
Bounded Randomness�

Paul Brodhead1, Rod Downey2, and Keng Meng Ng3

1 Indian River State College, Fort Pierce, Florida
pbrodhea@irsc.edu

2 School of Math, Statistics, & Operations Research, Victoria University
Cotton Building, Room 358, Gate 7, Kelburn Parade, Wellington, New Zealand

Rod.Downey@vuw.ac.nz
3 School of Physical & Mathematical Sciences

Nanyang Technological University
21 Nanyang Link, Singapore

kmng@ntu.edu.sg

Abstract. We introduce some new variations of the notions of being
Martin-Löf random where the tests are all clopen sets. We explore how
these randomness notions relate to classical randomness notions and to
degrees of unsolvability.

1 Introduction

The underlying idea behind algorithmic randomness is that to understand ran-
domness you should tie the notion to computational considerations. Randomness
means that the object in question avoids simpler algorithmic descriptions, either
through effective betting, effective regularities or effective compression. Exactly
what we mean here by “effective” delineates notions of algorithmic randomness.
A major theme in the area of algorithmic randomness seeks to calibrate no-
tions of randomness by varying the notion of effectivity. For example, classical
Martin-Löf randomness1 uses tests, shrinking connections of c.e. open sets whose
measure is bounded by effective bounds, whereas Schnorr randomness has the
tests of some precise effective measure. We then see that Schnorr and Martin-
Löf randomness are related but can have very different properties; for example
outside the high degrees they coincide, but the lowness concepts are completely
disjoint.

Another major theme in the study of algorithmic randomness is the intimate
relationship of randomness concepts with calibrations of computational power as
given by measures of relative computability, like the Turing degrees. If something
is random, can it have high computational power, for instance? A classic result
in this area is Stephan’s theorem [14] that if a Martin-Löf real is random and has

� Supported by the Marsden Fund of New Zealand. We wish to dedicate this to Cris
Calude on the occasion of his 60th Birthday.

1 We assume that the reader is familiar with the basic notions of algorithmic random-
ness as found in the early chapters of either Downey-Hirschfeldt [6] or Nies [13].

M.J. Dinneen et al. (Eds.): WTCS 2012 (Calude Festschrift), LNCS 7160, pp. 59–70, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

60 P. Brodhead, R. Downey, and K.M. Ng

enough computational power to be able to compute a {0, 1}-valued fixed point
free function then it must be Turing complete.

The goal of the present paper is to introduce some new variations in these
studies, and to explore both themes. In particular, we will introduce what we
call bounded variations of the notion of Martin-Löf randomness where the tests
are all finite. These notions generalize the notion of Kurtz (or weak) randomness
but are incomparable with both Schnorr and computable randomness.

More precisely, if W is a finite set then #W denotes the cardinality of W . |σ|
denotes the length of a finite string σ. We work in the Cantor space 2ω with the
usual clopen topology. The basic open sets are of the form [σ] where σ is a finite
string, and [σ] = {X ∈ 2ω | X ⊃ σ}. We fix some effective coding of the set of
finite strings, and we freely identify finite strings with their code numbers. We
denote [W] = ∪{[σ] : σ ∈ W} as the Σ1 open set associated with the c.e. set W .
μ([W]) denotes Lebesgue measure, and we write μ(W) instead of μ([W]).

Definition 1. (a) A Martin-Löf (ML) test is a uniform c.e. sequence {Un}n∈ω

of sets Un such that μ(Un) < 2−n.
(b) A Martin-Löf test {Un}n∈ω is finitely bounded (FB) if #Un < ∞ for every

n.
(c) A Martin-Löf test {Un}n∈ω is computably bounded (CB) if there is some

total computable function f such that #Un ≤ f(n) for every n.
(d) A real X ∈ 2ω passes a CB-test (FB-test) {Un}n∈ω if X �∈ ⋂

n[Un].
A real X ∈ 2ω is computably bounded random if X passes every CB-test. X

is finitely bounded random if it passes every FB-test.

These two notions of randomness are weaker than Martin-Löf randomness, al-
though they imply Kurtz randomness. The obvious implications are:

� � �
�������� ��������

ML-random FB-random CB-random Kurtz random

Schnorr random

No implications hold other than those stated in the diagram. This can be
derived from the following facts: There is a Δ0

3 1-generic real which is FB-random
(see the remarks after Proposition 3), while no Schnorr random is weakly 1-
generic. No incomplete c.e. degree can compute a FB-random (Proposition 1(i))
while some incomplete c.e. degree bounds a CB-random (Theorem 2). Lathrop
and Lutz [12] showed that there is a computably random set X such that for
every order function g, K(X � n) ≤ K(n) + g(n) for almost every n. Hence X
cannot be CB-random, by Proposition 3.

