
LOWNESS AND LOGICAL DEPTH

ROD DOWNEY AND MICHAEL MACINERNEY AND KENG MENG NG

1. Abstract

Bennett’s concept of logic depth [3] seeks to capture the idea that a lan-
guage has a lot of useful information. Thus we would expect that neither
sufficiently random nor sufficiently computationally trivial sequences are
deep. A question of Moser and Stephan [11] explores the boundary of this
assertion, asking if there is a low computably enumerable (Bennett) deep
language. We answer this question affirmatively by constructing a superlow
computably enumerable Bennett deep language.

2. Introduction

Which sets (sequences/languages) contain a lot of information? When is
this information useful? The area of algorithmic information theory would
suggest that a random set would have a lot of information, but a sufficiently
random set would have very little useful information. In [3], Bennett in-
troduced a computational method of assigning meaning to having a lot of
useful information.

Bennett’s intuition was that sets with a lot of useful information, deep
sets, were those with the following property. A set should be deep is one
for which the more time a compressor is given the more the compressor can
compress the sequence. That is, in no computably time bounded way, can
we understand the complexity of the sets initial segments.

To be more precise,

Definition 2.1 (Bennett [3]). Let K denote prefix-free Kolmogorov com-
plexity1, and Kt be a time bounded version, for a computable time bound
t : N→ N.

We say that a language L is (Bennett)-deep (or simply “deep” when the
context is clear) if for each constant c and each computable time bound t,
for almost all n,

Kt(L �� n)−K(L �� n) > c.

The first author is partially supported by the Marsden Fund of New Zealand. The
second author is partially supported by MOE2015-T2-2-055. The third author is partially
supported by MOE-RG26/13 and MOE2015-T2-2-055.

1We assume that the reader is familiar with the basics of Kolmogorov Complexity,
and refer the reader to Downey and Hirschfeldt [5], Li and Vitanyi [9] or Nies [13] for
background material.

1

2 ROD DOWNEY AND MICHAEL MACINERNEY AND KENG MENG NG

Here A �� n denotes the initial segment of A consisting of the first n+1 bits,
following the notation of Soare [14].

Bennett proved that as we would expect, computable languages and suf-
ficiently random ones are shallow, that is, not deep. The notion of depth
has proven quite fruitful in giving insight into intrinsic information in lan-
guages, and several further variations on the notion, mainly involving orders
(in place of c) and plain complexity in place of K) have been studied. See,
for instance, [1, 2, 4, 8, 9, 10], etc. As Moser [10] showed, all of these no-
tion have a common interpretation in terms of computable time bounds and
compression ratios.

The goal of our paper is to answer a question raised in Moser and Stephan
[11]. In [11], those authors gave a systematic analysis of the computational
power of sets (as measured by the apparatus of classical computability the-
ory, using tools like the jump operator), against notions of logical depth.

For example, Moser and Stephan extended an earlier result of Bennett by
showing that a degree a is is high (meaning a′ ≥ 0′′) if and only if a contains
a “strongly” deep set; one with depth ration εn.

One key property of deep sets is that easy sets should not be deep. Ben-
nett proved that computable sets (and 1-random sets) are shallow, although
there can be deep computably enumerable sets like the halting problem.
Moser and Stephan showed that all K-trivial sets are shallow, where A is
K-trivial iff K(A �� n) 6+ K(n+ 1) for all n. K-trivial sets resemble com-
putable sets in terms of Kolmogorov complexity. They are also low in that if
A is K-trivial then A′ ≡T ∅′. In fact, that are all superlow in that A′ ≡tt ∅′,
where this denoted truth-table equivalence. (Nies [12, 13], also Downey and
Hirschfeldt [5], and Kučera and Terwijn [7] for a related concept).

On the other hand it was known that, at least in terms of Kolmogorov
complexity, there are deep sets quite close to being computable , at least in
terms of Kolmogorov complexity. That is, Lathrop and Lutz [8] showed that
there are ultracompressible deep sets. A is ultracompressible if and only if
for all computable orders2 g,

K(A �� n) 6+ K(n+ 1) + g(n+ 1).

For sets in general, Moser and Stephan showed that PA degrees contain
deep sets, and hence there are superlow deep sets by the Superlow Basis
Theorem.

The question Moser and Stephan raise is whether such low deep sets can
be computably enumerable. The thing is that enumerability has a big effect
on the initial segment complexity of sets. For instance, there are superlow
1-random sets R and hence superlow sets with K(R �� n) ≥+ n for all n,
but if A is c.e. then K(A �� n) 6+ 3 log n. Moreover, a recurrent theme
in classical computability theory is that low c.e. sets have many properties
very much like computable sets. (Soare [14] CH IX.3: “Low sets Resemble

2That is, g(n) is nondecreasing and is unbounded.

LOWNESS AND LOGICAL DEPTH 3

Recursive Sets”) So it would be reasonable to guess that all low c.e. sets are
shallow. Nevertheless, we will prove the following.

Theorem 2.2. There is a superlow c.e. Bennett deep set.

The remainder of this paper is devoted to proving Theorem 2.2. Nota-
tion is more or less standard and generally follows Soare [14] or Downey-
Hirschfeldt [5].

3. The Proof

Proof. We construct a c.e. set A. To make A Bennett deep, we meet for
every i ∈ ω the requirement

Ri : if ϕi is an order function, then

(∀c)(∀∞m) Kϕi(A � m) > K(A � m) + c,

where 〈ϕi〉i<ω is an acceptable listing of all partial computable functions.
We assume that we have some approximation 〈ϕi,s〉s<ω to each ϕi such that
for all s, the domain of ϕi,s is an initial segment of ω. To make A low, we
meet for every e > 1 the requirement

Le : (∃∞s)(ΦA
e (e)[s]↓) =⇒ ΦA

e (e)↓
where 〈Φe〉e<ω is an acceptable listing of all Turing functionals. We will

later show that A is superlow by computably bounding the number of in-
juries to each L-requirement.

We first consider the strategy to meet the R-requirements without any
L-requirements. We follow an approach from [6], where it is shown that
every high degree contains a Bennett deep set.

We partition ω into consecutive intervals I0, I1, . . . where interval Ij has
length 2j . We assign partial computable functions to intervals in the follow-
ing way. Assign ϕ0 to every second interval including the first one, ϕ1 to
every second interval including the first one of the remaining intervals, and
so on for ϕ2, ϕ3, This way, ϕi will be assigned to every 2i+1th interval.
Therefore, if ϕi is assigned to Ij , then Ij+2i+1 is the least interval above Ij
to which ϕi is also assigned. We often write Ij+ instead of Ij+2i+1 . If ϕi is
assigned to Ij , then we will also say that Ij is dedicated to Ri.

Suppose that ϕi is an order function. For each interval Ij to which ϕi is
assigned, we would like to enumerate numbers from Ij into A in such a way
that the complexity at time ϕi of A∩ Ij , considered as a string, is as high as
possible. Then because the lengths of the intervals are rapidly increasing,
and the intervals to which ϕi is assigned occur regularly, we will be able to
show that almost every initial segment of A has high complexity at time ϕi,
and so Ri is met.

