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Abstract—Although the problem of k-area coverage has
been intensively investigated for dense wireless sensor networks
(WSNs), how to arrive at a k-coverage sensor deployment
that optimizes certain objectives in relatively sparse WSNs still
faces both theoretical and practical difficulties. In this paper,
we present a practical algorithm LAACAD (Load bAlancing
k-Area Coverage through Autonomous Deployment) to move
sensor nodes toward k-area coverage, aiming at minimizing
the maximum sensing range required by the nodes. LAACAD
enables purely autonomous node deployment as it only entails
localized computations. We prove the convergence of the
algorithm, as well as the (local) optimality of the output. We
also show that our optimization objective is closely related to
other frequently considered objectives. Therefore, our practical
algorithm design also contributes to the theoretical understand-
ing of the k-area coverage problem. Finally, we use extensive
simulation results both to confirm our theoretical claims and
to demonstrate the efficacy of LAACAD.

Keywords-Wireless sensor networks, area coverage, k-
coverage, autonomous deployment, load balancing

I. INTRODUCTION

One of the major functions of wireless sensor networks
(WSNs) is to monitor a certain area in terms of whatever
physical quantities demanded by applications [1]. In achiev-
ing this goal, a basic requirement imposed onto WSNs is
their area coverage:1 it indicates the monitoring quality of
WSNs. Whereas many research proposals focus on either an-
alyzing the performance of static sensor deployments (e.g.,
[2], [3]) or scheduling sensor activity to retain the coverage
of given deployments (e.g., [7], [8]), there exists an unfailing
trend in seeking autonomous deployments assisted by mobile
sensor nodes to arrive at certain predefined objectives (e.g.,
[9], [10]). Our proposal in this paper falls into this trend.

Due to the vulnerability of sensor nodes, multiple-
coverage (k-coverage) is often applied to enhance the fault
tolerance in the face of node failures (e.g., [3], [7]). In
addition, k-coverage may yield higher sensing accuracy
through data fusion [11] or aggregation [12], [13]. Existing
approaches in achieving k-coverage rely on either random-
ized (e.g., [2], [14]) or regular (e.g., [3], [15]) deployments.

∗This work is supported in part by AcRF Tier2 ARC15/11.
1In this paper, we only focus on approaches concerning area coverage

(e.g., [2], [3]), as opposed to the point coverage (e.g., [4]–[6]).

Whereas randomized deployments require a substantially
denser network (e.g., [2], [14]), regular deployments only
serve as theoretical guidelines [3], [15] as they often require
centralized coordinations and may not accommodate irregu-
lar network regions. Therefore, autonomous deployments, if
made possible by employing movable nodes [16], are good
complements to the randomized or regular deployments.

However, existing techniques for autonomous deploy-
ments may only handle 1-coverage, and extending them to
k-coverage is highly nontrivial. First of all, autonomous
deployments through (node) motion control require each
node to compute its coverage in a localized manner (i.e.,
relying as much as possible on close-by nodes). Although
quite a few localized algorithms have been proposed to
perform such computations for 1-coverage (e.g., [9], [17]),
no algorithm, to the best of our knowledge, exists for
localized k-coverage computations. Secondly, even if the k-
coverage computations can be performed locally, there is no
guarantee whether a motion control strategy may converge,
due to the significant difference between 1-coverage and k-
coverage. Finally, existing approaches are almost heuristics
that offer no provable guarantee on the quality of the
eventual deployment. These are exactly the problems we
want to tackle in our paper.

In this paper, we consider the problem of moving sensor
nodes towards k-coverage. In particular, we assume that
nodes are randomly deployed initially and that each node
has a tunable sensing range. Our goal is to cover a certain
monitored area to the extent that every point in this area is
at least monitored by k sensor nodes and that the maximum
sensing range used by the nodes is minimized. As a larger
sensing range implies a larger energy consumption of a node,
our LAACAD (Load bAlancing k-Area Coverage through
Autonomous Deployment) approach aims at balancing the
sensing load (thus prolonging network lifetime) while guar-
anteeing k-coverage, with the help of mobile nodes. The
main contributions we are making in this paper are:
• We design the LAACAD algorithm such that it executes

in a localized manner, i.e., only relying on information
from close-by nodes.

• We prove the convergence of LAACAD as well as the
(local) optimality of its output.



• We discuss the relation between the output of LAA-
CAD and other commonly used optimization objec-
tives, which provides a better understanding of optimal
k-coverage deployments whose theoretical characteri-
zations are hard to obtain under general settings.

To the best of our knowledge, we are the first to tackle the
problem of k-coverage autonomous deployment.

The remaining of our paper is organized as follows. We
briefly survey the closely related literature in Sec. II. We
formally define our model and problem in Sec. III, in which
we also review the basic mathematical tools we need in
our later algorithm design. In Sec. IV, we present our
LAACAD algorithm details and analyze performance, we
also discuss the interpretation of our solution with respect
to other optimization frameworks. The efficacy of LAACAD
is further confirmed by extensive simulation results reported
in Sec. V. We finally conclude our paper in Sec.VI.