There is a non-zero Δ0
2 degree containing no CB-random (Theorem 2) while

every hyperimmune degree contains a Kurtz random.
What is interesting is that these notions of randomness turn out to have strong

relationships with degrees classes hitherto unrelated to algorithmic randomness.

Bounded Randomness 61

We will show that FB-randomness and Martin-Löf -randomness coincide on the
Δ0

2 sets but are distinct on the Δ0
3 sets (Theorem 1). There is some restriction

on the degrees of these reals in that they cannot be c.e. traceable (Theorem 2).
It is not clear exactly what the degrees of such reals can be.

In the case of CB-randomness there can be incomplete c.e. degrees containing
such reals. We know that every c.e. degree contains a Kurtz random real, but
the degrees containing a CB-random form a subclass of the c.e. degrees : those
that are not totally ω-c.a.. This is a class of c.e. degress introduced by Downey,
Greenberg and Weber [5] to explain certain “multiple permitting” phenomena in
degree constructions such as “critical triples” in the c.e. degrees, and a number of
other constructions as witnessed in the subsequent papers Barmpalias, Downey
and Greenberg [1] and Downey and Greenberg [4]. This class extends the notion
of array noncomputable reals, and correlates to the fact that all CB random
reals have effective packing dimension 1 (Theorem 3). Downey and Greenberg
[3] having previously showed that the c.e. degrees containing reals of packing
dimension 1 are exactly the array noncomputable reals. We also show that if
a c.e. degree a contains a CB random then every (not necessarily c.e.) degree
above a contains a CB random as well. From all of this, we see that there remains
a lot to understand for this class.

Some other results which space restrictions preclude us from including concern
lowness for the classes we have introduced. We know that if A is K-trivial (i.e.
low for Martin-Löf randomness) then A is low for FB-randomness. Also we
know that if A is low for FB-randomness then A is Low(Ω). Finally in the case
of CB-randomness, we know that if A is low for CB-randomness then A is of
hyperimmune-free degree. However, we have a reasonably intricate construction
which constructs a Δ0

3 real which is low for CB-randomness.

2 Basic Results

We first show that the notions of FB-randomness and Martin-Löf -randomness
coincide on the Δ0

2 sets, and they differ on the Δ0
3 sets.

Proposition 1. (i) Suppose Z ≤T ∅′. Then Z is ML-random iff Z is FB-
random.

(ii) There is some Z ≤T ∅′′ such that Z is FB-random but not ML-random.

Proof. (i): Given an approximation Zs of Z, and suppose {Ux} is the universal
ML-test where Z ∈ ∩x[Ux]. Enumerate an FB-test {Vx} by the following: at
stage s, enumerate into Vx, the string Zs � n for the least n such that Zs � n ∈
Ux[s]. Then, {Vx} is uniformly c.e., where μ(Vx) ≤ μ(Ux) < 2−x for all x. Clearly
Z ∈ [Vx] for all x. We know Z � n ∈ Ux for some least n, and let s be a stage
such that Zs �n is correct and Z �n has appeared in Ux[s]. Then, Z �n will be in
Vx by stage s, and we will never enumerate again into Vx after stage s.

(ii): We build Z = ∪sσs by finite extension. Let {Ux} be the universal ML-
test, and {V e

x }x be the eth ML-test. Assume we have defined σs, where for all
e < s, we have

62 P. Brodhead, R. Downey, and K.M. Ng

– all infinite extensions of σs are in Ue,
– if #V e

x < ∞ for all x, then there exists k such that no infinite extension of
σs can be in Ue

k .

Now we define σs+1 ⊃ σs. Firstly, find some τ ⊇ σs such that all infinite exten-
sions of τ are in Us; such τ exists because {Ue} is universal. Let k = |τ |. Next,
ask if #V s

k < ∞. If not, let σs+1 = τ�0 and we are done. If yes, then figure
out exactly the strings ρi such that [V s

k] = ∪{[ρ1], [ρ2], · · · , [ρn]}. We cannot
have [V s

k] ⊇ [τ] since μ(V s
k) < 2−k, so there has to be some σs+1 ⊃ τ such that

[σs+1] ∩ [V s
k] = ∅, by the finiteness of V s

k . We can figure σs+1 out effectively
from ρ1, ρ2, · · · , ρn. Clearly the properties above continue to hold for σs+1. All
questions asked can be answered by the oracle ∅′′.
Note that there is no way of making {Vx} computably bounded in (i), even
if Z ≤tt ∅′. It is easy to construct a low left c.e. real which is CB-random,
while from Theorem 2 below, no superlow c.e. real can be CB-random. Hence
CB-randomness and FB-randomness differ even on the c.e. reals.

