
CATEGORICAL LINEARLY ORDERED STRUCTURES

ROD DOWNEY, ALEXANDER MELNIKOV, AND KENG MENG NG

Abstract. We prove that for every computable limit ordinal α there exists a

computable linear ordering A which is ∆0
α-categorical and α is smallest such,

but nonetheless for every isomorphic computable copy B of A there exists a

β < α such that A ∼=∆0
β
B. This answers a question left open in the earlier

work of Downey, Igusa, and Melnikov. We also show that such examples can

be found among ordered abelian groups and real-closed fields.

1. Introduction

The paper contributes to the field of effective algebra [AK00, EG00], in which
the main objects of study are computable (Rabin [Rab60]) or constructive (Malt-
sev [Mal61]) algebraic structures: A countably infinite algebraic structure A is
computable (or constructive) if its domain can be labeled by natural numbers so
that the operations and relations become Turing computable with respect to the
respective labels. One of the key tensions between computable mathematics and
classical mathematics is that the classical isomorphism type fails to preserve com-
putable properties; what is needed for computable properties to be preserved is the
notion of a computable isomorphism. For example, even for a structure as simple
as the order type of the integers, we can show that there is an infinite collection of
computable copies no pair of which are computably isomorphic.

A natural programme is to seek to understand the computational power needed
to sort out an isomorphism between each pair of computable copies of a given struc-
ture. In the case that all computable copies are computably isomorphic, such as the
dense linear ordering without endpoints, we say that the structure is computably
categorical. In the case of the order type of the integers, the halting problem is
enough, and necessarily so; hence this ordering is called ∆0

2 categorical. There are
obvious approaches to explore what oracles are needed to compute isomorphisms
between computable structures, effective definability within the structures, and
computational properties of the structures. Syntax, especially Lω1,ω-definability,
plays a rather important role in effective algebra, see [AK00]. In computable alge-
braic structures the syntactical complexity of their invariants usually agrees with
their computational complexity.

Much work have been done on computable structures from natural algebraic
structures such as groups [Khi98, EG00, Gon81], fields [EG00, Mil11], Boolean al-
gebras [Gon97] and linear orders [Dow98]. There have also been many deep results

2010 Mathematics Subject Classification. Primary 03D45, 03C57. Secondary 03D75, 03D80.
The first two authors were partially supported by the Marsden Fund of New Zealand. The

third author is partially supported by MOE2015-T2-2-055 and RG131/17.
This research is supported by the Mathematisches Forschunginstitut Oberwolfach through the

Research in Pairs initiative in January 2018.

1

2 ROD DOWNEY, ALEXANDER MELNIKOV, AND KENG MENG NG

on abstract computable model theory [EG00, AK00]. One recent application of
these results and techniques is the use of effective algebra to measure the complex-
ity of classification problems in mathematics, most notably in group theory, see
e.g. [GK02, DM08, DM14, Rig]. Also, quite unexpectedly, computable structure
theory can be used to reformulate and attack the long-standing Vaught’s conjecture
in model theory [Mon13].

One longstanding theme in these studies has been the construction of highly
pathological examples using sophisticated techniques from classical computability
theory. One possible application of such techniques is in showing that certain nat-
ural subclasses of structures are unclassifiable. For example, it is well-known that
linear orderings are computably categorical iff they have a finite number of succes-
sivities [Rem81]; this gives a clear classification of computable categoricity in the
class of linear orders. In contrast, for general structures the index set of computably
categorical structures (graphs) is Π1

1-complete [DKL+15], meaning that there is no
hope for any reasonable invariants describing computable categoricity. Similarly,
the index set of finite automata-presentable structures is Σ1

1-complete [BHTK+18];
the proof heavily exploits the techniques mentioned above. Early on, such tech-
niques tended to apply to graphs or graphs with extended signatures of additional
relations. Thus, one of the core questions in computable structure theory is the
extent to which pathological results carry over to standard structures found in
mathematics.

In this paper we will combine these general techniques with definability and sev-
eral kinds of inversions to obtain counter-intuitive examples of computable struc-
tures in natural algebraic classes. In these examples non-uniformity occurs at the
limit levels of the hyperarithmetical hierarchy, in the following sense. Answering a
question of Iskander Kalimullin, in [DIM] Downey, Igusa, and Melnikov produced
an example of a ∆0

ω-categorical computable structure with ω being optimal, but
such that every computable copy of the structure is 0(n)-isomorphic to the struc-
ture; recall that a computable structure A is ∆0

α-categorical if any other computable
B ∼= A is ∆0

α-isomorphic to A. (In fact, the main result of [DIM] was proved for an
arbitrary computable limit ordinal.)

The structure produced in the proof of [DIM] was algebraically unnatural, i.e. it
did not belong to any common algebraic class. Obviously it could be transformed
into a graph, a two-step nilpotent group, or any other “universal” structure in
the sense of [HKSS02, HTMMM17]. Downey, Igusa and Melnikov left open if
such examples can be found in the standard non-universal classes; in particular,
in the class of linear orderings. It seemed that there were serious obstacles in
constructing such a linear order. However, using a careful combination of the
separator technique, the label technique, and two inversions results (one of which
is new), we prove:

Theorem 1.1. For every computable limit ordinal α there exists a computable
linear order Aα such that:

(1) For every computable copyM∼= Aα, there exists a β < α such thatM∼=∆0
β

Aα.
(2) For every β < α, there exists a computable copy B ∼= Aα such that B �∆0

β

Aα.

CATEGORICAL LINEARLY ORDERED STRUCTURES 3

An example of an inversion is the map that given a ∆0
2-linear order L, uniformly

produces a computable linear order in which every point of L is replaced by an
interval of order-type η+2+η [DK92]. Here η denotes the order-type of the rationals.
We call any such uniform procedure which de-relativizes an X-computable structure
an “X-inversion”. Here X can be replaced by a collection of degrees. In this paper,
we view an X-inversion as a partial computable function which takes an X-index
for the input to a partial computable index for the output.