II. RELATED WORK

Given the vast literature for coverage in WSNs, we can
only focus on the topics related to area coverage and mobile
assisted autonomous deployments, but have to leave out
other interesting topics such as point (or target) coverage
[4]–[6], area coverage with random deployments [2], [7],
and topological approaches [18].

The static and deterministic area coverage problem is
essentially a geometry problem; the results for 1-coverage
with a minimum number of nodes can be directly taken from
pure mathematical research [19]. In later research proposals
for WSN coverage, the focus is more on minimum node
1-coverage with certain connectivity requirement (e.g., [3],
[20], [21]). While it is known that a 1-covered WSN is also
connected if the transmission range Rt and the sensing range
Rs satisfy Rt ≥

√
3Rs, a strip-based node deployment is

proposed in [20] for other values of Rt, and this deployment
strategy is proven to be asymptotically optimal in [21]. In
fact, adding more strips may allow a WSN to achieve higher
degree of connectivity (or k-connectivity).

Compared with k-connectivity, the progress on k-coverage
appears to be relatively slower. A few 3-coverage heuristics
that aim at bounding the minimum separation among sen-
sor nodes is proposed in [22]; the paper also shows that
bounding the min-separation may lead to lower coverage
redundancy and is hence a good approximation to minimum
node 3-coverage. To the best of our knowledge, the only
optimality result in terms of minimum node k-coverage is
presented in [3], where k = 2. It appears that minimum node
k-coverage (for k > 2) is better to be tackled indirectly due
to its hardness. As we will show in Sec. IV-C, our objective
of a k-coverage with mini-max sensing range may also imply
minimum node k-coverage. Deploying WSNs for k-coverage
using mobile nodes is also reported in [15], [23], but their
approaches are not autonomous (hence the algorithms are

not localized) as they all rely on a “blueprint” to guide the
node mobility.

Our work is also related to the sensing heterogeneity issue
[10], [24]. However, unlike the previous proposals that aim
to cope with sensing heterogeneity or evaluate its impact,
we actively exploit the sensing heterogeneity to construct
our algorithm that guides the autonomous deployment.

III. PRELIMINARIES AND PROBLEM DEFINITION

We present the system model and formally define our op-
timization problem in this section. We also briefly introduce
certain mathematical basics that are relevant to our later
algorithm design.

A. System Model

We assume a WSN consisting of a setN = {n1, · · · , nN}
of sensor nodes, and |N | = N . Let U = {u1, · · · , uN}
denote the locations of sensor nodes. The nodes are initially
deployed arbitrarily on a 2D targeted area A. Each node
ni is equipped with certain mechanisms (e.g., motors plus
wheels) that allow it to gradually change its location ui [16].
All nodes have an identical transmission range γ, and we
denote by N (ni) the one-hop neighbors of node ni, i.e., the
nodes within the transmission range of ni.

We define the omnidirectional sensing model as a disk
centered at ui with sensing range ri. We assume the sens-
ing ranges are adjustable according to different application
requirements. A point v ∈ A is said to be covered by node
ni iff the Euclidean distance between v and node location ui
is no longer than ri, i.e., ‖v−ui‖2 ≤ ri. We use f(v, ui, ri)
to indicate whether or not v is covered by node ni.

f(v, ui, ri) =

{
1 if ‖v − ui‖2 ≤ ri
0 otherwise

(1)

In other words, if v is covered by ni, f = 1; otherwise, f =
0. We rely on the ranging ability of each node to construct
a local coordinate system for motion control, so location
information is not essential to our algorithm.

In terms of energy cost, we only focus on the cost induced
by the sensing activities of a node. Because our network
deployment strategy aims at achieving a constant (and long-
term) coverage by moving sensor nodes in the initial phase,
the communication cost becomes negligible as the data
transmission activities only take place sporadically, while
the energy spent in moving is only a one-time investment.
We assume that the energy consumed by a sensor node ni
is an increasing function E(ri) of its sensing range ri, and
this function is identical for all nodes.

B. Problem Formulation

The node locations and sensing ranges, {ui, ri}i=1,...,N ,
define a network deployment with a certain coverage.
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Definition 1. A network deployment {ui, ri} is said to
achieve k-coverage iff for any point v ∈ A, there exist at
least k sensor nodes covering it, or

∑
i f(v, ui, ri) ≥ k.

To allow sensor nodes properly cover the targeted area,
we divide A into serval disjoint areas {Akj }j=1,2,..., and at
least k sensor nodes are allocated to take charge of each area.
In other words, each sensor node ni takes care of multiple
subareas, and we indicate this relation by ni(Akj ): it equals 1
if ni covers Akj ; otherwise 0. We also denote by Akni the area
covered by ni: we have Akni =

⋃
ni(Akj )=1Akj . Obviously,

the sensing range ri of ni is determined by the farthest point
in Akni from ui, i.e., ri = maxv∈Akni

‖v−ui‖2, so that Akni
can be totally covered by ni.

