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The classical examples of naturally occuring definable Turing ideals in
R are the ideals generated by the cappable, noncuppable, and non-
bounding degrees. We will provide a proof for the conjecture put forward
by Nies in [18], that there is a cuppable, non-bounding r.e. degree. This
implies that the ideals generated by the non-bounding and/or noncup-
pable degrees are new, and different from the known ones.

1. Introduction

In recent years, a major area of research in computability theory has been

the study of definability in the Turing degree structure. One would be

interested to ask which relations and properties of the Turing degrees are

expressible in the first order language of degrees, with the partial ordering

≤T . Nies, Shore and Slaman [21], Nerode, Jockusch, Simpson, Woodin and

many others have contributed to this end. A particularly interesting result is

the characterization of the definable relations in the r.e. degrees (similarly,

in all Turing degrees) which are invariant under the double jump, by looking

at their definability in first order (second order) arithmetic.

Much work has also been done on lattice-theoretic related problems of

R (the upper semi-lattice of r.e. degrees), such as lattice embedding, the

study of automorphisms, and attempts to give a full algebraic breakdown

of R. Various natural (definable) subsets in R arose, such as the cappable,

cuppable, and promptly simple degrees. The cappable and noncappable

degrees gave the first algebraic decomposition of R, into a proper ideal and a

strong filter. It soon became apparent that more attention had to be paid to
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how fast an element is enumerated into an r.e. set (relative to other r.e. sets),

instead of whether or not an element is eventually enumerated. Classes such

as the h-simple degrees, hh-simple degrees and promptly simple degrees

were introduced, with the promptly simple degrees surprisingly coinciding

with various other unrelated classes.

In this paper, we will construct a cuppable, non-bounding r.e. degree.

This settles the conjecture by Nies in [18], and shows that the two ideals gen-

erated by the union and intersection of the non-cuppable and non-bounding

ideals are new. We state this here as our main theorem :

Main Theorem. There is an r.e. degree a > 0 that is cuppable, and non-

bounding.

We begin with a few definitions. A coinfinite r.e. set A is said to be

promptly simple, if there is a recursive function p, and an enumeration

{As}s∈ω of A, such that for every infinite r.e. set We, there is some s, x

where x is enumerated into We at stage s, and x ∈ Ap(s). An r.e. degree is

said to be promptly simple, if it contains a promptly simple r.e. set.

(i) Let M be the set of all cappable r.e. degrees. Let NCAP be R\M,

the set of non-cappable r.e. degrees, and ENCAP be the set of

effectively non-cappable r.e. degrees.

(ii) Let LCUP be the set of all low cuppable r.e. degrees, and NCUP

be the set of non-cuppable r.e. degrees.

(iii) PS is the set of promptly simple r.e. degrees.

(iv) NB is the set of non-bounding r.e. degrees, i.e. those r.e. degrees

which do not bound a minimal pair.

(v) SPH̄ is the set of r.e. sets definable in R as the non-hh-simple r.e.

sets with the splitting property.

Theorem 1.1.

(i) (Ambos-Spies et al. [1]) ENCAP=NCAP=LCUP=PS=SPH̄.

(ii) R = M ∪ NCAP, where M is a proper ideal in R, and NCAP

is a strong filter in R.

As pointed out by Slaman, NCUP trivially forms an ideal in R. The

question thus arose as to whether there are any other naturally occuring,

definable ideals in R (Shore [22]). Nies answered the question by proving

that the ideal generated by a definable subset of R, is itself also definable.
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Thus, any naturally defined class of r.e. degrees will generate a definable

ideal, the only concern being whether or not it is new.

Theorem 1.2.

(i) (Nies [18]) If D ⊆ R is definable, then so is the ideal in R generated

by D:

[D]id := {x ∈ R | ∃C ⊆ D ∧ C is finite ∧ x ≤ supC}.

(ii) There is a cappable degree not in [NB]id, as well as a r.e. degree

which is both noncuppable, and non-bounding.

Theorem 1.3.

(i) (Yang, Yu [26]) There is a noncuppable r.e. degree which is not

below the join of finitely many non-bounding degrees.

(ii) (Yang, Yu [26]) There is a cappable degree which is not below the

join of a noncuppable degree and finitely many non-bounding de-

grees.

Therefore the ideals M, NCUP, and [NB]id are related in the following

way :

NCUP $ M, [NB]id $ M, NCUP 6= [NB]id,

with all three being pairwise distinct. Furthermore, we also have

[NCUP ∩ NB]id 6= ∅, [NCUP ∪ NB]id $ M.

These are the classical examples of elementarily definable Turing ideals.

Even with the result by Nies in Theorem 1.2, it is still very difficult to find

new examples of such ideals, since one still has the task of obtaining an

elementary (lattice-theoretic) characterization of the subsets of R. We will

give examples below, of some of the other ideals identified so far.

