our geo-distributed
cluster is the Hadoop Distributed File System (HDFS) [10].

We use one instance as the master node for both HDFS and
Spark. All the other nodes are served as datanodes and
worker nodes. The block size in HDFS is 128MB, and the
number of replications is 3.

Applications: We deploy three applications on Spark. They
are WordCount, PageRank [12] and GraphX [13]. Our schedul-
ing algorithm is also applicable to Hadoop, while we choose
Spark because our focus is on reduce tasks and there are
multiple rounds of reduce tasks in iterative Spark jobs.

e WordCount: WordCount calculates the frequency of
every single word appearing in a single file or a batch
of files. It would first calculate the frequency of words in
each partition, and then aggregate the results in the pre-
vious step to get the final result. We choose WordCount
because it is a fundamental application in distributed data
processing and it can be used to process the real-world
data traces such as Wikipedia dump.

« PageRank: It computes the weights for websites based on
the amount and quality of links that point to the websites.
This method relies on the assumption that a website is
important if many other important websites are linking to
it. It is a typical data processing application with multiple
iterations. We use it for calculating the ranks for the
websites.

e GraphX: GraphX is a module built upon Spark for
parallel graph processing. We run the application Live-
JournalPageRank as the representative application of
GraphX. Even though the application is also named
“PageRank,” the computation module is completely dif-
ferent on GraphX. We choose it because we also wish to
evaluate Flutter on systems built upon Spark.

Inputs: For WordCount, we use 10GB of Wikipedia dump
as the input. For PageRank, we use an unstructured graph with
875713 nodes and 5105039 edges released by Google [14].
For GraphX, we adopt a directed graph in LiveJournal online
social network with 4847571 nodes and 68993773 edges [14],
where LiveJournal is a free online community.

Baseline: We compare our task scheduler with delay
scheduling [11], which is the default task scheduler in Spark.

Metrics: The first two metrics used are job completion
times and stage completion times of the three application. As
the bandwidths among different datacenters are expensive in
terms of cost, so we also take the amount of traffic transferred
among different datacenters as another metric. Moreover, we
also report the running times of solving the LP in different
scales to show the scalability of our approach.

B. Experimental Results

In our experiments, we wish to answer the following
questions. (1) What are the benefits of Flutter in terms of
job completion times, stage completion times, as well as
the volume of data transferred among different datacenters?
(2) Is Flutter scalable in terms of the times to compute the
scheduling results, especially for short-running tasks?



TABLE 11
AVAILABLE BANDWIDTHS ACROSS GEO-DISTRIBUTED DATACENTERS
(Mbps).
Tor-1 | Tor-2 | Victoria | Carleton | Calgary | York
Tor-1 1000 931 376 822 99.5 677
Tor-2 - 1000 389 935 97.1 672
Victoria - - 1000 381 82.5 408
Carleton | - - - 1000 93.7 628
Calgary - - - - 1000 95.6
York - - - - - 1000
Note: “Tor” is short for Toronto. Tor-1 and Tor-2 are two

datacenters located at Toronto.
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Fig. 3. The job computation times of the three workloads.

1) Job Completion Times: We plot the job completion
times of the three applications in Fig. 3. As we can see that,
completion times of all the three applications with Flutter
have been reduced. More specifically, Flutter reduced the
job completion time of WordCount and PageRank by 22.1%
and 25%, respectively. The completion time of GraphX is
also reduced by more than 20 seconds. There are primarily
two reasons for the improvements. The first is that Flutter
can adaptively schedule the reduce tasks to a datacenter that
would cost the least amount of transfer times to get all the
intermediate results, thus it can start the tasks as soon as
possible. The second is that Flutter would schedule the tasks
in the stage as a whole, thus it can significantly mitigate
the stragglers — the slow-running tasks in that stage — and
further improve the overall performance.

It seems that the improvements in terms of job completion
times on GraphX are small, which may be because the
total size of shuffle reads are relatively smaller than other
applications, thus it only spends a small portion of the job
completion time for shuffle reads, which limits the room
for improvements. Even though the job completion time is
not reduced significantly for GraphX applications, we will
show that Flutter would significantly reduce the amount of
traffic transferred across different datacenters for GraphX
applications.