Our k-coverage sensor deployment problem (k-CSDP) can
be formulated as follows.

minimize
{ui},{Akj },{ni(Akj )}

R (2)

subject to
N∑
i=1

f(v, ui, ri) ≥ k, ∀v ∈ A (3)

‖v − ui‖2 ≤ R, ∀i, v ∈ Akni (4)

Akj1
⋂
Akj2 = ∅,

⋃
j

Akj = A (5)

Literally, k-CSDP aims at choosing the node locations
{ui}, the area partition {Akj }, and the covering relations{
ni(Akj )

}
, such that the maximum sensing range among all

nodes is minimized. As energy consumption is an increasing
function of sensing range, k-CSDP is equivalently balancing
the energy consumption over a whole WSN and hence
maximizing the lifetime of the WSN. As the problem is
generally not convex due to its non-convex feasible region,
we have to be contented with local minimum.

C. High Order Voronoi Diagram

In this section, we briefly introduce the ideas and theories
on high order Voronoi diagram [25]. They are closely related
to our autonomous deployment strategy.

In a k-order Voronoi diagram, the targeted area A is
segmented into N̂k disjoint areas {Vkj }j=1,...,N̂k ,2 each of
which is associated with k closest generators (sensor nodes
in our case), i.e., a subset N k

j ⊆ N with |N k
j | = k. The

k-order Voronoi cell Vkj is defined as

Vkj =

{
v ∈ A

∣∣∣∣ ‖v − ui‖2 ≤ ‖v − ui′‖2,∀ ni ∈ N k
j , ni′ ∈ N/N k

j

}
(6)

The set N k
j is called the generator set of Vkj . It is straight-

forward to see that each sensor node ni is associated with
multiple Voronoi cells. Let Vkni denote the union of the
Voronoi cells for which ni serves as a generator; we term

2In 1-order Voronoi diagram, the number of Voronoi cells equals the
number of generators (i.e., N̂1 = N ), while in generalized k-order Voronoi
diagram (k ≥ 1), N̂k is O(k(N − k)) [25].

Vkni the dominating region of ni (hence ni the dominator of
Vkni ). We also have the following proposition.

Proposition 1. A point v ∈ A is said to belong to Vkni iff
there exist at most k − 1 other generators such that their
distance to v is less than ‖v − ui‖2.

Proof: Assume v ∈ Vkni but there were another k nodes
{nj}j∈J,i6∈J,|J|=k such that ‖uj−v‖2 < ‖ui−v‖2. Then the
point v would strictly belong to the set of k-order Voronoi
cells generated by {nj}, which does not include ni as a
generator; a contradiction. Conversely, if there are at most
k−1 nodes, {nj}j∈J,i6∈J,|J|≤k−1, that are closer to v than ni,
we can find the set of v’s k-nearest nodes (which obviously
contains {nj}

⋃
{ni}) to generate a set of k-order Voronoi

cells containing v. As ni is a generator, v ∈ Vkni .
Based on the above proposition, assuming

Skni(v) = {nj ∈ N|‖uj − v‖2 < ‖ui − v‖2, j 6= i}

we can re-define the dominating region of ni as

Vkni = {v ∈ A | |Skni(v)| ≤ k − 1} (7)

We illustrate k-order Voronoi partition (k = 1, 2, 3, 4)
generated by 30 nodes in Figure 1. The cells shown in

(a) 1-order (b) 2-order

(c) 3-order (d) 4-order

Figure 1. k-order Voronoi partition for k = 1, 2, 3, 4. The disks at
the backdrop of each figure represent the (overlapping) sensing ranges of
individual sensor nodes.

each figure are {Vkj }. Taking 2-order Voronoi partition for
example, as shown in Figure 1(b), the area enclosed by red
(resp. green) polygon is actually the dominating region of
the red node (resp. green node). The hatched area is the
Voronoi cell generated by the two nodes, i.e., the points in
this area are closer to the two nodes than any other nodes.
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IV. LAACAD: LOCALIZED k-COVERAGE NODE
DEPLOYMENT ALGORITHM

In this section, we first develop two optimality conditions
for k-CSDP. Then we present the LAACAD algorithm
details. The correctness of LAACAD is then proven, and
we finally discuss the relation between k-CSDP and other
optimization problems related to k-coverage deployment,
along with the corresponding properties of LAACAD.

A. Optimal Conditions

To motivate our algorithm design, we first develop two
optimality conditions for k-CSDP. Firstly, we show that, if
we fix {ui}, then k-order Voronoi diagram is the optimal
solution to k-CSDP.

Proposition 2. If we fix the sensor locations {ui}i=1,··· ,N ,
the k-order Voronoi diagram {Vk1 , · · · ,VkN̂k} generated by
{ui}i=1,··· ,N is an optimal partition of A. Also, ni(Vkj ) = 1
if Vkj ⊆ Vkni ; otherwise ni(Vkj ) = 0.

