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Abstract. In [13], a transfinite hierarchy of genericity notions stronger than 1-
genericity and weaker than 2-genericity was introduced. We close a line of ques-
tioning begun there by showing that for every α 6 ε0 which is a power of ω, there is
a ∆0

2 Turing degree a which is weakly α-change generic, but not α-change generic.

1. Introduction

Forcing, in its many guises and variations, is pervasive in computability theory. The
(weak) n-random reals, the most important notions in algorithmic randomness, may be
regarded as those reals which are generic with respect to a version of Solovay forcing (see
[9]). Recently, Mathias forcing has been used to great effect to establish central theorems
in reverse mathematics (see [12] and [14]).

Our focus in the present article is on Cohen forcing and its variations. The reals generic
with respect to this notion of forcing have an especially long history in the subject. Named
after Cohen, who used this method in his proof of the independence of the continuum
hypothesis from ZFC set theory, many consider the finite extension method, used by
Kleene and Post ([10]) in their construction of a pair of incomparable ∆0

2 degrees, to
be a precursor.

It is instructive to briefly recall the finite extension method. We wish to construct a real
A which satisfies a countable collection xψiyiăω of conditions. We do so by constructing
A in stages: at stage s we define σs such that κs´1 ă σs, and then let A “

Ť

σs. The idea
is that at stage s, having already constructed the string κs´1, we seek a string σs ą κs´1

which “forces” ψs to be satisfied, in that every real which extends σs satisfies ψs. A real
which is Cohen generic is then one which satisfies all properties which can be obtain via
a finite extension method; we shall say more on this below, but see [9] for a more precise
discussion of this connection.

The notions of n-genericity, for n P ω, are the most commonly used in computability
theory. Though originally introduced by Feferman ([6]) using the language of forcing
sentences of arithmetic, the more frequently used definition, due to Jockusch and Posner
(see [8]), is as follows. Let S be a set of finite binary strings, and A a subset of natural
numbers, which we think of as an infinite binary sequence. We say that A meets S if
there is some σ ă A such that σ P S, and A avoids S if there is some σ ă S such that
no extension of σ is in S. Then A is said to be n-generic if for every Σ0

n set of strings S,
A either meets or avoids S. Equivalently, A is n-generic if it satisfies every property that
can be obtained via a finite extension argument carried out with the assistance of Hpnq

as an oracle.
These classes form a proper hierarchy: for all n > 1, the n-generic sets properly contain

the n ` 1-generic sets. This was later refined by Kurtz [11] who introduced the weakly
n-generic sets. We say that a set of strings S is dense if every finite binary string has an
extension in S. Then a set is weakly n-generic if it meets every dense Σ0

n set of string.
Kurtz [11] showed that for all n > 1, the n-generic sets properly contain the weakly n`1-
generic sets, which properly contain the n ` 1-generic sets. These proper containments
even hold for Turing degrees, where a Turing degree is (weakly) n-generic if it contains a
(weakly) n-generic set.
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Most of the interest in genericity occurs at the levels n “ 1 and n “ 2. Even at these
low levels, there is a large difference in the behaviour of 1-generic and 2-generic sets. For
example, the class of 1-generic sets has measure 1, whereas the class of 2-generic sets has
measure 0. As another example, the 2-generic sets are downward dense below 2-generic
sets, whereas this fails in general for 1-generics ([8], [7], [3]). Intuitively, typical behaviour
seems to start with 2-genericity, but can sometimes fail at the level of 1-genericity. Many
such results for genericity, as well as randomness, are given in [1], and the survey article
[2].

Wishing to explore the landscape between 1-genericity and 2-genericity, the authors
in [13] introduced a transfinite hierarchy of genericity notions. Our main inspiration
was Downey and Greenberg’s [5]. There, the notion of an α-computably approximable
function, for α a suitably small ordinal, is used to give a refinement of ∆0

2 functions. Rougly
speaking, an approximation to a function may change its mind only when a marker in
the ordinal α decreases. A c.e. Turing degree is then said to be totally α-c.a. if every
function computable in the degree is α-computably approximable. This class, together
with several related ones, form a transfinite hierarchy in the low2 c.e. degrees. Some levels
in this hierarchy give characterisations of those degrees below which certain lattice may
be embedded. For example, a c.e degree bounds a critical triple in the c.e. degrees if and
only if it is not totally ω-c.a. As another example, a c.e. degree bounds a copy of the 1-3-1
lattice if and only if it is not totally ă ωω-c.a. More generally, these degree seem to capture
the computational strength required to perform various natural classes of constructions
in computability theory. It is expected that these ideas will play an important role in
classical computability theory.

Making use of this approach, we consider finite extension arguments where multiple
attempts may be required in order to satisfy a single condition. The ordinal α then keeps
track of how many times we may need to act; every time we must act again for some
condition, a marker in the ordinal α decreases.

The hierarchy of multiple genericity notions shares several features with the hierarchies
defined in [5]. Firstly, it is transfinite, with levels at each power of ω below ε0. In addition,
we are able to define uniform levels of the hierarchy, in analogy with the uniformly totally
α-c.a. degrees from [5]. We also define weak levels of the hierarchy, in analogy with the
notions of weak n-genericity for n P ω.

weakly 2-generic

ó

...

ó

ω2-change generic

ó

weakly ω2-change generic

ó

uniformly ω2-change generic

ó

ω-change generic

ó

weakly ω-change generic

ó

uniformly ω-change generic ” pb-generic

ó

1-change generic ” 1-generic
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ó

weakly 1-generic

As with any hierarchy in computability theory, an important question is whether the
levels of the hierarchy are proper, and whether this can be witnessed by a Turing degree.
In [13], we showed that for every ordinal β with ωβ 6 ε0, there is a Turing degree which is
uniformly ωβ-change generic but not weakly ωβ-change generic, and that there is a Turing
degree which is ωβ-change generic but not uniformly ωβ`1-change generic. We show in
our main theorem, Theorem 4.64, that there is a Turing degree which is weakly ωβ-change
generic but not ωβ-change generic.

In the following section, we briefly revise the definitions of the multiple genericity
notions. In Section 3, we explore the relationship between the domination properties from
[5] and multiple genericity. In the final section, we give a construction, leading to our
main theorem.

2. Definitions

We briefly recall the definitions of the multiple genericity notions from [13]. We refer
the reader to section 2 of [13], and also [5], for some subtleties and details concerning
computable ordinals and their presentations. Further discussion of the legitimacy of these
definitions, and the relationship between these notions and the (weakly) n-generics, is
given in [13].

Definition 2.1. Let α 6 ε0, and let 8 denote the greatest element of the linear ordering
α`1. An α-change test is a sequence xfs, osysăω of pairs of uniformly computable functions
fs : 2ăω Ñ 2ăω and os : 2ăω Ñ α` 1 such that for all σ P 2ăω and s P ω,

‚ fspσq < σ,
‚ os`1pσq 6 ospσq, and
‚ if fs`1pσq ‰ fspσq, then os`1pσq ă ospσq.

For a test xfs, osysăω, we let the range of the test be

range xfs, osysăω “ tlim
s
fspσq : lim

s
ospσq ă 8u.

Definition 2.2. Let α 6 ε0 and let a be a Turing degree. We say that a is α-change
generic if there is a set A P a which meets or avoids the range of all α-change tests.

Definition 2.3. Let xfs, osysăω be an α-change test. We say that xfs, osysăω is total if
for all σ P 2ăω, lims ospσq ă 8. We say that a is weakly α-change generic if there is a set
A P a which meets the range of all total α-change tests.