We will need an extended version of the ∆0
2-inversion for linear orders mentioned

above. A second inversion which we will require is given by a well-known result
of Ash [Ash86], also about linear orderings. Using the proof of our main theorem,
Theorem 1.1, and the proofs of two results in the literature [Mel10, Oca14], we
deduce:

Theorem 1.2. The properties in Theorem 1.1 can be witnessed by structures from
the following classes:

(i) Ordered abelian groups, and
(ii) real-closed fields of infinite transcendence degree.

It follows from [GLS03, HTMM15] that both classes from Theorem 1.2 are not
universal relative to computable dimension in the sense of [HKSS02].

We remark that both our results and those of the earlier paper give new examples
of the spectrum of categoricity degrees (Fokina, Kalimullin and Miller [FKM10]).
This spectrum consists of the collection of degrees which can compute an isomor-
phism between any two computable copies of the structure. If this collection is a
principal filter in the Turing degrees, then the least element is called the degree of
categoricity of the structure. For example, in the case of order type of the positive
integers, this degree is 0′. In our case, we observe:

Corollary 1.3. There exist computable structures whose categoricity spectrum is
precisely the collection of upper bounds for the arithmetical degrees. Indeed, for any
computable limit ordinal α, there is a structure with categoricity spectrum precisely
the collection of upper bounds for degrees 0(β) for β < α.

Proof. Given any two copies there is some degree of the form 0(β) from which we
can compute an isomorphism, and hence any such upper bound for such degrees
can. Conversely by the construction, there is no limit to such β. �

In related work, Frolov has announced [Fro15] the existence of a computable
linear ordering which is ∆0

3-categorical but not relatively ∆0
3-categorical.

We say a few words about the proofs of the theorems. We will adopt some of
the strategies from the earlier construction [DIM] which itself was somewhat non-
standard. However, Theorem 1.1 is not simply a routine coding of the structure
from [DIM] into a linear order. The proof exploits several tricks, such as a simul-
taneous use of several inversions that are non-trivially blended with a Π0

2-priority
argument; in fact, the Π0

2 priority construction will be performed relative to 0′′′.
Thus, the reader should prepare for a technical proof.

The proof of Theorem 1.2 is similar, but it requires the use of two additional
inversions, and uses a Π0

2(0(4))-priority tree. The good news is that it is very similar
to the proof of Theorem 1.1, thus it will be sufficient to explain the necessary
modifications to the proof of Theorem 1.1.

4 ROD DOWNEY, ALEXANDER MELNIKOV, AND KENG MENG NG

We remark that our paper does still leave remaining questions. For example can
our result be proven for computable Boolean algebras? This would seem somewhat
formidable to prove since any inversion would seem to be at level of the ω-jump.

The plan is as follows. We give a proof of Theorem 1.1 in Section 2, and we
outline the proof of Theorem 1.2 in Section 3.

2. Proof of Theorem 1.1

2.1. Notation. For the remainder of this proof, let α be a fixed computable limit
ordinal. We build A = Aα. For notational convenience, when we discuss ∆0

β

constructions as oracle constructions, we will use specifically chosen Turing degree
representatives that can uniformly resolve ∆0

β questions.

Convention 2.1. Let 〈αn : n ∈ ω〉 be a computable increasing sequence of ordinals
whose limit is α, with α0 > 0. For each n, let βn = 3 + 2 · αn + 1, and note that
〈βn : n ∈ ω〉 is also a computable increasing sequence of ordinals whose limit is α,
but with β0 > 5. In the case when α > ω we shall choose each αn to be infinite,
thus making βn = 3 + 2 · αn + 1 equal to 2 · αn + 1.

2.2. The requirements. Let 〈Mn : n = 1, 2, . . .〉 be a listing of all the partial
computable structures in the signature of linear orders. Similarly to [DIM], we will
have isomorphism requirements and diagonalization requirements:

In :Mn
∼= A →Mn

∼=∆0
βn−1+1

A

Dn : ∃Bn(Bn is computable & Bn ∼= A & Bn �∆0
βn
A)

Note that if we meet all of these requirements, then we will have proved the
theorem. Without loss of generality, we may assume that n ranges over the positive
natural numbers.

2.3. A crude description of A. The linear order A will be a computable linear
order of the form ∑

i∈ω
2 + η + 2 + Pi,

where each Pi will be of the form ω · Ui for some non-empty Ui. Notice that every
element of Pi has a successor. In the usual way, with the help of 0′′ we can locate the
four extreme points in each separator 2+η+2 within any (partial) computable copy
of A. Now using 0′′′ we can enumerate the first separator, the second separator,
and so on, and hence 0′′′ can compute the index of the computable suborder Pi
uniformly in i. Note that we are not being economical with the complexity of
separators here, as we assume that all requirements have access to 0′′′.

Each such interval Pi in A will be controlled by a copy of some diagonalization
strategy, while every isomorphism strategy will be working with co-finitely many
such Pi. The exact isomorphism type of Pi will be decided dynamically in the
construction. In fact, we will be using two different inversions to obtain Pi; one is
well-known and is due to Ash, the other one we believe is new. Before we explain
how Pi is built, we first outline the basic isomorphism strategy in a somewhat
simplified context. Seeing the main idea will help to understand the role of the
second inversion that deals with labeled linear orders.