Proof: We prove the proposition by contradiction.
Suppose for fixed {ui}i=1,··· ,N , there exists an optimal
solution to k-CSDP denoted by R∗, {Ākj },

{
ni(Ākj )

}
. Let

r∗i = maxv∈Ākni
‖v − ui‖2 and rVi = maxv∈Vkni

‖v − ui‖2.
Also assume that the optimal value is obtained for nî,
i.e., R∗ = r∗

î
. If rV

î
= r∗

î
, then it is straightforward to

see that rV
î

= max{rVi }, otherwise a contradiction to the
definition of Vkni : some regions are not covered by the k-
closest nodes. Therefore, in this case the k-order Voronoi
diagram is equally optimal. If rV

î
> r∗

î
, then it means that nî

could cede a certain region to have it covered by other nodes
while reducing max{rVi }. However, this again contradicts
the definition of Vkni : as nî is already one of the k-closest
nodes that can cover the ceded region, ceding this region to
some other nodes would simply increase max{rVi }.

Before stating the second optimality condition, we need
the following definition.

Definition 2. Given an arbitrary set S in Euclidean space,
the Chebyshev center uc is defined as:

uc = arg min
û

(
max
u∈S
‖u− û‖2

)
Using this definition, for an arbitrary partition {Akj } and

its dominator allocation
{
ni(Akj )

}
, the optimal locations of

{ni} can be obtained.

Proposition 3. If we fix the partition {Akj } and its domi-
nator allocation

{
ni(Akj )

}
, the optimal sensor location u∗i

for k-CSDP is given by the Chebyshev center of Akni .

Proof: As ni needs to cover Akni and the objective of
k-CSDP is to minimize the maximum sensing range among
all sensors, the optimal solution under a fixed partition
is achieved if each sensor individually minimizes its own

sensing range. This exactly coincides with the property of
Chebyshev center, hence the proposition follows.

B. The Algorithm
Given the two optimality conditions stated in Sec. IV-A,

we immediately have an iterative algorithm to solve k-
CSDP. The algorithm proceeds in rounds. At the beginning
of each round, the k-order Voronoi diagram is computed
for the whole WSN, resulting in {Vk1 , · · · ,VkN̂k} along with
{Vkn1

, · · · ,VknN }. Then each node computes the Chebyshev
center of its dominating region, and moves to that location
to end this round. The algorithm terminates if each node
is indeed located at the Chebyshev center of its dominating
region. As a perfect matching is impossible in the face of
numerical errors, we use a small value ε as the stopping
tolerance: the algorithm terminates if the distance from
the node’s current location to the Chebyshev center of its
dominating region is smaller than ε. Also, in order to avoid
oscillation, a step size α < 1 is chosen to confine the motion
of the nodes. At the termination, each node tunes its sensing
range to be the minimum value (the circumradius of its
dominating region) that covers its dominating region. The
pseudo-codes of our LAACAD algorithm are presented in
Algorithm 1. As a dominating region is always a polygon,

Algorithm 1: LAACAD

Input: For each ni ∈ N , initial location u(0)
i , stopping

tolerance ε
Output: {u∗i } and {r∗i }

1 For every node ni ∈ N periodically (every τ ms):
2 Compute its dominating region Vkni
3 Compute the Chebyshev center ci of Vkni
4 if ‖ui − ci‖2 > ε then
5 u+

i ← ui + α(ci − ui) /*α is the step size*/
6 end
7 u∗i ← ci, r∗i ← maxu∈Vkni

‖u− ui‖2

we apply Welzl’s algorithm [26] to compute the Chebysehev
center by taking the vertices of the region as the input.

Similar algorithms have been applied in [9], [10]. How-
ever, they were used to indirectly optimize a different
objective (we refer to Sec. IV-C for a detailed discussion).
Consequently, their approaches do not abide by the opti-
mality conditions and employ a very different termination
condition. Therefore, the convergence proofs given in [9],
[10] do not apply to our case even for k = 1. Most
importantly, as our algorithm deals with a more general k-
coverage, we are facing the following new challenges.
C1 How to compute Vkni in a localized manner without

involving all nodes in a WSN?
C2 Does the algorithm converge for k ≥ 1? If yes, what is

the relation between convergence and the step size α?
In the following, we tackle these two challenges one by one.
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(a) 1-order (b) 2-order (c) 3-order (d) 4-order (e) 5-order (f) 6-order

(g) 7-order (h) 8-order (i) 9-order (j) 10-order (k) 11-order (l) 12-order

Figure 2. The dominating region of the central node in k-order Voronoi diagram for k ranging from 1 to 12. The central node needs to collect location
(or range) information from its neighboring nodes (the dark nodes) via multi-hop communication according to Algorithm 2. Additionally, we illustrate
multi-hop transmission range using red circles in (a). While the cases for k = 1 can be handled by involving only the 6 closest nodes (1-hop neighbors) to
the central node, computing the 2-, 3- and 4-order dominating regions requires 2-hop neighbors. When k > 4, all sensor nodes within 3 hops are involved.

1) Localized Algorithm for Computing Vkni : Unlike 1-
order Voronoi diagram that can be computed (mostly) by
only interacting with one-hop neighbors N (ni) of a given
node ni, N (ni) may not be sufficient to obtain k-order
Voronoi cells, especially when k is large. The reason is
simple: at least k+1 nodes should be involved to computed
a dominating region of ni [27]. Therefore, our localized
algorithm for computing Vkni works in an expending ring
manner, as shown in Algorithm 2.