Definition 2.4. Let h : 2ăω Ñ α be a total computable function. We say that the
α-change test xfs, osysăω is h-bounded if for all σ P 2ăω and s P ω, if ospσq ă 8, then
ospσq ă hpσq.

Let 6L denote the usual length-lexicographic ordering on 2ăω. We say that h : 2ăω Ñ α
is an α-order function if h is total and computable with range cofinal in α, and such that
if σ 6L ν, then hpσq 6 hpνq.

We say that a is uniformly α-change generic if for all (some) α-order functions h, there
is a set A P a such that A meets the range of all total h-bounded α-change tests.

Up to Turing degree, the notion of pb-genericity from [4] is equivalent to uniform
ω-change genericity (see Theorem 3.2 of [13]).

3. Domination and genericity

In sections 4 and 5 of [13], a close connection between these genericity notions and
the domination properties introduced in [5] was explored. We have the following pleasing
characterisations.
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Theorem 3.1 (Theorem 4.15 of [13]). Every Turing degree computes a uniformly α-
change generic degree if and only if it is not uniformly α-c.a. dominated.

Theorem 3.2 (Theorem 4.13 of [13]). Every Turing degree computes a weakly α-change
generic degree if and only if it is not α-c.a. dominated.

Note in particular that the ordinal levels in the two hierarchies coincide for these
notions. It was shown that a similar result holds for the α-change generic degrees under
the additional assumption of computable enumerability.

Theorem 3.3 (Theorem 5.3 of [13]). A c.e. Turing degree computes an α-change generic
degree if and only if it is not α-c.a. dominated.

However, what can be said about the relationship between computing an α-change
generic degree and these domination notions in the global Turing degrees? Theorems 4.15
and 4.13 of [13] were established using the technique of forcing. With this approach, the
following theorem seems optimal.

Theorem 3.4. Suppose α 6 ε0 is a power of ω and let β be such that α “ ωβ. Then
every not uniformly ωβ`1-c.a. dominated degree computes a ωβ-change generic degree.

Proof. We define a total function q : ω ˆ 2ăω Ñ ω as follows. Let qpe, σq “ 0 if there is
no ν with lims fe,spνq < σ and lims oe,spνq ă 8. Otherwise, let s be least such that there
is some ν with fe,spνq < σ and oe,spνq ă 8, and let ν be the least such string. Let qpe, σq
be the least t > s such that oe,upνq “ oe,tpνq for all u > t.

We claim that q is pα`1q-computably approximable. We let qspe, σq “ 0 and vspe, σq “
α if there is no ν with fe,spνq < σ and oe,spνq ă 8. Otherwise, let s0 6 s be least such
that there is some ν with fe,spνq < σ and oe,s0pνq ă 8, and let ν be the least such string.
Let qspe, σq be the least t 6 s such that oe,tpνq “ oe,spνq, and let vspe, σq “ oe,spνq. Then
xqs, vsysăω is an pα` 1q-computable approximation for q.

Let q1pnq “ max t qpe, σq : e 6 n, |σ| 6 n u. We claim that q1 is ωβ`1-computably
approximable. Let q1spnq “ max t qspe, σq : e 6 n, |σ| 6 n u and let v1spnq “ ‘t vspe, σq :
e 6 n, |σ| 6 n u. It is straightforward to verify that xq1s, v

1
sysăω is an ωβ`1-computable

approximation for q1.
Let a be a not uniformly ωβ`1-c.a. dominated degree, and let g 6T a be a function

which is not dominated by q1. We now carry out the construction from the previous
theorem using this function g. Let G be the set constructed. As before, G 6T a.

Lemma 3.5. G either meets or avoids the range of every ωβ-change test.

Proof. Assume by induction that we do not act for any d ă e after stage s. Let t ą s be
least such that t > e and gptq ą q1ptq. There are two possibilities. First, e does not require
attention at stage t. Then there is no string in range fe which extends κt´1. Therefore,
because G ą κt´1, G avoids the range of range fe. The other possibility is that e does
require attention at stage t. Then because t ą s, we will act for e at stage t, and we
will continue to act for e at all subsequent stages until some stage t1 > t where κt1 meets
range fe. �

�

4. The main theorem

We now have the following interesting situation. Let α 6 ε0 be a power of ω, and let
β be such that α “ ωβ . By Theorem 3.4, a general degree that is not uniformly ωβ`1-c.a.
dominated can compute an ωβ-change generic degree, whereas a c.e. degree need only
be not ωβ-c.a. dominated in order to compute an ωβ-change generic degree. We might
wonder whether this gap is necessary. The following theorem shows that it is. Our main
theorem, Theorem 4.64, is a straightforward consequence, and gives the result claimed in
the abstract.
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Theorem 4.1. Let α 6 ε0 be a power of ω. Then there is a not α-c.a. dominated ∆0
2

Turing degree which does not compute an α-change generic degree.

Proof. We construct a set A as the limit of a uniformly computable sequence of sets
xAsysăω. The Turing degree of A will be as required.

We first agree on some definitions.

4.1. Functionals. Fix primitive recursive bijections x¨y : ωăω Ñ ω and x¨y : 2ăω Ñ ω.
An axiom is some natural number of the form xxσy, n, ay where σ P 2ăω, and n, a P ω. We
shall often write xσ, n, ay for xxσy, n, ay. We may say that the axiom xσ, n, ay has use σ,
and that it is for n.

For n P ω, we say that a set Γ of axioms is consistent for n if for all σ, τ P 2ăω and all
a, b P ω, if xσ, n, ay, xτ, n, by P Γ, and σ and τ are comparable, then a “ b. We say that
a set of axioms is consistent if it is consistent for all natural numbers. For n P ω, we let
dom Γpnq “ tγ : Da. xγ, n, ay P Γu.

Let Γ be a consistent set of axioms, ν P 26ω, and n P ω. We write Γpν, nqÓ if there is
some σ 4 ν and some a such that xσ, n, ay P Γ. In this case, we say that σ is the use of
Γpν, nq, and we write Γpν, nq “ a. Otherwise, we write Γpν, nqÒ. By the consistency of Γ,
this is well-defined. A Turing functional is a computably enumerable and consistent set
of axioms.

Let Γ be a consistent set of axioms and A P 2ω. We say that ΓpAq is total if ΓpA,nqÓ
for all n P ω. In this case, we define ΓpAq P ωω by letting ΓpAqpnq “ ΓpA,nq for all n P ω.

Suppose that xΦsysăω is a computable enumeration of axioms. We say that xΦsysăω is
length increasing if for all s, t P ω with s ă t, if xσs, ns, asy is enumerated into Φ at stage
s and xσt, nt, aty is enumerated into Φ at stage t, then |σs| ă |σt|.

Given a computable enumeration xΦsysăω of the Turing functional Φ, we can produce
a length increasing computable enumeration xΨsysăω of axioms via a simple construction.
We may assume that for all s P ω, at most one axiom is enumerated into Φ at stage s.
At stage s of the construction, if the axiom xσ, n, ay is enumerated into Φ, then we do
the following. If the length of σ is greater than the length of the use of any axiom in
Ť

tΨr : r ă su, then we let Ψs “ Ψs´1 Y txσ, n, ayu, and otherwise, we choose some large
natural number l and let

Ψs “ Ψs´1 Y txτ, n, ay : τ ą σ and |τ | “ lu.

It is straightforward to show that xΨsysăω is a computable enumeration of a Turing
functional Ψ, and for all A P 2ω, ΨpAq is total if and only if ΦpAq is, and if ΦpAq is total,
then ΨpAq “ ΦpAq.

