LOWNESS AND LOGICAL DEPTH

ROD DOWNEY AND MICHAEL MACINERNEY AND KENG MENG NG

1. Abstract

Bennett's concept of logic depth [3] seeks to capture the idea that a language has a lot of useful information. Thus we would expect that neither sufficiently random nor sufficiently computationally trivial sequences are deep. A question of Moser and Stephan [11] explores the boundary of this assertion, asking if there is a low computably enumerable (Bennett) deep language. We answer this question affirmatively by constructing a superlow computably enumerable Bennett deep language.

2. Introduction

Which sets (sequences/languages) contain a lot of information? When is this information useful? The area of algorithmic information theory would suggest that a random set would have a lot of information, but a sufficiently random set would have very little useful information. In [3], Bennett introduced a computational method of assigning meaning to having a lot of useful information.

Bennett's intuition was that sets with a lot of useful information, deep sets, were those with the following property. A set should be deep is one for which the more time a compressor is given the more the compressor can compress the sequence. That is, in no computably time bounded way, can we understand the complexity of the sets initial segments.

To be more precise,
Definition 2.1 (Bennett [3]). Let K denote prefix-free Kolmogorov complexity ${ }^{1}$, and K^{t} be a time bounded version, for a computable time bound $t: \mathbb{N} \rightarrow \mathbb{N}$.

We say that a language L is (Bennett)-deep (or simply "deep" when the context is clear) if for each constant c and each computable time bound t, for almost all n,

$$
K^{t}(L \Uparrow n)-K(L \Uparrow n)>c .
$$

[^0]Here $A \Uparrow n$ denotes the initial segment of A consisting of the first $n+1$ bits, following the notation of Soare [14].

Bennett proved that as we would expect, computable languages and sufficiently random ones are shallow, that is, not deep. The notion of depth has proven quite fruitful in giving insight into intrinsic information in languages, and several further variations on the notion, mainly involving orders (in place of c) and plain complexity in place of K) have been studied. See, for instance, $[1,2,4,8,9,10]$, etc. As Moser [10] showed, all of these notion have a common interpretation in terms of computable time bounds and compression ratios.

The goal of our paper is to answer a question raised in Moser and Stephan [11]. In [11], those authors gave a systematic analysis of the computational power of sets (as measured by the apparatus of classical computability theory, using tools like the jump operator), against notions of logical depth.

For example, Moser and Stephan extended an earlier result of Bennett by showing that a degree \mathbf{a} is is high (meaning $\mathbf{a}^{\prime} \geq \mathbf{0}^{\prime \prime}$) if and only if a contains a "strongly" deep set; one with depth ration ϵn.

One key property of deep sets is that easy sets should not be deep. Bennett proved that computable sets (and 1-random sets) are shallow, although there can be deep computably enumerable sets like the halting problem. Moser and Stephan showed that all K-trivial sets are shallow, where A is K-trivial iff $K(A \Uparrow n) \leqslant^{+} K(n+1)$ for all n. K-trivial sets resemble computable sets in terms of Kolmogorov complexity. They are also low in that if A is K-trivial then $A^{\prime} \equiv_{T} \emptyset^{\prime}$. In fact, that are all superlow in that $A^{\prime} \equiv_{t t} \emptyset^{\prime}$, where this denoted truth-table equivalence. (Nies [12, 13], also Downey and Hirschfeldt [5], and Kučera and Terwijn [7] for a related concept).

On the other hand it was known that, at least in terms of Kolmogorov complexity, there are deep sets quite close to being computable, at least in terms of Kolmogorov complexity. That is, Lathrop and Lutz [8] showed that there are ultracompressible deep sets. A is ultracompressible if and only if for all computable orders ${ }^{2} g$,

$$
K(A \Uparrow n) \leqslant^{+} K(n+1)+g(n+1) .
$$

For sets in general, Moser and Stephan showed that PA degrees contain deep sets, and hence there are superlow deep sets by the Superlow Basis Theorem.

The question Moser and Stephan raise is whether such low deep sets can be computably enumerable. The thing is that enumerability has a big effect on the initial segment complexity of sets. For instance, there are superlow 1 -random sets R and hence superlow sets with $K(R \Uparrow n) \geq^{+} n$ for all n, but if A is c.e. then $K(A \Uparrow n) \leqslant^{+} 3 \log n$. Moreover, a recurrent theme in classical computability theory is that low c.e. sets have many properties very much like computable sets. (Soare [14] CH IX.3: "Low sets Resemble

[^1]Recursive Sets") So it would be reasonable to guess that all low c.e. sets are shallow. Nevertheless, we will prove the following.

Theorem 2.2. There is a superlow c.e. Bennett deep set.
The remainder of this paper is devoted to proving Theorem 2.2. Notation is more or less standard and generally follows Soare [14] or DowneyHirschfeldt [5].

3. The Proof

Proof. We construct a c.e. set A. To make A Bennett deep, we meet for every $i \in \omega$ the requirement

$$
\begin{aligned}
& R_{i}: \text { if } \varphi_{i} \text { is an order function, then } \\
& \qquad(\forall c)\left(\forall^{\infty} m\right) K^{\varphi_{i}}(A \upharpoonright m)>K(A \upharpoonright m)+c,
\end{aligned}
$$

where $\left\langle\varphi_{i}\right\rangle_{i<\omega}$ is an acceptable listing of all partial computable functions. We assume that we have some approximation $\left\langle\varphi_{i, s}\right\rangle_{s<\omega}$ to each φ_{i} such that for all s, the domain of $\varphi_{i, s}$ is an initial segment of ω. To make A low, we meet for every $e \geqslant 1$ the requirement

$$
L_{e}:\left(\exists^{\infty} s\right)\left(\Phi_{e}^{A}(e)[s] \downarrow\right) \Longrightarrow \Phi_{e}^{A}(e) \downarrow
$$

where $\left\langle\Phi_{e}\right\rangle_{e<\omega}$ is an acceptable listing of all Turing functionals. We will later show that A is superlow by computably bounding the number of injuries to each L-requirement.

We first consider the strategy to meet the R-requirements without any L-requirements. We follow an approach from [6], where it is shown that every high degree contains a Bennett deep set.

We partition ω into consecutive intervals I_{0}, I_{1}, \ldots where interval I_{j} has length 2^{j}. We assign partial computable functions to intervals in the following way. Assign φ_{0} to every second interval including the first one, φ_{1} to every second interval including the first one of the remaining intervals, and so on for $\varphi_{2}, \varphi_{3}, \ldots$. This way, φ_{i} will be assigned to every 2^{i+1} th interval. Therefore, if φ_{i} is assigned to I_{j}, then $I_{j+2^{i+1}}$ is the least interval above I_{j} to which φ_{i} is also assigned. We often write $I_{j^{+}}$instead of $I_{j+2^{i+1}}$. If φ_{i} is assigned to I_{j}, then we will also say that I_{j} is dedicated to R_{i}.

Suppose that φ_{i} is an order function. For each interval I_{j} to which φ_{i} is assigned, we would like to enumerate numbers from I_{j} into A in such a way that the complexity at time φ_{i} of $A \cap I_{j}$, considered as a string, is as high as possible. Then because the lengths of the intervals are rapidly increasing, and the intervals to which φ_{i} is assigned occur regularly, we will be able to show that almost every initial segment of A has high complexity at time φ_{i}, and so R_{i} is met.

More precisely, for the interval I_{j}, we look above to the interval $I_{j^{+}}$. We wait until a stage s where we see $\varphi_{i}\left(\max I_{j^{+}}\right)[s] \downarrow$. Then at stage s, we choose the leftmost string τ of length $\left|I_{j}\right|$ which maximises $K_{\varphi_{i}\left(\max I_{j}+\right)}(\tau)$, and
enumerate numbers from I_{j} into A so that $A_{s} \upharpoonright \max I_{j}=A_{s-1} \upharpoonright \min I_{j}{ }^{\wedge} \tau$. We say that we move in I_{j} at stage s. We will show that there are constants c_{i} and d_{i} such that for sufficiently large j, if m is such that $\max I_{j}<m \leqslant$ $\max I_{j^{+}}$, and we move in I_{j} at some stage, then $K^{\varphi_{i}}(A \Uparrow m) \geqslant c_{i} m-d_{i}$. It is important to note that moving in I_{j} will not allow us to given a lower bound on $K^{\varphi_{i}}(A \Uparrow m)$ for $m \in I_{j}$, but only for m such that $\max I_{j}<m \leqslant \max I_{j^{+}}$. We make A c.e., and so there is a constant d such that for all $m \in \omega$, $K(A \Uparrow m) \leqslant 4 \log (m+1)+d$. Therefore, the limit infimum as m tends to infinity of the difference between the true complexity $K(A \Uparrow m)$ and the time-bounded complexity $K^{\varphi_{i}}(A \Uparrow m)$ is infinite, and R_{i} will be met.