More precisely, for the interval Ij , we look above to the interval Ij+ . We
wait until a stage s where we see ϕi(max Ij+)[s]↓. Then at stage s, we choose
the leftmost string τ of length |Ij | which maximises Kϕi(max Ij+)(τ), and

4 ROD DOWNEY AND MICHAEL MACINERNEY AND KENG MENG NG

enumerate numbers from Ij into A so that As �� max Ij = As−1 � min Ij ˆτ .
We say that we move in Ij at stage s. We will show that there are constants
ci and di such that for sufficiently large j, if m is such that max Ij < m 6
max Ij+ , and we move in Ij at some stage, then Kϕi(A �� m) > cim−di. It is
important to note that moving in Ij will not allow us to given a lower bound
on Kϕi(A �� m) for m ∈ Ij , but only for m such that max Ij < m 6 max Ij+ .
We make A c.e., and so there is a constant d such that for all m ∈ ω,
K(A �� m) 6 4 log(m + 1) + d. Therefore, the limit infimum as m tends to
infinity of the difference between the true complexity K(A �� m) and the
time-bounded complexity Kϕi(A �� m) is infinite, and Ri will be met.

We now consider how this strategy could cope with the introduction
of finitely many lowness requirement L1, . . . , Ln. Suppose at stage s we
see Φσ

e (e)[s] ↓ for some σ ≺ As−1. At some later stage t we see that
ϕi(max Ij+)[t]↓ for some interval Ij such that σ � At−1 � min Ij . We say
that Ij is restrained by Le at stage t. We would like to move in Ij at stage
t, but doing so would destroy the computation Φσ

e (e) and injure Le. We
are only allowed to destroy ΦA

e (e) computations finitely many times, so we
must eventually respect the restraint from a lowness requirement. Notice
though that a lowness requirement imposes only finite restraint on A. In
this simplified case with only finitely many lowness requirements, we simply
respect each restraint; eventually there will be no further restraint on A, we
will be able to move in almost every interval, and the strategy from above
will succeed.

The situation is much more complicated with infinitely many lowness
requirements. Now, the L-requirements will attempt to impose restraint
cofinally along A. If we simply respect each restraint, then we will make A
computable, and so will not be able to make A Bennett deep. Therefore, we
need a strategy that will sometimes injure L-requirements in order to move,
while still injuring each L-requirement only finitely often.

We arrange the L-requirements in the priority ordering

L1 < L2 < · · · < Le < · · · .

We must from time to time respect the restraint from an L-requirement,
while making

lim inf
m→∞

Kϕi(A �� m)−K(A �� m) =∞.

Our idea is that we will not move in an interval Ij restrained by the L-
requirement Le if e > i, and if we are able to make the difference between
Kϕi(A �� m) and K(A �� m) at least e. We will attempt to do so by using
the KC theorem to actively compress the initial segments of A. If Ij is
restrained by Le and e 6 i, then we will respect the restraint, and neither
compress strings because of restraint from Le, nor move in Ij even if we
would like to. The L-requirements with index less than i will impose only
finitely much restrain on A, and so we will be able to act in all but finitely
many intervals dedicated to Ri.

LOWNESS AND LOGICAL DEPTH 5

So suppose as above that at stage s we see Φσ
e (e)[s]↓ for some σ ≺ As−1,

and at some later stage t we see that ϕi(max Ij+)[t] ↓ for some interval
Ij such that σ � At−1 � min Ij . Suppose that we moved in the previous
interval dedicated to Ri. Then the strings we need to compress are the initial
segments of σ of length greater than max Ij . We enumerate a set of requests
D. Suppose for the moment that we are only concerned with compressing
strings due to restraint from Le, so that we are willing to enumerate weight of
1 into our set D to compress these strings. Also suppose we have ϕi(|σ|)[t]↓.
We let

Nt = {ν : ν ≺ At−1 ∧max Ij < |ν| 6 |σ|}.
The weight of these strings at time ϕi is

wt =
∑
ν∈Nt

2−K
ϕi (ν).

In order to compress each of these strings by e bits, we would need to
enumerate the request (Kϕi(ν)− e, ν) into D for every ν ∈ Nt. In doing so,
we would enumerate weight of 2e.wt into D. Therefore, if 2e.wt 6 1, then we
are able to enumerate requests into D and use the KC theorem to compress
these strings by e bits. If 2e.wt > 1, then we are unable to compress these
strings. In this case, we would like to fall back on the first strategy and
move in Ij , but as this would injure Le, we need some way to guarantee that
we injure Le at most finitely many times.

The key is the following. Because we have not moved in Ij by the be-
ginning of stage t, we have not yet enumerated any numbers from Ij into
A, and At−1 ∩ Ij = ∅. Then because σ � At−1 � min Ij , each string in Nt

extends At−1 � min Ij ˆ0. When we move in Ij at stage t, we make sure to
enumerate min Ij into A. As we make A c.e., no later approximation to A
will extend At−1 � min Ij ˆ0. Then the weight 2e.wt is “lost” forever, in the
following sense.

Suppose at some later stage u that Le restrains an interval Ij′ above Ij .

Let σ′ ≺ Au−1 be least such that Φσ′
e (e)[u]↓. Then we consider the set Nu

of initial segments of σ′ of length greater than max Ij′ . Because each string
in Nu extends Au−1 � min Ij ˆ1, the sets Nu and Nt are disjoint. Therefore,
the descriptions that the universal prefix-free machine U used to describe
the strings in Nt cannot be used to describe the strings in Nu. So for U
to describe the strings in Nu, it must add more weight in addition to the
weight wt already used. The weight of the domain of U is at most 1, and so
if U loses weight at least wt every time we injure Le, then we can injure Le
at most (wt)

−1 many times. We define a threshold le = 2−e for Le. If the
weight wt we calculate is less than or equal to the threshold, then 2e.wt 6 1,
and we can compress the set Nt by e bits. If the weight wt is greater than
the threshold, then we decide to move.

Now that we have compressed σ, as well as some of its initial segments,
we may later want to act in intervals dedicated to Ri which are above σ.
Suppose that Ik is the least interval dedicated to Ri with min Ik > |σ|. If we

6 ROD DOWNEY AND MICHAEL MACINERNEY AND KENG MENG NG

see ϕi(max Ik+)[u]↓ at some later stage u, and no L-requirement restrains
Ik at stage u, then we will want to move in Ik. However, we have no way of
ensuring the difference between K(ν) and Kϕi(ν) for strings ν ≺ Au−1 with
|σ| < |ν| 6 max Ik is bounded below. The solution to this is the following.
At the stage t where we compress σ and its initial segments, we will make
sure that we have already seen ϕi(max Ik+) converge. Then we compress all
strings ν ≺ At−1 such that max Ij < |ν| 6 max Ik, and move in Ik at stage t.
Then we can either move in Ik+ or compress strings above max Ik+ at some
later stage, without having to worry about intervals below. Compressing
these extra strings will not interfere with our way of ensuring the number
of injuries to Le is bounded.

