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Abstract—Over the past decade, indoor localization has been
a topic of interest for both the academic and industrial com-
munities. The need for location estimation, fueled mainly by
inaccuracies of GPS indoors, has been addressed by specifically
designed systems achieving a high localization accuracy but with
a high deployment cost. Lately, dedicated systems are being
replaced by smartphones through intelligent use of the built-
in sensors. For instance, an accelerometer that can detect user
activity can be combined with a wireless radio that captures wire-
less signal strength information to locate a user. With the advent
of such technology, a myriad of systems have been proposed in
the literature presenting an indefinite picture to a reader as to
which systems actually work and which do not given practical
considerations. This article takes up the goal of surveying state-of-
the-art smartphone based indoor localization systems with critical
analysis on their properties such as accuracies across various
sensor designs, energy consumption and computational cost, user
satisfaction etc., thereby providing a status quo of such systems.

Keywords—Indoor Localization, Smartphones, Fingerprinting,
Dead Reckoning.

I. INTRODUCTION

INDOOR localization despite being a well studied problem
with innovative solutions proposed by researchers, still

presents a daunting task for users while finding their way inside
indoor spaces, such as campus buildings, shopping malls,
underground subways, and airports. The reasons could be
unconstrained user mobility, non-uniformity in building struc-
tures/plans and many others. This has led to the dependence
on static you-are-here (YAH) maps which are not periodically
updated and hence force users to resort to human help for
locating and navigating themselves.

Driven by the mobile computing impetus, several solutions
have been proposed. Hightower et al. [1] discuss the function-
alities of most available technologies in the pre-smartphone
era, including infrared badges, ultrasound tags, laser rangers,
as well as wireless modules (e.g., RFID) All the referenced
proposals in [1] require additional equipments to be carried
by users, making them seminal solutions to begin with but
not necessarily practical for real-life deployments. A recent
survey by Harle [2] focuses on indoor positioning systems
facilitated by wearable inertial sensors such as accelerometer,
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gyroscope and magnetometer. While being a valuable source
for understanding inertial positioning (e.g., techniques for
computing displacement and direction from user movements),
the survey barely touches the area of using smartphones as
platforms for indoor localization.

Over the past few years smartphones have been penetrat-
ing the market at an exponential rate. Built-in sensors such
as accelerometer, gyroscope, magnetometer, microphone and
camera have extended beyond the boundaries of entertainment
and user interaction to give us the benefit of encapsulating
communicating, sensing and computing capabilities into one
device. A survey by Lane et al. [3] provides a concise discus-
sion on all novel application developments using smartphones
including indoor localization. In a nutshell, [1], [2], [3] provide
readers either a general understanding of indoor location
systems or and the sensing capabilities of smartphones, but
they never delve particularly into smartphone-based location
systems, whereas our goal is to bridge this gap.

We aim to provide a performance comparison of systems
developed across a diverse range of smartphone platforms.
The metrics we take into account for the analysis are energy
consumption, built-in sensor variation, computational cost,
user diversity, and user intervention. Due to the lack of uniform
evaluation methodologies, we do not re-implement the existing
work but provide a discussion based analysis on how the
aforementioned metrics affect the accuracy of the localiza-
tion systems. To reiterate, our contributions lie in providing
an analysis of smartphone based localization systems, their
capabilities and drawbacks and finally proposing a working
principle of our infrastructure-less localization system.

We lay down the road map of this paper. Section II
provides an introduction to the different location inferencing
techniques. Section III provides a comparative analysis on the
systems discussed using the metrics mentioned. Section IV first
presents the need for an indoor navigation system on a portable
smartphone, followed by an evaluation of a publicly available
localization system. The final part in this section, consists of
a working idea of our infrastructure-less system and how it
caters to satisfying certain key design factors for an indoor
localization and navigation system. Finally, we conclude our
survey in Section V.
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Fig. 1. Location inference using smartphone sensors: fingerprinting (FP) is performed through built-in sensors indicated on the left side, whereas dead reckoning
(DR) is performed through sensors on the right.