• Chaitin [3] and Solovay [25] studied the class of K-trivial sets.

Recall that a set A is K-trivial if the prefix complexity of each

initial segment of A is as low as it can be. That is,

∀n
(

K(A�n) ≤ K(n) + b
)

for some constant b. This class is, in some sense, far away from

the notion of being random, since a set A is Martin-Löf random

iff ∀n K(A�n) ≥ n − b for some constant b. Thus, the K-trivial

sets behave in the same way as the recursive sets when we examine



February 11, 2008 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) chapter11

210 K. M. Ng

their complexity, yet Solovay [25], and Downey, Hirschfeldt, Nies

and Stephan [9] gave constructions of a non-recursive K-trivial set.

This interesting class has been studied extensively, and Chaitin [3]

has shown that every K-trivial set is ∆0
2. Nies [19] showed that the

class of K-trivial sets are the same as the sets which are low for

1-randomness, and Downey, Hirschfeldt, Nies and Stephan [9] also

showed that the K-trivial sets form a natural solution to Post’s

Problem (i.e. every K-trivial set is Turing incomplete), and also

constructed a promptly simple K-trivial set.

It is also interesting to note that the r.e. K-trivial reals are closed

under join [9], and downwards closed [19]. It is also easy to see that

{e | Φe total ∧ Φ∅
′

e is K-trivial } ∈ Σ0
3, hence the ideal of the r.e.

K-trivial degrees is a Σ0
3 ideal. Furthermore, Nies [20] and Downey,

Hirschfeldt [8] also showed that every non-trivial Σ0
3 ideal in R is

bounded above by a low2 r.e. set.

• Bickford, Mills [2] defined an r.e. degree a to be deep, if for all

other r.e. degrees b, we have (a∪b)′ = b
′. The deep degrees forms a

definable ideal in R, but Lempp, Slaman [15] showed that this ideal

is trivial, i.e. there is no deep degree other than 0. In [4], Cholak,

Groszek and Slaman weakened the requirement for a degree to be

deep, by introducing the notion of an almost deep degree. That is,

instead of requiring that for every b, when b is joined with a, the

jump is preserved, we will instead look at what happens if only

lowness was preserved. Say that an r.e. degree a is almost deep, if

for every low r.e. degree b, the join a∪b is also low. [4] also contains

the construction of a non recursive, almost deep r.e. degree. This

shows that the ideal of the almost deep degrees is non-trivial, and

is contained in M.

• An r.e. degree is said to be contiguous, if it contains a single r.e. wtt

degree. The concept of a contiguous degree was first introduced by

Ladner [13], and Ladner, Sasso [14] and used in the study of transfer

techniques (i.e. results which transfer from wtt degrees to the r.e.

degrees). This was taken up by Downey [5] who introduced the

notion of a strongly contiguous degree (i.e. an r.e. degree with only

a single wtt degree), and showed by transfer techniques, that there

is an r.e. (Turing) degree with the strong anti-cupping property.

The most significant difference between Rwtt (r.e. wtt degrees) and

R is probably the fact that Rwtt, but not R forms a distributive up-

per semi-lattice. Even so, the distributivity of Rwtt transfer locally
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to the contiguous degrees in R. Downey, Lempp in [11] proved that

an r.e. degree a is contiguous if and only if it is locally distributive,

i.e.

∀a0∀a1∀b

(

(a0 ∪ a1 = a) ∧ (b ≤ a) ⇒

∃b0∃b1 (b0 ∪ b1 = b ∧ b0 ≤ a0 ∧ b1 ≤ a1)
)

.

Hence, the r.e. contiguous degrees are elementarily definable in R,

and generates a definable ideal. In unpublished work, Downey and

the author showed that 0′ is the join of two contiguous degrees,

and hence the generated ideal is non-proper.

Other related work includes the study of totally ω-r.e. and totally

ωω-r.e. degrees, the array recursive degrees, and some lattice em-

bedding results by Downey, Greenberg, Walk, and Weber. In [7],

Downey, Greenberg, Walk and Weber showed that the totally ω-r.e.

degrees forms a definable subset of R (with a non-proper generated

ideal, since every contiguous degree was also totally ω-r.e.), while

it is still not known if the array recursive degrees are definable. For

more details, the reader is referred to [6] and [10].

2. Overview of the construction

We shall build r.e. sets A, B, such that A is non-bounding, and K ≤T A⊕B.