We must now decide how to handle all L-requirements. Suppose that Ij
is dedicated to Ri, and at stage s we see ϕi(max Ij+)[s]↓. If there is no
L-requirement which restrains Ij at stage s, then we move in Ij . If there is
some Le which restrains Ij at stage s, we let e = es be the least such. We
now have a threshold for every L-requirement. Then, using the treshold le
for Le, we decide whether we would like to stay and compress a set of strings
due to Le, or move in Ij and injure Le at stage s. Choosing es to be the
least e such that Le restrains Ij at stage s will allow us to ensure that if we
do move in Ij and injure Le at stage s, then no L-requirement of stronger
priority than Le is injured at stage s. This will be important when it comes
to verifying that A is superlow.

Suppose that we compress some strings due to Le at stage s and also move
in some further interval, as described above. We say that Ij is happy at the
end of stage s. Now suppose some Ld with d < e restrains Ij at some later
stage t > s. We consider the set Nt of strings we would like to compress,
and decide using the threshold ld for Ld whether we would like to stay and
compress strings due to Ld, or move in Ij and injure Ld at stage t. In either
case, Ij will again be happy at the end of stage t.

In general, we say that Ij is happy at stage s if we have either moved in
Ij , or by the beginning of stage s, if e is least such that Le restrains Ij at
stage s, we have compressed all necessary strings due to Le, and moved in
the following interval. In full, if σ ≺ As−1 is least such that Φσ

e (e)[s]↓, and
k is least such that Ik is dedicated to Ri and min Ik > |σ|, then we have
compressed all strings ν ≺ As−1 such that max Ij < |ν| 6 max Ik by e bits,
and moved in Ik.

The goal of the construction can then be summarised rather simply: if
the interval Ij dedicated to Ri is unhappy at some stage, and we have seen
enough convergence of ϕi, we act to make Ij happy.

We now turn to the definition of the thresholds le for all e > 1. When
considering all L-requirements, we will still want to enumerate a single set D
of requests. We must of course make sure that the weight of D is less than 1.
To do so, we will set aside weight of 2−e in D to requests that we enumerate
when Le is the L-requirement of strongest priority which restrains us. If we
can manage to stick to this, then D will have weight less than 1.

LOWNESS AND LOGICAL DEPTH 7

We calculate these thresholds inductively, beginning with l1. Recall that
if L1 restrains some interval Ij , then we will only want to act in Ij if Ij is
dedicated to R0. If Ij is dedicated to R0 and L1 restrains Ij at stage s,
then will consider the set of strings Ns as above, and calculate its weight
at time ϕ0. We will wish to compress each string in Ns by 1 bit, and have
set aside weight of 2−1 in our set D in order to do so. If the set Ns has
weight ws, then the weight we enumerate into D would be 2.ws. Therefore,
if ws < 2−1.2−1, then we will be able to compress each string in Ns by 1 bit
while enumerating weight at most 2−1 into D. Therefore, we set l1 = 2−2.

Calculating l2 is much more involved. Now if L2 restrains some interval
Ij , then we will want to act in Ij if Ij is either dedicated to R0 or R1.
Suppose that Ij0 is dedicated to R0 and that at stage s we see that L2 is the
strongest priority L-requirement which restrains Ij0 . At some later stage t
we see ϕ0(max Ij0+)[t]↓. Let σ2 ≺ At−1 be least such that Φσ2

2 (2)[t]↓. We
consider the set Nt as usual, and then calculate the weight wt of these strings
at time ϕ0. If we do not move in Ij0 , then we wish to compress each string
in Nt by 2 bits. To compress each string in Nt by 2 bits, we will need to
enumerate weight of 22.wt into D. Suppose we naively calculate l2 based on
the method we used before to calculate l1. We have set aside weight of 2−2

in our set D in order to compress strings when L2 is the strongest priority
L-requirement which restrains us. So we set l2 = 2−2.2−2.

Let’s say that we do compress the strings in Nt at stage t. At some much
later stage u, we see that Ij1 , an interval dedicated to R1, is also restrained
by L2, and that ϕ1(max Ik+)[u]↓, where Ik is the first interval dedicated to
R1 with min Ik > |σ2|. We will then want to act in Ij1 at stage u. As usual,
we consider the set Nu of strings we would like to compress. Because Ij0
and Ij1 are both restrained by L2, we have already compressed many of the
strings in Nu at stage t. Note though that the values of ϕ1(m) for m 6 |σ2|
may be much larger than the values of ϕ0(m). Therefore, the complexity of
the strings ν in Nu at time ϕ1, K

ϕ1(ν), may be much lower than Kϕ0(ν).
So the weight wu of the strings in Nu measured at time ϕ1 may be much
larger than the weight wt. If wu > l2, then we will want to move in Ij1 at
time u. If wu < l2, then we will want to compress the strings in Nu by 2
bits. Both situations are bad for us. If we do want to move, then this will
make Ij0 unhappy, and furthermore, we have “wasted” some of the weight
in D, in that the strings in Nt are no longer all initial segments of Au. If we
do compress the strings in Nu, then we will end up enumerating more than
the agreed upon weight of 2−2 into D.

We will instead define two thresholds, l0,2 and l1,2. It is not important
what the priority ordering between R0 and R1 is. (Indeed, we will not define
a priority ordering between the R-requirements.) Rather, what is important
is the order in which the functions converge. We use the threshold l0,2 when
the first of the functions ϕ0 and ϕ1 converges, and the threshold l1,2 when
the second converges.

8 ROD DOWNEY AND MICHAEL MACINERNEY AND KENG MENG NG

Assume for the moment that we never see restraint from L1. Suppose we
see the sequence of events as before, but now use the two thresholds. Then
at stage t we see that wt 6 l0,2, and we compress the set Nt. If at stage u
we also have wu 6 l1,2, then we will want to compress the strings in Nu. If
we do have wu 6 l1,2 and compress the strings in Nu, then we will not need
to act in another interval restrained by L2 again. This is because at stage t,
every interval dedicated to R0 below |σ2| is made happy when we compress
the strings in Nt, and at stage u, every interval dedicated to R1 below |σ2|
is made happy when we compress the strings in Nu. Of the weight 2−2 in D
that we set aside for compressing strings when L2 is the strongest priority
L-requirement which restrains us, we reserve half for compressing strings
when the second order function converges. Therefore, we would like l1,2 to
be such that 22.l1,2, the upper bound on the weight we would enumerate
into D, is at most 2−1.2−2. So we set l1,2 = 2−2.2−1.2−2.