CATEGORICAL LINEARLY ORDERED STRUCTURES 5

Each diagonalization requirement will be working within an assigned interval
Pn which are distinguished from other ones by separators, and it will be using a
relatively powerful oracle (such as 0(γ) for some γ > 3) to carry out the construction.
The inversions will be applied at the end to produce the contents of Pn within
the computable linear order A. The actions of the requirement will be explained
in due course. For now we only note that the diagonalization strategy is quite
straightforward and does not really need “labeled” linear orderings.

2.4. Labeled linear orderings and the basic isomorphism strategy. The
key reason we need labeled linear orderings is the strategy for the isomorphism
requirement whose task is to press Mn. We will first explain the main idea of the
strategy. Then we explain how to convert labeled linear orders into usual linear
orders at the cost of one additional jump.

The main idea of the pressing technique is as follows. Recall that Pi stands for
a special interval of our linear ordering A. Imagine for a moment that we allow an
auxiliary c.e. unary predicate in our language of linear orders. Here c.e. means that
points may satisfy the predicate, but we cannot decide it; the points satisfying the
predicate can be merely enumerated. (Later we shall get rid of the predicate.) We
think of the points satisfying the predicate as labeled black, and those which are
not yet known to satisfy it as white. Thus, white points can turn black, but never
vice versa.

Suppose at stage s our labeled linear order that we’ve build within Pi of A is:

• • •
We will also attempt to build a computable isomorphism fromM onto A. At stage
s we would have built a partial map fs : Ms → As. Thus, provided that M is
actually isomorphic to A, the interval of M corresponding to the location of Pi in
A currently looks exactly the same. (For now we assume that f is able to locate
the corresponding position of Pi within M).

According to our dynamic definition of the labeled linear order in Pi which is
controlled by one of the diagonalization strategies, we will attempt to extend Pi by
adding one more point. We put a point but keep it white, say:

• • ◦ •
and then wait for M to respond. Note that this forces M to give a white point at
exactly the same respective location of its version of Pi. If it does not respond, or
does something different, we freeze Pi in A and win since M 6∼= A. Indeed, M’s
version of Pi will either have too many points or have the same number of points
as the Pi of A but is not isomorphic to it. In particular, if M is too quick in its
enumeration then it will be “killed”. As soon as we see a suitable candidate for
f−1(◦) (if ever), we define f on ◦ accordingly. Only then we make ◦ black:

• • • •
and wait for the respective ◦ inM to turn black as well. If we need to extend Pi by
one further point we will repeat the same strategy as described above. This finishes
the description of the main idea behind the isomorphism-building strategy. (It is
clear how to extend the above strategy to an arbitrary finite collection of points in
Pi.)

6 ROD DOWNEY, ALEXANDER MELNIKOV, AND KENG MENG NG

Note that the strategy above allows us to build a computable isomorphism from
M onto A, provided we know the positions of the respective intervals controlled by
the isomorphism strategies. Clearly, the biggest problem is that we do not have a
c.e. predicate in our language. Also, to distinguish between various intervals Pi, Pj
etc. will require a few jumps. Thus, there is more work to be done.

2.5. The two inversions used: Ash’s inversion and a ∆0
2-inversion to re-

move the label. In this subsection we explain how to transform a ∆0
2 labeled

linear order into a computable linear order. Note that the labeling of the linear
order is Σ0

2.

Lemma 2.2. There exists an effective uniform procedure Ψ that, given (an index
for) a ∆0

2 linear order L augmented with a Σ0
2 unary predicate C, outputs (an index

for) a computable linear order Ψ(L) in which every x in L is replaced by η + 3 + η
if C(x) holds, and by η + 2 + η otherwise. Also, the procedure uniformly produces
a ∆0

2-map ψ that associates a point in L with the left-most point of the respective
discrete interval (of size 2 or 3) in Ψ(L).

Proof of Lemma. As usual, we “densify” intervals to get rid of the wrong partial
approximations. More formally, recall the standard proof in the absence of the
unary predicate. Let Ls be our current best guess on the partial diagram of the
∆0

2 order L. In Ls+1 parts of Ls may be discovered to be wrong, e.g., what looked
to the right of the point indexed by 0 will now appear to be on the left of it.
To correct both the isomorphism type of the output and the embedding, “dump”
the wrongly guessed intervals into the dense neighborhood of the closest currently
correct-looking point in Ls+1. Note that the point indexed by 0 always looks
correct: we know that x 6< x in L. See, e.g., [DK92, Dow98] for details. Since our
guess about the partial diagram of L � x is eventually stable for each x, this means
that the positions of the “blocks” representing the points 0, · · · , x− 1 in Ψ(L) will
eventually stabilize, and afterwards only grow by absorbing the errors around the
block. We trust that this informal description will suffice, as this strategy is rather
standard.

Now on top of the construction above, implement the following Σ0
2 guessing

procedure. If it currently looks like C(x) holds on a point x in Ls, proceed in
building η + 3 + η instead of η + 2 + η in the Ψ(L)-block corresponding to the
point x. If at a later stage C(x) no longer looks correct (which corresponds to the
respective Π0

2-predicate firing on x) we get rid of the intended right-most point in
the discrete 3-interval of η + 3 + η by “dumping” it into the respective future copy
of η to the right of it. We then re-introduce the third (right-most) point and wait
for the predicate to fire again (if ever). If the Π0

2-predicate describing ¬C(x) fires
infinitely often then we are left with a copy of η+2+η, and we are eventually stuck
with η + 3 + η otherwise (unless the whole interval is destroyed due to the linear
order approximation strategy outlined above).