Algorithm 2: Localized Vkni Computation

Input: For each ni ∈ N , initial ring radius ρ = 0
Output: Vkni

1 repeat
2 ρ← ρ+ γ; out ← true
3 N (ni, ρ)← {nj |‖uj − ui‖2 < ρ}
4 Construct a local coordinate system using N (ni, ρ)
5 foreach v ∈ A s.t. ‖v − ni‖2 = ρ/2 do
6 Ŝkni(v)← {nj ∈ N (ni, ρ)|‖uj − v‖2 <

‖ui − v‖2, j 6= i}
7 if |Ŝkni(v)| < k then out ← false; break
8 end
9 until out = true;

10 Compute Vkni based on N (ni, ρ)

Basically, we expand the search ring ρ with a granularity
of the transmission range γ (line 2). As expending ρ beyond
γ will need multi-hop communication and the hop number
is always an integer, it makes no sense to apply a smaller
granularity. We use the embedding algorithm proposed in
[28] to construct a local coordinate system (line 4). If the
location information is available, this step is not necessary.

Under the constructed coordinate system, we check whether
the circle centered at ui with a radius ρ/2 is not dominated
by ni anymore (lines 5 to 8, based on Proposition 1).
The ring expending terminates if the answer becomes true.
Finally, we compute Vkni using only nodes falling into the
current search ring (line 10).

In order to show that Vkni computed by Algorithm 2 is
indeed the one that would be computed in a centralized
manner using global information, we need the follow lemma.

Lemma 1. If the dominating region of ni is enclosed by a
circle centered at ui with a radius of ρ/2, then it is fully
determined by all the nodes located within another circle
centered at ui with a radius of ρ.

Proof: For a disk �(ui, ρ/2) centered at ui with radius
ρ/2, if Vkni ⊂ �(ui, ρ/2), the boundary of Vkni also belongs
to �(ui, ρ/2). According to the definition of Voronoi cells,
the cell boundary consists of bisectors, each of which is
determined by two generators. For Vkni , one generator is
ni, and all other generators can be obtained by going
through each segment (or bisectors) on the boundary of
Vkni and identifying another generator that determines this
bisector along with ni. Since the boundary of Vkni belongs
to �(ui, ρ/2), all generators of Vkni belong to �(ui, ρ).

The correctness of our algorithm is immediate from
this lemma: as the algorithm terminates when ni is not
dominating the circle centered at ui with a radius ρ/2
anymore, the nodes falling into �(ui, ρ) are sufficient to
compute Vkni . In Figure 2, we demonstrate this sufficiency
using k-order dominating region (k = 1 to 12) in a
regularly deployed WSN. The regular deployment is chosen
to facilitate exposition, our algorithm works for any arbitrary
deployments.
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For a node ni on the boundary, the search ring will
never stop expanding, as the arc that is out of the network
coverage will always need the domination of ni. To cope
with this issue, we first employ a boundary detection service
(e.g., [29]) to indicate which nodes are on or close to the
boundary. Based on the boundary awareness, the boundary
node executes the circle checking procedure (lines 5 to 8)
only for the arc that lies within the network coverage area, as
shown in Figure 3. Finally, the boundary node calculates its
dominating region, using N (ni, ρ) as well as the searching
ring to determine the boundary of the dominating region. For

r

r/2

Figure 3. Recognizing the network boundary (the green dashed curve),
a boundary node (dark) determines a searching ring (the outer circle) and
check the half-radius arc within the network coverage area (the inner red
arc). It then calculates its dominating region (the blue area) with N (ni, ρ),
while the searching ring helps to determine part of the boundary.

an initial random deployment in which nodes only occupy
a small fraction of A, this procedure has the effect of
“pushing” boundary nodes outwards, hence expanding the
network coverage to the whole A. In fact, such a constrained
checking procedure should always be used by nodes on the
boundary of A, the difference is that A’s boundary serves
as a natural boundary for a dominating region.

2) Convergence Analysis: Showing the convergence of
Algorithm 1 appears to be highly non-trivial, as many k-
order Voronoi cells are concerning a certain node, and the
dominating region of a node is mostly probably a non-
convex region. Fortunately, the convergence can be shown
by focusing on the boundary of a dominating region.

Proposition 4. Algorithm 1 is convergent.

Proof: As shown in Figure 4, uli and Vk,lni are the
location and dominating region of node ni at the beginning
of the l-th iteration, respectively. We also denote by cli and
Rli the Chebyshev center and the circumradius, respectively,
of Vk,lni computed by ni during the l-iteration. Let R̂li =
maxu∈Vk,lni

‖u−uli‖2 be the farthest distance from uli in Vk,lni .

Finally, we define Rl = maxi{Rli} and R̂l = maxi{R̂li}.
We first prove the convergence for α = 1 by contradiction.