We must be careful that the amount of weight that we “waste” as above is
small. So suppose at stage t we see that wt 6 l0,2 (whatever value this may
be) and we compress the set Nt, but at stage u we see that wu > l1,2. We
move at stage u, and will potentially waste all the weight wt. Because we
move only when we see weight of at least l1,2, we can use the same reasoning
as before to show that we can do this at most (l1,2)

−1 many times. Looking
ahead to calculating the thresholds for larger values of e, of the weight
2−2 in D that we set aside for when restrained by L2, we reserve 2−2 for
when the first function converges. We enumerate weight of 22.l0,2 into D
every time we compress strings when the first order function converges, and
can be interrupted at most (l1,2)

−1 many times. Then including weight
we may enumerate before we are interrupted the first time, and weight we
enumerate after we are interrupted for the last time, we enumerate weight
of at most (1 + (l1,2)

−1).22.l0,2 into D when compressing strings when the
first order function converges. So we would like l0,2 to be such that (1 +
(l1,2)

−1).22.l0,2 6 2−2.2−2, and we let l0,2 be some rational number which
satisfies this inequality.

Assuming that we never see restraint from any L-requirement of stronger
priority than Le, then we calculate the thresholds for Le in much the same
way. Now that we allow any interval dedicated to any requirement Ri with
i < e to act if restrained by Le, we have e many thresholds l0,e, l1,e, . . . , le−1,e.
We have set aside weight of 2−e for compressing strings when Le is the
strongest priority L-requirement which restrains us, and of this weight, we
reserve 2e−c for when the cth order function converges. We first calculate
le−1,e like we did for l1,2, and then use these values to calculate the rest of
the thresholds recursively until we get to l0,e.

Now suppose that we have been moving and compressing strings when
restrained by Le, and later see that some interval Ij , in which we have
acted and compressed strings, is restrained by Ld with d < e. Then Ij will
become unhappy, and we will either move in Ij , or compress some strings
below the restraint imposed by Ld. Both actions will require us to move in

LOWNESS AND LOGICAL DEPTH 9

some interval: either we move in Ij , or we compress some set of strings and
move in the following interval. Moving in an interval will again mean that
some of the strings we have already compressed when we were restrained by
Le are now of no use to us, and so are wasted. However, we can compute
an upper bound on the number of times that we may act when Le is the
strongest L-requirement which restrains us. Whenever we move when Le is
the strongest L-requirement which restrains us, we see some weight which is
lost forever. As l0,e is the smallest threshold of those we use when Le is the
strongest L-requirement which restrains us, we lose a set of weight at least
l0,e every time we move. Therefore, we can do this at most (l0,e)

−1 many
times. If we compress strings when Le is the strongest L-requirement which
restrains us, then we can only do this for the sake of some R-requirement Ri
with i < e. We can then use these facts to compute an upper bound on the
number of times we can act when Le is the strongest L-requirement which
restrains us.

Suppose that ae is an upper bound on the number of times we may act
when restrained by any L-requirement of stronger priority than Le. We
will want to take this into account when defining the thresholds for Le.
Before, we enumerated weight of at most 2−e when Le was the strongest
priority L-requirement that restrained us. If this could be wasted every time
we act for an L-requirement of stronger priority than Le, then including
weight we enumerate before we are interrupted the first time we act for
such an L-requirement, and the weight we enumerate after the last time
we are interrupted when we act for such an L-requirement, we will want to
enumerate weight of at most (1 + ae)

−1.2−e into D when Le is the strongest
priority L-requirement that restrains us. This is the last concern we need
to consider in the calculation of the thresholds.

There is one last change we make to the set of strings we compress. Sup-
pose Ij is happy at the beginning of stage s because for Le the strongest
L-requirement which restrains Ij , σ ≺ As−1 least such that Φσ

e (e)[s]↓, and k
least such that Ik is dedicated to Ri and min Ik > |σ|, we have compressed
all strings ν ≺ As−1 such that max Ij < |ν| 6 max Ik by e bits, and moved
in Ik. Because the intervals dedicated to Ri occur only once every 2i+1 in-
tervals, there may be many intervals Im with min Im > |σ| that are below
Ik. If we were to move in one of these intervals at some later stage t, then
Ij would become unhappy, because then we would not have compressed all
strings ν ≺ At−1 such that max Ij < |ν| 6 max Ik. So we would like to act
again in Ij and compress some strings. The problem is that the intervals Im
may be dedicated to R-requirements Ri with i > e, and so we would not be
able to compute in advance a bound on the number of times we may need
to act and compress strings when Le is the strongest L-requirement which
restrains us. We could choose to not act for any R-requirement Ri with
i > e in an interval in which we have already compressed strings due to Le.
Even with this restriction, we would need to act again in Ij if we moved in
any interval Im as above dedicated to some R-requirement Ri with i < e.

10 ROD DOWNEY AND MICHAEL MACINERNEY AND KENG MENG NG

Instead, we simply compress all strings ν such that ν � σ and |ν| 6 max Ik.
Then no matter how we move in intervals Im with min Im > |σ|, Ij will be
happy. Again, compressing these extra strings will not interfere with our
way of ensuring the number of injuries to Le is bounded.

4. Definitions

For each pair (c, e) with e > 1 and c < e, we define the threshold lc,e. We
do this by recursion. We let l0,1 = 2−2. Now suppose that for all d < e,

we have defined lc,d for all c < d. We let ae =
∑e−1

i=1 (i + 2).(l0,i)
−1. Let

le−1,e be the greatest rational number of the form 2−p with p ∈ ω such that
le−1,e 6 2−1.(1 + ae)

−1.2−e. Suppose we have defined li,e for some i with
0 < i < e. We let li−1,e be the greatest rational number of the form 2−p

with p ∈ ω such that (1 + (li,e)
−1).2e.li−1,e 6 2i−e.(1 + ae)

−1.2−e.

If we say “move in Ij” at stage s of the construction, then we do the
following. Suppose that ϕi is assigned to Ij . We will have ϕi(max Ij+)[s]↓.
We run the universal prefix-free machine U on all inputs of length strictly
less than |Ij | − 1 for (ϕi(max Ij+))3 many steps each. Suppose τ is the
leftmost string of length |Ij | − 1 that was not output during this procedure.
We enumerate min Ij into A, and for all x < |τ |, if τ(x) = 1, then we
enumerate min Ij + 1 + x into A. Note that Kϕi(max Ij+)3(τ) > |Ij | − 1.

If e < s and Φσ
e (e)[s]↓ for some σ ≺ As−1, then with σ the least such, we

let re,s be the maximum of |σ|, and the length of any string in any set Nt,
where t < s is some stage of the construction at which we acted in Case 2
with et 6 e. We say that Ij is restrained by Le at stage s if min Ij < re,s.

Suppose that the partial computable function ϕi is assigned to the interval
Ij . We say that Ij is open at stage s if Ij is not restrained by any Le with
e < i at stage s. We say that Ij is happily restrained by Le at stage s if Ij
is restrained by Le at stage s, and by the beginning of stage s, if k is least
such that ϕi is assigned to Ik and min Ik > re,s, then we have compressed
the strings ν ≺ As−1 such that max Ij < |ν| 6 max Ik for the sake of Ri due
to Le, and moved in Ik.