Our notation is standard, and follows Soare [24]. We fix an effective listing

{(Φi, Ψi, Xi, Yi)}i∈ω of all 4−tuples where Φi, Ψi are p.r. functionals, and

Xi, Yi are r.e. sets. We will build r.e. sets A, B, C, and Turing functional Γ

to satisfy the requirements

Pe : A 6= We (A is non-recursive)

Re : (ΦA
e = Xe) ∧ (ΨA

e = Ye) ∧ (Xe, Ye are both non-recursive)

⇒ (∃ an r.e. De)(De ≤T Xe ∧ De ≤T Ye ∧ De is non-recursive)

(non-bounding strategy)

Ne : ΦB
e 6= C (incompleteness of B),

and such that Γ(A ⊕ B) = K.

For any r.e. set Z, we write x ↘ Zs to mean that x ∈ Zs − Zs−1. We

will assume that for all x, e and s,

x ↘ Xe,s ⇒ ΦAs

e,s(x) = 1 and x ↘ Ye,s ⇒ ΨAs

e,s(x) = 1,
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since we are only interested in the Re’s where the premise holds. Fix an

enumeration {Ks} of K, in which ∀s
∣

∣

∣
{x | x ↘ Ks}

∣

∣

∣
≤ 1, and ∃∞s(Ks =

Ks−1). We also define the length agreement

lΦe(s) = max{x | (∀y < x)(Xe,s(y) = ΦAs

e,s(y))},

lΨe(s) = max{x | (∀y < x)(Ye,s(y) = ΨAs

e,s(y))},

le(s) = min{lΦe(s), lΨe(s)}.

3. Strategy of a single requirement

For the requirements Pe and Ne, the individual strategy is the standard one.

In the case of Pe (positive requirement), we wait for an element x ↘ We,s,

then we will put x ↘ As, otherwise we keep x out of A. In the case of Ne

(negative requirement), we wait for ΦBs

e,s(x) ↓= 0, then we will put x into

C, and preserve the computation ΦBs

e,s(x) by keeping elements out of B. At

the end of every stage s in the construction, we will move one step closer

to building Γ(A ⊕ B) = K, by either extending the definition of Γs, or by

correcting any wrong approximation made by Γs, due to changes in K (i.e.

some x ↘ Ks). To this end, we will maintain a set of markers {γ(n, s)}, and

γ(n) will be enumerated into B for the sake of the correctness of Γ(A⊕B; n).

Finally, for the requirement Ri, we will subdivide it into infinitely many

sub-requirements

Ri,j : Di 6= Wj

The requirement Ri will construct an r.e. set Di below Xi and Yi, and

attempt to satisfy all sub-requirements Ri,j for every j. Either it will suc-

ceed in doing so, or else some Ri,j fails, and we can make use of this to

compute either Xi or Yi. Fix a j, and we will now describe the strategy of

a single sub-requirement Ri,j . Let x denote the current witness that Ri,j is

working on, and r1(s), r2(s) be the restraint imposed at stage s by Xi and

Yi respectively. Let r(s) := max{r1(s), r2(s)}. The action of Ri,j consists

of the following steps:

(Step 1): Wait for a stage s such that x ↘ Wj,s. If no such stage exists,

then Ri,j is satisfied. Otherwise, set r1(s + 1) = 0, and go to step

2. This action is also called opening of an X-gap.

(Step 2) : Wait for the next stage t > s, where lΦi(t) > x. This will happen

if the premise in Ri holds. If Xi,s�x 6= Xi,t�x, then we close the X-

gap successfully by performing the following : Set r2(t + 1) = 0

(open a Y -gap), and go to step 3. Otherwise if Xi,s�x= Xi,t�x,
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then we close the X-gap unsuccessfully by defining r1(t + 1) = t,

reset x by choosing another witness > t + 1, and return back to

step 1.

(Step 3) : Wait for the next stage u > t, where lΨi(u) > x. If Yi,t�x 6= Yi,u�x,

then we close the Y -gap successfully by enumerating x into Di, and

then halt. This satisfies Ri,j . Otherwise if Yi,t�x= Yi,u�x, then we

close the Y -gap unsuccessfully by defining r2(u + 1) = u, reset x

by choosing another witness > u + 1, and return back to step 1.

Note that if there are only finitely many opening of X-gaps and Y -gaps,

then Ri,j is satisfied, and lims r(s) < ∞. Furthermore, any element x that

enters Di can only do so if it obtains permission from both Xi and Yi,

and hence Di ≤T Xi and Di ≤T Yi. Hence Ri will be satisfied, if Ri,j

is satisfied for all j. Suppose that there are infinitely many Y -gaps, then

lim infs r(s) = 0 and for any y, Yi,s�y= Yi�y for the least stage s such that

the witness x(s) > y and a Y -gap is open. Hence, Yi is recursive. If there

are finitely many Y -gaps but infinitely many X-gaps, then lim infs r(s) =

lims r2(s) < ∞, and Xi is recursive. Therefore, Ri is satisfied even when

Ri,j fails for some j.

4. Interaction of strategies

Now we look at the possible conflicts amongst the different requirements.