II. OVERVIEW OF LOCATION INFERENCE

Locations can be estimated intermittently (i.e., locating a
user from time to time when he/she is stationary) or contin-
uously (e.g., tracking a user who keeps moving). Usually, in-
termittent localization relies on fingerprinting where observed
signal strengths are matched with stored signal strength maps
to find a best match. Continuous localization is facilitated
through dead reckoning algorithms which track and update the
position of the user continuously using inertial data collected at
every time instant. Fig. 1 illustrates the various built-in sensors
utilized by each of the techniques.

Fingerprinting (FP) is performed with various signal sources
such as cellular [4], wireless [5] ambient sound [6], light [7],
and magnetic fields [8]. Fingerprinting systems need extensive
human effort and time in mapping locations with correspond-
ing signal strengths. However, the idea of crowdsensing has
been utilized by some works [9], [10] for reducing the efforts.
Crowdsensing essentially involves the general user in data
collection through the smartphones they carry. As users move
indoors, they either participate in the sensing process or their
smartphones opportunistically collect data for further analysis.

Dead reckoning systems [11], [12] typically use the ac-
celerometer data for computing the displacement [2], the com-
pass (through the magnetic field sensor) to obtain the direction
or heading information and perform tracking using proba-
bilistic algorithms. However, indoor spaces induce magnetic
field variations due to the presence of ferromagnetic building
structures like pillars. These variations cause the compass to
fluctuate leading to inaccurate heading. To overcome this issue,
compasses are used in conjunction with gyroscopes which are
immune to magnetic field variations and they measure the
angular rotation of the device [13]. As the inertial sensors used
by a DR system are often measuring differential quantities,
their inherent drift can cause large errors in the final estimation
(drift is the increase of error in displacement due to the
double integration of noisy acceleration data). Therefore, a
typical drawback of DR systems is the need for complicated
algorithms to cope with such errors.

III. A CRITICAL ANALYSIS

For any comparative analysis, it is a norm to re-implement
the proposed systems. However, Harle [2] correctly pointed out
that this is hindered due to the lack of uniform testing method-
ologies particularly for DR systems. Similar statement can be
made for FP systems. Hence it may not make much sense to
re-implement and compare all existing systems because of the
differences in infrastructure, device and deployment effort re-
quirement. Instead, we resort to analyzing whether prior work
has addressed critical factors in smartphone based localization
namely accuracy metric, energy consumption, sensor variation,
computation power, and user intervention. Table I lists all the
work discussed in this survey along with the results obtained
comprising of relative accuracy and average estimation error.
Relative accuracy is the number of test fingerprints correctly
classified to their corresponding locations and average error is
calculated as average distance between estimated location and
ground truth. FP systems are evaluated based on the former
metric whereas DR systems are evaluated based on the latter.

A. Energy Consumption

We define energy consumption as the amount of battery
drain caused by various components such as the screen,
cellular and WiFi radios, built-in sensors and the algorithmic
or computational cost. In conjunction with indoor localization,
we point out that the constant usage of built-in sensors and
data transfer over wireless network are two of the potential
energy consumers.

All multi-sensor fusion based localization systems [7], [9],
[12], [13], [15], [16] involve continuous sensing of data which
could burden the smartphone battery. For instance, UnLoc
[13] constantly detects WiFi, magnetic and accelerometer land-
marks to improve dead reckoning estimates, whereas Redpin
[9] uses all three radios namely WiFi, Cellular and Bluetooth
for fingerprinting and classifying locations. Although mag-
netometer, accelerometer and cellular radio are continuously
running, the added energy consumption is marginal when com-
pared to continuous usage of wireless and Bluetooth radios.
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TABLE I. SYSTEM LEVEL RESULTS OF DISCUSSED WORKS. THE TRACKING CAPABILITY (OR CONTINUOUS LOCALIZATION) IS ALSO SHOWN
INDICATING THE POSSIBILITY OF BUILDING AN INDOOR NAVIGATION SERVICE ON TOP.