We say that Ij is happy at stage s if we have either moved in Ij before
stage s, or for Le the strongest priority L-requirement which restrains Ij at
stage s, Ij is happily restrained by Le at stage s.

We say that we want to act in Ij at stage s if Ij is open and not happy
at stage s, and if ϕi is assigned to Ij , then either

(1) Ij is not restrained by any L-requirement at stage s, ϕi(max Ij+)[s]↓,
and ϕi is nondecreasing on the interval [0,max Ij+], or

(2) Ij is restrained by some L-requirement at stage s, and for
(a) Les = Le the strongest such L-requirement, and
(b) ks = k the least such that ϕi is assigned to Ik and min Ik > re,s,
we have ϕi(max Ik+)[s] ↓, and ϕi is nondecreasing on the interval
[0,max Ik+].

LOWNESS AND LOGICAL DEPTH 11

5. The construction

Construction

Stage 0 : Let A0 = ∅ and let D0 = ∅. We proceed to the next stage.

Stage s, s > 1: Let j < s be least such that we want to act in Ij at stage
s. (If there is no such j, we proceed to the next stage.) We say that Ij
receives attention at stage s. Suppose that ϕi is assigned to Ij . There are
two cases.

Case 1 : We want to act in Ij at stage s and (1) applies. We move in Ij ,
and proceed to the next stage.

Case 2 : We want to act in Ij at stage s and (2) applies. Let Les = Le
and ks = k be as above. Let

Ns = { ν : (ν ≺ As−1 ∧max Ij < |ν| 6 re,s)∨
(ν � As−1 � re,s ∧ |ν| 6 max Ik)}

and let ws =
∑

ν∈Ns
2−K

ϕi (ν). Let cs be the number of requirements
Rd with d < e such that all open intervals which are dedicated to Rd and
restrained by Le are happy at the beginning of stage s. There are two
subcases.

Subcase 2a: ws 6 lcs,e. Then for every ν ∈ Ns we enumerate the request
(Kϕi(ν)− e, ν) into D. For every such ν, we say that we have compressed ν
for the sake of Ri due to Le. We move in Ik.

Subcase 2b: ws > lcs,e. We move in Ij .

If we act in Case 2, we also move in every open interval which was happy
at the beginning of stage s, but is no longer happy after moving due to Case
2.

End of Construction

6. The verification

Recall the natural numbers es and cs defined during the construction.

Lemma 6.1. Let c < e. We can act in Subcase 2b of the construction at a
stage s with es = e and cs > c at most (lc,e)

−1 many times.

Proof. Suppose that s and t are two such stages, with s < t. Consider the
sets Ns and Nt. We will show that they are disjoint.

Suppose that Ijs receives attention at stage s. As we have not moved in
Ijs before stage s, As−1(min Ijs) = 0. The strings in Ns all extend As−1 ��
max Ijs , and so must extend As−1 � min Ijs ˆ0. When we move at stage s,
we enumerate min Ijs into A. As A is c.e., for all s′ > s, As′ does not extend
As−1 � min Ijs ˆ0.

12 ROD DOWNEY AND MICHAEL MACINERNEY AND KENG MENG NG

Suppose that Ijt receives attention at stage t. The strings in Nt are
either initial segments of At−1 of length at least max Ijt , or properly extend
At−1 � re,t. If ν ∈ Nt is an initial segment of At−1 of length less than or
equal to min Ijs , then it cannot be in Ns, as all strings in Ns have length at
least max Ijs . If ν ∈ Nt is an initial segment of At−1 of length greater than
min Ijs , then it cannot be in Ns, because ν must extend At−1 �� min Ijs ,
which cannot extend As−1 � min Ijs ˆ 0. Lastly, suppose ν ∈ Nt properly
extends At−1 � re,t. By the choice of re,t, ν must be longer than any string
in Ns. So ν cannot be in Ns. Therefore Ns and Nt are disjoint.

We act in Subcase 2b of the construction at stages s and t and es = et = e,
and so we have ws, wt > lcs,e. The thresholds satisfy l0,e < l1,e < · · · < le−1,e.
As cs > c, we have lcs,e > lc,e. Therefore, if we act in Subcase 2b of the
construction at more than (lc,e)

−1 many stages s with es = e and cs > c,
then we will have more than (lc,e)

−1 many pairwise disjoint sets, each with

weight greater than lc,e. This contradicts the fact that
∑

σ 2−K(σ) < 1. �

Lemma 6.2. Suppose that Le is the strongest priority L-requirement which
restrains Ij at stage s, and Ij is happily restrained by Le at stage s. Then Ij
is happy at all later stages unless we either move in some interval restrained
by Le at some later stage, or see that some Ld with d < e restrains Ij at
some later stage.

Proof. Suppose ϕi is assigned to Ij and k is least such that ϕi is assigned to
Ik and min Ik > re,s. Suppose at stage s+ 1 we neither move in any interval
restrained by Le, nor see some Ld with d < e restrain Ij , but move in some
interval Im with min Im > re,s. If Im is above Ik then it is clear that we
have already compressed the strings ν ≺ As such that max Ij < |ν| 6 max Ik
for the sake of Ri due to Le. Now consider the case where Im is below Ik.
Suppose we compressed As−1 � re,s for the sake of Ri due to Le at stage
r 6 s. Then at stage r we compressed all strings extending As−1 � re,s of
length at most max Ik. Therefore we have compressed all strings ν ≺ As
such that max Ij < |ν| 6 max Ik for the sake of Ri due to Le. �

Lemma 6.3. A is superlow.

Proof. Suppose we act in Case 2 of the construction at some stage t. We
choose some et. We show that we do not move in any interval restrained
by any L-requirement of stronger priority than Let at stage t. Suppose Ij
receives attention at stage t.

First suppose that we act in Subcase 2a at stage t. Then we do not
move in Ij at stage t. By the choice k = kt at stage t, Ik is not restrained
by Let . Suppose for contradiction that Ik is restrained by some Ld with
d < et. As j < k, Ld must restrain Ij at stage t. But then et 6 d, which
is a contradiction. We now consider the intervals which were happy at the
beginning of stage t, but are not happy after we move in Ik. Suppose Ir
is such an interval. Suppose for contradiction that the strongest priority
L-requirement which restrains Ir is Ld with d < et + 1. Then by Lemma

LOWNESS AND LOGICAL DEPTH 13

6.2, Ik must be restrained by Ld. This is a contradiction. So the strongest
priority L-requirement which restrains Ir is Ld for some d > et + 1.

Now suppose that we act in Subcase 2b at stage t. By the choice of et,
the strongest priority L-requirement which restrains Ij is Let . Suppose Ir
is an interval which was happy at the beginning of stage t, but not after
we moved in Ij . Suppose for contradiction that the strongest priority L-
requirement which restrains Ir is Ld with d < et. Then by Lemma 6.2, Ij
must be restrained by Ld. This is a contradiction. So the strongest priority
L-requirement which restrains Ir is Ld for some d > et.