The non-bounding strategy may impose an unbounded restraint on the

nodes below it if X or Y is recursive, thus there is a need for the strategy

to enter the gap stages, in which the nodes (on the true path) below it has

only a finite restraint (on A) to work with. These gap stages provide an

opportunity for the strategies below the node working on the non-bounding

strategy to enumerate numbers into A.

The end of stage action will maintain the correctness of the functional

Γ(A⊕B), and whenever a correction needs to be taken, we will put γ(n, s)

into B to make Γs(A ⊕ B; n) ↑, in preparation for it to receive a new

definition later. The problem is that if we always put numbers into B

whenever a K-change is observed, we might end up coding K into B, and

hence there is no chance for the N -strategies (incompleteness strategies) to

work. To prevent this situation, we will require both A and B to be involved

in carrying the information contained in K. The important point here is

that the end of stage actions taken to construct Γ has the highest priority

over any strategy on the tree. So, whenever an incompleteness strategy

observes a B-computation and wants to preserve it, the strategy can only
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try to limit the damage done to itself by the end of stage actions. This is

done as follow:

Each incompleteness node α = Ne will choose a number n(α, s), in

which it believes that Ks�n(α,s)= K�n(α,s). Whenever α witnesses ΦBs

e,s(z) ↓,

it will attempt a diagonalization by enumerating z into C, move all markers

γ(p, s) for p ≥ n(α, s) to values larger than u := the use of ΦBs

e,s(z). In order

to do this, α will enumerate γ(n(α, s), s) into A, and trust that Ks�n(α,s)=

K�n(α,s). In future, this diagonalization will be preserved, unless the end of

stage action puts in some number < u, which can only happen if Ks�n(α,s) 6=

K�n(α,s). At the next visit to α, we will give up the diagonalization attempt,

and start on a new one by choosing a new witness z′, and wait for ΦBt

e,t(z
′) ↓

again. This new attempt can once again be ruined, but only if Kt�n(α,s) 6=

K�n(α,s). Hence, there will be at most n(α, s) many failed attempts.

Note that the incompleteness strategies will make enumerations into A

in an attempt to guarantee their success, so that in future, the enumerations

made by the end of stage action can only ruin them finitely often. Hence,

for each x, the final coding location lim
s→∞

γ(x, s) depends on both A and B.

5. Priority tree layout

Our requirements will be laid out on the priority tree, where the nodes are

ordered by the standard ordering <L:

- For a node α on the tree, |α| = 4e, we assign the requirement Pe,

with possible outcomes succ (success) <L w (waiting).

- If |α| = 4e+1, we have the requirement Ne with possible outcomes

0 <L 1 <L · · · indicating the restraint imposed by the negative

requirement Ne on B.

- For |α| = 4e+ 2, we will assign it to some Ri(α) which attempts to

guess if (ΦA
i(α) = Xi(α)) ∧ (ΨA

i(α) = Yi(α)) holds. The outcomes are

0 (stands for infinitely many expansionary stages) <L 1 (finitely

many expansionary stages).

- For |α| = 4e+3, we assign it some sub-requirement Ri(α),j(α). The

possible outcomes are : succ (success in putting some x in Di(α))

<L g2 (infinitely many Y -gaps ) <L g1 (infinitely many X-gaps )

<L w (waiting for x ↘ Wj(α)).

To complete the description of the priority tree, we need to define the

functions i, j. We use the functions L0, L1 (where for all α ∈ dom(L0),

L0(α), L1(α) ⊆ ω) to help us. For |α| = 2, define i(α) = 0, and let L0(α) =
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L1(α) = ω. If |α| = 4n or 4n + 1(n > 0), we let i(α) ↑, j(α) ↑, L0(α) ↑, and

L1(α) ↑. If |α| = 4n + 2 or 4n + 3, we let β be the maximal node such that

β ≺ α and |β| = 4n′ + 2 or 4n′ + 3 for some n′. Let β∧a � α, and we define

L0(α), L1(α) as follow:

- a ∈ {1, g1, g2} :

L0(α) =
(

L0(β) \ {i(β)}
)

∪
{

k | k > i(β)
}

,

L1(α) =
(

L1(β) \ {〈i(β), m〉 | m ∈ ω}
)

∪
{

〈k, m〉 | k > i(β), m ∈ ω
}

.

- a = 0 :

L0(α) = L0(β) \ {i(β)},

L1(α) = L1(β).

- a ∈ {succ, w} :

L0(α) = L0(β),

L1(α) = L1(β) \ {〈i(β), j(β)〉}.

If |α| = 4n+2, then define i(α) = min L0(α) and j(α) ↑. If |α| = 4n+3,

then define i(α) = i′, j(α) = j′, where 〈i′, j′〉 = min L1(α).