CB-randomness is still sufficiently strong as a notion of randomness to exclude
being traceable:

Proposition 2. No CB-random is c.e. traceable.

Proof. Suppose that A is c.e. traceable, and that A is coinfinite (otherwise we
are done). We define the functional Φ by evaluating ΦX(n) as σ where σ ⊂ X is
the shortest string such that #{k : σ(k) = 1} = 2n, for any X and n. Since ΦA

is total, there is a c.e. trace {Tx}x∈N, such that #Tx ≤ x and ΦA(x) ∈ Tx for
every x. We define the CB-test {Ux} by the following: we enumerate σ into Ux

if |σ| ≥ 2x and σ ∈ Tx. Then #Ux ≤ x and μ(Ux) ≤ x2−2x < 2−x for every x
and A ∈ ∩x[Ux].

We next investigate the connection between CB-randomness and effective di-
mension.

Proposition 3. Every CB-random is of effective packing dimension 1.

Proof. Suppose K(α � n) ≤ cn for all n ≥ N for some N ∈ N and c < 1
is rational. Fix a computable increasing sequence of natural numbers {ni} all
larger than N , such that ni > i

1−c for all i. Now define a CB-test {Vi} by the
following: Vi := {σ ∈ 2ni | K(σ) ≤ cni}. Here we have #Vi ≤ 2cni.

In contrast, every incomplete c.e. real which is CB-random cannot be of d.n.c.
degree (and hence has effective Hausdorff dimension 0). The proof of Theorem
1(ii) constructs a FB-random real by finite extensions. It is straightforward to
modify the construction to build a Δ0

3 FB-random which is 1-generic, and hence
not of d.n.c. degree.

Next we investigate the upward closure of CB-random degrees.

Theorem 1. If A is a c.e. real and is CB-random, and A ≤T B, then degT (B)
contains a CB-random.

Bounded Randomness 63

Proof. Fix a left-c.e. approximation As to A. Let h : N → N be a strictly
increasing function such that h(n + 1) ≥ h(n) + 2 for every n. For any real
X we let (A ⊕h X)(z) be defined by the following: if z = h(n) for some n
then (A ⊕h X)(z) = X(n), otherwise let (A ⊕h X)(z) = A(z − n − 1) where
h(n) < z < h(n + 1). This is the “sparse” join of A and X , and is obtained by
copying the first h(0) many digits of A followed by B(0), the next h(1)−h(0)−1
many digits of A followed by B(1), and so on. For numbers n, s we denote αn

s

as the finite string As �hs(n) − n. This represents the A portion of the current
approximation to A ⊕h X below hs(n).

The construction builds a function h ≤T A such that A ⊕h X is CB-random
for any path X ∈ 2ω. This is achieved by specifying an effective approximation
hs(n) which is non-decreasing in each variable n, s. We let h(n) = lims hs(n). We
also ensure that for every n, s if hs+1(n) > hs(n) then As+1 �⊃ αn

s . Intuitively
hs(n) is the stage s coding location for X(n), and we are insuring that before
moving the coding location hs(n) we need to first obtain a change in αn

s . The
theorem is then satisfied by taking A⊕h B, for given A⊕h B as oracle, to figure
out B(n), one can run the construction until a stage s is found such that αn

s

agrees with the true αn of the oracle string. Then each of the coding location
hs(0), · · · , hs(n) must already be stable at s.

Construction of h: Let {Ue
x} be the eth Martin-Löf test, and ϕe be the eth

partial computable function. We set h0(n) = 2n for every n. At stage s > 0
find the least n < s such that As �⊃ αn

s−1, and there is some e, x ≤ n and some
σ ∈ Ue

x[s − 1] such that ϕe(x) ↓ and #Ue
x [s − 1] ≤ ϕe(x). We also require that

αn
s−1 ⊇ σ but As �⊃ σ. If such n is found we set hs(n + i) = s + n + 2i for

every i.
We now verify the construction works. Clearly hs has the above-mentioned

properties and lims hs(n) exists. The only thing left is to check that A ⊕h X is
CB-random. Suppose this fails for some X ∈ 2ω. Let {Ux} be a CB-test such
that A ⊕h X ∈ [Ux] for every x.

For a finite string σ and stage s, we let σ∗(s) be the string obtained by
removing the (hs(0) + 1)th, (hs(1) + 1)th, · · · digits from σ. We define a new
CB-test {Vx} by the following. At a stage s if we find some σ ∈ Ux2 [s] and
σ∗(s) ⊂ As we enumerate σ∗(s) � (hs(x) − x) into Vx (unless some comparable
string is already in Vx). That is, we enumerate the A-part of A⊕h ∅ below hs(x)
into Vx, unless σ∗(s) is shorter, in which case we enumerate σ∗(s) instead.