Suppose that after stage s∗, we do not act in Case 2 at a stage s with
es < e. We calculate an upper bound on the number of stages s > s∗ at
which we can injure Le, and an upper bound on the number of stages s > s∗

at which we act in Case 2 with es = e.
We say that Le is injured at stage s if there is some σ ≺ As−1 such that

Φσ
e (e)[s]↓, but σ 6≺ As. By the choice of re,s, in order to injure Le at stage s,

we must move in some interval that is restrained by Le at stage s. Suppose
we injure Le at stage s > s∗. We must have es = e. By the choice of ks, if
we act in Subcase 2a of the construction at stage s and es = e, then we do
not injure Le at stage s. Therefore we must act in Subcase 2b at stage s.
We have cs > 0 at any such stage, and so by Lemma 6.1, we can injure Le
at a stage s > s∗ at most (l0,e)

−1 many times.
Suppose we do not move in any interval restrained by Le between stages

s0 and s1, where s∗ < s0 < s1. We calculate an upper bound on the number
of times we act in Case 2 at a stage s with s0 < s < s1 and es = e. As we do
not move in any interval restrained by Le between stages s0 and s1, if we do
act at a stage s with s0 < s < s1 and es = e, then we must act in Subcase
2a at stage s. Suppose u with s0 < u < s1 is the first stage after stage s0
at which we act in Subcase 2a with eu = e. If Ij receives attention at stage
u and ϕi is assigned to Ij , then we compress a set of strings for the sake of
Ri due to Le. At the end of stage u, each open interval Im restrained by Le
that is dedicated to Ri is happy, and so we cannot act in any such interval at
another stage before stage s1. By the definition of open, the only intervals
restrained by Le which may later receive attention are those dedicated to
R-requirements Ri with i < e. Therefore, we can act in Case 2 at a stage
s with s0 < s < s1 and es = e at most e many times. We could also act in
Subcase 2a before we first move in an interval restrained by Le, and after we
last move in an interval restrained by Le. So, as we can move in an interval
restrained by Le at a stage s > s∗ at most (l0,e)

−1 many times, we can act
in Subcase 2a at a stage s > s∗ with es = e at most (e + 1).(l0,e)

−1 many
times. Finally, including the stages in which we act in Subcase 2b, we can
act in Case 2 at a stage s > s∗ with es = e at most (e + 2).(l0,e)

−1 many
times.

We now calculate inductively a bound on the number of times we injure
each L-requirement. Note that if we act in Case 1 of the construction at
some stage s, then we cannot injure any L-requirement at stage s. As L1

14 ROD DOWNEY AND MICHAEL MACINERNEY AND KENG MENG NG

is the L-requirement of strongest priority, we could never act in Case 2 at
a stage s with es < 1. Therefore, in order to injure L1, we must act in
Subcase 2b at a stage s with es = 1, and so by Lemma 6.1, we can injure
L1 at most (l0,1)

−1 many times. We injure L2 either at a stage s in which
we act in Case 2 with es = 1, of which there are at most 3.(l0,1)

−1, or at a
stage s with es = 2 and in which we act in Subcase 2b, of which there are
at most (l0,2)

−1. Therefore, we injure L2 at most 3.(l0,1)
−1 + (l0,2)

−1 many
times. In general, we injure Le at most

3.(l0,1)
−1 + 4.(l0,2)

−1 + . . .+ (e+ 1).(l0,e−1)
−1 + (l0,e)

−1

many times, and we act in Case 2 at a stage s with es 6 e at most

e∑
i=1

(i+ 2).(l0,i)
−1

many times.
The function which takes the pair (c, e) with e > 1 and c < e to the

threshold lc,e is computable. So for all e > 1, we can computably bound the
number of times Le is injured, and A is superlow. �

Lemma 6.4. The weight of D is less than 1.

Proof. For all e > 1, let De be the set of requests (l, ν) ∈ D where ν was
compressed due to Le. We show that for all e > 1, the weight of De is at
most 2−e, which shows that D = ∪e>1De has weight at most 1.

Let a1 = 0, and for all e > 2, let ae =
∑e−1

i=1 (i + 1).(l0,i)
−1. Then for all

e > 1, we can move in an interval restrained by Le when we act in Case
2 at a stage s with es < e at most ae many times. For all e > 1 and all
k 6 ae, let De,k be the set of requests in De that were enumerated at a stage
s such that before s, there were k many stages t where we acted in Case
2 with et < e. We show that for all k 6 a, the weight of De,k is at most
(1 + ae)

−1.2−e. Then we will have that De = ∪k6ae De,k has weight at most
2−e.

Suppose that after stage s∗, we do not act in Case 2 at a stage s with
es < e, and that before stage s∗, there were k many stages t where we acted
in Case 2 with et < e. If we enumerate weight into De at some stage s, then
we determine the natural number cs 6 e. Let De,k,c be the set of all requests
in De,k that were enumerated at a stage s at which cs = c. We claim that
we must have cs < e, and that for all c < e, the set De,k,c has weight at most
2c−e.(1 + ae)

−1.2−e. Then we will have that De,k = ∪c<eDe,k,c has weight
at most ∑

c< e

2c−e.(1 + ae)
−1.2−e < (1 + ae)

−1.2−e.

Suppose at stage s > s∗ that Ij requires attention, and that we act in
Subcase 2a with es = e. Then Ij must be unhappy at the beginning of stage
s. Suppose Ij is dedicated to Ri. As Ij is open at stage s, we must have

LOWNESS AND LOGICAL DEPTH 15

i < e. Then Ri is not included among the cs many requirements at stage s,
and cs < e.

We now show that our claim above holds for c = e − 1. So suppose
at stage s > s∗ that Ij requires attention, and that we act in Subcase
2a with es = e and cs = e − 1, and compress a set Ns of strings due
to Le. Then Ns has weight at most le−1,e, and we enumerate weight at
most 2e.le−1,e into De,k,e−1 at stage s. The threshold le−1,e was chosen
so that 2e.le−1,e 6 2−1.(1 + ae)

−1.2−e, so we enumerate weight at most
2−1.(1 + ae)

−1.2−e into De at stage s. We show that we cannot act at a
stage t > s at which et = e, which then proves the claim above for c = e−1.

As cs = e− 1, there are e− 1 many requirements Rd with d < e such that
before stage s, all open intervals which are dedicated to Rd and restrained
by Le are happy at the beginning of stage s. As Ij receives attention at
stage s, Ij must be unhappy at the beginning of stage s. Furthermore, Ij is
restrained by Le at the beginning of stage s. Therefore Ri is not included
among the cs many requirements at stage s. We compress the set Ns for
the sake of Ri due to Le at stage s, and all intervals above Ij which are
dedicated to Ri and restrained by Le, as well as Ij itself, are happy at the
end of stage s. As Ij receives attention at stage s, no open interval below Ij
which is dedicated to Ri is unhappy at the beginning of stage s. Therefore,
at the end of stage s, there are exactly e many requirements Rd such that
all open intervals which are dedicated to Rd and restrained by Le are happy
at the end of stage s. As we showed above, we cannot act at a stage t > s
with cs = e, and so we cannot act at a stage t > s with et = e.