For convenience of notation, we will say that a node α = Pe if |α| = 4e,

and α = Ne if |α| = 4e + 1. Similarly, we say that α = Ri if |α| = 4e + 2

for some e, and i(α) = i. Also, say that α = Ri,j if |α| = 4e + 3 for some e,

i(α) = i, and j(α) = j. We say that α 6= Pe (similarly for Ne,Ri,Ri,j), if

∀k(|α| 6= 4k). We let

τ(α) = (µβ � α)
(

β = Ri(α)∧

(¬∃γ)(β � γ ≺ α)
[

i(γ) < i(α) ∧ α(|γ|) ∈ {1, g1, g2}
])

,

and if no such β exists, let τ(α) ↑. For any infinite path h, and i ∈ ω, let

τ(h, i) = maximal node α such that α ≺ h and α = Ri, and let E(h, i) =

{β | β � τ(h, i) ∧ τ(β) ↓= τ(h, i)}.

It follows by a simple induction that for every infinite path h and every

i ∈ ω, (∃<∞α ≺ h)(α = Ri). Thus it follows that either ∀n(h(n) 6= Ri), or

else τ(h, i) ↓. If α = Rj , then τ(α) = α, and it follows that α = Rj ∧ α ∈

E(h, i) ⇒ α = τ(h, i).
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6. The construction

We shall construct r.e. sets A, B, C and Turing functional Γ, with

As, Bs, Cs, Γs to denote the finite sets of elements enumerated so far at

stage s. For a node α on the tree, let 〈α〉 be the number assigned to α un-

der some effective coding of the tree. γ(x, s) will denote the approximation

at stage s, of the final use u(A⊕B; x), and the current state of the module

α is denoted by F (α, s). We will now state down the rest of the parameters

used in the construction.

- For a node α = Pe, let r(α, s) = 0 (restraint on A contributed by

α).

- For each node α = Ne, n(α, s) will mark the location of x in which

α believes that Ks�x= K�x, and z(α, s) denotes the witness z at

stage s that attempts to make ΦB
e (z) 6= C(z). We let r(α, s) = 0

(since Ne only keeps elements out of B.

- At each node α = Ri, the r.e. set Dα will be formed by elements

contributed by the nodes {β | β � α ∧ τ(β) ↓= α}. We always

define r(α, s) = 0.

- For a node α = Ri,j , we let r1(α, s) and r2(α, s) denote the restraint

put up at stage s by Xi and Yi respectively, in the attempt to make

Xi and Yi computable. We let r(α, s) = max{r1(α, s), r2(α, s)}, and

let x(α, s) be the current witness of the basic module Ri,j .

All parameters will remain in force until re-assigned (or initialized). Hence,

we may drop s from the notation without ambiguity, and refer to the

parameters as γ(x), p(α), n(α), A, B, C, etc. Define the restraint function

r̄(α, s) = max{r(β, s) | β ≤L α}.

To reset the witness x(α) (and z(α)) at stage s, is to re-define x(α, s)

(similarly z(α, s)) to be the least x ∈ ω[α], x > s, and x > x(α, s − 1).

To reset γ(x) above y at stage s is to do the following. Cancel the

existing value of γ(x), and redefine γ(x) to be the least value in ω[x] larger

than y, maxAs, maxBs and all the previous values of γ(x). Next, for each

z > x, cancel the existing value of γ(z) and redefine γ(z) to be the least

value in ω[z] larger than max{y, maxAs, max Bs, γ(x), · · · , γ(z − 1)} and

all previous values of γ(z).

To initialize a node α at stage s means the following. If α = Pe and s =

0, we set F (α) = w. If α = Ne, we set n(α) to be the least x > n(α, s− 1),

x ∈ ω[α], such that γ(x) > r̄(α), reset z(α), and set F (α) = 0. For α = Ri,

we will remove any link with top α. Lastly, if α = Ri,j , we will reset x(α),
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set r1(α) = r2(α) = 0, remove any links with bottom α, and if F (α) 6= succ

we set F (α) = w.

The construction will proceed by induction on stage s. If s = 0, we

initialize all nodes on the tree, reset γ(0) above 0, and do nothing else. For

each stage s > 0, we will define δs,t at each substage t < s, and state the

action of the node δs,t. We will have δs,0 ≺ · · · ≺ δs,s−1 = δs. We sometimes

refer to a substage t of a stage s by (s, t), and order the substages (s, t)

lexicographically. We will say that a node α is visited at substage (s, t), if

δs,t = α, and that α is visited at stage s, if it is visited at some substage

of s. For a node α = Ri, we say that a stage s > 0 is α-expansionary, if

li(s) > max{li(t) | t < s ∧ α is visited at stage t}. Let s > 0, and proceed

with the construction as follow.