Suppose that Φ is a Turing functional with length increasing computable enumeration
xΦsysăω. We define the partial computable function Φ˝ : 2ăω Ñ ωăω as follows. Suppose
that xσ, n, ay is enumerated into Φ at stage s. If Φspσ, 0qÓ, then let n be greatest such
that for all m 6 n, Φspσ,mqÓ. We define Φ˝pσq to be the string of length n` 1 where for
all m 6 n, Φ˝pσqpmq “ Φspσ,mq.

Since the enumeration is length increasing, for all strings σ and τ in the domain of Φ˝,
if σ ă τ , then Φ˝pσq 4 Φ˝pτq. We may define Φ˝ in a way (consistent with the above
definition) that ensures its domain is downward closed under the prefix relation, though
this not necessary for our purposes. For a S a set of strings in the domain of Φ˝, we write
Φ˝pSq for tΦ˝pσq : σ P Su. We shall often simply write Φ for Φ˝.

Let xΦeyeăω be an acceptable enumeration of all Turing functionals such that for all
e P ω and all axioms xσ, n, ay P Φe, a P t0, 1u. For all e P ω, let xΦe,sysăω be a computable
enumeration of Φe. Using the procedure above if necessary, we may assume that for all
e P ω, xΦe,sysăω is a length increasing enumeration.

Suppose that Φ is a Turing functional with length increasing computable enumeration
xΦsysăω. Two strings σ0 and σ1 in the domain of the partial computable function Φ are
said to Φ-split if Φpσ0q and Φpσ1q are incomparable; note that by the consistency of Φ,
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σ0 and σ1 must be incomparable. A set S is a set of Φ-splits if the strings in S pairwise
Φ-split.

We say that a set S Ă 2ăω is sparse if for all l P ω, there is at most one string in S of
length l.

4.2. Tests. Some terminology will help in the informal discussion, as well as in the ver-
ification. For some α-change test t “ xas, bsysăω, we may refer to aspρq as the arrow for
ρ in the test t at stage s, and we may refer to bspρq as the bound for ρ in the test t at
stage s. We may say that we update the arrow for ρ in t at stage s if aspρq ‰ as´1pρq, and
similarly, we may say that we update the bound for ρ in t at stage s if bspρq ‰ bs´1pρq. We
may say that ρ is a base point in t at stage s if bspρq ă 8, and that ρ is a base point in t
if lims bspρq ă 8.

4.3. The requirements. Let xxfi,s, oi,sysăωyiăω be an effective list of all tidy pα ` 1q-
computable approximations whose limits fi “ lims fi,s consist of all α-c.a. functions. So
that A is of not α-c.a. dominated degree, we construct a Turing functional Γ such that
ΓpAq is total, and meet for every i P ω the requirement

Pi : if xfi,s, oi,sysăω is eventually α-computable, then

there is some n P ω such that ΓpA,nq ą fipnq.

It follows straightforwardly from the definitions in Section 2 that every α-change generic
degree is 1-generic. Since the degree of the computable sets is not 1-generic, to ensure
that A does not compute an α-change generic degree, it suffices to meet for every e P ω
the requirement

Qe : if ΦepAq is total and noncomputable, then ΦepAq

does not meet or avoid the range of every α-change test.

4.4. The basic strategies. First consider the P -requirement Pi working in isolation.
We begin at stage s by choosing a large follower n for Pi. We let As “ As´1. We choose
some string γs ă As and define Γspγs, nq “ 0. We then wait until a stage t where we see
that oi,tpnq ă 8. If we never see such a stage t, then no further action for Pi is necessary,
and Pi is met. So suppose that we do. We say that Pi is realised with n at stage t.
We choose some string γt that is incomparable with γs. We let At extend γt and define
Γtpγt, nq ą fi,tpnq. If at any later stage u we see that Γu´1pAu´1, nq 6 fi,upnq, then we
do the following. We choose some string γu which is incomparable with all strings in the
domain of Γu´1pnq. We let Au extend γu and define Γupγu, nq ą fi,upnq.

Since xfi,s, oi,sysăω is an pα ` 1q-computable approximation, this strategy is finitary.
It is straightforward to show that this strategy can be carried out in a way that ensures
that Γ is consistent for n. Furthermore, we can easily make ΓpAq total.

Now consider the Q-requirement Qe working in isolation. We build for the sake of Qe
an α-change test te “ xae,s, be,sysăω such that if ΦepAq is total and noncomputable, then
ΦepAq neither meets nor avoids range te. Since the range of te must be infinite if ΦepAq is
total and noncomputable, the action for Qe is infinitary in general.

We break Qe into infinitely many Qe-subrequirements Qe,i for all i > e. The Qe-
subrequirements will work together to define the test te. They do this by, roughly speaking,
partitioning ΦepAq into finite segments. Each Qe-subrequirement will be responsible for
defining a base point in te along its segment, and ensuring that the arrow for any base
point along its segment is not an initial segment of ΦepAq.

We develop a finitary strategy for each Qe,i working with the other Qe-subrequirements.
Although this strategy is more complicated than is currently necessary, the additional
structure will be of benefit later on. If i, j > e and i ă j, then we let Qe,i be of stronger
priority than Qe,j .

At each stage s and for each Qe,i, we may define a string ϕe,i,s. We also define ϕe,e´1,s

to be the empty string for all s P ω and may assume that Φepxyq “ xy.
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We say that Qe,i is satisfied at stage s if

‚ ϕe,i,s is defined and ϕe,i,s ă As,
‚ Φepϕe,i´1,sq ă Φepϕe,i,sq,
‚ there is some ρ with Φepϕe,i´1,sq ă ρ 4 Φepϕe,i,sq such that be,spρq ă 8, and
‚ for all ρ with Φepϕe,i´1,sq ă ρ 4 Φepϕe,i,sq, if be,spρq ă 8 then ae,spρq ⊀ Φe,spAsq.

If all Qe-subrequirements are satisfied at all but finitely many stages, and te is indeed an
α-change test, then Qe is met.

Since we currently do not need to meet any of the P -requirements, we may let As “ 0ω

for all s P ω.
Suppose that all Qe-subrequirements of stronger priority than Qe,i are satisfied at all

stages after stage s. At some later stage t, the strategy for Qe,i will look for strings δ and
ϕ in the domain of the partial computable function Φe such that ϕe,i´1,t ă δ ă ϕ ă At
and Φepδq ă Φepϕq. If we never see such a stage t, then we will be able to show that ΦepAq
is not total, so Qe is met, and no further action for Qe,i need be taken. So suppose that
we do. We define the base point Φepδq in the test te as follows. We define the bound for
Φepδq in te at stage t to be 0, and we define the arrow for Φepδq in te at stage t to be some
string which properly extends Φepδq and which is incomparable with Φepϕq. We define
ϕe,i,t “ ϕ. Then Qe,i is satisfied at stage t, and since we never move the approximation
to A, Qe,i is satisfied at all later stages.

4.5. Splits. We now consider the interaction of the P - and Q-requirements. First sup-
pose that we have the P -requirement Pi working together with the Q-requirement Qe.
Then since the basic strategy for the P -requirements is finitary, we may satisfy Qe by
simply resetting te whenever we act for Pi, and following the basic strategy for the Qe-
subrequirements as above. To be slightly more precise, to reset the test te at stage s,
we abandon the definitions made in the test so far, and will at later stages define a new
α-change test for the sake of Qe.

However, as there are infinitely many P -requirements, we will not always be able to
simply reset the test te whenever we act for some P -requirement. Therefore, we must
develop some alternate strategy. We do so now.