Author System Sensors Used Relative Accuracy (%) Average Error (m) Tracking Reference

Varshavsky et al. SkyLoc Cellular 73 N/A × [4]
Jiang et al. ARIEL Acc, WiFi 95 N/A × [5]
Tarzia et al. Batphone Microphone 69 N/A × [6]

Azizyan et al. SurroundSense Acc,Microphone,Camera,WiFi 87 N/A × [7]
Subbu et al. LocateMe Magnetometer 90 4.5 × [8]
Wang et al. UnLoc Acc,Compass,Gyro,WiFi N/A 1.69 X [13]

Li et al. Acc,Compass N/A 3 X [11]
Rai et al. Zee Acc,Compass,Gyro,WiFi N/A 1 X [12]

Bolliger et al. Redpin WiFi,Cellular,Bluetooth 90 3 × [9]
Park et al. OIL WiFi N/A 5 × [10]
Ravi et al. Camera 80 N/A × [14]
Park et al. Acc, Magnetometer N/A 7 X [15]

Zhang et al. MaWi WiFi, Magnetometer 90 3 X [16]

Therefore, MaWi [16] proposes to use only WiFi and magnetic
sensing to achieve a satisfactory location accuracy.

Work in [7], [14] have exploited the camera for fingerprint-
ing locations based on the images captured. Locations are
further classified using different image processing techniques.
Although [14] accounts for the energy spent to transmit low
resolution images, it does not include the energy consumed by
the camera application running. Also, data transfer over WiFi
or 3G affects the battery usage. In [17], Vallina et al. show
that approximately 12.5J and 7.6J of energy are consumed to
transfer just 50KB of data over WiFi and 3G respectively on
a Nokia handset. Since high resolution images have large file
sizes, they could incur in much higher energy consumptions.

B. Sensor Variation
Differences in the built-in sensor models over a wide range

of smartphones may also affect both FP and DR based systems.
In order to validate the scalability of proposed FP systems,
it is crucial to perform training and testing over diverse
phone models, but most systems surveyed here do not tackle
this challenge. The SkyLoc system [4] fingerprints cellular
signals and classifies locations, particularly floors in multi-
storied buildings. They use different instances of Nokia Au-
dioVox phones which may not necessarily mean that the radio
chipsets are different. Since different radios have different
signal reception rates, they could potentially affect the cellular
signal collection and classification. Next, Redpin [9] despite
being a collaborative system uses only Nokia N95 phones
across multiple users for validation. Batphone [6] uses the
built-in microphone of an iPhone to fingerprint and classify
locations based on the ambient acoustic information. Although
encouraging accuracies are obtained, testing could have been
performed across multiple phones since microphone sensitivity
varies across different devices. On the contrary, LocateMe [8],
implemented and discussed the effect of device diversity on
their proposed magnetic field based location classification and
distance estimation system.

As mentioned earlier, DR systems compute displacement
and direction using inertial sensors such as the accelerometer,

gyroscope and magnetometer. These sensors have different
sensitivity and sampling rates across different vendors. Particu-
larly, peak detection algorithms extract peaks which represent
user steps. Variation in the sampling rates can have a sig-
nificant impact on the algorithms resulting in false positives.
For instance, [11] and [12] propose heuristic algorithms for
step detection by sampling the accelerometer at 50Hz while
ARIEL [5] samples at 5Hz. For faster computation, it might be
advantageous to use lesser number of samples however it is not
clear whether the algorithms in each of the proposals will work
if the sampling rates are interchanged. Zee [12] crowdsources
WiFi data as users are tracked using inertial sensors, but the
proposed scheme was evaluated using only one user and one
smartphone. Authors in [11] propose a personalized stride
estimation and step detection algorithm. Although the system
was evaluated across multiple users with different physical
profiles, only a Windows 7 based HTC Mazza (specifications
are not available) was used. On the other hand, [15] evaluate its
tracking system using accelerometer and magnetometer from
different Android based smartphones such as HTC Desire,
HTC Nexus One, and Samsung Galaxy S.