We now consider how this strategy could cope with the introduction of finitely many lowness requirement L_{1}, \ldots, L_{n}. Suppose at stage s we see $\Phi_{e}^{\sigma}(e)[s] \downarrow$ for some $\sigma \prec A_{s-1}$. At some later stage t we see that $\varphi_{i}\left(\max I_{j^{+}}\right)[t] \downarrow$ for some interval I_{j} such that $\sigma \succ A_{t-1} \upharpoonright \min I_{j}$. We say that I_{j} is restrained by L_{e} at stage t. We would like to move in I_{j} at stage t, but doing so would destroy the computation $\Phi_{e}^{\sigma}(e)$ and injure L_{e}. We are only allowed to destroy $\Phi_{e}^{A}(e)$ computations finitely many times, so we must eventually respect the restraint from a lowness requirement. Notice though that a lowness requirement imposes only finite restraint on A. In this simplified case with only finitely many lowness requirements, we simply respect each restraint; eventually there will be no further restraint on A, we will be able to move in almost every interval, and the strategy from above will succeed.

The situation is much more complicated with infinitely many lowness requirements. Now, the L-requirements will attempt to impose restraint cofinally along A. If we simply respect each restraint, then we will make A computable, and so will not be able to make A Bennett deep. Therefore, we need a strategy that will sometimes injure L-requirements in order to move, while still injuring each L-requirement only finitely often.

We arrange the L-requirements in the priority ordering

$$
L_{1}<L_{2}<\cdots<L_{e}<\cdots
$$

We must from time to time respect the restraint from an L-requirement, while making

$$
\liminf _{m \rightarrow \infty} K^{\varphi_{i}}(A \Uparrow m)-K(A \Uparrow m)=\infty
$$

Our idea is that we will not move in an interval I_{j} restrained by the L requirement L_{e} if $e>i$, and if we are able to make the difference between $K^{\varphi_{i}}(A \Uparrow m)$ and $K(A \Uparrow m)$ at least e. We will attempt to do so by using the KC theorem to actively compress the initial segments of A. If I_{j} is restrained by L_{e} and $e \leqslant i$, then we will respect the restraint, and neither compress strings because of restraint from L_{e}, nor move in I_{j} even if we would like to. The L-requirements with index less than i will impose only finitely much restrain on A, and so we will be able to act in all but finitely many intervals dedicated to R_{i}.

So suppose as above that at stage s we see $\Phi_{e}^{\sigma}(e)[s] \downarrow$ for some $\sigma \prec A_{s-1}$, and at some later stage t we see that $\varphi_{i}\left(\max I_{j^{+}}\right)[t] \downarrow$ for some interval I_{j} such that $\sigma \succ A_{t-1} \upharpoonright \min I_{j}$. Suppose that we moved in the previous interval dedicated to R_{i}. Then the strings we need to compress are the initial segments of σ of length greater than $\max I_{j}$. We enumerate a set of requests D. Suppose for the moment that we are only concerned with compressing strings due to restraint from L_{e}, so that we are willing to enumerate weight of 1 into our set D to compress these strings. Also suppose we have $\varphi_{i}(|\sigma|)[t] \downarrow$. We let

$$
N_{t}=\left\{\nu: \nu \prec A_{t-1} \wedge \max I_{j}<|\nu| \leqslant|\sigma|\right\}
$$

The weight of these strings at time φ_{i} is

$$
w_{t}=\sum_{\nu \in N_{t}} 2^{-K^{\varphi_{i}}(\nu)}
$$

In order to compress each of these strings by e bits, we would need to enumerate the request $\left(K^{\varphi_{i}}(\nu)-e, \nu\right)$ into D for every $\nu \in N_{t}$. In doing so, we would enumerate weight of 2^{e}. w_{t} into D. Therefore, if $2^{e} . w_{t} \leqslant 1$, then we are able to enumerate requests into D and use the KC theorem to compress these strings by e bits. If $2^{e} . w_{t}>1$, then we are unable to compress these strings. In this case, we would like to fall back on the first strategy and move in I_{j}, but as this would injure L_{e}, we need some way to guarantee that we injure L_{e} at most finitely many times.

The key is the following. Because we have not moved in I_{j} by the beginning of stage t, we have not yet enumerated any numbers from I_{j} into A, and $A_{t-1} \cap I_{j}=\emptyset$. Then because $\sigma \succ A_{t-1} \upharpoonright \min I_{j}$, each string in N_{t} extends $A_{t-1} \upharpoonright \min I_{j}{ }^{\wedge} 0$. When we move in I_{j} at stage t, we make sure to enumerate $\min I_{j}$ into A. As we make A c.e., no later approximation to A will extend $A_{t-1} \upharpoonright \min I_{j}{ }^{\wedge} 0$. Then the weight $2^{e} . w_{t}$ is "lost" forever, in the following sense.

Suppose at some later stage u that L_{e} restrains an interval $I_{j^{\prime}}$ above I_{j}. Let $\sigma^{\prime} \prec A_{u-1}$ be least such that $\Phi_{e}^{\sigma^{\prime}}(e)[u] \downarrow$. Then we consider the set N_{u} of initial segments of σ^{\prime} of length greater than max $I_{j^{\prime}}$. Because each string in N_{u} extends $A_{u-1} \upharpoonright \min I_{j}{ }^{\wedge} 1$, the sets N_{u} and N_{t} are disjoint. Therefore, the descriptions that the universal prefix-free machine \mathcal{U} used to describe the strings in N_{t} cannot be used to describe the strings in N_{u}. So for \mathcal{U} to describe the strings in N_{u}, it must add more weight in addition to the weight w_{t} already used. The weight of the domain of \mathcal{U} is at most 1 , and so if \mathcal{U} loses weight at least w_{t} every time we injure L_{e}, then we can injure L_{e} at most $\left(w_{t}\right)^{-1}$ many times. We define a threshold $l_{e}=2^{-e}$ for L_{e}. If the weight w_{t} we calculate is less than or equal to the threshold, then $2^{e} . w_{t} \leqslant 1$, and we can compress the set N_{t} by e bits. If the weight w_{t} is greater than the threshold, then we decide to move.

Now that we have compressed σ, as well as some of its initial segments, we may later want to act in intervals dedicated to R_{i} which are above σ. Suppose that I_{k} is the least interval dedicated to R_{i} with $\min I_{k}>|\sigma|$. If we
see $\varphi_{i}\left(\max I_{k^{+}}\right)[u] \downarrow$ at some later stage u, and no L-requirement restrains I_{k} at stage u, then we will want to move in I_{k}. However, we have no way of ensuring the difference between $K(\nu)$ and $K^{\varphi_{i}}(\nu)$ for strings $\nu \prec A_{u-1}$ with $|\sigma|<|\nu| \leqslant \max I_{k}$ is bounded below. The solution to this is the following. At the stage t where we compress σ and its initial segments, we will make sure that we have already seen $\varphi_{i}\left(\max I_{k^{+}}\right)$converge. Then we compress all strings $\nu \prec A_{t-1}$ such that $\max I_{j}<|\nu| \leqslant \max I_{k}$, and move in I_{k} at stage t. Then we can either move in $I_{k^{+}}$or compress strings above max $I_{k^{+}}$at some later stage, without having to worry about intervals below. Compressing these extra strings will not interfere with our way of ensuring the number of injuries to L_{e} is bounded.

We must now decide how to handle all L-requirements. Suppose that I_{j} is dedicated to R_{i}, and at stage s we see $\varphi_{i}\left(\max I_{j^{+}}\right)[s] \downarrow$. If there is no L-requirement which restrains I_{j} at stage s, then we move in I_{j}. If there is some L_{e} which restrains I_{j} at stage s, we let $e=e_{s}$ be the least such. We now have a threshold for every L-requirement. Then, using the treshold l_{e} for L_{e}, we decide whether we would like to stay and compress a set of strings due to L_{e}, or move in I_{j} and injure L_{e} at stage s. Choosing e_{s} to be the least e such that L_{e} restrains I_{j} at stage s will allow us to ensure that if we do move in I_{j} and injure L_{e} at stage s, then no L-requirement of stronger priority than L_{e} is injured at stage s. This will be important when it comes to verifying that A is superlow.