For each ni, we put a disk �(cli, R
l) centered at cli with ra-

dius Rl. Obviously,
⋃N
i=1�(cli, R

l) form a k-coverage over
the targeted area A. The convergence would be naturally

l
iu

l
ic

,
i

l
u
kV

, 1

iu
k l+V

ˆ l
iR l

iR

( ), ˆi
l l
iu Re

( ), l
i

l
ic Re

Figure 4. Notations in the proof for Proposition 4.

justified if we can prove that Vk,l+1
ni is inside �(cli, R

l) after
uli is updated to cli (i.e., ul+1

i = cli). For each point q on
the boundary of Vk,l+1

ni , it is straightforward to see that cli
is the location of the k-th nearest nodes. Assume that q is
outside �(cli, R

l), there would be only k− 1 disks covering
q, which contradicts the fact that

⋃N
i=1�(cli, R

l) constitute
a k-coverage over A. This completes the proof for α = 1.

We then prove the convergence for 0 < α < 1. Ac-
cording to line 5 of Algorithm 1, during the l-th iteration,
ul+1
i = uli+α(cli−uli). We put disks �(uli, R̂

l) and �(cli, R̂
l)

centered at uli and cli, respectively. Obviously, Vk,lni is inside
�(uli, R̂

l)
⋂
�(cli, R̂

l), which implies Vk,lni ⊂ �(ul+1
i , R̂l).

Hence,
⋃N
i=1�(ul+1

i , R̂l) constitute a k-coverage over A.
Following a similar argument as for α = 1, we have Vk,l+1

ni

is involved in �(ul+1
i , R̂l), which completes the proof.

In summary, our LAACAD algorithm converges for any
α ∈ (0, 1]. Usually, smaller α leads to slower convergence
but smoother motion trace. As a byproduct of the proof,
we also conclude that R̂ is non-increasing iteratively and
finally equivalent to R. Especially, when α = 1, R is also
non-increasing in the iterative process. Therefore,

Corollary 1. Algorithm 1 converges to a local minimum of
k-CSDP.

It is important to note that Rl and R̂l are introduced
only for our proof. During the algorithm execution, each
node ni can only compute its own Rli and R̂li. According
to our earlier discussion in Sec. IV-B1 (see Figure 3 also),
the evolution of the node positions often takes two phases:
an expanding phase and a converging phase. The expanding
phase exists if the initial node distribution is non-uniform,
our LAACAD algorithm will force the node to spread out
during this phase, as discussed at the end of Sec. IV-B1.
During this phase, both Rl and R̂l are most probably
achieved by boundary nodes. The expanding phase ends
when all the boundary nodes are at the boundary of A, this
is when the converging phase starts.

C. Discussions

In this section, we show the relations between the output
of our LAACAD algorithm and other optimization objectives
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often considered for area coverage problems in WSNs, as
well as some desirable properties of LAACAD.

Min-Node k-Coverage: One type of problem that is
commonly tackled in the research community is to achieve
k-coverage using a minimum number of nodes (e.g., [3],
[15]). As this problem often assumes that all nodes have a
fixed and identical sensing range rs, it appears that LAA-
CAD may not suggest a direct solution to it. However, we
can transform our algorithm to deliver a good approximation
to this min-node k-coverage problem as follows. LAACAD
is called iteratively3 and R∗ is compared with rs at the end
of each iteration. Nodes are added (resp. reduced) if R∗ > rs
(resp. R∗ < rs), until R∗ ≤ rs but adding one more node
would make R∗ > rs. Although the solution may not be
optimal, it yields very good approximation to the optimal
solution, as we will demonstrate in Sec. V. If fact, as the
up-to-date algorithms are all approximations for k > 2 and
they are not autonomous (e.g., [15]), our algorithm is also
the first autonomous deployment for approximate min-node
k-coverage with an arbitrary k.

Maximum k-Coverage: Another type of problem aims
at maximizing coverage under fixed sensing ranges, but ex-
isting proposals only focus on 1-coverage [9], [10]. A natural
definition of the general maximum k coverage problem is to
maximize the area that is k-covered under a fixed sensing
range. The major difference between k = 1 and k > 1 is that
the former achieves maximum coverage if nodes are far apart
from each other whereas the same principle does not apply
to the latter. An obvious example is the following: assume
only 3 nodes are used to 3-cover an area, the maximum
coverage is achieved only if all three nodes are put at
the same location. Consequently, the heuristic of bounding
the minimum separation among nodes [22] does not work.
Intuitively, the output of LAACAD may also serve as a good
approximation to the maximum k-coverage problem, as, for
example, LAACAD does converge to the optimal solution
for the aforementioned 3-node case.

Connectivity: Although maintaining network connec-
tivity is not our concern in designing LAACAD, it appears
to be a natural outcome of achieving k-coverage for k ≥ 2.
Under k-coverage, it is easy to see that there should be at
least k nodes in the sensing range ri of a node ni (including
ni), otherwise ui is not k-covered. In reality, as shown in
Figure 2, there are at least 7 nodes in a certain sensing range
for k ≥ 2. Because a common (realistic) assumption in the
literature is γ ≥ ri (e.g., [5], [9], [10]), each node in a WSN
has at least a degree of 6, which is sufficient to guarantee
connectivity in the WSN.