We consider a large x. Clearly #Vx ≤ #Ux2 , since each σ ∈ Ux2 causes at
most one σ∗(s) (or part of) to be enumerated in Vx. We need to compute a
bound on the measure of [Vx]. Each string enumerated into Vx is either σ∗(s) or
part of σ∗(s) for some s and σ ∈ Ux2 [s]. Each string of the first type satisfies
|σ| − |σ∗(s)| ≤ x, while it is easy to see that strings of the second type must all
be of different length greater than x. Hence the measure of [Vx] is bounded by
2xμ(Ux2) + 2−x+1 < 2−x. Since {Vx} is a CB-test A must escape this test, a
contradiction.

64 P. Brodhead, R. Downey, and K.M. Ng

We conclude this section with several questions.

Question 1. 1. If A ≤T B and A is CB-random, must degT (B) contain a CB-
random?

2. Are there characterizations of CB-randomness and FB-randomness in terms
of prefix-free complexity and martingales?

3. Are there minimal Turing degrees which contain CB-randoms?

3 A Characterization of the Left c.e. Reals Containing a
CB-Random

The class of array computably c.e. sets was introduced by Downey, Jockusch and
Stob [8,9] to explain a number of multiple permitting arguments in computability
theory. Recall that a degree a is array non-computable2 if for every function
f ≤wtt ∅′ there is a function g ≤T a such that f(x) < g(x) infinitely often.
Downey, Greenberg and Weber [5] later introduced the totally ω-c.a.3 sets to
explain the construction needed for a weak critical triple, for which array non-
computability seems too weak.

Definition 2 ([5]). A c.e. degree a is totally ω-c.a. if every f ≤T a is ω-c.e..

Note that array computability can be viewed as a uniform version of this notion
where the computable bound (for the mind changes) can be chosen independently
of f ; hence every c.e. array computable set is totally ω-c.e.. The class of totally
ω-c.e. degrees capture a number of natural constructions. Downey, Greenberg
and Weber [5] proved that a c.e. degree is not totally ω-c.e. iff it bounds a weak
critical triple in the c.e. degrees.

In Theorem 2 we show that the non totally ω-c.e. degrees are exactly the class
of c.e. degrees which permit the construction of a CB-random real:

Theorem 2. Suppose A is a c.e. real. The following are equivalent.

(i) degT (A) is not totally ω-c.a.,
(ii) degT (A) contains a CB-random,
(iii) There is some c.e. real B ≤T A which is CB-random,
(iv) There is some B ≤T A which is CB-random.

We fix a computable enumeration{ϕn}n∈ω of all partial computable functions.We
let {Wm

n }n∈ω be the mth Martin-Löf test. We use <L to denote the left-to-right
lexicographical ordering on finite strings σ, τ , with 0 being to the left of 1 and
σ <L τ meaning that σ is to the left of τ . This ordering is extended naturally
to x <L y for infinite strings x, y. We assume for any c.e. set U , that if σ ∈ Us

then |σ| < s.
2 This was not the original definition, but a later equivalent characterization, which

is convenient for us to take as the definition.
3 The original paper [5] called these totally ω-c.e.. However this terminology is some-

what at odds with Ershov’s hierarchy of Δ0
2 sets [10,11] and causes a problem when

we work at various levels of the computable ordinals. Hence we will adopt the new
name being used in Downey and Greenberg [4].

Bounded Randomness 65

3.1 (i) ⇒ (iii)

Assume that f = ΔA and that f is not ω-c.e. We will build B ≤T A and ensure
that B is CB-random. We must ensure that Rm,i holds for every m, i:

Rm,i : B /∈ ∩n[Wm
n] if ϕi is total and for all n, #Wm

n ≤ ϕi(n).

To ensure that each requirement R is satisfied, suppose that R is the kth require-
ment, where k = 〈m, i〉. Our construction will implement a sequence of modules
{Mk

j }j∈ω for R and each module is given infinitely many opportunities to act.
At any particular stage, the construction attempts to satisfy at most one re-
quirement through the implementation of at most one module. Associated with
each module Mk

j is an integer n = nk
j , and the module aims to ensure that if

{Wm
e }e∈ω is a CB-test then B �∈ [Wm

n] as follows. (Note that as long as some
module succeeds, the requirement succeeds.)

Suppose at the current stage s of the construction that it is module Mk
j ’s turn

to act and B is in [Wm
n]— that is, Bs−1 ∈ [Wm

n,s]. The module’s strategy is to
redefine B to the right (outside of [Wm

n]), but on precondition that it receives
an A-permission, due to certain conditions related to ΔA.

To be more precise: throughout the construction, the modules {Mk
j }j∈ω will

collectively be defining an approximating function fk for ΔA towards ensuring
that, for some j, module Mk

j ’s strategy succeeds (so that Rk is satisfied). We
further discuss fk and the A-permission below.