Suppose that we compress some strings due to L_{e} at stage s and also move in some further interval, as described above. We say that I_{j} is happy at the end of stage s. Now suppose some L_{d} with $d<e$ restrains I_{j} at some later stage $t>s$. We consider the set N_{t} of strings we would like to compress, and decide using the threshold l_{d} for L_{d} whether we would like to stay and compress strings due to L_{d}, or move in I_{j} and injure L_{d} at stage t. In either case, I_{j} will again be happy at the end of stage t.

In general, we say that I_{j} is happy at stage s if we have either moved in I_{j}, or by the beginning of stage s, if e is least such that L_{e} restrains I_{j} at stage s, we have compressed all necessary strings due to L_{e}, and moved in the following interval. In full, if $\sigma \prec A_{s-1}$ is least such that $\Phi_{e}^{\sigma}(e)[s] \downarrow$, and k is least such that I_{k} is dedicated to R_{i} and $\min I_{k}>|\sigma|$, then we have compressed all strings $\nu \prec A_{s-1}$ such that $\max I_{j}<|\nu| \leqslant \max I_{k}$ by e bits, and moved in I_{k}.

The goal of the construction can then be summarised rather simply: if the interval I_{j} dedicated to R_{i} is unhappy at some stage, and we have seen enough convergence of φ_{i}, we act to make I_{j} happy.

We now turn to the definition of the thresholds l_{e} for all $e \geqslant 1$. When considering all L-requirements, we will still want to enumerate a single set D of requests. We must of course make sure that the weight of D is less than 1. To do so, we will set aside weight of 2^{-e} in D to requests that we enumerate when L_{e} is the L-requirement of strongest priority which restrains us. If we can manage to stick to this, then D will have weight less than 1.

We calculate these thresholds inductively, beginning with l_{1}. Recall that if L_{1} restrains some interval I_{j}, then we will only want to act in I_{j} if I_{j} is dedicated to R_{0}. If I_{j} is dedicated to R_{0} and L_{1} restrains I_{j} at stage s, then will consider the set of strings N_{s} as above, and calculate its weight at time φ_{0}. We will wish to compress each string in N_{s} by 1 bit, and have set aside weight of 2^{-1} in our set D in order to do so. If the set N_{s} has weight w_{s}, then the weight we enumerate into D would be $2 . w_{s}$. Therefore, if $w_{s}<2^{-1} .2^{-1}$, then we will be able to compress each string in N_{s} by 1 bit while enumerating weight at most 2^{-1} into D. Therefore, we set $l_{1}=2^{-2}$.

Calculating l_{2} is much more involved. Now if L_{2} restrains some interval I_{j}, then we will want to act in I_{j} if I_{j} is either dedicated to R_{0} or R_{1}. Suppose that $I_{j_{0}}$ is dedicated to R_{0} and that at stage s we see that L_{2} is the strongest priority L-requirement which restrains $I_{j_{0}}$. At some later stage t we see $\varphi_{0}\left(\max I_{j_{0}+}\right)[t] \downarrow$. Let $\sigma_{2} \prec A_{t-1}$ be least such that $\Phi_{2}^{\sigma_{2}}(2)[t] \downarrow$. We consider the set N_{t} as usual, and then calculate the weight w_{t} of these strings at time φ_{0}. If we do not move in $I_{j_{0}}$, then we wish to compress each string in N_{t} by 2 bits. To compress each string in N_{t} by 2 bits, we will need to enumerate weight of $2^{2} . w_{t}$ into D. Suppose we naively calculate l_{2} based on the method we used before to calculate l_{1}. We have set aside weight of 2^{-2} in our set D in order to compress strings when L_{2} is the strongest priority L-requirement which restrains us. So we set $l_{2}=2^{-2} .2^{-2}$.

Let's say that we do compress the strings in N_{t} at stage t. At some much later stage u, we see that $I_{j_{1}}$, an interval dedicated to R_{1}, is also restrained by L_{2}, and that $\varphi_{1}\left(\max I_{k^{+}}\right)[u] \downarrow$, where I_{k} is the first interval dedicated to R_{1} with $\min I_{k}>\left|\sigma_{2}\right|$. We will then want to act in $I_{j_{1}}$ at stage u. As usual, we consider the set N_{u} of strings we would like to compress. Because $I_{j_{0}}$ and $I_{j_{1}}$ are both restrained by L_{2}, we have already compressed many of the strings in N_{u} at stage t. Note though that the values of $\varphi_{1}(m)$ for $m \leqslant\left|\sigma_{2}\right|$ may be much larger than the values of $\varphi_{0}(m)$. Therefore, the complexity of the strings ν in N_{u} at time $\varphi_{1}, K^{\varphi_{1}}(\nu)$, may be much lower than $K^{\varphi_{0}}(\nu)$. So the weight w_{u} of the strings in N_{u} measured at time φ_{1} may be much larger than the weight w_{t}. If $w_{u} \geqslant l_{2}$, then we will want to move in $I_{j_{1}}$ at time u. If $w_{u}<l_{2}$, then we will want to compress the strings in N_{u} by 2 bits. Both situations are bad for us. If we do want to move, then this will make $I_{j_{0}}$ unhappy, and furthermore, we have "wasted" some of the weight in D, in that the strings in N_{t} are no longer all initial segments of A_{u}. If we do compress the strings in N_{u}, then we will end up enumerating more than the agreed upon weight of 2^{-2} into D.

We will instead define two thresholds, $l_{0,2}$ and $l_{1,2}$. It is not important what the priority ordering between R_{0} and R_{1} is. (Indeed, we will not define a priority ordering between the R-requirements.) Rather, what is important is the order in which the functions converge. We use the threshold $l_{0,2}$ when the first of the functions φ_{0} and φ_{1} converges, and the threshold $l_{1,2}$ when the second converges.

Assume for the moment that we never see restraint from L_{1}. Suppose we see the sequence of events as before, but now use the two thresholds. Then at stage t we see that $w_{t} \leqslant l_{0,2}$, and we compress the set N_{t}. If at stage u we also have $w_{u} \leqslant l_{1,2}$, then we will want to compress the strings in N_{u}. If we do have $w_{u} \leqslant l_{1,2}$ and compress the strings in N_{u}, then we will not need to act in another interval restrained by L_{2} again. This is because at stage t, every interval dedicated to R_{0} below $\left|\sigma_{2}\right|$ is made happy when we compress the strings in N_{t}, and at stage u, every interval dedicated to R_{1} below $\left|\sigma_{2}\right|$ is made happy when we compress the strings in N_{u}. Of the weight 2^{-2} in D that we set aside for compressing strings when L_{2} is the strongest priority L-requirement which restrains us, we reserve half for compressing strings when the second order function converges. Therefore, we would like $l_{1,2}$ to be such that $2^{2} . l_{1,2}$, the upper bound on the weight we would enumerate into D, is at most $2^{-1} .2^{-2}$. So we set $l_{1,2}=2^{-2} .2^{-1} .2^{-2}$.

We must be careful that the amount of weight that we "waste" as above is small. So suppose at stage t we see that $w_{t} \leqslant l_{0,2}$ (whatever value this may be) and we compress the set N_{t}, but at stage u we see that $w_{u} \geqslant l_{1,2}$. We move at stage u, and will potentially waste all the weight w_{t}. Because we move only when we see weight of at least $l_{1,2}$, we can use the same reasoning as before to show that we can do this at most $\left(l_{1,2}\right)^{-1}$ many times. Looking ahead to calculating the thresholds for larger values of e, of the weight 2^{-2} in D that we set aside for when restrained by L_{2}, we reserve 2^{-2} for when the first function converges. We enumerate weight of $2^{2} . l_{0,2}$ into D every time we compress strings when the first order function converges, and can be interrupted at most $\left(l_{1,2}\right)^{-1}$ many times. Then including weight we may enumerate before we are interrupted the first time, and weight we enumerate after we are interrupted for the last time, we enumerate weight of at most $\left(1+\left(l_{1,2}\right)^{-1}\right) \cdot 2^{2} \cdot l_{0,2}$ into D when compressing strings when the first order function converges. So we would like $l_{0,2}$ to be such that $(1+$ $\left.\left(l_{1,2}\right)^{-1}\right) \cdot 2^{2} \cdot l_{0,2} \leqslant 2^{-2} \cdot 2^{-2}$, and we let $l_{0,2}$ be some rational number which satisfies this inequality.