Min-Max Fair: While our k-CSCP only requires that
the maximum sensing range is minimized and hence does
not concern nodes with non-maximum sensing ranges, the

3If an application only requires a one-time (rather than autonomous)
deployment, we may use LACAAD in a centralized fashion.

min-max fair utility (a Pareto optimal point) requires that a
node ni cannot further reduce its sensing ranges ri without
increasing the sensing range rj (rj ≥ ri) of another node nj .
According to the property of k-order Voronoi diagram, the
output of LAACAD is at least locally optimal with respect
to the min-max fair utility, i.e., if we reduce ri, another node
nj that shares dominating region boundary with ni should
increase rj to maintain k-coverage, but we know rj ≥ ri
before ri gets reduced. In fact, our simulation results in
Sec. V show that, after LAACAD converges, the maximum
and minimum sensing ranges are almost the same for k > 2.

V. SIMULATIONS

In this section, we report our simulation results. We first
present the convergence of LAACAD. Then, we analyze
the sensing energy consumption. Finally, we evaluate the
output of LAACAD in terms of minimizing the number of
sensor nodes to achieve certain coverage, followed by the
adaptability to network irregularities.

A. Convergence

As convergence results we obtain from our extensive
experiments are all similar, we only present one case to
demonstrate the convergence of our algorithm. We consider
a targeted area of 1 km2, and initially deploy 100 sensor
nodes at the bottom-left corner, as shown by Figure 5(a).
In the following four sub-figures, it is obvious that our
algorithm leads to an “even” node distribution in the sense
of multiple coverage. Specifically, in the multiple coverage
cases with k = 2, 3, 4, nodes tend to cluster in groups of size
k, in contrast to the pure even distribution for k = 1. This
is not a surprise as such an “even clustering” distribution
yields more overlaps of the dominating regions among
every cluster, which in turn reduces the required sensing
range. Interestingly, this appears to also meet the needs
of maximum k-coverage. As we discussed in Sec. IV-C,
LAACAD leads to a co-location deployment for the extreme
example of using three nodes to achieve 3-coverage.

We also show the convergence process of LAACAD in
Figure 6. Since a sensor node finally reaches the Chebyshev
center of its dominating region and the sensing range is
equivalent to the circumradius of the dominating region,
we illustrate the relationship between execution rounds (of
length τ ms each) and the maximum/minimum circumradii.
As the nodes are deployed at the corner of the targeted
area initially, the maximum circumcicle usually appears
on the network boundary, which is mainly determined by
the searching ring (Figure 3). Consequently, the maximum
circumradii for k = 1, 2, 3, 4 are almost the same at the
beginning. Corresponding to our proof of the convergence,
the maximum circumradius is monotonically decreasing with
the execution rounds of LAACAD, while the minimum
radius is increasing in general. In the end, the maximum
and minimum radii are very close to each other, especially
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(a) Initial deployment (b) 1-coverage deployment (c) 2-coverage deployment (d) 3-coverage deployment (e) 4-coverage deployment

Figure 5. Initial deployment and k-coverage (k = 1, 2, 3, 4) deployments as the output of LAACAD.

for larger k. While the monotonic decreasing in maximum
circumradius shows the convergence of LAACAD, the fact
that the minimum circumradius coincides with the maximum
one further reflects the balance of sensing load in the WSN.
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Figure 6. The convergence of LAACAD.

B. Energy Consumption

In this section, we show the sensing energy consumption.
We again consider a targeted area of 1 km2, while scaling the
network size (i.e., the number of sensor nodes) from 20 to
180. As the sensing range is modeled as a disk centered at ui
with radius ri, we naturally define the energy consumption
function as E(ri) = πr2

i : an increasing function of ri.
We illustrate the sensing energy consumption in terms

of maximum load max{E(ri)}i=1,...,N and total load∑N
i=1E(ri) in Figure 7. As we deploy more sensor nodes

to a given targeted area, each node takes care of less area
when achieving a certain coverage. The maximum sensing
load is thus decreasing with the increasing number of nodes.
Given a certain number of nodes, to achieve higher coverage
degree, each sensor node is supposed to cover larger area
thereby enhancing the maximum sensing load. We also
observe that for k1-coverage and k2-coverage, the ratio of
maximum loads between them is roughly k1/k2, which
can be explained as follows. Since LAACAD makes the
minimum sensing range very close to the maximum one,

each sensor node roughly covers the same area k|A|/N ,
i.e., E(ri) = k|A|/N where |A| is the area of the targeted
region. Nevertheless, increasing the number of nodes does
decrease the total sensing load of the WSN, shown by Fig-
ure 7(b). Because using a less number of nodes leads to each
sensor node taking charge of a larger area, which implies a
larger sensing disk. This in turn yields more overlap between
sensing ranges (i.e., a larger sensing redundance), thus a
higher total load.
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Figure 7. Energy consumption in the final deployments using 100 nodes

C. Comparisons with Min-Node k-Coverage

As mentioned in Sec. IV-C, our LAACAD algorithm
results in a good approximation to min-node k-coverage
problem (where all nodes have the same sensing range and
the objective is to minimize the number of nodes used
to achieve k-coverage). In this section, we compare our
algorithm with the deployment strategies proposed in [3] and
[15], in terms of the required number of nodes guaranteeing
k-coverage (k ≥ 2). As we can anyway increase the
minimum sensing range to the maximum one in the output
of LAACAD without compromising the coverage (these two
values are almost the same according to Sec. V-A), we assign
an identical sensing range to every node as the maximum
sensing range R∗ in our case.