Consider Pi working together with Qe,i, of equally strong priority. Suppose that we
begin the basic strategy for Pi at stage s. As above, we pick a large follower n for Pi, let
As “ As´1, choose some string γs ă As, and define Γspγs, nq “ 0. Suppose that at some
later stage t, we see strings δ and ϕ and define the bound and arrow for the base point
Φepδq in te, as above.

There are two cases to consider. First suppose that ϕ ă γs. Suppose that we wish to
act for Pi at some stage u with u ą t. Then we will be able to choose some string γu
extending ϕ and incomparable with all strings in the domain of Γu´1pnq to be the use
of the computation we define at stage u. In particular, for all u ą t, we will have that
Φepϕq 4 Φe,upAuq. Therefore, we will never need to update the arrow for Φepδq in the
test te at any stage after stage t.

Now suppose that γs 4 ϕ. Suppose that at some stage u with u ą t, we will see that
oi,upnq ă 8. We choose some string γu which is incomparable with γs, let Au extend γu,
and define Γupγu, nq “ fi,upnq ` 1. However, since Au no longer extends ϕ, the opponent
is free to define Φe in such a way that Φe,upAuq < ae,u´1pΦepδqq. Since the bound for
Φepδq is 0, we are not able to update the arrow for Φepδq at any stage after stage t. Then
ΦepAq would meet the range of te, and Qe would not be met.

Indeed, even if we had chosen a larger value for the bound for Φepδq, the opponent is
able to declare oi,upnq to be even larger. The current strategies could force us to move
the approximation to A through many different strings, and therefore force us to update
the arrow for Φepδq in te more than its bound can accommodate.

This problem is rather serious. In order for Φepδq to be a base point in the test te, we
must define the bound for Φepδq to be some ordinal less than 8. However, there is no way



8 MICHAEL MCINERNEY AND KENG MENG NG

of knowing whether lims oi,spnq ă 8, so we cannot simply wait until a stage u where we
see the value of oi,upnq ă 8.

If we were somehow able to define Au in such a way that Φe,upAuq is incomparable
with Φepδq, then we would no longer be concerned with updating the arrow for Φepδq. We
could define a new base point ρ in the test te, and moreover, since the value oi,upnq has
now been revealed by the opponent, we could incorporate this into the value of the bound
for ρ.

What we would like is a pair of Φe-splits. Since we may assume that ΦepAq is total
and noncomputable, there are indeed infinitely many Φe-splits along A, and we may use
such splits in our strategy for the Qe-subrequirements.

4.6. Working with splits. We revise the strategies for the P -requirements and the Qe-
subrequirements to work with splits.

Again suppose that we begin the strategy for Pi at stage s. While waiting for Pi to
be realised, the strategy for Qe,i will look for a pair of Φe-splits. If we never see a pair of
Φe-splits, then ΦepAq must computable, so Qe is met, and no further action for Qe,i need
be taken. So suppose that we see the Φe-splits δ0 and δ1 at stage t. We arbitrarily choose
one of the splits, δ0, say, and let At extend δ0.

At all stages u after stage t, we would like for Au to extend either δ0 or δ1, so that
Φe,upAuq extends either Φepδ0q or Φepδ1q. Suppose that Pi has follower n at stage t, and
that γt is the use of the computation ΓtpAt, nq. It is possible that both δ0 ą γt and
δ1 ą γt. Then, if we were to act for Pi at some later stage, we would need to move the
approximation to A permanently away from γt, and therefore away from δ0 and δ1. We
can avoid this situation by simply initialising Pi at stage t. We will wait until Pi has
chosen a new follower before proceeding. We are then free to define axioms which have
use that properly extends one of the splits. This has no detrimental effect on the rest of
the construction.

We would like to define Φepδ0q as a base point in the test te, but we will need an
analogue of the string ϕ from above before doing so. Therefore, we wait for a later stage
u where there is some ϕ such that δ0 ă ϕ ă Au and Φepϕq ą Φepδ0q. If we never see such
a stage u, then Φe is not total, so we may assume that we do. At stage u, we define the
base point Φepδ0q in te as above, as well as ϕe,i,u.

Suppose that Pi has follower n at some stage u with u ą t, and that Pi is realised with
n at stage u. Then regardless of the action that we have taken for Qe,i since stage t, we
let Au extend σ1. We now choose γu to be some suitable string extending δ1, and define
Γupγu, nq “ fi,upnq ` 1.
Qe,i again waits for some stage v where we see some string ϕ such that δ1 ă ϕ ă Av

and Φepϕq ą Φepδ1q. Suppose that we do see such a stage v. We define the base point
Φepδ1q in te as follows. We define the bound for Φepδ1q in te at stage v to be oi,upnq, and
we define the arrow for Φepδ1q in te at stage v to be some string which properly extends
Φepδ1q and which is incomparable with Φepϕq.

Suppose that at some later stage w, we see that Γw´1pAw´1, nq 6 fi,wpnq. As above,
the action that we take for Pi may then result in us needing to update the arrow for Φepδ1q
in te at some later stage. However, we will be able to show that that fi,wpnq ‰ fi,upnq,
and therefore oi,wpnq ă oi,upnq. Then when we update the bound for Φepδ1q, its value
will be at most oi,wpnq, which suffices for showing that te is an α-change test.

4.7. Common splits. We now consider Pi, Qd,i, and Qe,i working together, all of equally
strong priority.

Suppose that we begin the strategy for Pi at stage s as usual, and that we begin the
strategies for Qd,i and Qe,i as above. Suppose that at some later stage t, we see the strings
δ0 and δ1 which, by some miracle, both Φd-split and Φe-split. Then the strategies for the
Q-subrequiments are able to work independently, with Qd,i defining base points in the test
td and Qe,i defining base points in the test te. In fact, if we were always fortunate enough
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to find common splits, then with minimal modification, the strategies we have introduced
would be sufficient to meet all requirements.

4.8. Splits above splits. We will of course not always be so lucky as to discover common
splits. We would like to develop a way to produce common splits in a stepwise fashion.

Let us put aside the consideration of the requirements for the moment, and focus on
how we may go about producing common splits. Suppose instead that δ0 and δ1 only
Φe-split. We would like to extend δ0 and δ1 to a pair of common splits. Suppose that
we later find the Φd-splits δ00 and δ01 above δ0, and the Φd-splits δ10 and δ11 above δ1.
Then it is straightfoward to show that there is some pair σ0 and σ1 chosen from the set
tδ00, δ01, δ10, δ11u which Φd-split, and moreover, such that σ0 ą δ0 and σ1 ą δ1.

This can be carried out quite generally; Lemma 4.5 below gives the formal statement
and proof of the result we use.

Looking ahead to when we consider the simultaneous action of many functionals, we
will build at every stage s a set Ti,s of splits. Each split in Ti,s is said to be of a certain
level. We will also define a set Ei,s of natural numbers. The intention is that Ei,s contains
the indices e such that we are ready to define a base point corresponding to some string
in Ti,s in some test for Qe.

In our example, if δ0 and δ1 were found at stage t, we will let Ti,t “ tδ0, δ1u. We say
that δ0 and δ1 are of level 1, and we enumerate d into Ei. If the strings σ0 and σ1 were
found at stage u, then we enumerate σ0 and σ1 into Ti at stage u. We say that σ0 and σ1

are of level 2, and we enumerate e into Ei.