C. Computational Cost
Complex computations by algorithms could cost the proces-

sor to devote entirely to one application. This could in turn bur-
den the battery. We shall see how existing works address this
problem. Most of the works follow a client-server approach. In
other words, they offload processor intensive operations such
as particle filter computation [11], [12], [15], supervised and
unsupervised classification [13] and image processing [14], to
a powerful server for reducing the burden on the smartphone’s
processor. Albeit a good strategy, we feel this could have direct
implications on accuracy and user satisfaction. Depending on
the network connectivity, the amount of test data transferred to
a server could in turn affect the accuracy. In other words, due
to network constraints, if only 100 WiFi samples are uploaded
instead of an entire data set of 1000 samples to characterize a
particular location, the accuracy of location estimation might
reduce.
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An ideal system should be capable of either computing
locations locally on the phone with minimal or no requirement
of a server. The alternative is to facilitate buildings with fast
network connections for reducing data transfer and location
computation delays. Both delays directly affect user satisfac-
tion of a localization application i.e., a user may not be willing
to wait for several minutes until the required data is transferred,
location queried and the estimated location is sent back. For
instance, the system in [8] downloads the respective magnetic
maps (unique magnetic signatures of various locations) of
buildings or hallways through a user input of the building
name. Location is estimated locally using the downloaded
maps, eliminating the need for any server computation. Since
the delays mentioned above are reduced, this greatly increases
user satisfaction.

D. User Intervention

Indoor localization systems should be designed in a way so
as to minimize or avoid user intervention. In other words, the
system should be adaptive to the ambient environment rather
than expecting user inputs. Redpin [9] and OIL [10] propose
collaborative systems for populating fingerprint databases.
Both employ only a few users to build fingerprint maps of
a building and perform localization. Although this validates
the usefulness of crowdsensing systems, user intervention is
involved to some extent in both proposals to correct wrongly
classified locations (e.g., the system may ask a user to point
their locations on the floor map). On one hand this could affect
the accuracy if the user is not sure about his/her particular
location due to building complexities and on the other hand,
it may not be desirable for a first hand user who has no
knowledge of his/her surroundings to provide valuable inputs
about the location.

E. Accuracy

All the above discussed metrics affect the accuracy in one
way or the other. Consider the accuracies obtained by Ariel [5]
and SurroundSense [7] from Table I. They both utilize WiFi for
localization but end up obtaining different accuracies. Factors
such as sensor variation and environmental test beds may
as well be attributed to this variation. Similarly, SkyLoc [4]
and Redpin [9] utilize cellular fingerprints. However, Redpin
obtains increased accuracy which can be attributed to the
combined use of WiFi and Bluetooth fingerprints at the cost
of battery drains thereby resulting in an accuracy Vs energy
trade-off.

To conclude, we summarize two critical points. First, all the
performance indices in Table I are taken from individual ref-
erences obtained by individual testing platforms (e.g., certain
smartphones) and fields (e.g., the office building occupied by
the concerned research group). Therefore, these performance
indices are not good indicators to comprehend which system
performs better than another. Second, none of the works
support navigation or implement indoor navigation on the
smartphone which is the next step in getting closer to a GPS
like system for indoors.

In the next section we discuss the need for an indoor
navigation system, validate some of these requirements on a
publicly available indoor maps service and finally introduce
the design of our indoor localization and navigation system.