(Substage t = 0) : Define δs,0 = P0, and check if F (P0) = w, and there

is some y > γ(〈P0〉) such that y ∈ W0 ∩ ω[P0]. If there is such y,

enumerate the least such into A, initialize all β >L P0, set F (P0) =

succ, reset γ(z) (where z is the least such that y ≤ γ(z)) above 0,

and go to the next substage. If there is no such y, or F (α) = succ,

proceed to the next substage with no action needed.

(Substage 0 < t < s) : Assume that δs,t−1 has been defined, and its action

taken. Define α = δs,t by the following : if δs,t−1 = Ri, F (δs,t−1) =

0, and there exists a link (δs,t−1, β) for some β, then let α = β,

otherwise let α = δs,t−1
∧F (δs,t−1). The corresponding action to

be taken by α is listed below.

(α = Pe) : If F (α) = w, and there is some y such that y ∈ We∩ω[α]

with y > max{r̄(α), γ(〈α〉)}, enumerate the least such y into

A, initialize all β >L α, set F (α) = succ, reset γ(z) (where z

is the least such that y ≤ γ(z)) above 0, and go to the next

substage. Otherwise, go to the next substage with no action

needed.

(α = Ne) : There are four possibilities, and their corresponding ac-

tions are listed below.

(N .1) : If F (α) = 0 and ΦBs

e,s(z(α)) ↓= 0, then we will per-

form the following actions: enumerate z(α) into C, make

Γs(As⊕Bs; y) ↑ (for all y ≥ n(α)) by enumerating γ(n(α))

into A, reset γ(n(α)) above u, where u is the use of

ΦBs

e,s(z(α)), set F (α) = u, and initialize all β >L α.

(N .2) : If we have F (α) = 0 and ΦBs

e,s(z(α)) 6= 0, we proceed

to the next substage with no action.
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(N .3) : Suppose that F (α) > 0, and there is some y < n(α)

such that y ↘ Ku′ for some u ≤ u′ < s, and u is the

previous stage in which α is visited. Then, reset z(α) and

set F (α) = 0.

(N .4) : Suppose that F (α) > 0, and Ku−1�n(α)= Ks−1�n(α).

Then, proceed to the next substage with no action.

(α = Ri) : If stage s is α-expansionary, set F (α) = 0, otherwise

set F (α) = 1.

(α = Ri,j) : Choose the first clause from the following list (R.1)−

(R.3) that applies, and perform the action stated.

(R.1) : α is ready to open an X-gap : that is, τ(α) ↓

, F (α) = w, x(α) ∈ Wj,s, and x(α) < li(s). The action

to be taken is to open an X-gap by setting r1(α) = 0,

F (α) = g1, initialize all β ≥L α∧w, and create a link

(τ(α), α).

(R.2) : α is ready to close an X-gap : that is, F (α) = g1

and s is τ(α)-expansionary. Let u < s be the stage where

the current X-gap was opened. If Xi,u�x(α) 6= Xi,s�x(α) we

close the X-gap successfully and open a Y -gap by set-

ting r2(α) = 0, F (α) = g2, and initializing all nodes

β ≥L α∧g1. Otherwise if Xi,u �x(α)= Xi,s �x(α), we

close the X-gap unsuccessfully by setting r1(α) = s,

F (α) = w, resetting x(α), initializing all nodes β ≥L

α∧w, and removing the link (τ(α), α). If the X-gap was

closed unsuccessfully, go directly to substage s, and set

δs = δs,t.

(R.3) : α is ready to close a Y -gap : F (α) = g2 and s is τ(α)-

expansionary. As above, let u < s be the stage where the

current Y -gap was opened. If Yi,u�x(α) 6= Yi,s�x(α) we close

the Y -gap successfully by enumerating x(α) into Dτ(α),

setting F (α) = succ, r1(α) = r2(α) = 0, and initializing

all β ≥L α∧g2. Otherwise if Yi,u�x(α)= Yi,s�x(α), we close

the Y -gap unsuccessfully by setting F (α) = w, r2(α) = s,

resetting x(α), and initializing all nodes β ≥L α∧g1. In

either case, we remove the link (τ(α), α), set δs = δs,t,

and go directly to substage s.

If none of the clauses (R.1) − (R.3) holds, do nothing and

proceed to the next substage.
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(Substage t = s) : If there is some y ↘ Ks, we enumerate γ(y) into B and

reset γ(y) above 0. Otherwise if Ks = Ks−1, we pick the least y

such that Γs(As ⊕ Bs; y) ↑, and set Γs(As ⊕ Bs; y) ↓= Ks(y) with

use 2γ(y) + 1.

This ends the construction.

7. Verification

We will now state some straightforward properties exhibited by the links,

which can be shown by induction.

- If (ρ, γ) is a link that had been formed in the construction, then

necessarily we must have γ � ρ∧0, and also

@σ
(

ρ � σ � γ ∧ σ = Rj for some j < i(ρ)
)

, (7.1)

∀σ
(

(σ � γ∧g1 ∨ σ � γ∧g2) ∧ i(σ) ≥ i(ρ) ∧ τ(σ) ↓ ⇒ τ(σ) � γ
)

.