The definition of ψ is straightforward from the construction, since at every stage
we know exactly which elements of Ψ(L) are representing the “2” or “3” in each
block η+2+η or η+3+η. The elementary formal details are left to the reader. �

Note that the complexities ∆0
2 and Σ0

2 in Lemma 2.2 match the definability of
the coding, and has all the nice properties of an inversion. For example, given
any computable linear order C in the range of Ψ, we can uniformly build a ∆0

2

linear order U and a Σ0
2-labeling of U such that Ψ(U) ∼= C. We call U = Ψ−1(C),

CATEGORICAL LINEARLY ORDERED STRUCTURES 7

so that Ψ−1 is also computable (from indices to indices). Also, it is obvious that

Ψ(U) ∼= Ψ(Û)⇒ U ∼= Û .
We will also be using the following result of Ash (Theorem 18.15 of [AK00]),

about a ∆0
2γ+1-inversion operator.

Theorem 2.3 (Ash). Let γ be a computable ordinal, and suppose L is a ∆0
2γ+1

linear ordering that does not have a least element. Then we can uniformly produce
a computable presentation F (L) of ωγ · L. Moreover, we can uniformly produce a
∆0

2γ+1 function f taking a ∈ L to the least element of the corresponding copy of ωγ

in F (L).

Similarly to Lemma 2.2, the result of Ash is sharp in the following sense. Given
any computable presentation U of some F (L) we can uniformly reconstruct a
∆0

2γ+1-copy S of L and find a ∆0
2γ+1 function f that plays the same role for this

pair of copies (U and S) as the function does for the copies (L and F (L)) from the
theorem. The operator F is a ∆0

2γ+1-inversion, and we define F−1 in a similar way.
We remark that Ash’s inversion operator can be applied to βn, for each n. In

fact, we denote this operator by F∆0
βn

. Note also that F ◦ Ψ is defined on the

domain of Ψ.

2.6. The basic diagonalization strategy in isolation. We describe the basic
diagonalization strategy. We adopt the elementary strategy from [DIM]. Recall
that βn = 3 + 2 · αn + 1.

Strategy: Build two ∆0
βn

-copies of ω∗. Here, ω∗ refers to the inverse ordering on ω,

where 0 > 1 > 2 > · · · . We diagonalize against the eth potential ∆0
βn

isomorphism
fe : L0 → L1, as follows. Construct ω∗ in both L0 and L1, initially letting x0,e

and x1,e be adjacent elements in L0. Wait for fe to converge on x0,e and x1,e. If
the images are adjacent, insert one extra point between them, and preserve the
interval.

Note that this construction is ∆0
βn

-computable. Both L0 and L1 have no least
element, so that we can apply Theorem 2.3. In particular, we can apply the analysis
from the previous subsection and – provided that the strategy is not interrupted
by a higher priority strategy – will produce a pair of isomorphic computable linear
orders that are not ∆0

βn
-isomorphic (recall βn > 5). One of the two linear orders

will be placed into a specific interval Pσ of A determined by the position of the
strategy σ in the tree. The other one will be a part of a linear order B|σ| which
will be copying A everywhere except for the Pσ-interval into which the other non-
∆0
βn

-isomorphic copy of the order will be placed. The low arithmetical syntactical
complexity of the separators and the rigidity of ωαn implies that A 6∼=∆0

βn
Bn by

the choice of βn > 5; see the discussion of separators in Subsection 2.3.

2.7. Putting it together: An overview of the construction. We now dis-
cuss how exactly A will be built to have the desired properties, by combining all
the ingredients introduced thus far. The diagonalization strategies discussed in
Section 2.6 could be carried out independently of the construction and the uni-
formity of Ash’s inversion operator will even provide us with effective sequences
{Q0

n}n∈ω, {Q1
n}n∈ω where Q0

n, Q
1
n are ∆0

βn
-computable linear orderings which are

8 ROD DOWNEY, ALEXANDER MELNIKOV, AND KENG MENG NG

∆0
βn+1- but not ∆0

βn
-isomorphic. We might then take A to be perhaps something

like
∑
n∈ω 2 + η+ 2 +F∆0

βn
(Q0

n), where F∆0
βn

is Ash’s ∆0
βn

-inversion. We can then

take each Bn to copy A everywhere except on the interval coding F∆0
βn

(Q0
n) where

we insert F∆0
βn

(Q1
n) instead. This will certainly make A not ∆0

βn
-categorical for

any n. Unfortunately, this naive amalgamation of the diagonalization outputs is
too simple and does not allow us to satisfy the isomorphism (In) requirements.
We shall need to combine the outputs F∆0

βn
(Q0

n) with the isomorphism pressing

strategy discussed in Section 2.4.
The formal construction will be a standard tree argument running with oracle

0′′′. It will soon be clear why 0′′′ is necessary to run the construction, rather than
having a computable construction. Suppose for the moment we accept that the
formal construction has to be run with oracle 0′′′. It is therefore impossible for us to
directly construct A as an output of the construction, for A has to be a computable
linear order. We will instead produce A indirectly by applying the two inversions
we’ve discussed to the 0′′′-computable objects produced by the construction.

More specifically, the construction will produce an effective sequence {Pn}n∈ω
of ∆0

4 linear orders with Σ0
4 labels. Some of the components Pn will be finite

(when diagonalization strategies controlling an interval are abandoned or attended
to finitely often), and others will be infinite (when the diagonalization strategy
controlling an interval is along the true path). More information on this will be
available in Section 2.8.