In [3], without considering boundary effect, Bai et al. have
proven that the optimal congruent deployment density4 for
2-coverage is 4π/3

√
3, where sensor nodes have the same

4Deployment density is defined as a ratio of the area of sensing disks to
the area of Voronoi polygons generated by sensor nodes [3].
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(a) Initial deployment I (b) 2-coverage deployment I (c) 4-coverage deployment I (d) 6-coverage deployment I (e) 8-coverage deployment I

(f) Initial deployment II (g) 2-coverage deployment II (h) 4-coverage deployment II (i) 6-coverage deployment II (j) 8-coverage deployment II

Figure 8. Adaptability of LAACAD to arbitrarily shaped areas and obstacles as well.

sensing range r. Given a targeted area A, we compute the
minimum number of sensor nodes N∗k=2 for 2-coverage as

N∗k=2 =
|A| 4π

3
√

3

πr2 = 4|A|
3
√

3R∗2
, here we use |A| to replace the

area of Voronoi polygons generated by sensor nodes, which
leads to an under-estimation of N∗k=2 due to the boundary
effect. We simulate large-scale WSNs with size ranging from
1000 to 1600 in a 1 km2 targeted area. The result is shown
in Table I. In general, the number of nodes deployed by
LAACAD is about 15% higher than the minimum value, but
the boundary effect is the main reason for this difference.
As the boundary effect is not taken into account in [3], extra
nodes are needed to cover the vacancies on the boundary due
to the mismatch between the congruent deployment and an
arbitrarily shaped targeted area. Therefore, we can conclude
that LAACAD actually leads to a very good approximation
of the min-node 2-coverage problem.

Table I
THE MINIMUM NUMBER OF SENSOR NODES TO ACHIEVE 2-COVERAGE

N 1000 1200 1400 1600
R∗ (m) 3.035 2.712 2.523 2.357
N∗

k=2 836 1047 1210 1386

In [15], Ammari et al. propose to decompose a targeted
area into adjacent Reuleaux triangles, and nodes are de-
ployed in the intersection areas between these triangles
(these intersections are termed lens in [15]). According to
their derivation, 6k|A|

(4π−3
√

3)r2
nodes are required to k-cover A

where k ≥ 3 and r is the sensing range. Here we compare
this feasible deployment with LAACAD. We deploy 180
nodes in a 1 km2 area and let all nodes have the same

sensing range R∗k. We also compte the number of nodes
that deployed according to the strategy proposed in [15] as
N∗k = 6k

(4π−3
√

3)R∗2k
.

From the result shown in Table II, it is very clear that
LACAAD can use much less nodes to achieve the same
level of coverage compared with [15].

Table II
THE NUMBER OF SENSOR NODES TO ACHIEVE k-COVERAGE WITH THE

STRATEGY PROPOSED IN [15] FOR k = 3, 4, ..., 8

k 3 4 5 6 7 8
R∗

k (m) 8.77 10.21 11.24 12.36 13.39 14.32
N∗

k 318 313 323 320 318 318

D. Adaptability to Obstacles

Finally, we demonstrate the adaptability of LAACAD
to arbitrarily shaped targeted area (with obstacles inside)
in Figure 8. The “holes” represent obstacles that mobile
sensor nodes cannot move upon. It is clear that LAACAD
adapts well to these irregularities and again achieves the even
clustering distribution as if the area were regular.

VI. CONCLUSION

In this paper, we have focused on minimizing the max-
imum sensing range to achieve load balancing k-coverage
through autonomous deployments (i.e., relying on mobile
sensors nodes and the wireless communications among
them). We have innovated in applying the k-order Voronoi
diagram in a localized manner, and we have proposed
LAACAD (Load bAlancing k-Area Coverage through Au-
tonomous Deployment) to solve the optimization problem
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through a distributed and localized procedure. Our approach
significantly extends the existing mobility control methods
for solving sensor coverage problem, as we are the first to
tackle the problem of k-coverage autonomous deployment.
We have proven the convergence of LAACAD as well as the
(local) optimality of its output. We have also explained the
close relations between the output of LAACAD and other
commonly used optimization objectives, which provides a
better understanding of optimal k-coverage deployments
whose theoretical characterizations are hard to obtain under
general settings. Finally, our simulation results strongly
confirm all the theoretical claims we have made, and they
also demonstrate the adaptability of LAACAD to the irreg-
ularities of the targeted sensing region.
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