4.9. Forbidden strings. We again revise the strategies to incorporate the search for
common splits.

Suppose that we find a pair of strings δ0 and δ1 which Φe-split at stage t. Suppose that
we let At extend δ0. We initialise Pi, and so choose a large follower n for Pi. We would
like to be able to produce a pair of common splits, and so the strategy for Qd,i now looks
for a pair of Φd-splits above δ0. Meanwhile, the strategy for Qe,i will wait for convergence,
and may later define the base point Φepδ0q in the test te.

Suppose that Pi is realised with n at some later stage u, and that we have not yet seen
a pair of Φd-splits above δ0. For the sake of Qe,i, we let Au extend δ1.

This action, however, has interfered with the search for common splits. If we were to
find a pair of Φd-splits above δ1, we would not yet be in a position to produce common
splits: we would need to find a further Φe-split above which there is a pair of Φd-splits.
We may however have defined the base point Φepδ0q when Pi had not been realised with
n. Therefore, we could not return to δ0, since the bound for Φepδ0q would not be able to
accommodate the changes necessary for the strategy for Pi.

This problem is easily fixed. The strategy for Qe,i instead looks for three Φe-splits.
This is no more strenuous a test on the hypothesis that ΦepAq is total and noncomputable.
If we do find three Φe-splits at some stage, then we will be able to move to a new split
when Pi is realised with its follower, but will have sufficient room to move in the search for
common splits. We note that the precise number of splits which must be found at various
stages is more complicated in general, though not difficult. We discuss this further in
Section 4.13 below.

Looking ahead to when we handle all the P -requirements, it will be convenient to keep
track of those strings to which we may not later return. We do so by defining at every
stage s a set Fi,s of forbidden strings. We will have that Fi,s Ď Ti,s.

4.10. Guessing. We rewind, and see how the construction may play out from the be-
ginning. Suppose that we first begin the strategy for Pi at stage s. Then Qd,i will look
for three Φd-splits, and similarly for Qe,i. Suppose that we see the Φe-splits δ0, δ1, and
δ2 at some later stage t. We enumerate these splits into Ti, let each be of level 1, and
enumerate e into Ei. We let At extend δ0. We initialise Pi, and choose a large follower n
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for Pi. Next, suppose that Pi is realised with n at some later stage u. We enumerate δ0
into Fi, and let Au extend δ1.

As always, Qe,i will be looking to define base points in the test te. Suppose that we
define the base point Φepδ1q in the test te at some later stage v. Then since Pi has been
realised with n by stage v, we define the bound for Φepδ1q in te to be oi,vpnq.

Suppose that we later find a pair of Φd-splits above δ1. We then move the approximation
to A to extend δ2 in the hopes of finding a common split. Suppose that at some later
stage w, we do in fact find another pair of Φd-splits above δ2, and then produce the pair
of common splits σ0 and σ1. We enumerate σ0 and σ1 into Ti, let σ0 and σ1 be of level 2,
and enumerate e into Ei. As we saw above, we must again initialise Pi. Suppose that we
choose the large follower n1 for Pi.

We must ensure that the base points in the test te are able to cope with the action that
we may later take for Pi. There is a problem. It is possible for Φepσ0q to extend some
base point in te at stage w, and also for Φepσ1q to extend some base point in te at stage
w. Then if Pi were realised with n1 at some later stage, regardless of which common split
we let the approximation to A extend, the approximation to ΦepAq will extend some base
point in te which was defined before the follower n1 was realised.

To solve this problem, we use guessing, a standard feature of infinite injury priority
arguments. Each Q-requirement has two outcomes: the outcome inf, which holds if ΦepAq
is total and noncomputable, and the outcome fin, which holds otherwise. Our priority
ordering will order the Q-requirements. Suppose that Qd is of stronger priority than Qe.
Then a strategy working for Qe-subrequirement will guess as to the outcome of Qd. A
strategy for a Qe-subrequirement which guesses that Qd has the outcome inf will always
wait until we see common splits, and will define base points in the test tinf, whereas a
strategy for a Qe-subrequirement which guesses that Qd has the outcome fin assumes
that we will not find any further Φd-splits, and will define base points in the test tfin.
Whenever we receive further evidence that the outcome inf is incorrect, namely when we
do find more Φd-splits, the test tfin will be reset.

Guessing completely solves our problem. Before we see common splits, the strategy for
Qe,i which guesses that Qd has the fin outcome will define base points in the test tfin.
We then reset tfin at stage w when common splits are found. The strategy for Qe,i which
guesses that Qd has the inf outcome will then define base points in the test tinf.

4.11. Freezing base points. The guessing is, as usual, asymmetric: while the strategies
working for Qe-subrequirements are able to guess about the outcome of Qd, we cannot
allow the strategies working for Qd-subrequirements to guess about the outcome of Qe.

Therefore, we must consider the sequence of events from the previous section, but with
d and e interchanged. So suppose that we find the Φd-splits δ0, δ1, and δ2 at stage t. We
enumerate these splits into Ti, let each be of level 1, and enumerate d into Ei. Suppose
that we later produce the common splits σ0 and σ1 at some later stage u. We enumerate
these splits into Ti, let each be of level 2, and enumerate e into Ei. However, we are not
able to simply reset the test for td, as we did for tfin above. We would like some way to
limit the number of times that we update the arrow for base points that were defined in
td before we found common splits.

Suppose that we defined the base point Φdpδ1q in the test td before stage u. We would
like to “freeze” the base point Φdpδ1q by updating the arrow for Φdpδ1q at some later stage
to be some string which the approximation to ΦepAq never extends. Then we would never
need to update the arrow for Φdpδ1q again.

Recall that a set S Ă 2ăω is sparse if for all l P ω, there is at most one string in S of
length l. Suppose that we found at some stage v with v ą u some finite set X such that

‚ X is sparse,
‚ for all χ P X, |χ| ą |Φdpδ1q|, and
‚ for all w > v, Φe,wpAwq extends some string in X.
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Then we can freeze Φdpδ1q by defining the arrow for Φdpδ1q to be some string which
properly extends Φdpδ1q and which is incomparable with every string in X.

Suppose that we are able to extend the tree of splits to a third level, where the strings
of level 3 pairwise Φd-splits. Then if M is the set of strings of level 3, we would like for
the set ΦepMq to play the role of X. It is relatively straightforward to show that if ΦdpAq
is total and noncomputable, then we can find splits which guarantee that ΦepMq has the
properties listed above.

We must consider how this feature interacts with the guessing. When the common
splits of level 2 are found, we immediately pause the definition of the test td, and will wait
until the further level of Φd-splits is found. We therefore remove d from Ei. The strategy
for Qe,i will begin to define base points in the test tfin. If the further level of Φd-splits is
later found, then the strategy for Qd,i will freeze base points in the test td if necessary,
and define new base points in td corresponding to strings of level 3, and Qe,i will begin to
define base points in the test tinf.

We must make a small alteration to the definition of the bound of the base points in
the test td. Suppose that we wish to define the bound for some base point Φdpδiq in td at
some stage t before common splits are found. Suppose that Pi has follower n at stage t.
If Pi has not been realised with n by stage t, we define the bound to be 1, and otherwise,
we define the bound to be oi,tpnq ` 1. Then the bound is able to accommodate a further
update of the arrow as a result of freezing.

4.12. General remarks about the construction. It may be helpful to make some
general remarks about the way in which the construction is organised. As we saw above,
the strategy for the P -requirements is finitary. While the Q-requirements are infinitary, we
are able to break each Q-requirement Qe into infinitely many finitary Qe-subrequirements.

Our priority ordering will include nodes working for P -requirements, Q-requirements,
and also Q-subrequirements. The node working for the Q-requirement Qe is responsible
for resetting the tests that we build for the sake of Qe. The nodes working for Qe-
subrequirements will be responsible for defining base points in the tests and updating the
arrows for these base points.