(7.2)

- It is also clear that for any node σ � δs, a link (ρ, γ) exists, and

is travelled during stage s for some ρ ≺ σ ≺ γ ⇔ σ is not visited

during stage s.

- Combining the above fact with (7.1) and (7.2), we see that any

links that exist simultaneously may be nested, but never crossing.

- Therefore for any node σ � δs, σ is visited at stage s ⇔ @ a link

(ρ, γ) at substage (s, 0) with ρ∧0 � σ and γ � σ. That is, any link

(ρ, γ) existing at the beginning of stage s with ρ∧0 � σ, must have

bottom γ � σ.

- Any link that is created, can be travelled at most twice before it

is removed. Also, any link that is removed must be travelled in the

same stage.

- Nested links are removed from outermost inwards.

- No link may be formed and travelled in the same stage.

- If a link (ρ, γ) is formed during the construction, then every node α

such that ρ ≺ α∧g1 � γ or ρ ≺ α∧g2 � γ must have a gap open at

the instance of formation, and the gap will remain open until after

the link (ρ, γ) is removed. Therefore at any stage s, every node

α such that α∧g1 � δs or α∧g2 � δs must have a (X- or Y -gap,

respectively) open at the end of stage s.
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The true path (TP ) of the construction is defined to be TP (n) =

lim inf
s

F (TP �n), for all n. The lim inf
s

F (α) always exists for any node

α, because α only has finitely many possible outcomes, with the excep-

tion of α = Ne, where we require that F (α, t) < F (α, s) ⇒ ∃u(t ≤ u <

s ∧ F (α, u) = 0).

Lemma 7.1. The true path is the leftmost path visited infinitely often.

That is for any n, there are infinitely many stages s, where TP�n is visited,

and ∃<∞s(δs <L TP�n).

Proof. The lemma obviously holds when n = 0. Let n > 0, and assume

the lemma holds for α = TP�n−1. Let a = TP (n−1), and choose a stage s0

such that ∀s > s0(δs ≮L α ∧ F (α, s) ≮L a). For any s1 > s0, if δs1
<L α∧a,

then there must be a link (ρ, γ) with ρ ≺ α and α∧b � γ for some b <L a,

which is travelled during stage s. Since α is visited infinitely often, there

will be a s2 ≥ s1 where α is visited. Hence by induction, we have for all

s ≥ s2, we have δs ≮L α∧a, and there will be no link (ρ′, γ′) with ρ′ ≺ α

and α∧b � γ′ for any b <L a existing at the end of stage s.

To show that α∧a is visited infinitely often, we first show that α can

only be initialized finitely often. To see this, consider a stage s3 > s0, in

which no β ≺ α is initialized after stage s3. After stage s3, α can only be

initialized by α− where α = (α−)∧b for some b. The case α− = Pe or Re

is trivial, and if α− = Ne, we have n(α−, t) = n(α−, s3) for all t ≥ s3,

and subsequently α can only be initialized by α− at most n(α−, s3) + 1

many times. If α− = Ri,j initializes α at infinitely many stages t ≥ s3,

then there must be infinitely many stages t′ ≥ s3 in which F (α−, t′) <L b.

Therefore, we can let s4 > s0 be a stage after which α is never initialized,

α is visited at stage s4, where F (α, s4) is set to a due to the action of α.

We may assume that there is some link (α, γ) existing at stage s4, and that

a = 0, because otherwise α∧a will be visited at stage s4. This link will be

travelled at most twice before it is removed at some stage s5 ≥ s4. Let

s6 > s5 be the least stage such that α is visited, and F (α, s6) is set to 0.

Then for all s5 < u < s6, we have δu � α∧0, and there is no link (ρ′, γ′)

with ρ′ ≺ α∧0 � γ′ existing at the end of stage u. Thus, α∧0 will be visited

at stage s6.

Lemma 7.2.

(i) For each node α 6= Ri,j on the true path, we have

lim
s→∞

{r̄(α, s) | α is visited at stage s} < ∞.
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(ii) For all x, lim
s→∞

γ(x, s) < ∞.

Proof.

(i) Firstly we note that for any β = Ri,j on the true path, we have

TP (|β|) ∈ {succ, w} ⇒ ∃r0∀
∞s

(

r(α, s) = r0

)

, (7.3)

TP (|β|) = g1 ⇒ ∃r1∀
∞s

(

r(α, s) = r1 when an X-gap is open
)

, (7.4)

TP (|β|) = g2 ⇒ ∀∞s
(

r(α, s) = 0 whenever a Y -gap is open
)

. (7.5)

Now fix α 6= Ri,j on the true path. Let s0 be a stage such that ∀s > s0,

δs ≮L α and the relevant clauses within the brackets on the right side of

the implications in (7.3), (7.4) and (7.5) hold for every β ≺ α. For any

s > s0 in which α is visited, we have r(α, s) = 0, and every β ≺ α such

that TP (|β|) = g1 or g2 will have a X- or respectively Y -gap open. Hence

lim
s→∞

{r̄(α, s) | α is visited at stage s} exists.