Since we are limiting our current discussion to a high level one, let us for now
simplify our discussion and consider only one isomorphism requirement which wants
to build an isomorphism from each Pn to Rn uniformly in n, where {Rn} is some
given uniform sequence of ∆0

4 linear orders with Σ0
4 labels, and one diagonalization

requirement seeking to copy F∆0
βn

(Q0
n) in a component Pm. Notice that in order

to meet the diagonalization requirement, it is enough to copy F∆0
βn

(Q0
n) inside at

least one component Pm; where exactly it is copied does not really matter.
Up to now we have not yet said what the computable A will be; the construction

will work at the ∆0
4 level and does not directly define A. Suppose our diagonaliza-

tion requirement is of lower priority than the isomorphism requirement. It begins
by enumerating the first point of F∆0

βn
(Q0

n) into Pm. Notice that F∆0
βn

(Q0
n) is

computable, and since the construction works with the oracle 0′′′, we will use a
∆0

4-index for F∆0
βn

(Q0
n) when copying inside Pm. At the same time we also define a

Σ0
4 labeling of Pn; for now we leave the new point of Pm white. Now the diagonal-

ization requirement will delay enumerating anything else inside Pm and wait for the
isomorphism requirement to see a corresponding (currently white) point appearing
inside Rm; as Rm is uniformly ∆0

4 with a Σ0
4 label, this can be observed by the

construction.
While waiting the diagonalization requirement will proceed to copy F∆0

βn
(Q0

n)

inside a different fresh component Pm′ , and the backup diagonalization require-
ment does this continuously without waiting for the isomorphism requirement to
see a recovery in Rm′ . If the isomorphism requirement never recovers, then Pm will
be finite and the diagonalization requirement will succeed in copying F∆0

βn
(Q0

n)

inside Pm′ , and so both requirements are met. Therefore let us assume that the

CATEGORICAL LINEARLY ORDERED STRUCTURES 9

isomorphism requirement recovers infinitely often. In this case, each backup di-
agonalization attempt will be initialized every time the isomorphism requirement
recovers, the backup component Pm′ will be abandoned and remain finite, and a
new backup component will be picked the next time. The lead component Pm will
infinitely often proceed in getting the next element of F∆0

βn
(Q0

n), with each new

point introduced first being white, then turned black when Rm recovers. Hence
F∆0

βn
(Q0

n) will be eventually copied inside Pm, albeit with an additional Σ0
4 label

on top of the ordering. In this case the isomorphism requirement will succeed in
showing Pm ∼=∆0

4
Rm as labeled orderings, and the diagonalization requirement is

also satisfied in copying F∆0
βn

(Q0
n) inside Pm.

This concludes the description of the interactions between two requirements of
different types. The full construction uses a standard tree for a Π0

2-argument and
the reader familiar with basic tree arguments will find no additional difficulty in
getting all requirements to work together. We now argue that the construction at
the 0′′′ level just described can be used to yield a computable linear order A with
the desired properties.

The construction produces an effective ∆0
4 sequence of labeled linear orders {Pn},

some of which are finite. For each fixed isomorphism requirement, it takes 0(5) to
figure out which components are infinite, and which ones are finite, and the canon-
ical indices for the finite ones. For the components which are infinite, there are
only finitely many Pm which are eventually assigned to a higher priority diagonal-
ization requirement, and thus Pm will be F∆0

βn
(Q0

n) for some n; recall that each of

these are ∆0
βn+1-categorical. All the other infinite components are assigned to lower

priority diagonalization requirements, and the isomorphism strategy will press on
these components and build an isomorphism from these infinite components to the
corresponding Q-components during the construction. Therefore, there is a large
enough N such that the sequence {Pn} is uniformly ∆0

βN
-isomorphic to {Rn}.

Now to each component Pn we first apply the relativized version of Ψ to produce
a ∆0

3 linear order Ψ(Pn). We next apply Ash’s ∆0
3-inversion F∆0

3
to produce a

computable linear order F∆0
3
(Ψ(Pn)) ∼= ω ·Ψ(Pn). This procedure is uniform in n,

and so we can take

A =
∑
n∈ω

2 + η + 2 + F∆0
3

(Ψ(Pn)) ,

noting that A is of the form promised at the beginning of Section 2.3. Now suppose
that Mn

∼= A. Then using 0′′′ we can uniformly recognize and enumerate the
locations of the separators, and thus the corresponding intervals {R̂m} inMn. We

can apply the inverse of the inversions and take Rm = Ψ−1(F−1
∆0

3
(R̂m)); notice that

Rm is a ∆0
4 linear order with a Σ0

4-labeling, and the (∆0
4,Σ

0
4)-indices can be found

uniformly in m,n. Therefore we can run the construction with these choices of
{Rm} and hence there is a large enough N such that A ∼=∆0

βN

Mn; if we set things

up correctly we can arrange for M = n.
Now given n there is some component Pm where the diagonalization requirement

successfully copies F∆0
βn

(Q0
n) inside Pm. This number m of course depends on which

version of the diagonalization requirement is along the true path. Therefore the
computable structure Bn which copies A everywhere except on F∆0

3
(Ψ(Pm)) where

it instead inserts F∆0
3

(
Ψ
(
F∆0

βn
(Q1

n)
))

will not be ∆0
βn

isomorphic to A.

10 ROD DOWNEY, ALEXANDER MELNIKOV, AND KENG MENG NG

Notice that any automorphism of A has to map each interval F∆0
3
(Ψ(Pn)) to the

same corresponding interval.

2.8. The construction.

2.8.1. The tree of strategies. The tree of strategies is a standard tree for a Π0
2-

argument {∞, fin}<∞. Each level of the tree will be monitoring the n-th partial
computable structure Mn.

Each of the two outcomes of the isomorphism-building strategy at σ will be as-
sociated with a version of the diagonalization strategy. We will call these versions
the finitary and the infinitary diagonalization strategy of σ, respectively. The com-
plexity of guessing whether Mn follows A is Π0

2 relative to 0′′′ since it takes 0′′′ to
locate the special intervals Pi in Mn. Also, the formalization of what it means for
Mn to follow A needs to be adjusted. This will be explained shortly.

Each diagonalization strategy at level n will be working relative to ∆0
βn

(and thus

has access to 0′′′) within its interval, and thus the complexity of the strategies is
going up as n increases. Each such strategy can be interrupted in producing its own
version of a labeled linear order, and this interruption will be merely 0′′′-effective.
The two inversions will be applied to the resulting labeled linear order (finite or
not) as described in Subsection 2.7.