Module Mk
j is responsible for defining fk(j, s) for all s; it does so as follows.

Whenever Bs−1 ∈ [Wm
n] as above, then— supposing this is the ts

th time it acts—
Mk

j defines fk(j, ts) := ΔA(j)[ts]. Module Mk
j waits to act at a later stage q > s

when either

• B remained in [Wm
n] throughout all intermediate stages ≤ q and A changes

below the use δ(j) for ΔA(j), or
• B does not remain in [Wm

n] until stage q due to an A-permission being
granted to some other module, or perhaps some other requirement.

In either of these two cases, an A-permission is granted and Mk
j moves B to the

right.
Now suppose {Wm

n } is a CB-test so that #Wm
n ≤ ϕi(n). Since B is only

ever redefined to the right, it follows that there can be at most ϕi(n) = ϕi(nk
j)

A-permissions associated with module Mk
j so that

#{s : fk(j, s) �= fk(j, s + 1)} ≤ ϕi(n) = ϕi(nk
j).

It follows that if B ∈ [Wm
nk

j
] for all j, then eventually no A-permission occurs

for module Mk
j to act, for all j. Consequently, fk(j, t) = ΔA(j)[t] = f(j) for

sufficiently large t and fk must be an approximating function for ΔA = f . This
means that f is ω-c.e., a contradiction, and thus requirement R = Rk must be
satisfied.

We are ready to describe the stage-by-stage construction.

66 P. Brodhead, R. Downey, and K.M. Ng

Construction. The construction will proceed in stages of the form 〈a+1, 〈j, k〉〉.
The intention is that stage 〈a + 1, 〈j, k〉〉 is the ath time in which module Mk

j is
allowed to act. Consequently, in what follows, we will use to denote = 〈j, k〉.
We also define the integer nk

j = 〈k, j〉+ 1 associated with module Mk
j of the kth

requirement. Since ΔA is total, we assume that ΔA(j)[s] ↓ at every stage s > j.
At stage s = 0, define B0 = 0ω and goto stage s + 1.
At stage s = 〈0, 〉 > 0 define fk(j, 0) = ΔA(j)[0] and goto stage s + 1.
At stage s = 〈a + 1, 〉, implement the jth module Mk

j of requirement Rk

defined as follows.
Module Mk

j .

1. If ϕi,s(nk
j) ↑, or #Wm

nk
j ,s

�≤ ϕi,s(nk
j), or Bs−1 �∈ [Wm

nk
j ,s

], then no non-trivial

action is needed for Mk
j . We simply define fk(j, a + 1) := fk(j, a), define

Bs := Bs−1 and go to stage s + 1.
2. Otherwise, define fk(j, a + 1) = ΔA(j)[a + 1], let r = 〈a, 〉, and implement

the following. If Aa+1 �δ(j) �= Aa �δ(j), then do the following. Let σ ⊂ Bs−1

be maximal such that Nσ := ([σ] ∩ {x : Bs−1 <L x}) \ [Wm
nk

j ,s
] is nonempty.

Define Bs to be the left-most path of Nσ, and go to stage s + 1. Otherwise
define Bs := Bs−1 and go to stage s + 1.

This completes the construction.
Verification. First observe that for any module Mk

j , whenever it changes B,
it only adds an amount q ∈ Q to Bs where q can be accounted against a distinct
part of Wm

nk
j
. Therefore Mk

j contributes at most 2−nk
j to B. Consequently the

total effect of all the modules can contribute at most
∑

k,j∈ω 2−nk
j ≤ 1

2 to B,
which means that σ in the construction, at every stage, can always be found so
that Nσ is non-empty.

Lemma 1. Every requirement is satisfied.

Proof. Suppose to the contrary that for some pair m, i, B ∈ ∩n[Wm
n], ϕi is total,

and #Wm
n ≤ ϕi(n) for all n. We first observe that lima fk(j, a) = ΔA(j) for each

j. Let W = Wm
nk

j
. Since B ∈ [W], hence at almost every stage of the construction

when Mk
j acts, we have case 2 holds; hence we will set fk(j, a) = ΔA(j)[a]

at almost every a. Next, we want to show that the fk-changes is bounded by
O(ϕi(nk

j)). We fix a j, and argue that if 〈a0 +1, 〉 < 〈a1 +1, 〉 are two stages in
the construction such that Mk

j acts under case 2, and fk(j, a0+1) �= fk(j, a1+1),
then Bs �∈ [W〈a0+1,�〉] for some 〈a0 +1, 〉 < s ≤ 〈a1 +1, 〉. This is because there
must be some a0 < a ≤ a1 such that Aa+1 �δ(j) �= Aa �δ(j). At stage 〈a+1, 〉 of
the construction we may assume case 2 holds (otherwise we are done). Hence we
will define B〈a+1,�〉 to avoid W〈a+1,�〉 ⊇ W〈a0+1,�〉. This proves the claim. Now
to see that the number of changes in fk(−, a) is bounded by O(ϕi(nk−)), observe
that if fk(j, a) �= fk(j, a + 1), we must have case 2 applies at stage 〈a + 1, 〉 of
the construction.