Assuming that we never see restraint from any L-requirement of stronger priority than L_{e}, then we calculate the thresholds for L_{e} in much the same way. Now that we allow any interval dedicated to any requirement R_{i} with $i<e$ to act if restrained by L_{e}, we have e many thresholds $l_{0, e}, l_{1, e}, \ldots, l_{e-1, e}$. We have set aside weight of 2^{-e} for compressing strings when L_{e} is the strongest priority L-requirement which restrains us, and of this weight, we reserve 2^{e-c} for when the $c^{t h}$ order function converges. We first calculate $l_{e-1, e}$ like we did for $l_{1,2}$, and then use these values to calculate the rest of the thresholds recursively until we get to $l_{0, e}$.

Now suppose that we have been moving and compressing strings when restrained by L_{e}, and later see that some interval I_{j}, in which we have acted and compressed strings, is restrained by L_{d} with $d<e$. Then I_{j} will become unhappy, and we will either move in I_{j}, or compress some strings below the restraint imposed by L_{d}. Both actions will require us to move in
some interval: either we move in I_{j}, or we compress some set of strings and move in the following interval. Moving in an interval will again mean that some of the strings we have already compressed when we were restrained by L_{e} are now of no use to us, and so are wasted. However, we can compute an upper bound on the number of times that we may act when L_{e} is the strongest L-requirement which restrains us. Whenever we move when L_{e} is the strongest L-requirement which restrains us, we see some weight which is lost forever. As $l_{0, e}$ is the smallest threshold of those we use when L_{e} is the strongest L-requirement which restrains us, we lose a set of weight at least $l_{0, e}$ every time we move. Therefore, we can do this at most $\left(l_{0, e}\right)^{-1}$ many times. If we compress strings when L_{e} is the strongest L-requirement which restrains us, then we can only do this for the sake of some R-requirement R_{i} with $i<e$. We can then use these facts to compute an upper bound on the number of times we can act when L_{e} is the strongest L-requirement which restrains us.

Suppose that a_{e} is an upper bound on the number of times we may act when restrained by any L-requirement of stronger priority than L_{e}. We will want to take this into account when defining the thresholds for L_{e}. Before, we enumerated weight of at most 2^{-e} when L_{e} was the strongest priority L-requirement that restrained us. If this could be wasted every time we act for an L-requirement of stronger priority than L_{e}, then including weight we enumerate before we are interrupted the first time we act for such an L-requirement, and the weight we enumerate after the last time we are interrupted when we act for such an L-requirement, we will want to enumerate weight of at most $\left(1+a_{e}\right)^{-1} .2^{-e}$ into D when L_{e} is the strongest priority L-requirement that restrains us. This is the last concern we need to consider in the calculation of the thresholds.

There is one last change we make to the set of strings we compress. Suppose I_{j} is happy at the beginning of stage s because for L_{e} the strongest L-requirement which restrains $I_{j}, \sigma \prec A_{s-1}$ least such that $\Phi_{e}^{\sigma}(e)[s] \downarrow$, and k least such that I_{k} is dedicated to R_{i} and $\min I_{k}>|\sigma|$, we have compressed all strings $\nu \prec A_{s-1}$ such that $\max I_{j}<|\nu| \leqslant \max I_{k}$ by e bits, and moved in I_{k}. Because the intervals dedicated to R_{i} occur only once every 2^{i+1} intervals, there may be many intervals I_{m} with $\min I_{m}>|\sigma|$ that are below I_{k}. If we were to move in one of these intervals at some later stage t, then I_{j} would become unhappy, because then we would not have compressed all strings $\nu \prec A_{t-1}$ such that $\max I_{j}<|\nu| \leqslant \max I_{k}$. So we would like to act again in I_{j} and compress some strings. The problem is that the intervals I_{m} may be dedicated to R-requirements R_{i} with $i>e$, and so we would not be able to compute in advance a bound on the number of times we may need to act and compress strings when L_{e} is the strongest L-requirement which restrains us. We could choose to not act for any R-requirement R_{i} with $i>e$ in an interval in which we have already compressed strings due to L_{e}. Even with this restriction, we would need to act again in I_{j} if we moved in any interval I_{m} as above dedicated to some R-requirement R_{i} with $i<e$.

Instead, we simply compress all strings ν such that $\nu \succ \sigma$ and $|\nu| \leqslant \max I_{k}$. Then no matter how we move in intervals I_{m} with $\min I_{m}>|\sigma|, I_{j}$ will be happy. Again, compressing these extra strings will not interfere with our way of ensuring the number of injuries to L_{e} is bounded.

4. Definitions

For each pair (c, e) with $e \geqslant 1$ and $c<e$, we define the threshold $l_{c, e}$. We do this by recursion. We let $l_{0,1}=2^{-2}$. Now suppose that for all $d<e$, we have defined $l_{c, d}$ for all $c<d$. We let $a_{e}=\sum_{i=1}^{e-1}(i+2) .\left(l_{0, i}\right)^{-1}$. Let $l_{e-1, e}$ be the greatest rational number of the form 2^{-p} with $p \in \omega$ such that $l_{e-1, e} \leqslant 2^{-1} .\left(1+a_{e}\right)^{-1} .2^{-e}$. Suppose we have defined $l_{i, e}$ for some i with $0<i<e$. We let $l_{i-1, e}$ be the greatest rational number of the form 2^{-p} with $p \in \omega$ such that $\left(1+\left(l_{i, e}\right)^{-1}\right) \cdot 2^{e} \cdot l_{i-1, e} \leqslant 2^{i-e} .\left(1+a_{e}\right)^{-1} \cdot 2^{-e}$.

If we say "move in I_{j} " at stage s of the construction, then we do the following. Suppose that φ_{i} is assigned to I_{j}. We will have $\varphi_{i}\left(\max I_{j^{+}}\right)[s] \downarrow$. We run the universal prefix-free machine \mathcal{U} on all inputs of length strictly less than $\left|I_{j}\right|-1$ for $\left(\varphi_{i}\left(\max I_{j^{+}}\right)\right)^{3}$ many steps each. Suppose τ is the leftmost string of length $\left|I_{j}\right|-1$ that was not output during this procedure. We enumerate $\min I_{j}$ into A, and for all $x<|\tau|$, if $\tau(x)=1$, then we enumerate $\min I_{j}+1+x$ into A. Note that $K_{\varphi_{i}\left(\max I_{j}\right)^{3}}(\tau) \geqslant\left|I_{j}\right|-1$.

If $e<s$ and $\Phi_{e}^{\sigma}(e)[s] \downarrow$ for some $\sigma \prec A_{s-1}$, then with σ the least such, we let $r_{e, s}$ be the maximum of $|\sigma|$, and the length of any string in any set N_{t}, where $t<s$ is some stage of the construction at which we acted in Case 2 with $e_{t} \leqslant e$. We say that I_{j} is restrained by L_{e} at stage s if $\min I_{j}<r_{e, s}$.

Suppose that the partial computable function φ_{i} is assigned to the interval I_{j}. We say that I_{j} is open at stage s if I_{j} is not restrained by any L_{e} with $e<i$ at stage s. We say that I_{j} is happily restrained by L_{e} at stage s if I_{j} is restrained by L_{e} at stage s, and by the beginning of stage s, if k is least such that φ_{i} is assigned to I_{k} and $\min I_{k}>r_{e, s}$, then we have compressed the strings $\nu \prec A_{s-1}$ such that max $I_{j}<|\nu| \leqslant \max I_{k}$ for the sake of R_{i} due to L_{e}, and moved in I_{k}.

We say that I_{j} is happy at stage s if we have either moved in I_{j} before stage s, or for L_{e} the strongest priority L-requirement which restrains I_{j} at stage s, I_{j} is happily restrained by L_{e} at stage s.

We say that we want to act in I_{j} at stage s if I_{j} is open and not happy at stage s, and if φ_{i} is assigned to I_{j}, then either
(1) I_{j} is not restrained by any L-requirement at stage $s, \varphi_{i}\left(\max I_{j^{+}}\right)[s] \downarrow$, and φ_{i} is nondecreasing on the interval $\left[0, \max I_{j^{+}}\right]$, or
(2) I_{j} is restrained by some L-requirement at stage s, and for
(a) $L_{e_{s}}=L_{e}$ the strongest such L-requirement, and
(b) $k_{s}=k$ the least such that φ_{i} is assigned to I_{k} and $\min I_{k}>r_{e, s}$, we have $\varphi_{i}\left(\max I_{k^{+}}\right)[s] \downarrow$, and φ_{i} is nondecreasing on the interval $\left[0, \max I_{k^{+}}\right]$.

5. The construction

Construction

Stage 0: Let $A_{0}=\emptyset$ and let $D_{0}=\emptyset$. We proceed to the next stage.
Stage $s, s \geqslant 1$: Let $j<s$ be least such that we want to act in I_{j} at stage s. (If there is no such j, we proceed to the next stage.) We say that I_{j} receives attention at stage s. Suppose that φ_{i} is assigned to I_{j}. There are two cases.