Remark 2.4. In particular, we will never end up with a finite interval Pi since we
will make sure the associated 0′′′-computable labeled order will always contain at
least 1 point. It will then be expanded to an infinite order of the form ω · U for
some (infinite) U .

2.8.2. An isomorphism-building strategy on the tree. Each node σ at level n of the
tree is given two roles: It is assigned both a diagonalization strategy as well as an
isomorphism-building strategy. The outcome of a node will measure the outcome
of the isomorphism-building strategy assigned to the node; the outcomes of the
diagonalization strategies are not put on the tree.

The isomorphism-building strategy will attempt to build a partial isomorphism
on the P -intervals (in A andMn) which are controlled by requirements of priorities
weaker than that of σ. This will be done as follows. Every time the diagonalization
strategy of σ, or any weaker priority diagonalization strategy below σ̂∞ puts a new
point into their 0′′′-computable Σ0

4-labeled linear order encoded into the respective
interval of A, we wait forMn to respond by giving us the exact same configuration,
restricted to the respective P -interval of Mn. This process is effective in 0′′′, thus
the outcome ∞ has complexity Π0

2 relative to 0′′′.
There will be other versions of the diagonalization requirements played when

σ̂ fin is visited. This diagonalization strategy and every weaker priority diagonal-
ization strategy below will ignore Mn.

The notions of a σ-expansionary stage (relative to 0′′′) and the current true path
at stage s are defined in the usual way.

2.8.3. Assignment of P -intervals to the diagonalization strategies. Recall that each
such strategy is working within its own interval of the form Pi for some i (see the
description of A). If σ is at level n, then at stage s at which σ is active the first time
after initialization, effectively in 0′′′ we assign Pi (with i least never used for this
purpose) for the infinitary diagonalization strategy of σ. We denote this P -interval
of σ by P∞σ .

CATEGORICAL LINEARLY ORDERED STRUCTURES 11

The finitary version of the diagonalization strategy below σ will be working
within its own P -interval, we denote it P finσ . If we play σ̂ fin and P finσ is undefined,
then effectively in 0′′′ pick Pj (where j is least never used for this purpose so far)
and declare P finσ = Pj .

2.8.4. Initialization. We declare Puσ initialized if the current true path moves to
the left of σ̂ u. We set Puσ undefined, and we also abandon Buσ . Note this is a 0′′′-
effective process. We clarify what “abandon” means in this case. At the beginning
we reserve an infinite trace of structures C0, C1, . . . each of which will receive 0′′′-
computable instructions depending on the current true path. The inversions will be
performed only on the respective Puσ , and the rest of Buσ will be computably copying
A. This will make the structures computable, with perhaps only one being actually
isomorphic to A. It will require 0(5) to see which one is actually the “true” copy of
Bn, if there is any.

2.8.5. The actions of the diagonalization strategy at expansionary stages. Suppose
|σ| = n. For each u ∈ {∞, fin}, the P xσ -interval will attempt to implement the
diagonalization strategy and also build its own version of Bn, we denote it by Buσ .
Outside its Puσ -interval the structure Buσ will be copying A.

Within Puσ , we modify the basic diagonalization strategy (Subsection 2.6) as
follows. It will work effectively relative to 0′′′ (and within Puσ) making progress
in producing its labeled 0′′′-linear order. The inversions transforming it into a
computable linear order will be performed on top of that and independently of
these actions. Before the strategy puts a point or changes its colour, it will wait
(0′′′-effectively) for every M|τ | with τ ∞̂ ⊆ σ̂ u to reveal the same configuration
within the respective interval. Recall that the computable index of the interval Puσ
of M|τ | can be uniformly reconstructed using 0′′′. Within this interval of M|τ |,
it takes 0′′′ to see the current configuration of the encoded 0′′′-linear order. The
strategy will not proceed unless it gets a 0′′′-effective confirmation from each such
M|τ |. In this case we say that the stage is σ-expansionary.

The strategy will stop or will be paused if M|τ | does not respond or gives a
different configuration. (For consistency, we could also apply the same pause to the
respective P -interval of Buσ , but it is not really necessary.)

2.8.6. The construction. Work relative to 0′′′. At stage 0, initialize all strategies. At
stage s of the construction, we simply let the strategies along the current true path
act according to their instructions. Independently and simultaneously, perform the
jump inversions to transform the labeled 0′′′-linear orders into computable linear
orders.

2.9. Verification. Recall that every version of the diagonalization strategy builds
its own version of Bn, and it copies A everywhere outside of its P -interval. We will
argue that Mn

∼= A implies that the true outcome of the node σ at level n of the
true path is ∞. The strategy of σ cannot control the finitely many nodes above it,
but this won’t be a problem since there will be an arithmetical upper bound on the
complexities of isomorphisms at the exceptional intervals; the bound will be good
enough to prove the theorem. For each strategy τ at deeper levels of the tree, there
are only two possibilities:

Case 1. The P -interval will be eventually abandoned by the strategy. It means that
the 0′′′-computable Σ0

4-labeled linear order L produced by the strategy will

12 ROD DOWNEY, ALEXANDER MELNIKOV, AND KENG MENG NG

be finite. After performing two inversions, we will end up with ω ·U , where
in U a black point of L is represented by η + 3 + η and a white point by
η + 2 + η. In this case the interval is uniformly 0(6)-categorical.

Case 2. Otherwise, the interval controlled by τ û ⊇ σ will have to respect Mn and
wait for it to respond before acting again. Therefore, all such intervals will
be working towards building a 0′′′-computable isomorphism between their
respective intervals in Mn and A. Note that 0(5) can compute the true
path. Thus, σ can ensure that almost all P -intervals of M are uniformly
∆0
βn−1+1-isomorphic to the respective intervals of A.