(ii) During the construction, only the action taken by some node α = Pe

or Ne, or the action at the end of a stage can move γ(x). For a particular

x, we choose s0 so that Ks0
�x+1= K�x+1, and for all s > s0, if α = Pe

and 〈α〉 < x, then α does not enumerate any element into As. Therefore

after stage s0, only the action of finitely many nodes α (where α = Ne) can

move γ(x). Let α be such a node, and let n(α, s) ≤ x for some s > s0. If α

is never initialized after stage s, then α will reset γ(n(α)) at most n(α) +1

many times.

Lemma 7.3. Along the true path, the requirements succeed.

Proof. First consider the requirement Pe : A 6= We : let α = TP�4e, and

if TP (4e) = succ then A∩We 6= ∅. Thus, we suppose that TP (4e) = w. At

all times in the construction, we have

γ(x) value is reassigned ⇔

∃y ≤ γ(x) (y is enumerated into A or B). (7.6)

We claim that A[α] is finite, since the only nodes that can enumerate ele-

ments into A[α] is the node α itself, as well as the node β such that β = Ni

and 〈α〉 ∈ ω[β]. Now, α contributes no elements to ω[α], while β can only

put finitely many elements into ω[α] (by Lemma 7.2(ii), and (7.6)). On the

other hand, W
[α]
e is also finite because of Lemma 7.2. Hence, A 6= We.

Re - Non-bounding Strategy : assume that ΦA
e = Xe, ΨA

e = Ye, and

Xe, Ye are both non-recursive. We first show that there is no node α such



February 11, 2008 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) chapter11

222 K. M. Ng

that ∃j(α = Re,j) and α∧g1 ≺ TP . Suppose such α exists, then τ(α) ↓ and

we let s0 be a stage after which α is never initialized, and ∀s > s0(δs ≮L α).

To compute Xe(y), we wait for a stage s > s0 such that x(α, s) > y, α is

visited at stage s, where a X-gap is opened. Then, Xe,s �y+1= Xe �y+1

because during any stage t > s where α has no open X-gap, we must have

δt � α∧g1. The same argument also shows that there is no node α such

that ∃j(α = Re,j) and α∧g2 ≺ TP . Therefore τ := τ(TP, e) ↓, and there is

no β such that τ ≺ β ≺ TP , i(β) < e and TP (|β|) ∈ {1, g1, g2}. We also

have τ∧0 ≺ TP , and for almost all j, there is some α such that α = Re,j ,

α ≺ TP , and α ∈ E(TP, e). Therefore, we can conclude that the r.e. set Dτ

is non-recursive. It only remains to show that Dτ ≤T Xe and Dτ ≤T Ye.

A Xe-recursive test of whether y ∈ Dτ is the following. Wait for a stage

s0 such that x(α, s0) = y for some α ∈ E(TP, e), and Xe,s0
�y= Xe�y. If

no X-gap is open at stage s0 then x 6∈ Dτ , otherwise we wait for stage

s1 > s0 where all gaps (X or Y ) are closed, and we have Dτ (y) = Dτ,s1
(y).

A similar argument is used for Dτ ≤T Ye.

Ne - ΦB
e 6= C : let α = TP�4e+1, and let s0 be a stage after which α is

never initialized, ∀s > s0(δs ≮L α), Ks0
�n(α,s0)= K�n(α,s0), and α is visited

at stage s0 + 1. Let s1 > s0 + 1 be the next stage where α is visited, and

let z := z(α, s1) = lim
t→∞

z(α, t). Thus we have

TP (|α|) = 0 ⇒ z 6∈ C ∧ ΦB
e (z) 6= 0,

TP (|α|) > 0 ⇒ z ∈ C ∧ ΦB
e (z) = 0,

which satisfies the requirement Ne.

Γ(A ⊕B) = K : fix an x, and by Lemma 7.2 and (7.6) there is a stage

s0 where we set Γs0
(As0

⊕ Bs0
; x) ↓= Ks0

(x) with use 2γ(x, s0) + 1, and

(∀y ≤ x)(∀s > s0)
(

γ(y, s) = lim
t→∞

γ(y, t)
)

. We have (As0
⊕Bs0

)�2γ(x,s0)+2=

(A ⊕ B)�2γ(x,s0)+2, and thus Γ(A ⊕ B; x) = Ks0
(x) = K(x).
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