Case 1: We want to act in I_{j} at stage s and (1) applies. We move in I_{j}, and proceed to the next stage.

Case 2: We want to act in I_{j} at stage s and (2) applies. Let $L_{e_{s}}=L_{e}$ and $k_{s}=k$ be as above. Let

$$
\begin{aligned}
& N_{s}=\left\{\nu:\left(\nu \prec A_{s-1} \wedge \max I_{j}\right.\right.\left.<|\nu| \leqslant r_{e, s}\right) \vee \\
&\left.\left(\nu \succ A_{s-1} \upharpoonright r_{e, s} \wedge|\nu| \leqslant \max I_{k}\right)\right\}
\end{aligned}
$$

and let $w_{s}=\sum_{\nu \in N_{s}} 2^{-K^{\varphi_{i}}(\nu)}$. Let c_{s} be the number of requirements R_{d} with $d<e$ such that all open intervals which are dedicated to R_{d} and restrained by L_{e} are happy at the beginning of stage s. There are two subcases.

Subcase 2a: $w_{s} \leqslant l_{c_{s}, e}$. Then for every $\nu \in N_{s}$ we enumerate the request $\left(K^{\varphi_{i}}(\nu)-e, \nu\right)$ into D. For every such ν, we say that we have compressed ν for the sake of R_{i} due to L_{e}. We move in I_{k}.

Subcase 2b: $w_{s}>l_{c_{s}, e}$. We move in I_{j}.
If we act in Case 2, we also move in every open interval which was happy at the beginning of stage s, but is no longer happy after moving due to Case 2.

End of Construction

6. The verification

Recall the natural numbers e_{s} and c_{s} defined during the construction.
Lemma 6.1. Let $c<e$. We can act in Subcase 2b of the construction at a stage s with $e_{s}=e$ and $c_{s} \geqslant c$ at most $\left(l_{c, e}\right)^{-1}$ many times.

Proof. Suppose that s and t are two such stages, with $s<t$. Consider the sets N_{s} and N_{t}. We will show that they are disjoint.

Suppose that $I_{j_{s}}$ receives attention at stage s. As we have not moved in $I_{j_{s}}$ before stage $s, A_{s-1}\left(\min I_{j_{s}}\right)=0$. The strings in N_{s} all extend $A_{s-1} \upharpoonright$ $\max I_{j_{s}}$, and so must extend $A_{s-1} \upharpoonright \min I_{j_{s}}{ }^{\wedge} 0$. When we move at stage s, we enumerate $\min I_{j_{s}}$ into A. As A is c.e., for all $s^{\prime} \geqslant s, A_{s^{\prime}}$ does not extend $A_{s-1} \upharpoonright \min I_{j_{s}}{ }^{\wedge} 0$.

Suppose that $I_{j_{t}}$ receives attention at stage t. The strings in N_{t} are either initial segments of A_{t-1} of length at least max $I_{j_{t}}$, or properly extend $A_{t-1} \upharpoonright r_{e, t}$. If $\nu \in N_{t}$ is an initial segment of A_{t-1} of length less than or equal to $\min I_{j_{s}}$, then it cannot be in N_{s}, as all strings in N_{s} have length at least $\max I_{j_{s}}$. If $\nu \in N_{t}$ is an initial segment of A_{t-1} of length greater than $\min I_{j_{s}}$, then it cannot be in N_{s}, because ν must extend $A_{t-1} \Uparrow \min I_{j_{s}}$, which cannot extend $A_{s-1} \upharpoonright \min I_{j_{s}}{ }^{\wedge} 0$. Lastly, suppose $\nu \in N_{t}$ properly extends $A_{t-1} \upharpoonright r_{e, t}$. By the choice of $r_{e, t}, \nu$ must be longer than any string in N_{s}. So ν cannot be in N_{s}. Therefore N_{s} and N_{t} are disjoint.

We act in Subcase 2b of the construction at stages s and t and $e_{s}=e_{t}=e$, and so we have $w_{s}, w_{t}>l_{c_{s}, e}$. The thresholds satisfy $l_{0, e}<l_{1, e}<\cdots<l_{e-1, e}$. As $c_{s} \geqslant c$, we have $l_{c_{s}, e} \geqslant l_{c, e}$. Therefore, if we act in Subcase 2b of the construction at more than $\left(l_{c, e}\right)^{-1}$ many stages s with $e_{s}=e$ and $c_{s} \geqslant c$, then we will have more than $\left(l_{c, e}\right)^{-1}$ many pairwise disjoint sets, each with weight greater than $l_{c, e}$. This contradicts the fact that $\sum_{\sigma} 2^{-K(\sigma)}<1$.

Lemma 6.2. Suppose that L_{e} is the strongest priority L-requirement which restrains I_{j} at stage s, and I_{j} is happily restrained by L_{e} at stage s. Then I_{j} is happy at all later stages unless we either move in some interval restrained by L_{e} at some later stage, or see that some L_{d} with $d<e$ restrains I_{j} at some later stage.

Proof. Suppose φ_{i} is assigned to I_{j} and k is least such that φ_{i} is assigned to I_{k} and $\min I_{k}>r_{e, s}$. Suppose at stage $s+1$ we neither move in any interval restrained by L_{e}, nor see some L_{d} with $d<e$ restrain I_{j}, but move in some interval I_{m} with $\min I_{m}>r_{e, s}$. If I_{m} is above I_{k} then it is clear that we have already compressed the strings $\nu \prec A_{s}$ such that $\max I_{j}<|\nu| \leqslant \max I_{k}$ for the sake of R_{i} due to L_{e}. Now consider the case where I_{m} is below I_{k}. Suppose we compressed $A_{s-1} \upharpoonright r_{e, s}$ for the sake of R_{i} due to L_{e} at stage $r \leqslant s$. Then at stage r we compressed all strings extending $A_{s-1} \upharpoonright r_{e, s}$ of length at most $\max I_{k}$. Therefore we have compressed all strings $\nu \prec A_{s}$ such that $\max I_{j}<|\nu| \leqslant \max I_{k}$ for the sake of R_{i} due to L_{e}.
Lemma 6.3. A is superlow.
Proof. Suppose we act in Case 2 of the construction at some stage t. We choose some e_{t}. We show that we do not move in any interval restrained by any L-requirement of stronger priority than $L_{e_{t}}$ at stage t. Suppose I_{j} receives attention at stage t.

First suppose that we act in Subcase 2a at stage t. Then we do not move in I_{j} at stage t. By the choice $k=k_{t}$ at stage t, I_{k} is not restrained by $L_{e_{t}}$. Suppose for contradiction that I_{k} is restrained by some L_{d} with $d<e_{t}$. As $j<k, L_{d}$ must restrain I_{j} at stage t. But then $e_{t} \leqslant d$, which is a contradiction. We now consider the intervals which were happy at the beginning of stage t, but are not happy after we move in I_{k}. Suppose I_{r} is such an interval. Suppose for contradiction that the strongest priority L-requirement which restrains I_{r} is L_{d} with $d<e_{t}+1$. Then by Lemma
6.2, I_{k} must be restrained by L_{d}. This is a contradiction. So the strongest priority L-requirement which restrains I_{r} is L_{d} for some $d \geqslant e_{t}+1$.

Now suppose that we act in Subcase 2b at stage t. By the choice of e_{t}, the strongest priority L-requirement which restrains I_{j} is $L_{e_{t}}$. Suppose I_{r} is an interval which was happy at the beginning of stage t, but not after we moved in I_{j}. Suppose for contradiction that the strongest priority L requirement which restrains I_{r} is L_{d} with $d<e_{t}$. Then by Lemma $6.2, I_{j}$ must be restrained by L_{d}. This is a contradiction. So the strongest priority L-requirement which restrains I_{r} is L_{d} for some $d \geqslant e_{t}$.

Suppose that after stage s^{*}, we do not act in Case 2 at a stage s with $e_{s}<e$. We calculate an upper bound on the number of stages $s>s^{*}$ at which we can injure L_{e}, and an upper bound on the number of stages $s>s^{*}$ at which we act in Case 2 with $e_{s}=e$.

We say that L_{e} is injured at stage s if there is some $\sigma \prec A_{s-1}$ such that $\Phi_{e}^{\sigma}(e)[s] \downarrow$, but $\sigma \nprec A_{s}$. By the choice of $r_{e, s}$, in order to injure L_{e} at stage s, we must move in some interval that is restrained by L_{e} at stage s. Suppose we injure L_{e} at stage $s>s^{*}$. We must have $e_{s}=e$. By the choice of k_{s}, if we act in Subcase 2a of the construction at stage s and $e_{s}=e$, then we do not injure L_{e} at stage s. Therefore we must act in Subcase 2b at stage s. We have $c_{s} \geqslant 0$ at any such stage, and so by Lemma 6.1, we can injure L_{e} at a stage $s>s^{*}$ at most $\left(l_{0, e}\right)^{-1}$ many times.