We give the formal details. The definitions of the true path and the true outcome
were standard, but relativized to 0′′′. The guessing procedure that determines the
current true path is Π0

2(0′′′). The tree does not depend on our diagonalization
actions whose outcomes are not even put onto the tree. It is clear that M|σ| can
either follow A or not follow A (in the sense of the expansionary stages), and this
is exactly what each node measures.

Lemma 2.5. For every n, the diagonalization requirement Dn is met within the
P xσ -interval, where σ̂ x lies at the true path and |σ| = n.

Proof. For simplicity, we first consider the highest priority diagonalization require-
ment. According to our setup, σ = e (the empty string) must respect M0. If the
true outcome of I0 is ∞, then M0 always responds by copying A at the inter-
mediate 0′′′-computable stage, see the previous section. Thus, the diagonalization
strategy within P∞e will be acting at infinitely many stages. Apart from pausing at
the intermediate stage, the diagonalization strategy (see 2.8.5) is no different from
its simplified version described in Subsection 2.6. Recall also that the inversions
are performed on the interval simultaneously with the construction. The definabil-
ity complexity of the inversions lines up nicely with their effective complexity. In
particular, D0 is met within the P∞e -interval.

On the other hand, if M0 eventually either never responds or proves to be non-
isomorphic, then we implement the diagonalization strategy within some other,
fresh interval P fine which (eventually) will never be abandoned. Recall that each
version of the diagonalization strategy builds its own version of Bn that computably
copies A everywhere except for the P -interval controlled by the strategy (see Sub-
section 2.8.4). The strategy will ignore M0, so we will have diagonalized with the
right version of Bn.

The general case of n > 0 is not very much different from the basic case n = 0.
It is sufficient to take σ with |σ| = n along the true path and consider the interval
P xσ , where x is the true outcome of σ. The only difference is that the strategy
within P xσ will have to respect only those Mτ with τ ∞̂ ⊆ σx. �

Recall that (βn)n∈N+ has the property 0(βn) ≥T 0(5), for each n.

Lemma 2.6. For every n, In is met.

Proof. We need to prove that if Mn
∼= A then Mn

∼=∆0
βn−1+1

A. Consider Mn

and assume that Mn
∼= A. There are several types of P -intervals that we need to

consider. We argue that in each case we can (uniformly) produce an isomorphism
of complexity at most ∆0

βn−1+1 between the respective boxes in A and Mn. Some

of the analysis below was already done at the beginning of this section.

CATEGORICAL LINEARLY ORDERED STRUCTURES 13

Suppose m < n. Then a P -interval that has ever been controlled by strategies at
level m will either eventually be permanently assigned to P xτ for some τ of length
m (which is either along or to the left of the true path), or will eventually be
abandoned. With the help of 0(5) we can see which case applies to each such an
interval. It follows that 0(5) can uniformly build an isomorphism when restricted to
each such finite P -interval. By the choice of the sequence (βn)n∈ω, βn ≥ 5. Thus,
the isomorphism within each such abandoned P -interval is (uniformly) computable
in 0(βn). For the finitely many τ û along the true path with |τ | < n, deduce from the
complexity of the coding that the stable Puτ of A is uniformly relatively ∆0

βn−1+1-

categorical. It follows that all such P -intervals ever controlled by the higher priority
strategies will be ∆0

βn−1+1-categorical, non-uniformly in the finite initial segment

of the true path as a parameter.
If m ≥ n, then we appeal to the modification described in Subsection 2.8.5.

Each P -interval is either eventually left finite or is stably controlled by one of the
diagonalization strategies along the true path. As above, with the help of 0(5) we can
see it. If the interval is eventually abandoned then 0(5) can produce an isomorphism.
If it is never abandoned, then suppose it is permanently declared P xτ for some τ of
length m ≥ n. Consider σ of length n along the true path. Then σ monitors Mn.
SinceMn

∼= A, it must be the case that the true outcome of σ is ∞. In particular,
σ̂∞ ⊆ τ , for otherwise τ would have to be eventually initialized abandoning its
intervals infinitely often. This means that the diagonalization strategy of P xτ will not
add another point to its labeled 0′′′-order within its interval unlessM|σ| responds by
giving the same configuration, see 2.8.5. It is routine to define a 0′′′-isomorphism
between the labeled 0′′′-orders encoded in P xτ in M|σ| = Mn and P xτ in A; see
Subsection 2.4. It remains to use 0′′′ to naturally extend this map to the jump-
inverted computable intervals. If the reader suspects that 0′′′ is a bit tight then
they are welcomed to use 0(5) or even 0(376); any finite number of jumps will do.

Thus, in each case we can ∆0
βn−1+1 -uniformly (in i and n) find a ∆0

βn−1+1

isomorphism between Pi-boxes in A and Mn. �

We conclude that all requirements are met, and thus Theorem 1.1 is proved.

3. Proof of Theorem 1.2

Melnikov [Mel, Mel10] showed that there is a uniformly effective procedure that
takes a 0′-computable linear order L into a computable ordered abelian group G(L)
in which the order is coded as the quotient-order by the Archimedean equivalence
relation. Similarly, based on the ideas of Melnikov [Mel10], Ocasio-Gonzales [Oca14]
has proved a similar result for real-closed fields. Using these results, perform the
construction from the proof of Theorem 1.1 but use a 0(4)-tree of strategies and one
extra inversion to pass from the linear order A to the respective ordered group G(A)
(or the respective real-closed field). The analysis contained in the last chapter of
[Mel] and in [Oca14] shows that, given and isomorphism f between the underlying
linear orders, 0′′ ⊕ f can produce an isomorphism between the respective ordered
commutative structures (groups or fields). It follows that we can repeat almost
literally the same analysis as in the proof of Theorem 1.1, but working relative to
one extra jump.