2) Stage Completion Times: As Flutter schedules the tasks
stage by stage, we also plot the completion times of stages in
these applications in Fig. 4, we can thus have a closer view
of the scheduling performance of both our approach and the

default scheduler in Spark, by checking the performance gap
stage by stage and find out how the overall improvements
of job completion times are achieved. We will explain the
performance of the three applications one by one.

For WordCount, we repartition the input datasets as the
input size is large. Therefore it has three stages as shown in
Fig. 4(a). In the first stage, as it is not a stage with shuffle
dependency, we use the default scheduler in Spark. Thus the
performance achieved is almost the same. The second stage
is a stage with shuffle dependency. We can see that the stage
completion time of this stage for the two schedulers are almost
the same, which is because the default scheduler also schedules
the tasks in the same datacenters as ours while not necessarily
in the same executors. In the last stage, our approach takes
only 163 seconds, while the default scheduler in Spark takes
295 seconds, which is almost twice as long. The performance
improvements are due to both network-awareness and stage-
awareness, as Flutter schedules the tasks in that stage as a
whole, and take the transfer times into consideration at the
same time. It can effectively reduce the number of straggler
tasks and the transfer times to get all the inputs.

We draw the stage completion times of PageRank in
Fig. 4(b). As we can see in this figure, it has 13 stages in
total, including two distinct stages, 10 reduceByKey stages
and one collect stage to collect the final results. We have
10 reduceByKey stage because the number of iterations is 10.
Except the first distinct stage, all the other stages are shuffle
dependent. Thus we adopt Flutter instead of delay scheduling
for task scheduling in those stages. As we can see that in
stage 2, 3 and 13, we have far shorter stage completion times
compared with the default scheduler. Especially in the last
stage, Flutter takes only 1 second to finish that stage, while
the default scheduler takes 11 seconds.

Fig. 4(c) depicts the completion times of reduce stages in
GraphX. As the total number of stages is more than 300, we
only draw the stages named “reduce stage" in that job. Because
the stage completion times of these two schedulers are similar,
we only draw the stage completion time of Flutter to illustrate
the performance of GraphX. First we can see that the first
reduce stage took about 28 seconds, while the following reduce
stages completed quickly, which takes only 0.4 seconds. This
may be for the reason that GraphX is designed for reducing the
data movements and duplications, thus the stages can complete
very quickly.

3) Data Volume Transferred across Datacenters: After we
see the improvements of job completion times, we are now
ready to evaluate the performance of Flutter in terms of the
amount of data transferred across geo-distributed datacenters
in Fig. 5. In WordCount, the amount of data transferred across
different datacenters with the default scheduler is around three
times to the one of Flutter. The amount of data across data-
centers when running GraphX is four times to our approach.
In the case of PageRank, we also achieved lower volumes of
data transfers.

Even though reducing the amount of data transferred across
different datacenters is not the main goal of our optimization,
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Fig. 5. The amount of data transferred among different datacenters.

we find out that it is in line with the goal of reducing the job
completion time for data processing applications on distributed
datacenters. This is because the bandwidth capacities across
VMs in the same datacenter are higher than those on inter-
datacenter links, so when Flutter tries to place the tasks to
reduce the transfer times to get all the inputs, it may prefer to
put the tasks in the datacenter that has most of the input data.
Thus, it is able to reduce the volume of data transfers across
different datacenters by a substantial margin.

4) Scalability: Practicality is one of the main objectives
when designing Flutter, which means that Flutter needs to be
efficient at runtime. Therefore, we record the time it takes to
solve the LP when we run Spark applications. The results have
been shown in Fig. 6. In the figure, the number of variables
varies from 6 to 120 and the computation times are averaged
over multiple runs. We can see that the linear program is rather
efficient: it takes less than 0.1 second to return a results for 60
variables. Moreover, the computation time is less than 1 second
for 120 variables, which is also acceptable because the transfer
times could be tens of seconds across distributed datacenters.
Flutter is scalable for two reasons: (1) it is formulated as an
efficient LP; and (2) the number of variables in our problem
is small because the number of datacenters and reduce tasks
are both small in practice.