Of equally strong priority as Pi, we have the Q-requirement Qi, as well as the Q-
subrequirements Qe,i for all e 6 i. As we have seen, much of the complexity of the
construction is in coordinating the interaction of the strategy for Pi with the strategies
working for Q-subrequirements of equally strong priority as Pi. The tree of splits is built
in order to facilitate this. The coordinating action is rather significant, and it will be
convenient to introduce for every i P ω the quasirequirement Ti, of equally strong priority
as Pi, to manage this.

The mechanism of freezing can be viewed as a way for strategies to deal with injury
due to the action of strategies working for Q-requirements of weaker global priority, but
of equally strong local priority.

4.13. Combinatorics. We now give some brief comments about the combinatorics re-
quired for the general construction of the trees of splits.

For all i P ω, and at every stage s, the tree Ti,s must handle splits for all functionals
Φe with e 6 i.

We define in Section 4.15.2 a sequence xhiyiăω with the intention that hi bounds the
number of levels that Ti,s has. We also define the sequence λi,s P ω

ăω. With this sequence,
it will be straightforward to see that Ti,s does indeed have at most hi many levels. This
fact is recorded in part (3) of Lemma 4.2.

For all i P ω and all l P r1, his, we also define the natural number mi,l, which is intended
to give the number of strings of level l in Ti,s. Lemma 4.2 and Lemma 4.6 give careful
formal arguments that these definitions suffice.
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4.14. Final notes. The fact that A is ∆0
2, and in particular, not computably enumerable,

together with the infinitary nature of the Q-requirements, means that the construction
and its verification are rather involved. We choose to take a rather cautious approach.

We define several other objects during the construction which will be of use in the
verification. We give some brief remarks which will hopefully help to orient the reader.

For every (quasi)requirement Ti, and at every stage s, we may define a string εi,s. If
the set of splits Ti,s is nonempty, then εi,s will in fact be defined, and every string in Ti,s
will extend εi,s. The main purpose of this string is to serve as a restraint for the action
of Ti and Pi.

As mentioned above, Lemma 4.5 will play a crucial role in defining the trees of splits.
We must be rather careful though to define the tree of splits from suitable collections of
splits that we find during the construction. Therefore, for every i P ω, for every e 6 i,
and at every stage s, we define a set of Yi,e,s which will contain Φe-splits that may later
be used in the definition of the tree of splits Ti. These sets play their most prominent role
in the proof of Claim 4.39 below.

For various reasons, we will often wish for the Φe-splits that we find to have image
under Φe of at least a certain length. Therefore, for every e P ω and at every stage s, we
define a set Ze,s of strings. This will be important in showing, for example, that the set
of Φe-splits of a certain level has sparse image under Φe.

For every Q-subrequirement Qe,i, and at every stage s, we will define a collection Ne,i,s
of guesses ν P tinf, finue which Qe,i must consider when defining base points. The only
important point to note here is that while we may see that for some d ă e, Qd,i is satisfied
at stage s, some weaker priority Qd-subrequirement may never become satisfied, and so
the “true outcome” for Qd is in fact fin. The set Ne,i,s is defined so that we may properly
maintain the base points in the tests which guess incorrectly about the local outcome, but
which guess correctly about the global outcome.

We now proceed to the formal part of the argument.

4.15. Further definitions and conventions for the construction. For convenience
and concreteness, we collect all definitions and conventions which will be required for
the formal construction which have not already been given in Section 4.1, Section 4.2, or
Section 4.3. As usual, all objects that we define during the construction will keep their
values at the following stage unless otherwise specified.

4.15.1. The priority ordering. We let

R “ tTi : i P ωu Y tPi : i P ωu Y tQe : e P ωu Y tQe,i : e, i P ω, e 6 iu.

We define a priority ordering 6R on R as follows. We first define o : RÑ ω. For all i P ω,
we let opTiq “ opPiq “ i, and for all e P ω, we let opQeq “ e. For all e, i P ω with e 6 i,
we let opQe,iq “ i. Then we let R1 6R R2 if and only if opR1q 6 opR2q. We define ăR as
usual.

4.15.2. The combinatorics. For all i P ω, let Hi be the set of all sequences σ P ωăω such
that

‚ for all k ă |σ|, σpkq 6 i, and
‚ for all j ă l ă |σ|, if σpjq “ σplq, then there is some k with j ă k ă l such that
σpkq ą σpjq.

Note that for all i P ω, |Hi| is finite. For all i P ω, let hi be the length of the longest
sequence in Hi. The function i ÞÑ hi is primitive recursive, and for all i P ω, hi ą 0.
In fact, it is straightforward to show that for all i P ω, hi is the ith triangular number,
starting with h0 “ 1.

For all pairs pi, lq P ω ˆ ω with l P r1, his, we define mi,l P ω as follows. It is clear that
h0 “ 1. We define m0,1 “ 1. Now fix some i > 1. We define mi,hi “ 2. For all l P r1, hiq,



SEPARATING WEAK α-CHANGE AND α-CHANGE GENERICITY 13

given mi,l`1, we define

mi,l “ 2pi` 1q.pmi,l`1 ´ 1q ` 1.

4.15.3. The trees. For every i P ω and at every stage s P ω, we will define a set Ti,s Ă 2ăω,
a set Fi,s Ď Ti,s, a set Ei,s Ă ω, and a sequence λi,s P ω

ăω. We may also define a string
εi,s. For every e 6 i, we will also define a set Yi,e,s Ă 2ăω.

We view Ti,s, Fi,s, Yi,e,s, and Ei,s as the computable approximations at stage s to sets
Ti, Fi, Yi,e, and Ei, respectively. Therefore, we may say that we enumerate σ into Ti at
stage s, or that we remove σ from Ti at stage s, with the obvious meaning, and similarly
for Fi, Yi,e and Ei.

If we say at stage s that we empty Yi,e, then we set Yi,e,s “ H. If we say at stage s
that we initialise Ti, then we set Ti,s “ H, Fi,s “ H, Ei,s “ H, λi,s “ xy, we let εi,s be
undefined, and for all e 6 i, we empty Yi,e.

For some e P ω, we may say at some stage that we have found Φe-splits above δ, for
some string δ, that some strings are Φe-splits, or that some strings are of level l, for some
l P ω. These statements will hold at all subsequent stages.

4.15.4. The P -requirements. For every i P ω, and at every stage s P ω, we may define for
Pi a follower, which will be some natural number. We may say that Pi has been realised
with n at stage s, for some n P ω; this statement will hold at all subsequent stages. We
may also say that Pi is waiting to define an axiom at stage s.

We say that Pi requires attention at stage s if

‚ all P -requirements P with P ăR Pi are satisfied at stage s,
‚ for all j 6 i, εj,s´1 is defined

and for l “ |λi,s´1|, either

(1) Pi does not have a follower at stage s,
(2) Pi has follower n at stage s, Pi has not been realised with n by stage s, but

oi,spnq ă 8,
(3) As´1 extends some string which is in Ti,s´1 and of level l, and Pi is waiting to

define an axiom at stage s, or
(4) Pi has follower n at stage s, Pi has been realised with n by stage s, Γs´1pAs´1, nqÓ,

but Γs´1pAs´1, nq 6 fi,spnq.

We say that Pi is satisfied at stage s if Pi has a some follower n at stage s, Γs´1pAs´1, nqÓ,
and if oi,spnq ă 8 then Γs´1pAs´1, nq ą fi,spnq.