14 ROD DOWNEY, ALEXANDER MELNIKOV, AND KENG MENG NG

References

[AK00] C. Ash and J. Knight. Computable structures and the hyperarithmetical hierarchy,
volume 144 of Studies in Logic and the Foundations of Mathematics. North-Holland

Publishing Co., Amsterdam, 2000.

[Ash86] C. Ash. Recursive labeling systems and stability of recursive structures in hyper-
arithmetical degrees. Trans. Amer. Math. Soc., 298:497–514, 1986.

[BHTK+18] Nikolay Bazhenov, Matthew Harrison-Trainor, Iskander Kalimullin, Alexander Mel-

nikov, and Keng Meng Ng. Automatic and polynomial-time algebraic structures.
preprint, 2018.

[DIM] Rod Downey, Greg Igusa, and Alexander Melnikov. On a question of kalimullin.
Proceedings of the American Mathematical Society, to appear.

[DK92] Rodney Downey and Julia F. Knight. Orderings with αth jump degree 0(α). Proc.

Amer. Math. Soc., 114(2):545–552, 1992.
[DKL+15] Rodney G. Downey, Asher M. Kach, Steffen Lempp, Andrew E. M. Lewis-Pye,

Antonio Montalbán, and Daniel D. Turetsky. The complexity of computable cate-

goricity. Adv. Math., 268:423–466, 2015.
[DM08] R. Downey and A. Montalbán. The isomorphism problem for torsion-free abelian

groups is analytic complete. J. Algebra, 320(6):2291–2300, 2008.

[DM14] Rodney Downey and Alexander G. Melnikov. Computable completely decomposable
groups. Trans. Amer. Math. Soc., 366(8):4243–4266, 2014.

[Dow98] R. Downey. Computability theory and linear orderings. In Handbook of recursive

mathematics, Vol. 2, volume 139 of Stud. Logic Found. Math., pages 823–976.
North-Holland, Amsterdam, 1998.

[EG00] Y. Ershov and S. Goncharov. Constructive models. Siberian School of Algebra and
Logic. Consultants Bureau, New York, 2000.

[FKM10] Ekaterina B. Fokina, I. Kalimullin, and R. Miller. Degrees of categoricity of com-

putable structures. Arch. Math. Logic, 49(1):51–67, 2010.
[Fro15] A. Frolov. Effective categoricity of computable linear orderings. Algebra and Logic,

54(5):415–417, 2015.

[GK02] S. Goncharov and J. Knight. Computable structure and antistructure theorems.
Algebra Logika, 41(6):639–681, 757, 2002.

[GLS03] S. Goncharov, S. Lempp, and R. Solomon. The computable dimension of ordered

abelian groups. Adv. Math., 175(1):102–143, 2003.
[Gon81] S. Goncharov. Groups with a finite number of constructivizations. Dokl. Akad. Nauk

SSSR, 256(2):269–272, 1981.

[Gon97] S. Goncharov. Countable Boolean algebras and decidability. Siberian School of Al-
gebra and Logic. Consultants Bureau, New York, 1997.

[HKSS02] D. Hirschfeldt, B. Khoussainov, R. Shore, and A. Slinko. Degree spectra and com-
putable dimensions in algebraic structures. Ann. Pure Appl. Logic, 115(1-3):71–113,

2002.

[HTMM15] Matthew Harrison-Trainor, Alexander Melnikov, and Antonio Montalbán. Indepen-
dence in computable algebra. J. Algebra, 443:441–468, 2015.

[HTMMM17] Matthew Harrison-Trainor, Alexander Melnikov, Russell Miller, and Antonio Mon-
talbán. Computable functors and effective interpretability. J. Symb. Log., 82(1):77–
97, 2017.

[Khi98] N. Khisamiev. Constructive abelian groups. In Handbook of recursive mathematics,

Vol. 2, volume 139 of Stud. Logic Found. Math., pages 1177–1231. North-Holland,
Amsterdam, 1998.

[Mal61] A. Mal′cev. Constructive algebras. I. Uspehi Mat. Nauk, 16(3 (99)):3–60, 1961.
[Mel] A. Melnikov. Effective properties of completely decomposable abelian groups. CSc

dissertation (2012).

[Mel10] A. Melnikov. Computable ordered abelian groups and fields. In Programs, proofs,

processes, volume 6158 of Lecture Notes in Comput. Sci., pages 321–330. Springer,
Berlin, 2010.

[Mil11] Russell Miller. An introduction to computable model theory on groups and fields.
Groups Complexity Cryptology, 3(1):25–45, 2011.

CATEGORICAL LINEARLY ORDERED STRUCTURES 15

[Mon13] Antonio Montalbán. A computability theoretic equivalent to Vaught’s conjecture.

Adv. Math., 235:56–73, 2013.

[Oca14] Victor Ocasio González. Computability in the Class of Real Closed Fields. PhD
thesis, Notre Dame University, 2014.

[Rab60] M. Rabin. Computable algebra, general theory and theory of computable fields.

Trans. Amer. Math. Soc., 95:341–360, 1960.
[Rem81] J. B. Remmel. Recursively categorical linear orderings. Proc. Amer. Math. Soc.,

83(2):387–391, 1981.

[Rig] K. Riggs. The decomposability problem for torsion-free abelian groups is analytic
complete. Proceedings of the American Mathematical Society (to appear).

Victoria University of Wellington

Email address: Rod.Downey@msor.vuw.ac.nz

Massey University

Email address: alexander.g.melnikov@gmail.com

Nanyang Technological University

Email address: kmng@ntu.edu.sg