Suppose we do not move in any interval restrained by L_{e} between stages s_{0} and s_{1}, where $s^{*}<s_{0}<s_{1}$. We calculate an upper bound on the number of times we act in Case 2 at a stage s with $s_{0}<s<s_{1}$ and $e_{s}=e$. As we do not move in any interval restrained by L_{e} between stages s_{0} and s_{1}, if we do act at a stage s with $s_{0}<s<s_{1}$ and $e_{s}=e$, then we must act in Subcase 2a at stage s. Suppose u with $s_{0}<u<s_{1}$ is the first stage after stage s_{0} at which we act in Subcase 2a with $e_{u}=e$. If I_{j} receives attention at stage u and φ_{i} is assigned to I_{j}, then we compress a set of strings for the sake of R_{i} due to L_{e}. At the end of stage u, each open interval I_{m} restrained by L_{e} that is dedicated to R_{i} is happy, and so we cannot act in any such interval at another stage before stage s_{1}. By the definition of open, the only intervals restrained by L_{e} which may later receive attention are those dedicated to R-requirements R_{i} with $i<e$. Therefore, we can act in Case 2 at a stage s with $s_{0}<s<s_{1}$ and $e_{s}=e$ at most e many times. We could also act in Subcase 2a before we first move in an interval restrained by L_{e}, and after we last move in an interval restrained by L_{e}. So, as we can move in an interval restrained by L_{e} at a stage $s>s^{*}$ at most $\left(l_{0, e}\right)^{-1}$ many times, we can act in Subcase 2a at a stage $s>s^{*}$ with $e_{s}=e$ at most $(e+1) \cdot\left(l_{0, e}\right)^{-1}$ many times. Finally, including the stages in which we act in Subcase 2b, we can act in Case 2 at a stage $s>s^{*}$ with $e_{s}=e$ at most $(e+2) .\left(l_{0, e}\right)^{-1}$ many times.

We now calculate inductively a bound on the number of times we injure each L-requirement. Note that if we act in Case 1 of the construction at some stage s, then we cannot injure any L-requirement at stage s. As L_{1}
is the L-requirement of strongest priority, we could never act in Case 2 at a stage s with $e_{s}<1$. Therefore, in order to injure L_{1}, we must act in Subcase 2b at a stage s with $e_{s}=1$, and so by Lemma 6.1, we can injure L_{1} at most $\left(l_{0,1}\right)^{-1}$ many times. We injure L_{2} either at a stage s in which we act in Case 2 with $e_{s}=1$, of which there are at most $3 .\left(l_{0,1}\right)^{-1}$, or at a stage s with $e_{s}=2$ and in which we act in Subcase 2b, of which there are at most $\left(l_{0,2}\right)^{-1}$. Therefore, we injure L_{2} at most $3 .\left(l_{0,1}\right)^{-1}+\left(l_{0,2}\right)^{-1}$ many times. In general, we injure L_{e} at most

$$
3 \cdot\left(l_{0,1}\right)^{-1}+4 \cdot\left(l_{0,2}\right)^{-1}+\ldots+(e+1) \cdot\left(l_{0, e-1}\right)^{-1}+\left(l_{0, e}\right)^{-1}
$$

many times, and we act in Case 2 at a stage s with $e_{s} \leqslant e$ at most

$$
\sum_{i=1}^{e}(i+2) \cdot\left(l_{0, i}\right)^{-1}
$$

many times.
The function which takes the pair (c, e) with $e \geqslant 1$ and $c<e$ to the threshold $l_{c, e}$ is computable. So for all $e \geqslant 1$, we can computably bound the number of times L_{e} is injured, and A is superlow.

Lemma 6.4. The weight of D is less than 1.
Proof. For all $e \geqslant 1$, let D_{e} be the set of requests $(l, \nu) \in D$ where ν was compressed due to L_{e}. We show that for all $e \geqslant 1$, the weight of D_{e} is at most 2^{-e}, which shows that $D=\cup_{e \geqslant 1} D_{e}$ has weight at most 1 .

Let $a_{1}=0$, and for all $e \geqslant 2$, let $a_{e}=\sum_{i=1}^{e-1}(i+1) .\left(l_{0, i}\right)^{-1}$. Then for all $e \geqslant 1$, we can move in an interval restrained by L_{e} when we act in Case 2 at a stage s with $e_{s}<e$ at most a_{e} many times. For all $e \geqslant 1$ and all $k \leqslant a_{e}$, let $D_{e, k}$ be the set of requests in D_{e} that were enumerated at a stage s such that before s, there were k many stages t where we acted in Case 2 with $e_{t}<e$. We show that for all $k \leqslant a$, the weight of $D_{e, k}$ is at most $\left(1+a_{e}\right)^{-1} \cdot 2^{-e}$. Then we will have that $D_{e}=\cup_{k \leqslant a_{e}} D_{e, k}$ has weight at most 2^{-e}.

Suppose that after stage s^{*}, we do not act in Case 2 at a stage s with $e_{s}<e$, and that before stage s^{*}, there were k many stages t where we acted in Case 2 with $e_{t}<e$. If we enumerate weight into D_{e} at some stage s, then we determine the natural number $c_{s} \leqslant e$. Let $D_{e, k, c}$ be the set of all requests in $D_{e, k}$ that were enumerated at a stage s at which $c_{s}=c$. We claim that we must have $c_{s}<e$, and that for all $c<e$, the set $D_{e, k, c}$ has weight at most $2^{c-e} .\left(1+a_{e}\right)^{-1} .2^{-e}$. Then we will have that $D_{e, k}=\cup_{c<e} D_{e, k, c}$ has weight at most

$$
\sum_{c<e} 2^{c-e} \cdot\left(1+a_{e}\right)^{-1} \cdot 2^{-e}<\left(1+a_{e}\right)^{-1} \cdot 2^{-e}
$$

Suppose at stage $s>s^{*}$ that I_{j} requires attention, and that we act in Subcase 2a with $e_{s}=e$. Then I_{j} must be unhappy at the beginning of stage s. Suppose I_{j} is dedicated to R_{i}. As I_{j} is open at stage s, we must have
$i<e$. Then R_{i} is not included among the c_{s} many requirements at stage s, and $c_{s}<e$.

We now show that our claim above holds for $c=e-1$. So suppose at stage $s>s^{*}$ that I_{j} requires attention, and that we act in Subcase 2a with $e_{s}=e$ and $c_{s}=e-1$, and compress a set N_{s} of strings due to L_{e}. Then N_{s} has weight at most $l_{e-1, e}$, and we enumerate weight at most $2^{e} . l_{e-1, e}$ into $D_{e, k, e-1}$ at stage s. The threshold $l_{e-1, e}$ was chosen so that $2^{e} . l_{e-1, e} \leqslant 2^{-1} .\left(1+a_{e}\right)^{-1} .2^{-e}$, so we enumerate weight at most $2^{-1} .\left(1+a_{e}\right)^{-1} .2^{-e}$ into D_{e} at stage s. We show that we cannot act at a stage $t>s$ at which $e_{t}=e$, which then proves the claim above for $c=e-1$.

As $c_{s}=e-1$, there are $e-1$ many requirements R_{d} with $d<e$ such that before stage s, all open intervals which are dedicated to R_{d} and restrained by L_{e} are happy at the beginning of stage s. As I_{j} receives attention at stage s, I_{j} must be unhappy at the beginning of stage s. Furthermore, I_{j} is restrained by L_{e} at the beginning of stage s. Therefore R_{i} is not included among the c_{s} many requirements at stage s. We compress the set N_{s} for the sake of R_{i} due to L_{e} at stage s, and all intervals above I_{j} which are dedicated to R_{i} and restrained by L_{e}, as well as I_{j} itself, are happy at the end of stage s. As I_{j} receives attention at stage s, no open interval below I_{j} which is dedicated to R_{i} is unhappy at the beginning of stage s. Therefore, at the end of stage s, there are exactly e many requirements R_{d} such that all open intervals which are dedicated to R_{d} and restrained by L_{e} are happy at the end of stage s. As we showed above, we cannot act at a stage $t>s$ with $c_{s}=e$, and so we cannot act at a stage $t>s$ with $e_{t}=e$.