Bounded Randomness 67

Lemma 2. B ≤T A.

Proof. Next we describe how to compute B ≤T A. To compute B(x), we would
like to say that only modules Mk

j for nk
j ≤ x can change B(x). This is unfortu-

nately not true, because of the “carry-over” in the addition. Instead we have to
compute B from A in a slightly more elaborate fashion. Define the total function
g ≤A by the following. Let g(0) = x, and given g(z) we define g(z + 1) by first
searching recursively in A for some number a such that Aa � δ(g(z)) is stable
and correct. Let g(z + 1) = max{〈a + 1, 〈j, k〉〉 | nk

j ≤ g(z)}. Hence the function
g is defined so that after stage g(z + 1) of the construction, no module Mk

j for
nk

j ≤ g(z) can change B.
Assume we have computed σ = B � x. Now search for the least z such that

either Bg(z+2)(x) = 1, or else Bg(z+2)(y) = 0 for some x < y < g(z + 1).
This search will terminate because otherwise B = σ011111 · · · which means B is
computable. Let z be the first found. If Bg(z+2)(x) = 1 then B(x) = 1. Otherwise
we claim that B(x) = 0. After stage g(z+2), only modules Mk

j for nk
j > g(z+1)

can contribute to B, and the sum of their total contribution to B is < 2−g(z+1).
On the other hand if Bt(x) = 1 at some t > g(z + 2), then the amount added to
B after g(z + 2) is at least 2−x−1 − (2−x−2 + · · · + 2−y−1) = 2−y−1 ≥ 2−g(z+1).

3.2 (iv) ⇒ (i)

Suppose B = ΔA and B is CB-random. Let ϕe be the eth partial computable
function. Fix a left c.e. approximation {As} to A. Define f(〈e, k〉) by the fol-
lowing. Search for the first stage s such that As � δ(〈e, k〉) = A � δ(〈e, k〉). If
ϕe(〈e, k〉)[s] ↑ then output A�δ(〈e, k〉); otherwise output A�δ(ϕe(〈e, k〉)+〈e, k〉).
Clearly f is total and f ≤T A. Note that the use of the computation is not (and
cannot be) computable. We claim f is not ω-c.e.; suppose the contrary we have
f(x) = lims g(x, s) where g(x,−) has at most ϕe(x) mind changes for some total
computable functions g and ϕe. We build a CB-test {Vk} capturing B, contrary
to assumption. For each k we find a stage s0 such that ϕe(〈e, k〉)[s0] ↓, and
ΔA �〈e, k〉[s0] ↓. We then enumerate ΔA �〈e, k〉[s0] into Vk, and for every s > s0

such that ΔA �〈e, k〉+ϕe(〈e, k〉)[s] ↓ with g(〈e, k〉, s) ⊇ A�δ(〈e, k〉+ϕe(〈e, k〉))[s],
we enumerate ΔA �〈e, k〉 + ϕe(〈e, k〉)[s] into Vk.

Clearly for each k we have #Vk ≤ 1 + ϕe(〈e, k〉), and that μ(Vk) is at most
2−〈e,k〉+ϕe(〈e, k〉)2−〈e,k〉−ϕe(〈e,k〉) < 2−〈e,k〉+1 ≤ 2−k. We claim that B ∈ [Vk]. At
stage s0 we threw in ΔA �〈e, k〉[s0], and if A�δ(〈e, k〉) is stable at s0 then clearly
B ∈ [Vk]. Since {As} is a monotonic approximation to A, we therefore may
assume that A was not stable at s0, hence f(〈e, k〉) = A � δ(ϕe(〈e, k〉) + 〈e, k〉).
Since g approximates f correctly, at some large enough stage we will enumerate
B �〈e, k〉 + ϕe(〈e, k〉) into Vk.

Finally the proof of Theorem 2 is complete upon observing that (iii) implies
(ii) follows from Theorem 1.

68 P. Brodhead, R. Downey, and K.M. Ng

4 Lowness

Theorem 3. There is a non-computable Δ0
3 set A which is low for CB-

randomness.