Now let c < e− 1, and suppose at stage s > s∗ that Ij requires attention,
and that we act in Subcase 2a with es = e and cs = c, and compress a set
Ns of strings due to Le. Then Ns has weight at most lc,e, and we enumerate
weight at most 2e.lc,e into De. Suppose that we do not move in any interval
restrained by Le after stage s. We show that if at some stage t > s we have
et = e, then we must have ct > c.

As cs = c, there are c many requirements Rd with d < e such that before
stage s, all open intervals which are dedicated to Rd and restrained by Le
are happy at the beginning of stage s. As Ij receives attention at stage s, Ij
must be unhappy at the beginning of stage s. Furthermore, Ij is restrained
by Le at the beginning of stage s. Therefore Ri is not included among the
cs many requirements at stage s. We compress the set Ns for the sake of
Ri due to Le at stage s, and all intervals above Ij which are dedicated to
Ri and restrained by Le, as well as Ij itself, are happy at the end of stage
s. As Ij receives attention at stage s, no open interval below Ij which is
dedicated to Ri is unhappy at the beginning of stage s. Therefore, at the
end of stage s, there are exactly c + 1 many requirements Rd such that all
open intervals which are dedicated to Rd and restrained by Le are happy at
the end of stage s. Suppose t > s is least such that et = e. Then at the
beginning of stage t, there are c + 1 many requirements Rd such that all

16 ROD DOWNEY AND MICHAEL MACINERNEY AND KENG MENG NG

open intervals which are dedicated to Rd and restrained by Le are happy,
and ct = c+ 1 > c.

Therefore, in order to enumerate any more weight into De,k,c after stage
s, we must move in some interval restrained by Le after stage s. Suppose we
move in some interval restrained by Le at some stage after s, and that t > s
is the least such. Then, as above, we have ct > c + 1. By Lemma 6.1, we
can move in some interval restrained by Le at some stage u with eu = e and
cu > c+ 1 at most (lc+1,e)

−1 many times. In between such stages u, we can
enumerate weight at most 2e.lc,e into De. We could also enumerate this much
weight into De before the first such stage u, and after the last such stage u.
Therefore, we enumerate weight at most (1 + (lc+1,e)

−1).2e.lc,e into De,k,c.
By the choice of lc,e, we have (1 + (lc+1,e)

−1).2e.lc,e 6 2c−e.(1 + ae)
−1.2−e.

This establishes the claim. �

Lemma 6.5. Suppose that ϕi is an order function. Then there are constants
ci and di such that the following holds. Suppose ϕi is assigned to the interval
Ij and we move in Ij at some stage. Then if j is sufficiently large, and m
is such that max Ij < m 6 max Ij+, then

Kϕi(A �� m) > cim− di.

Proof. Let M be the following machine. On input γ, run the universal
prefix-free machine U on input γ. If U(γ)↓= δ and |δ| = max Ij for some j,
then M outputs the string ρ such that δ � min Ij ˆρ = δ. Then U simulates
the machine M , and if M runs in time t, then U simulates M in time O(t2).
Suppose U simulates M in time at most et2. Let f be the coding constant
for M .

Let u = ϕi(max Ij+). We claim that if j is sufficiently large, then
Ku(A �� max Ij) > max Ij/3. Let j be large enough so that ϕi(n) > e
for all n > max Ij , and so that max Ij/3 + f 6 |Ij | − 2. Such a j exists be-
cause ϕi is unbounded and nondecreasing. Then we have (ϕi(max Im))3 >
e(ϕi(max Im))2 for all m > j. We move in Ij at stage s, and so if we move to
the string As � min Ij ˆτ at stage s, we have Ku3(τ) > |Ij | − 1. Suppose for
contradiction that l = Ku(A �� max Ij) 6 max Ij/3. Then there is a string
γ of length l 6 max Ij/3 such that Uu(γ)↓= A �� max Ij . As U simulates M
in time et2, and by the choice of j, there is a string γ′ of length at most l+f
such that Uu3(γ′)↓= τ . But then Ku3(τ) 6 l+ f 6 max Ij/3 + f 6 |Ij | − 2,
which is a contradiction. This establishes the claim.

We claim that there is ci such that for j and m as in the statement of the
lemma, cim 6 max Ij/4. Using the fact that max Ij = 2j+1− 2 and the fact
that ϕi is assigned to every 2i+1th interval, it is straightforward to verify

that ci = 2−(2
i+1+2) suffices.

We now show the conclusion of the lemma. Let N be the following ma-
chine. One input γ, run U on input γ. If U(γ) ↓= δ and |δ| 6= max Ik for
any interval Ik to which ϕi is assigned, then we let k be greatest such ϕi
is assigned to Ik and max Ik < |δ|. Then N outputs the string δ �� max Ik.

LOWNESS AND LOGICAL DEPTH 17

Suppose that if N runs in time t, then U simulates N in time at most gt2.
Let h be the coding constant for N .

Let j be large enough so that ϕi(n) > g for all n > max Ij . Then we have
(ϕi(max Im))3 > g(ϕi(max Im))2 for all m > j. Such a j exists because ϕi is
unbounded and nondecreasing. Suppose for contradiction that l = Kϕi(A �
� m) < cim − h. Then as u > ϕi(m), we have l = Kϕi(A �� m) 6 Ku(A �
� m) < cim − h. Then there is a string γ of length l < cim − h such that
Uu(γ) = A �� m. As U simulates N in time gt2, and by the choice of j, there
is a string γ′ of length at most l + h such that Uu3(γ′)↓= A �� max Ij . But
then Ku3(A �� max Ij) 6 l+h < cim−h+h = cim 6 max Ij/4 < max Ij/3,
which is a contradiction. So with di = h, the lemma holds. �

Lemma 6.6. Each interval receives attention at only finitely many stages.

Proof. Suppose by induction that no interval below Ij receives attention
after stage s, and that A does not change below min Ij after stage s. That
is, As′ � min Ij = As � min Ij for all s′ > s. We show that Ij receives
attention at only finitely many stages after stage s. Suppose that ϕi is
assigned to Ij , and that Ij is open at all stages after stage s.

If we move in Ij at some stage, then Ij will not receive attention at any
later stage. So assume that Ij receives attention and we act in Subcase 2a
at stage s1 > s. Then for e = es1 , we compress a set of strings at stage s1,
and Ij is happy at the end of stage s1. By Lemma 6.2, Ij will be happy at
all later stages, unless we either move in some interval restrained by Le at
some stage t > s1, or see that some Ld with d < e restrains Ij at some stage
t > s1.