Now let $c<e-1$, and suppose at stage $s>s^{*}$ that I_{j} requires attention, and that we act in Subcase 2a with $e_{s}=e$ and $c_{s}=c$, and compress a set N_{s} of strings due to L_{e}. Then N_{s} has weight at most $l_{c, e}$, and we enumerate weight at most $2^{e} . l_{c, e}$ into D_{e}. Suppose that we do not move in any interval restrained by L_{e} after stage s. We show that if at some stage $t>s$ we have $e_{t}=e$, then we must have $c_{t}>c$.

As $c_{s}=c$, there are c many requirements R_{d} with $d<e$ such that before stage s, all open intervals which are dedicated to R_{d} and restrained by L_{e} are happy at the beginning of stage s. As I_{j} receives attention at stage s, I_{j} must be unhappy at the beginning of stage s. Furthermore, I_{j} is restrained by L_{e} at the beginning of stage s. Therefore R_{i} is not included among the c_{s} many requirements at stage s. We compress the set N_{s} for the sake of R_{i} due to L_{e} at stage s, and all intervals above I_{j} which are dedicated to R_{i} and restrained by L_{e}, as well as I_{j} itself, are happy at the end of stage s. As I_{j} receives attention at stage s, no open interval below I_{j} which is dedicated to R_{i} is unhappy at the beginning of stage s. Therefore, at the end of stage s, there are exactly $c+1$ many requirements R_{d} such that all open intervals which are dedicated to R_{d} and restrained by L_{e} are happy at the end of stage s. Suppose $t>s$ is least such that $e_{t}=e$. Then at the beginning of stage t, there are $c+1$ many requirements R_{d} such that all
open intervals which are dedicated to R_{d} and restrained by L_{e} are happy, and $c_{t}=c+1>c$.

Therefore, in order to enumerate any more weight into $D_{e, k, c}$ after stage s, we must move in some interval restrained by L_{e} after stage s. Suppose we move in some interval restrained by L_{e} at some stage after s, and that $t>s$ is the least such. Then, as above, we have $c_{t} \geqslant c+1$. By Lemma 6.1, we can move in some interval restrained by L_{e} at some stage u with $e_{u}=e$ and $c_{u} \geqslant c+1$ at most $\left(l_{c+1, e}\right)^{-1}$ many times. In between such stages u, we can enumerate weight at most $2^{e} . l_{c, e}$ into D_{e}. We could also enumerate this much weight into D_{e} before the first such stage u, and after the last such stage u. Therefore, we enumerate weight at most $\left(1+\left(l_{c+1, e}\right)^{-1}\right) \cdot 2^{e} \cdot l_{c, e}$ into $D_{e, k, c}$. By the choice of $l_{c, e}$, we have $\left(1+\left(l_{c+1, e}\right)^{-1}\right) \cdot 2^{e} \cdot l_{c, e} \leqslant 2^{c-e} \cdot\left(1+a_{e}\right)^{-1} \cdot 2^{-e}$. This establishes the claim.

Lemma 6.5. Suppose that φ_{i} is an order function. Then there are constants c_{i} and d_{i} such that the following holds. Suppose φ_{i} is assigned to the interval I_{j} and we move in I_{j} at some stage. Then if j is sufficiently large, and m is such that $\max I_{j}<m \leqslant \max I_{j^{+}}$, then

$$
K^{\varphi_{i}}(A \Uparrow m) \geqslant c_{i} m-d_{i} .
$$

Proof. Let M be the following machine. On input γ, run the universal prefix-free machine \mathcal{U} on input γ. If $\mathcal{U}(\gamma) \downarrow=\delta$ and $|\delta|=\max I_{j}$ for some j, then M outputs the string ρ such that $\delta \upharpoonright \min I_{j}{ }^{\wedge} \rho=\delta$. Then \mathcal{U} simulates the machine M, and if M runs in time t, then \mathcal{U} simulates M in time $O\left(t^{2}\right)$. Suppose \mathcal{U} simulates M in time at most $e t^{2}$. Let f be the coding constant for M.

Let $u=\varphi_{i}\left(\max I_{j^{+}}\right)$. We claim that if j is sufficiently large, then $K_{u}\left(A \Uparrow \max I_{j}\right)>\max I_{j} / 3$. Let j be large enough so that $\varphi_{i}(n) \geqslant e$ for all $n \geqslant \max I_{j}$, and so that $\max I_{j} / 3+f \leqslant\left|I_{j}\right|-2$. Such a j exists because φ_{i} is unbounded and nondecreasing. Then we have $\left(\varphi_{i}\left(\max I_{m}\right)\right)^{3} \geqslant$ $e\left(\varphi_{i}\left(\max I_{m}\right)\right)^{2}$ for all $m \geqslant j$. We move in I_{j} at stage s, and so if we move to the string $A_{s} \upharpoonright \min I_{j}{ }^{\wedge} \tau$ at stage s, we have $K_{u^{3}}(\tau) \geqslant\left|I_{j}\right|-1$. Suppose for contradiction that $l=K_{u}\left(A \Uparrow \max I_{j}\right) \leqslant \max I_{j} / 3$. Then there is a string γ of length $l \leqslant \max I_{j} / 3$ such that $\mathcal{U}_{u}(\gamma) \downarrow=A \Uparrow \max I_{j}$. As \mathcal{U} simulates M in time $e t^{2}$, and by the choice of j, there is a string γ^{\prime} of length at most $l+f$ such that $\mathcal{U}_{u^{3}}\left(\gamma^{\prime}\right) \downarrow=\tau$. But then $K_{u^{3}}(\tau) \leqslant l+f \leqslant \max I_{j} / 3+f \leqslant\left|I_{j}\right|-2$, which is a contradiction. This establishes the claim.

We claim that there is c_{i} such that for j and m as in the statement of the lemma, $c_{i} m \leqslant \max I_{j} / 4$. Using the fact that $\max I_{j}=2^{j+1}-2$ and the fact that φ_{i} is assigned to every 2^{i+1} th interval, it is straightforward to verify that $c_{i}=2^{-\left(2^{i+1}+2\right)}$ suffices.

We now show the conclusion of the lemma. Let N be the following machine. One input γ, run \mathcal{U} on input γ. If $\mathcal{U}(\gamma) \downarrow=\delta$ and $|\delta| \neq \max I_{k}$ for any interval I_{k} to which φ_{i} is assigned, then we let k be greatest such φ_{i} is assigned to I_{k} and $\max I_{k}<|\delta|$. Then N outputs the string $\delta \Uparrow \max I_{k}$.

Suppose that if N runs in time t, then \mathcal{U} simulates N in time at most $g t^{2}$. Let h be the coding constant for N.

Let j be large enough so that $\varphi_{i}(n) \geqslant g$ for all $n \geqslant \max I_{j}$. Then we have $\left(\varphi_{i}\left(\max I_{m}\right)\right)^{3} \geqslant g\left(\varphi_{i}\left(\max I_{m}\right)\right)^{2}$ for all $m \geqslant j$. Such a j exists because φ_{i} is unbounded and nondecreasing. Suppose for contradiction that $l=K^{\varphi_{i}}(A \upharpoonright$ $\upharpoonright m)<c_{i} m-h$. Then as $u \geqslant \varphi_{i}(m)$, we have $l=K^{\varphi_{i}}(A \upharpoonright m) \leqslant K_{u}(A \upharpoonright$ $\upharpoonright m)<c_{i} m-h$. Then there is a string γ of length $l<c_{i} m-h$ such that $\mathcal{U}_{u}(\gamma)=A \upharpoonright m$. As \mathcal{U} simulates N in time $g t^{2}$, and by the choice of j, there is a string γ^{\prime} of length at most $l+h$ such that $\mathcal{U}_{u^{3}}\left(\gamma^{\prime}\right) \downarrow=A \upharpoonright \max I_{j}$. But then $K_{u^{3}}\left(A \Vdash \max I_{j}\right) \leqslant l+h<c_{i} m-h+h=c_{i} m \leqslant \max I_{j} / 4<\max I_{j} / 3$, which is a contradiction. So with $d_{i}=h$, the lemma holds.

Lemma 6.6. Each interval receives attention at only finitely many stages.
Proof. Suppose by induction that no interval below I_{j} receives attention after stage s, and that A does not change below min I_{j} after stage s. That is, $A_{s^{\prime}} \upharpoonright \min I_{j}=A_{s} \upharpoonright \min I_{j}$ for all $s^{\prime} \geqslant s$. We show that I_{j} receives attention at only finitely many stages after stage s. Suppose that φ_{i} is assigned to I_{j}, and that I_{j} is open at all stages after stage s.