To initialise Pi at stage s, we remove its follower, and we do not say that Pi is waiting
to define an axiom at stage s` 1.

4.15.5. The Q-requirements. For every ν P tinf, finuăω, we will build an α-change test
tν . If we say at stage s that we reset tν , then we abandon the test tν , and will at later
stages build a new test, which, abusing notation, we will also call tν . To reset the test
tν “ xaν,s, bν,sysăω at stage s, we set aν,rpσq “ σ and bν,rpσq “ 8 for all r 6 s and all
σ P 2ăω.

For all e, s P ω, we will define a set of strings Ze,s. As above, we may say that we
enumerate elements into Ze at stage s, but note that we will not remove elements from
Ze at any stage.

For every Q-subrequirement Qe,i and every s P ω, we may define a string ϕe,i,s. For
all e, s P ω, we let ϕe,e´1,s “ xy, and we may assume that Φepxyq “ xy.

We say that Qe,i is satisfied at stage s if e P Ei,s´1 and ϕe,i,s´1 is defined.
We say that Qe,i requires attention at stage s if

‚ all P -requirements P with P 6R Qe,i are satisfied at stage s,
‚ for all j 6 i, εj,s´1 is defined,
‚ all Qe-subrequirements Q with Q ăR Qe,i are satisfied at stage s,
‚ e P Ei,s´1,
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‚ ϕe,i,s´1 is not defined, and
‚ if stage r is the last stage before stage s at which e was enumerated into Ei, then

there is some Φe-split δ in Ti,s´1 of level le “ |λi,r| and some string ϕ in the
domain of Φe at stage s such that

– δ ă ϕ ă As´1,
– |Φepϕq| ą |Φepζq| for all ζ P Ze,s´1,
– |Φepσq| ą |Φepϕe,j,s´1q| for all j P re, iq, and
– |ϕ| ă s.

For every e, i, s P ω, we let Ne,i,s be the set of all ν P tinf, finue such that for all d ă e,
if d R Ei,s´1, then νpdq “ fin.

To initialise the Q-requirement Qe at stage s, we reset all ν P tinf, finue. To initialise
the Q-subrequirement Qe,i at stage s, we let ϕe,i,s be undefined.

4.15.6. The T -(quasi)requirements. For all i P ω and all e 6 i, we say that Ti requires
attention via e at stage s if

‚ for all j 6 i, εj,s´1 is defined,
‚ all Qe-subrequirements Q with Q ăR Qe,i are satisfied at stage s,
‚ e R Ei,s´1,
‚ δ is a string in Ti,s´1 of level l “ |λi,s´1| which As´1 extends,
‚ for all d 6 e, we have not found Φd-splits above δ, and
‚ there is some set S of Φe-splits of cardinality mi,l`1 such that for all σ P S,

– δ ă σ,
– ΦepSq is sparse,
– |Φepσq| ą |Φepζq| for all ζ P Ze,s´1,
– |Φepσq| ą |Φepϕe,j,s´1q| for all j P re, iq, and
– |σ| ă s.

We show in Lemma 4.7 below that the construction can be carried out as described.

4.16. The construction.

Stage 0: We set A0 “ 0ω and Γ0 “ H. For all e P ω, we set Ze,0 “ H. We initialise all
R P R and reset tν for all ν P tinf, finuăω. We proceed to stage 1.

Stage s, s > 1: we follow the instructions below. Then if s is not currently the follower
of some P -requirement and ΓspAs, sqÒ, we enumerate xxy, s, 0y into Γ. We proceed to the
next stage.

s “ 4n` 1 for some n P ω

Let i be least such that Ti,s´1 is empty. We define εi,s to be some initial segment of
As´1 of a large length, and let Ti,s “ tεi,su. We say that εi,s is of level 0. We initialise
all R P R with Ti ăR R.

s “ 4n` 2 for some n P ω

If there is some P -requirement which requires attention at stage s, then we follow the
instructions below.

Let Pi be the P -requirement of strongest priority which requires attention at stage s.
Let l “ |λi,s´1|. We follow the instructions of the first case below which pertains. We say
that we act for Pi at stage s. We then initialise all R P R with Pi ăR R.

Case 1a: Pi requires attention at stage s via (1). We choose a large follower for Pi.
We say that Pi is waiting to define an axiom at stage s` 1.

Case 1b: Pi requires attention at stage s via (2). Suppose that Pi has follower n at
stage s. We say that Pi is realised with n. We say that Pi is waiting to define an axiom
at stage s` 1.
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If Ei,s´1 ‰ H, then we do the following. Suppose that n was chosen at stage q. Let F
be the set of all δ P Ti,s´1 of level l such that for some r P rq, sq, Ar ą δ. We enumerate
the elements of F into Fi. We choose some string α P Ti,s´1 which is of level l and which
is not in Fi,s, and let As “ αˆ0ω.

Case 1c: Pi requires attention at stage s via (3). Let δ be the string in Ti,s´1 of level l
which As´1 extends. Suppose that Pi has follower n at stage s. We choose some string γ of
a large length, which extends δ, and such that there is no ι P dom Γs´1pnq with δ ă ι 4 γ.
We let As “ γ ˆ0ω. If Pi has been realised with n, then we enumerate xγ, n, fi,spnq ` 1y
into Γ, and otherwise, we enumerate xγ, n, 0y into Γ. We do not say that Pi is waiting to
define an axiom at stage s` 1. We initialise Qd,i for all d P r0, is.

Case 1d : Pi requires attention at stage s via (4). We say that Pi is waiting to define
an axiom at stage s` 1.

s “ 4n` 3 for some n P ω

If there is some i for which there is some e such that Ti requires attention via e at stage
s, then we follow the instructions below.

Let i be least as above, and let e be greatest for this i. Let Ss be the set S as in
the definition of requires attention for this choice of i and e. We say that we have found
Φe-splits above δ, and enumerate the elements of Ss into Yi,e and Ze. Let l “ |λi,s´1|.

We act according to the following cases. We say that we act for Ti with e at stage s.
We initialise Qd,i for all d P r0, is and all R P R with Ti ăR R. We reset all tν with |ν| ą e
and νpeq “ fin.

Case 2a: either l “ 0, or there is some e 6 i for which there are mi,l`1 many strings
in Ti,s´1 of level l which are not in Fi,s´1, and above which we have found Φe-splits. We
choose the greatest such e.

Let T Ă Yi,e,s be a set of Φe-splits of cardinality mi,l`1 such that every string in T
properly extends some unique string of level l in Ti,s´1 which is not in Fi,s´1, and such
that ΦepT q is sparse. We enumerate the elements of T into Ti.

We choose some α P T and let As “ αˆ0ω. We enumerate e into Ei, and for all d ă e,
we remove d from Ei. For all d ă e, we empty Yi,d. We let λi,s “ λi,s´1ˆxey. We say that
every string in T is a Φe-split, and is of level l ` 1. We initialise Pi.

Case 2b: otherwise. Choose some string α in Ti,s´1 which is of level l and not in Fi,s´1,
and above which we have not found Φd-splits for any d. We let As “ αˆ0ω. We say that
Pi is waiting to define an axiom at stage s` 1.

s “ 4n for some n > 1

If there is some Q-subrequirement which requires attention at stage s, then we proceed
as follows. Let i be least such that there is some e such that Qe,i requires attention at
stage s, and choose the least such e for this i.

Let δ, le, and ϕ, be as in the definition of requires attention. Let M be the set of all
strings in Ti,s´1 of level le. We define ϕe,i,s “ ϕ. Let P`s be the set of all j ă s such that
Pj has some follower nj,s at stage s, and Pj has been realised with nj,s by stage s.