Suppose Ij is restrained by some Ld with d < e at stage s2 > s1. Then
Ij will be unhappy at stage s2. If at some later stage s3 we see sufficient
convergence of ϕi, we will want to act in Ij . By assumption, no interval
below Ij can receive attention at stage s3, and so Ij will receive attention
at stage s3. If we act in Subcase 2a at stage s3, then Ij is happy at the end
of stage s3. This cycle can repeat at most e many times, as there are only e
many requirements Ld with d < e. If we act in Subcase 2b at stage s3, then
we move in Ij at stage s3, after which Ij can no longer receive attention.

So suppose we move in some interval restrained by Le at some stage
t > s1. Then by Lemma 6.2, Ij will become unhappy at stage t. At the
end of stage t, the construction will move in Ij , after which Ij can no longer
receive attention. �

Lemma 6.7. A is Bennett deep.

Proof. By Lemma 6.4, the set D is a set of requests of weight less than 1.
So by the KC theorem, there is a constant f such that if (l, ν) ∈ D, then
K(ν) 6 l + f . Suppose that ϕi is an order function. We show that for all
c > max{i− f, 0}, there is some n such that Kϕi(A �� m) > K(A �� m) + c
for all m > n, and therefore that Ri is satisfied.

18 ROD DOWNEY AND MICHAEL MACINERNEY AND KENG MENG NG

Fix c > max{i − f, 0}. By Lemma 6.3, we injure each L-requirement at
most finitely many times. Let a be least such that no interval above Ia is
every restrained by any Le with e 6 c+ f .

Let ci and di be the constants as in Lemma 6.5, and let b0 be sufficiently
large so that the Lemma 6.5 holds for all j > b0. As A is a c.e. set, there
exists some d such that for all m ∈ ω, K(A �� m) 6 4 log(m + 1) + d.
Let b > b0 be least such that ϕi is assigned to Ib, and for all m > min Ib,
(cim−di)− (4 log(m+1)+d) > c. We will show that Kϕi(A �� m) > K(A �
� m) + c for all m > max Ib.

We show that each interval Ij dedicated to Ri with j > b is happy at all
but finitely many stages. Suppose that Ij is dedicated to Ri with j > b, and
that for each interval Ip below Ij that is dedicated to Ri with p > b is happy
at every stage after stage s. It is clear that Ij is happy at all but finitely
many stages if we move in Ij at some stage. So suppose we never move in
Ij . Let s be such that no interval below Ij receives attention after stage s,
and At � min Ij = As � min Ij for all t > s. Such a stage exists by Lemma
6.6 and because A is c.e. As ϕi is an order function, if Ij is unhappy at some
stage s1 > s, then we will eventually want to act in Ij at some stage s2 > s1.
As s2 > s, Ij will receive attention at stage s2. Then Ij will be happy at
the end of stage s2. If Ij becomes unhappy at some later stage, then it will
later receive attention, and again become happy. By the previous lemma, Ij
will eventually stop receiving attention, after which it will be happy at all
later stages.

Let m > max Ib. Let Ij be the interval dedicated to Ri such that max Ij <
m 6 max Ij+ . We know that Ij is happy at all but finitely many stages.
Suppose Ij is happy at all stages after stage t. First suppose Ij is happy
because we move in Ij at some stage. Then because j > b > b0 and by
the choice of b0, we have Kϕi(A �� m) > cim − di, and so by the choice of
b, Kϕi(A �� m) > K(A �� m) + c. Now suppose Ij is happy because at all
stages u > t, for Le the strongest priority L-requirement which restrains Ij
at stage u, Ij is happily restrained by Le. We know by Lemma 6.6 that Ij
receives attention at most finitely many times, so suppose Ij does not receive
attention after stage v. Let Ld be the strongest priority L-requirement which
restrains Ij at stage v. Let σ ≺ Av−1 be least such that Φσ

d(d)[v]↓, and k be
least such that ϕi is assigned to Ik and min Ik > rd,v. Then at all stages w >
v, we have compressed the strings ν ≺ Aw such that max Ij < |ν| 6 max Ik
for the sake of Ri due to Ld. In particular, we have compressed A �� m for
the sake of Ri due to Ld. Then by choice of a and because j > b > a, we
have that d > c+ f . Therefore, Kϕi(A �� m) > K(A �� m) + c. �

�

LOWNESS AND LOGICAL DEPTH 19

References

[1] Luis Antunes, Lance Fortnow, Dieter van Melkelbeck, Variyam Vinochandram, Com-
putational Depth: Concept and Applications, Theoretical Computer Science, Vol. 354
(2006), 391-404.

[2] Luis Antunes, Armato Matos, Andre Souto, and Paul Vitanyi, Depth as randomness
deficiency, Theory of Computing Systems, Vol. 45 (2009), 724-739.

[3] Charles Bennett, Logical depth and physical complexity, The Universal Turing Ma-
chine, a Half Century Survey, (1988) 227-257.

[4] David Doty and Phillipe Moser, Feasible depth, In Computability in Europe, 2007,
LNCS 4497, Springer-Verlag (2007), 228-237.

[5] Rodney Downey and Debis Hirscheldt, Algorithmic Randomness and Complexity,
Springer-Verlag, 2010.

[6] Rupert Hölzl, Thorsten Kräling, and Wolfgang Merkle. Time-bounded Kolmogorov
complexity and Solovay functions. Theory Comput. Syst., 52:80–94, 2013.

[7] Antońın Kučera and Sebastiaan Terwijn. Lowness for the class of random sets. Journal
of Symbolic Logic, 64(4):1396–1402, 1999.

[8] James Lathrop and Jack lutz, recursive computational depth, Information and Com-
putation, Vol. 153 (1999), 139-172.

[9] Ming Li and Paul Vitanyi, Introduction to Kolmogorov Complexoity and Its Applica-
tions, Springer-Verlag, 2008.

[10] Phillippe Moser, On the polynomial septh of various sets of random strngs, Theoretical
Computer Science, Vol. 477 (2013), 96-108.

[11] Philippe Moser and Frank Stephan. Depth, Highness and DNR degrees. Fundamentals
of Computation Theory, Twentieth International Symposium, FCT 2015, Gdansk,
Poland, August 17–19, 2015, Proceedings. Springer LNCS 9210, 81–94, 2015.

[12] Andre Nies, Lowness properties and randomness, Adv. Math. 197 (2005), 274–305.
[13] Andre Nies, Computability and Randomness, Oxford University Press, 2009.
[14] Robert Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, 1987.

School of Mathematics and Statistics, Victoria University of Wellington,
PO Box 600, Wellington, New Zealand

School of Physical and Mathematical Sciences, Nanyang Technological
University, Singapore

School of Physical and Mathematical Sciences, Nanyang Technological
University, Singapore

	1. Abstract
	2. Introduction
	3. The Proof
	4. Definitions
	5. The construction
	6. The verification
	References