If we move in I_{j} at some stage, then I_{j} will not receive attention at any later stage. So assume that I_{j} receives attention and we act in Subcase 2 a at stage $s_{1}>s$. Then for $e=e_{s_{1}}$, we compress a set of strings at stage s_{1}, and I_{j} is happy at the end of stage s_{1}. By Lemma $6.2, I_{j}$ will be happy at all later stages, unless we either move in some interval restrained by L_{e} at some stage $t>s_{1}$, or see that some L_{d} with $d<e$ restrains I_{j} at some stage $t>s_{1}$.

Suppose I_{j} is restrained by some L_{d} with $d<e$ at stage $s_{2}>s_{1}$. Then I_{j} will be unhappy at stage s_{2}. If at some later stage s_{3} we see sufficient convergence of φ_{i}, we will want to act in I_{j}. By assumption, no interval below I_{j} can receive attention at stage s_{3}, and so I_{j} will receive attention at stage s_{3}. If we act in Subcase 2a at stage s_{3}, then I_{j} is happy at the end of stage s_{3}. This cycle can repeat at most e many times, as there are only e many requirements L_{d} with $d<e$. If we act in Subcase 2 b at stage s_{3}, then we move in I_{j} at stage s_{3}, after which I_{j} can no longer receive attention.

So suppose we move in some interval restrained by L_{e} at some stage $t>s_{1}$. Then by Lemma $6.2, I_{j}$ will become unhappy at stage t. At the end of stage t, the construction will move in I_{j}, after which I_{j} can no longer receive attention.

Lemma 6.7. A is Bennett deep.
Proof. By Lemma 6.4, the set D is a set of requests of weight less than 1. So by the KC theorem, there is a constant f such that if $(l, \nu) \in D$, then $K(\nu) \leqslant l+f$. Suppose that φ_{i} is an order function. We show that for all $c>\max \{i-f, 0\}$, there is some n such that $K^{\varphi_{i}}(A \Uparrow m)>K(A \Uparrow m)+c$ for all $m \geqslant n$, and therefore that R_{i} is satisfied.

Fix $c>\max \{i-f, 0\}$. By Lemma 6.3, we injure each L-requirement at most finitely many times. Let a be least such that no interval above I_{a} is every restrained by any L_{e} with $e \leqslant c+f$.

Let c_{i} and d_{i} be the constants as in Lemma 6.5, and let b_{0} be sufficiently large so that the Lemma 6.5 holds for all $j \geqslant b_{0}$. As A is a c.e. set, there exists some d such that for all $m \in \omega, K(A \Uparrow m) \leqslant 4 \log (m+1)+d$. Let $b \geqslant b_{0}$ be least such that φ_{i} is assigned to I_{b}, and for all $m \geqslant \min I_{b}$, $\left(c_{i} m-d_{i}\right)-(4 \log (m+1)+d)>c$. We will show that $K^{\varphi_{i}}(A \upharpoonright m)>K(A \upharpoonright$ $\upharpoonright m)+c$ for all $m>\max I_{b}$.

We show that each interval I_{j} dedicated to R_{i} with $j \geqslant b$ is happy at all but finitely many stages. Suppose that I_{j} is dedicated to R_{i} with $j \geqslant b$, and that for each interval I_{p} below I_{j} that is dedicated to R_{i} with $p \geqslant b$ is happy at every stage after stage s. It is clear that I_{j} is happy at all but finitely many stages if we move in I_{j} at some stage. So suppose we never move in I_{j}. Let s be such that no interval below I_{j} receives attention after stage s, and $A_{t} \upharpoonright \min I_{j}=A_{s} \upharpoonright \min I_{j}$ for all $t \geqslant s$. Such a stage exists by Lemma 6.6 and because A is c.e. As φ_{i} is an order function, if I_{j} is unhappy at some stage $s_{1}>s$, then we will eventually want to act in I_{j} at some stage $s_{2} \geqslant s_{1}$. As $s_{2}>s, I_{j}$ will receive attention at stage s_{2}. Then I_{j} will be happy at the end of stage s_{2}. If I_{j} becomes unhappy at some later stage, then it will later receive attention, and again become happy. By the previous lemma, I_{j} will eventually stop receiving attention, after which it will be happy at all later stages.

Let $m>\max I_{b}$. Let I_{j} be the interval dedicated to R_{i} such that $\max I_{j}<$ $m \leqslant \max I_{j+}$. We know that I_{j} is happy at all but finitely many stages. Suppose I_{j} is happy at all stages after stage t. First suppose I_{j} is happy because we move in I_{j} at some stage. Then because $j>b \geqslant b_{0}$ and by the choice of b_{0}, we have $K^{\varphi_{i}}(A \Uparrow m) \geqslant c_{i} m-d_{i}$, and so by the choice of $b, K^{\varphi_{i}}(A \Uparrow m)>K(A \Uparrow m)+c$. Now suppose I_{j} is happy because at all stages $u \geqslant t$, for L_{e} the strongest priority L-requirement which restrains I_{j} at stage u, I_{j} is happily restrained by L_{e}. We know by Lemma 6.6 that I_{j} receives attention at most finitely many times, so suppose I_{j} does not receive attention after stage v. Let L_{d} be the strongest priority L-requirement which restrains I_{j} at stage v. Let $\sigma \prec A_{v-1}$ be least such that $\Phi_{d}^{\sigma}(d)[v] \downarrow$, and k be least such that φ_{i} is assigned to I_{k} and $\min I_{k}>r_{d, v}$. Then at all stages $w \geqslant$ v, we have compressed the strings $\nu \prec A_{w}$ such that $\max I_{j}<|\nu| \leqslant \max I_{k}$ for the sake of R_{i} due to L_{d}. In particular, we have compressed $A \Uparrow m$ for the sake of R_{i} due to L_{d}. Then by choice of a and because $j>b \geqslant a$, we have that $d>c+f$. Therefore, $K^{\varphi_{i}}(A \Uparrow m)>K(A \Uparrow m)+c$.

References

[1] Luis Antunes, Lance Fortnow, Dieter van Melkelbeck, Variyam Vinochandram, Computational Depth: Concept and Applications, Theoretical Computer Science, Vol. 354 (2006), 391-404.
[2] Luis Antunes, Armato Matos, Andre Souto, and Paul Vitanyi, Depth as randomness deficiency, Theory of Computing Systems, Vol. 45 (2009), 724-739.
[3] Charles Bennett, Logical depth and physical complexity, The Universal Turing Machine, a Half Century Survey, (1988) 227-257.
[4] David Doty and Phillipe Moser, Feasible depth, In Computability in Europe, 2007, LNCS 4497, Springer-Verlag (2007), 228-237.
[5] Rodney Downey and Debis Hirscheldt, Algorithmic Randomness and Complexity, Springer-Verlag, 2010.
[6] Rupert Hölzl, Thorsten Kräling, and Wolfgang Merkle. Time-bounded Kolmogorov complexity and Solovay functions. Theory Comput. Syst., 52:80-94, 2013.
[7] Antonín Kučera and Sebastiaan Terwijn. Lowness for the class of random sets. Journal of Symbolic Logic, 64(4):1396-1402, 1999.
[8] James Lathrop and Jack lutz, recursive computational depth, Information and Computation, Vol. 153 (1999), 139-172.
[9] Ming Li and Paul Vitanyi, Introduction to Kolmogorov Complexoity and Its Applications, Springer-Verlag, 2008.
[10] Phillippe Moser, On the polynomial septh of various sets of random strngs, Theoretical Computer Science, Vol. 477 (2013), 96-108.
[11] Philippe Moser and Frank Stephan. Depth, Highness and DNR degrees. Fundamentals of Computation Theory, Twentieth International Symposium, FCT 2015, Gdansk, Poland, August 17-19, 2015, Proceedings. Springer LNCS 9210, 81-94, 2015.
[12] Andre Nies, Lowness properties and randomness, Adv. Math. 197 (2005), 274-305.
[13] Andre Nies, Computability and Randomness, Oxford University Press, 2009.
[14] Robert Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, 1987.
School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington, New Zealand

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

[^0]: The first author is partially supported by the Marsden Fund of New Zealand. The second author is partially supported by MOE2015-T2-2-055. The third author is partially supported by MOE-RG26/13 and MOE2015-T2-2-055.
 ${ }^{1}$ We assume that the reader is familiar with the basics of Kolmogorov Complexity, and refer the reader to Downey and Hirschfeldt [5], Li and Vitanyi [9] or Nies [13] for background material.

[^1]: ${ }^{2}$ That is, $g(n)$ is nondecreasing and is unbounded.