Proof (Sketch of proof). The construction involves building a Δ0
3 approximation

to A. We will specify a computable approximation αs and at the end we will
take A = lim infs αs. We need to meet the requirements

Pe : A �= ϕe

Re,i : If {UA
e,i}i∈ω is an A-relative CB-test with bound ΨA

e , there is a

CB-test {Ve,i}i∈ω such that ∩i∈ω [UA
e,i] ⊆ ∩i∈ω [Ve,i]

Here we let {UX
e,i} be the eth oracle CB-test, and Ψe be the eth Turing func-

tional. ϕe is the eth partial computable function. The construction builds A of
hyperimmune-free degree. For more details on how to construct a non-computable
real of hyperimmune-free degree by a full Δ0

3 approximation we refer the reader
to Downey [2]. We sketch the main ideas here.

To make A of hyperimmune-free degree, for each Turing functional Ψ , we need
to find a computable function δ that dominates ΨA. We begin by letting αs be
a string of zeroes. The aim is to build a perfect computable tree T : 2<ω → 2<ω

such that for every σ, ΨT (σ)(|σ|) ↓. We need to also ensure that A is in the
range of T . If this fails then we will force ΨA to be non-total. In the former
case we can read δ off T , and in the latter case we satisfy the requirement
automatically. At every stage we let αs extend T (σ) for some σ of maximal
length such that T (σ) has been defined. If we never encounter a convergent Ψα

we keep α ⊃ T (σ). If we find a convergent computation Ψαt�u(|σ| + 1) at some
stage t, we set T (σ�0) ↓= αt �u and move α to an incomparable string extending
T (σ) and search for a way to define T (σ�1). In this way we define T (σ) level by
level, starting with |σ| = 0, and then |σ| = 1, and so on. It is clear that if we get
stuck searching above some T (σ) then A = lim inf αs will extend T (σ) and hence
ΨA is not total. On the other hand if the procedure builds a total computable
perfect tree T then A = T (0ω). A lower priority requirement working for another
Ψ ′ and believing in the totality of T will take the tree T as parameter and work
to build a perfect subtree T ′ of T . A lower priority requirement working for P
will be assigned a string σP in the domain of T , which is consistent with P ’s
belief about the outcomes of higher priority requirements, and P will then later
delete either T (σP

�0) or T (σP
�1) (or neither) depending on the value of ϕe.

When more requirements are considered it will become necessary to define A
not as the direct lim inf of αs, but as the lim inf with respect to the “true stages”
of the construction, namely, the stages where the true path is visited.

How do we implement the R-requirements in this framework? Let us consider
a top requirement working for R0. It seeks to define a single CB-test {V0,i}i∈ω

covering ∩i∈ω [UA
0,i]. R0 would pursue the abovementioned strategy to obtain

a computable function dominating ΨA
0 . Additionally it has to build the test

{V0,i}i∈ω. For i = 0 we wait for T0(∅) to converge. If we ever discover some σ

Bounded Randomness 69

entering U τ
0,0 with oracle string τ on T0, we will delete every path on T0 not

extending τ , and enumerate σ into V0,0. Since the cardinality of U0,0 cannot
exceed Ψ

T0(∅)
0 , we will only act for U0,0 finitely often, and succeed in making

V0,0 = UA
0,0.

Of course we cannot allow U0,i to delete paths in this way for every i, because
we will end up with a computable path A. Suppose P is a requirement believing
that R0 has outcome ∞, i.e. R0 succeeds in making T0 total. The requirement P
(and all other positive requirements) of lower priority will need to be assigned a
diagonalization location σP . Suppose that P has been assigned σP for diagonal-
ization. Each time U0,0 acts as described above it will move σP . It is crucial to
ensure that σP is moved only finitely often. We arrange for U0,1 to respect σP ,
so U0,1 will be prohibited from deleting prefixes of T (σP

�0) and T (σP
�1). If we

consider infinitely many positive requirements P0 < P1 < · · · below R0, we can
arrange for a local priority ordering U0,0 < P0 < U0,1 < P1 < U0,2 < · · · , where
each U0,i has to respect σP0 , · · ·σPi−1 . This resolves the (potentially) infinitary
conflicts between R0 and lower priority P requirements. A computable bound
for V0,i can then be easily computed from upperbounds for ΨA

0 (0), · · · , ΨA
0 (i).

Now consider requirements R0, R1 and P , where R1 believes that R0 has
outcome ∞, and P believes that R1 has outcome ∞. Say we arrange for the
local priority ordering U0,0 < U1,0 < P < U0,1 < · · · . Since R0 cannot assume
knowledge about the outcomes of the nodes of lower priority, U0,1 cannot possibly
wait for the tree T1 to converge before fixing an upperbound for V0,1. Furthermore
U0,1 has to respect σP , so we might enumerate a large number of elements
into V0,1 while α was extending T (σP

�0). Suppose α is next moved to extend
T (σP

�1), and U1,0 obtains an upperbound for V1,0 after seeing T1 grow. Now
if we later discover some σ in U τ

1,0 with oracle τ ⊇ T (σP
�1) we will have to

move σP to make T (σp) ⊃ τ , since U1,0 is of higher local priority than P . This
means that all the elements enumerated into V0,1 so far are no longer possible
elements of UA

0,1, and the cardinality of V0,1 has gone up unnecessarily. This
wastage can be compounded each time U1,0 moves σP , and since the bound for
V0,1 was computed with no knowledge of ΨA

1 (0), we might run out of space and
exceed our declared cardinality bound for V0,1.