IV. WHAT DOES THE FUTURE HOLD?

To understand the general need for an easy to use in-
door navigation service, a survey was conducted through a
questionnaire raised toward navigating in a local shopping
mall. Questions included the number of times people visited a
particular shopping mall over the past year, their familiarity
with the indoor space, common landmarks that they recall
when visiting the mall and finally their need for a smartphone
based indoor navigation system (INS). 120 participants male
and female between ages 23-50 and belonging to Singapore
participated in the survey. Table II shows the responses to the
questionnaire. The statistics column indicates the average and
standard deviation of participants’ answers.

S/N Question Statistics
1 Num of visits to mall within the last year 10.61 ± 8.74
2 Familiarity with the indoor space (1-10) 5.11 ± 2.8
3 Ease of navigation using you-are-here maps (1-10) 5.00 ± 1.43
4 Need for smartphone-based INS (1-4) 3.5 ± 0.67
5 Cognitive landmarks recalled 5.00 ± 2.66

TABLE II. USER PERCEPTIONS ON INDOOR NAVIGATION SOLUTIONS
(AVERAGE ± STANDARD DEVIATION).

Table II lists the quantitative answers to all questions aver-
aged over 120 users. For instance, for question I the responses
indicate the maximum and minimum number of times users
visited a mall. The maximum was close to 19 times and
minimum was 2 times. Similarly for the next question, the
highest familiarity was close to 8 and lowest was 2.

From the responses it is interesting to see that people
on one hand, have low confidence in finding ways and re-
membering landmarks (confirming the importance of indoor
localization), while they on the other hand, do not generally
trust a smartphone-based system (demonstrating the need for
better developments of such systems). To better interpret user
satisfaction with an indoor localization service, we requested
users to install the publicly available Google Maps Indoors
(GMI) service which has been made available across various
indoor facilities particularly shopping malls. Through this
evaluation, we also aim to understand the actual working
principle behind GMI.

A. Evaluating GMI
One key requirement of GMI is that facility owners release

floor maps. Also, according to anonymous online sources, GMI
is an FP system based on WiFi and GSM signals. To confirm
this, we let 11 users use the service in eight shopping malls and
evaluate GMI. The accuracy of GMI was evaluated through
user feedbacks, which involved labeling actual locations for
comparison with GMI marked locations. Fig. 2(a) illustrates
the observed accuracy. Next, user satisfaction was rated based
on how close they were located, in other words, GMI’s
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accuracy directly affected user satisfaction. Fig. 2(b) shows
the user satisfaction rates after using GMI. As can be seen,
users tend to be dissatisfied with the service.

(a) Screenshots for GMI. The blue arrows indicate locations estimated by GMI and the
labels show the actual location. Though without actual measurements, the differences

between the estimated and actual locations are clearly very significant.
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Fig. 2. GMI performance evaluation

All the tests had three common observations: i) The smart-
phone’s WiFi and 3G needed to be turned on, ii) GMI provided
a coarse location of 20m based on cellular base stations
in locations with weak or no WiFi networks, and 3) GMI
delivered satisfactory accuracy only when there is a very high
density of WiFi access points. All these observations tend to
indicate the strong dependence of GMI on wireless and cellular
networks whose accuracy depends on ubiquitous infrastructure
availability even in basements and car parking areas. The
drawback or a concern among users of this service may also
be the continuous running of WiFi radio which tends to cause
faster battery drains.

GMI actually makes the first step toward a common platform
for comparing various system designs: if Google provides
application programming interfaces (APIs) to access GMI,
most of the systems discussed so far can be ported to GMI,
which in turn allows for a fair comparison among them.
Unfortunately, the reliance on the availability of digitized floor
maps still poses an obstacle. Crowdsensing systems such as
Redpin [9] and OIL [10] only ”paste” fingerprints on known
floor maps, whereas Zee [12] utilizes floor maps to assist its
particle filter. A common factor in all these proposals including
GMI is the dependence on known floor maps. The availability
of floor maps for every possible building cannot be assumed
and WiFi is not ubiquitous.