VI. RELATED WORK

In this section, we first show a few most related work in geo-
distributed big data processing, which can be roughly divided

The number of variables in the linear program

Fig. 6. The computation times of Flutter’s linear program at different scales.

into two categories based on their objectives: reducing the
amount of traffic transferred among different datacenters and
shortening the whole job completion time. We then survey
some other work related to scheduling in distributed data
processing systems.

Reducing the amount of traffic among different datacenters
is proposed in [1], [2], [15]. In [1], they design an integer
programming problem for optimizing the query execution plan
and the data replication strategy to reduce the bandwidth
costs. As they assume each datacenter has limitless storage,
they aggressively cache the results of prior queries to reduce
the data transfers of subsequent queries. In Pixida [2], they
propose a new way to aggregate the tasks in the original
DAG to make the DAG simpler. After that, they propose a
new generalized min-k-cut algorithm to divide the simplified
DAG into several parts for execution, and each part would
be executed in one datacenter. However these solutions only
address bandwidth cost without carefully considering the job
completion time.

The most related recent work is Iridium [3] for low latency
geo-distributed analysis, while we have some significant dif-
ferences with it. First, they assume the network connecting
the sites (datacenters) are congestion-free and the network
bottlenecks only exist in the up/down links of VMs. This is
not the case in our measurements. In our measurements, the
in/out bandwidth of VMs are both 1Gbps in intra datacenters,
while the bandwidth among VMs in different datacenters are



only around 100Mbps. Therefore the network bottlenecks are
more likely to exist in the network connecting the datacenters
instead. Second, in their linear programming formulation for
task scheduling, they assume reduce tasks are infinitesimally
divisible and each reduce task would receive the same amount
of intermediate results from the map tasks, which are not
realistic assumptions as reduce tasks are not divisible with
low overhead and the data skews are common in the data
analysis frameworks [16]. While we use the exact amount of
intermediate results that each reduce task would read from the
outputs of map tasks. What is more, although they formulate
the scheduling problem as a LP, in their implementation,
they actually schedule the tasks by solving a mixed integer
programming (MIP) problem as stated in their paper [3].
Besides Iridium, G-MR [17] is about executing a sequence of
MapReduce jobs on geo-distributed data sets with improved
performance in terms of both job completion time and cost.

For scheduling in data processing systems, Yarn [18] and
Mesos [19] are the cluster managers designed for improving
cluster utilization. Sparrow [20] is a decentralized scheduling
system for Spark that can schedule a great amount of jobs at
the same time with small scheduling delays, and Hopper [21]
is an unified speculation-aware scheduling framework for
both centralized and decentralized schedulers. Quincy [22] is
designed for scheduling tasks with both locality and fairness
constraints. Moreover, there is plenty of work related to data
locality such as [11], [23], [24], [25].

VII. CONCLUDING REMARKS

In this paper, we focus on how tasks may be scheduled
closer to the data across geo-distributed datacenters. We
first find out that the network could be a bottleneck for
geo-distributed big data processing, by measuring available
bandwidths across Amazon EC2 datacenters. Our problem is
then formulated as an integer linear programming problem,
considering both the network and the computational resource
constraints. To achieve both optimal results and high efficiency
of the scheduling process, we are able to transform the
integer linear programming problem into a linear programming
problem, with exactly the same optimal solutions.

Based on these theoretical insights, we have designed and
implemented Flutter, a new framework for scheduling tasks
across geo-distributed datacenters. With real-world perfor-
mance evaluation using an inter-datacenter network testbed,
we have shown convincing evidence that Flutter is not only
able to shorten the job completion times, but also to reduce the
amount of traffic that needs to be transferred across different
datacenters. As part of our future work, we will investigate
how data placement, replication strategies, and task scheduling
can be jointly optimized for even better performance in the
context of wide-area big data processing.
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