Observe that we need not have fixed the local priority ordering beforehand.
The solution is to assign the local priority of P only when P is visited. Let us
consider the situation above again. Suppose P has not yet been visited by the
construction (hence the local priority of P has not yet been decided). Suppose T0

has been growing and we are currently waiting for T1 to be defined at the root.
At this point the local priority list reads U0,0 < U1,0 < U0,1 < U0,2, · · · , < U0,i.
If now T1(∅) finds a definition, we will play outcome ∞ for R0 and outcome ∞
for R1, and visit P , who will now be queued after U0,i.

The key point is that U0,i+1, U0,i+2, · · · will only be considered after this
stage, so they can compute upperbounds for V0,i+1, V0,i+2, · · · using informa-
tion about ΨA

1 (0). They are therefore safe from the actions of U1,0 (and of
course, from U0,0, · · · , U0,i). On the other hand even though the upperbounds
for V0,0, · · · , V0,i have been declared without any knowledge of ΨA

1 (0), they too,

70 P. Brodhead, R. Downey, and K.M. Ng

are safe from the actions of U1,0 because U0,0, · · · , U0,i are all allowed to move
σP whenever we enumerate new elements into V0,0, · · · , V0,i. The only downside
is that σP gets injured a lot more times. Since the local priority of P once fixed,
is never again changed, this means that σP will be eventually stable.

The interactions between other requirements present no new difficulty, and a
formal construction proceeds in a more or less routine fashion. A complete proof
will appear in the journal version of this paper.

References

1. Barmpalias, G., Downey, R., Greenberg, N.: Working with strong reducibilities
above totally ω-c.e. degrees. Transactions of the American Mathematical Soci-
ety 362, 777–813 (2010)

2. Downey, R.: On Π0
1 classes and their ranked points. Notre Dame Journal of Formal

Logic 32(4), 499–512 (1991)
3. Downey, R., Greenberg, N.: Turing degrees of reals of positive effective packing

dimension. Information Processing Letters 108, 298–303 (2008)
4. Downey, R., Greenberg, N.: A Hierarchy of Computably Enumerable Degrees, Uni-

fying Classes and Natural Definability (in preparation)
5. Downey, R., Greenberg, N., Weber, R.: Totally < ω computably enumerable de-

grees and bounding critical triples. Journal of Mathematical Logic 7, 145–171
(2007)

6. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer,
Berlin (2010)

7. Downey, R., Hirschfeldt, D., Nies, A., Terwijn, S.: Calibrating randomness. Bulletin
of Symbolic Logic 3, 411–491 (2006)

8. Downey, R., Jockusch, C., Stob, M.: Array nonrecursive sets and multiple permit-
ting arguments. In: Ambos-Spies, K., Muller, G.H., Sacks, G.E. (eds.) Recursion
Theory Week. Lecture Notes in Mathematics, vol. 1432, pp. 141–174. Springer,
Heidelberg (1990)

9. Downey, R., Jockusch, C., Stob, M.: Array nonrecursive degrees and genericity.
In: Cooper, S.B., Slaman, T.A., Wainer, S.S. (eds.) Computability, Enumerability,
Unsolvability. London Mathematical Society Lecture Notes Series, vol. 224, pp.
93–105. Cambridge University Press (1996)

10. Ershov, Y.: A hierarchy of sets, Part 1. Algebra i Logika 7, 47–73 (1968)
11. Ershov, Y.: A hierarchy of sets, Part 2. Algebra i Logika 7, 15–47 (1968)
12. Lathrop, J., Lutz, J.: Recursive computational depth. Information and Computa-

tion 153, 139–172 (1999)
13. Nies, A.: Computability and Randomness. Oxford University Press (in preparation)
14. Stephan, F.: Martin-Löf random sets and PA complete sets. In: Chatzidakis, Z.,

Koepke, P., Pohlers, W. (eds.) Logic Colloquium 2002, pp. 342–348. ASL and A.
K. Peters, La Jolla (2006)

	Bounded Randomness
	Introduction
	Basic Results
	A Characterization of the Left c.e. Reals Containing a CB-Random
	(i) (iii)
	(iv) (i)

	Lowness

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