B. Towards Zero Infrastructure Reliance
To this end, we propose an idea using crowdsensing and

fingerprinting to potentially eliminate both the infrastructure
requirements namely dependence on floor maps and wireless
networks [18]. We combine the power of crowdsensing to
construct floor maps and perform localization through fin-
gerprinting. The general idea is to join user trajectories that
are confined to the same indoor locations and form a simple
floor map which resembles a graph representing an indoor
road network. Ambient magnetic fields have shown promising
results [8], similar to those obtained with multi-modal data
[7]. Therefore, using magnetic fields as source for location
identification, long user trajectories are segmented based on
the turns detected from gyroscope data. Fig. 3 illustrates this.
The data in Fig. 3 was collected by one of the authors who used
a smartphone and walked along a corridor taking three turns.
The magnetic field data captured along the corridor was used
for location identification and the gyroscope data was used for
identifying the turns. Using the gyroscope data, every section
of the hallway is segmented with each segment comprising of
a unique magnetic signature.
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Fig. 3. Location segmentation: magnetic signatures at different locations are
segmented at Turns 1, 2 and 3. These segmented signatures from multiple
users are appended with start and end points and later joined to form a floor
map with a graph topology.

Consequently, multiple long trajectories can be merged
based on the similarities (in terms of magnetic fingerprints)
among the segments, which in turn assembles a floor map. Us-
ing this map, localization can be performed based on magnetic
field fingerprinting. Fig. 4 illustrates a constructed floor map.
In Fig. 4(a), the original floor map and its line segment version
are shown. As users walk along the same location or different
locations, the magnetic signatures corresponding to each of the
location are combined and hence a crowdsensed floor map is
constructed as shown in Fig. 4(b). With this procedure, the
requirement for requesting store or building owners to upload
floor maps can be completely eliminated.

Any user new to the building can download the constructed
floor map and request either localization or navigation service.
Our system further enhances the localization by adding a
navigation element. We incorporate Bayesian approach to
probabilistically estimate the user’s location in real time and
use the constructed floor map as a graph network to calculate
routes to the required destination. We are in the process of
evaluating the navigation system in large scale shopping malls
across a number of users.
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(a) Original floor map and its line segment version

(b) Re-constructed floor map

Fig. 4. Crowdsensing floor map construction: magnetic signatures collected
from user trajectories are segmented and combined as per the conjunction
points (marked in red), then a floor map shown in 4(a) (the hatched area is
temporarily unavailable at the moment) can be reconstructed as shown in 4(b),
with the segments and conjunction points aligned.

To summarize, we briefly throw light on how our proposed
system caters to satisfying some of the metrics discussed in
the earlier sections.

1) Energy Efficiency: By depending only on the light weight
magnetic field sensor, we ensure that the energy consumed is
much lesser than WiFi based approach.

2) User and Device Diversity: As mentioned, we are plan-
ning to evaluate our system across varied kinds of smartphones
with different magnetic field and gyroscope sensors and also
across different users.

3) One Missing Piece: Through our proposed navigation
system, we aim to fill in the void of an indoor smartphone
based navigation system that works anywhere and does not
require any form of infrastructure installation, yet addressing
the basic need for users lost indoors.

V. CONCLUSION

Smartphones have become the defacto medium for mobile
sensing applications. To give a clear view of how smart-
phones have been used for indoor localization, this paper has
surveyed a variety of indoor localization systems developed
over different smartphone platforms. Specifically, we discussed

how existing works have addressed the important design
factors namely energy consumption, built-in sensor variation,
computational cost and user diversity. Due to the lack of
common grounds to re-implement and evaluate all systems, we
have evaluated Google’s indoor localization service and also
identified its drawbacks. Finally, we have briefly introduced a
novel crowdsensing based localization and navigation system
and presented how the new system caters to the design
requirements which were not accounted by existing works.
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