We carry out the instructions in step 1 and step 2. We then initialise all R P R with
Qe,i ăR R.

Step 1

Let ρ “ Φepδq. If bν,s´1pρq “ 8 for some ν P Ne,i,s, then for all such ν, we do the
following. Let Iν,ρ,s “ re, is and let I`ν,ρ,s “ Iν,ρ,s X P`s . We define aν,spρq to be some
string which properly extends ρ and which is incomparable with Φepϕq, and we define

bν,spρq “

ˆ

à

jPI`ν,ρ,s

fj,spnj,sq

˙

‘ |Iν,ρ,s|.
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Step 2

For all ν P Ne,i,s and all ρ such that Φepϕe,i´1,sq ă ρ 4 Φepϕq, bν,s´1pρq ă 8, and
aν,s´1pρq ă Φepϕq, we act according to the subcases below.

Subcase 3a: ρ ă Φepδq. We define aν,spρq to be some string which properly extends ρ
and which is incomparable with Φepµq for all µ P M . Let Iν,ρ,s “ re, iq and let I`ν,ρ,s “

Iν,ρ,s X P
`
s . We define bν,spρq as above.

Subcase 3b: otherwise. We define aν,spρq to be some string which properly extends ρ
and which is incomparable with Φepϕq. Let Iν,ρ,s “ re, is and let I`ν,ρ,s “ Iν,ρ,s X P

`
s . We

define bν,spρq as above.

4.17. The verification. We first work towards Lemma 4.7, which says that the con-
struction can be carried out as described. The following lemma, while highly technical,
summarises many important properties of the construction.

Lemma 4.2. For all s P ω, if all stages up to and including stage s of the construction
can be carried out as described, then for all i P ω, for l “ |λi,s|,

(1) if Ei,s “ H then Fi,s “ H.
(2) if Ti,s ‰ H then As extends some string in Ti,s of level l which is not in Fi,s.
(3) λi,s P Hi.
(4) Ei,s “ H if and only if λi,s “ xy.
(5) if Ei,s ‰ H then there are mi,l many strings in Ti,s of level l.
(6) if Ei,s ‰ r0, is then l ă hi.
(7) if Pi has follower n at the end of stage s, and Pi has not been realised with n by

the end of stage s, then no string in Ti,s of level l is in Fi,s.
(8) if As´1 extends some string δ P Ti,s´1 but δ ⊀ As, then if we do not initialise Ti

at stage s, we act either for Pi in case 1b or for Ti at stage s.
(9) if 0 ă l ă hi, then for every e 6 i, there are at most mi,l`1 ´ 1 many strings in

Ti,s which are of level l and not in Fi,s, and above which we have found Φe-splits.
(10) if δ P Ti,s is a Φe-split, then there is some unique stage r with r 6 s at which

δ was enumerated into Ti, and some unique stage q with q 6 r at which δ was
enumerated into Yi,e and Ze.

(11) if e P Ei,s, stage r is the last stage before stage s at which e was enumerated into
Ei, le “ |λi,r|, and M is the set of strings in Ti,s of level le, then M is a set of
Φe-splits of cardinality mi,le , and ΦepMq is sparse.

(12) if Ti,s ‰ H, then εi,s is defined, and if λi,s “ xy then Ti,s “ tεi,su.

Proof. By induction on s, often together with a straightforward but tedious case analysis.
�

Lemma 4.3. Suppose that σ P 2ăω and that S Ă 2ăω is sparse. Then for all l ą |σ| there
is some string ν of length l which extends σ, and such that there is no string ι P S with
σ ă ι 4 ν.

Proof. By induction on l. �

Lemma 4.4. For all s P ω, if all stages up to and including stage s of the construction
can be carried out as described, then for all n P ω and all l P ω, dom Γspnq is sparse.

Proof. By induction, as in the proof of Lemma 4.2. �

Lemma 4.5. Let Φ be a Turing functional with a length increasing computable enumer-
ation. Suppose that m > 2, and that tSiuiăm is a collection of pairwise disjoint sets of
Φ-splits of cardinality m. Then there is a set S of Φ-splits of cardinality m, where for
each i ă m, there is some δ P Si with δ P S.
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Proof. We show this by induction on m, starting with m “ 2. For m “ 2, let

l “ maxt|Φpσq| : σ P S0 Y S1u.

Without loss of generality, we may assume that σ0 P S0 is such that |Φpσ0q| “ l. Now,
by the choice of σ0, for each σ P S1, either Φpσq 4 Φpσ0q, or Φpσq is incomparable with
Φpσ0q. Since S1 is a set of Φ-splits, we may choose some string from S1 which, together
with σ0, forms a set S of Φ-splits as required.

Now let m ą 2, and suppose by induction that the statement of the lemma holds for
m´ 1. Let

l “ maxt|Φpσq| : σ P
ď

iăm

Siu.

Without loss of generality, we may assume that σ0 P S0 is such that |Φpσ0q| “ l. Now,
by the choice of σ0, for all i P r1,ms and all σ P Si, either Φpσq 4 Φpσ0q, or Φpσq is
incomparable with Φpσ0q. Since Si is a set of Φ-splits, there is at most one string σ P Si
such that Φpσq 4 Φpσ0q. So for all i P r1,ms, there is a set Ri Ă Si of cardinality m ´ 1
such that for all σ P Ri, σ and σ0 Φ-split. By the inductive hypothesis, there is a set
R of Φ-splits of cardinality m ´ 1, where for each i P r1,ms, there is some δ P Ri with
δ P R. Since tSiuiPr1,ms is a collection of pairwise disjoint sets, the set tσ0uYR is a set of
cardinality m, and is as required. �

Lemma 4.6. Suppose that s P ω, and that all stages before stage s can be carried out as
described. Let i P ω, l “ |λi,s|, and suppose that Ei,s´1 ‰ H. Then

(1) if Ei,s´1 “ r0, is, then at most 1 string in Ti,s which is of level l is in Fi,s.
(2) if Ei,s´1 ‰ r0, is, then at most pi` 1q.pmi,l`1 ´ 1q ` 1 many strings in Ti,s which

are of level l are in Fi,s.

Proof. We show this by induction on s. The lemma is clear for s “ 0, so assume that
s ą 0, and that all stages before stage s can be carried out as described. The only difficulty
is if we act in case 2a or in case 1b at stage s.

First suppose that we act for Ti in case 2a at stage s. Then no string in Ti,s of level l
is in Fi,s, and the lemma holds.

Now suppose that we act for Pi in case 1b at stage s. Suppose that Pi has follower n
at stage s, and that n was chosen at stage q. Let F be the set of all strings δ P Ti,s´1 of
level l such that for some r P rq, sq, Ar ą δ.

Below, we shall frequently refer to the various parts of Lemma 4.2. Note that by the
choice of q, λi,r “ λi,q for all r P rq, ss. Since part (2) holds at stage s´ 1, As´1 extends
some string δs´1 in Ti,s´1 of level l. Then δs´1 P F . By the choice of q, we cannot act for
Ti in case 2a at any stage after stage q and before stage s, since doing so would initialise
Pi. We also cannot act for Pi in case 1b at any stage after stage q and before stage s,
since Pi has not been realised with n by stage s. Now since part (8) holds at all stages
before stage s, the cardinality of F is one greater than the number of stages after stage q
and before stage s at which we act for Ti in case 2b.

First suppose that Ei,s´1 “ r0, is. By the choice of q, Ei,r “ Ei,q for all r P rq, ss.
Then by the definition of requires attention, we cannot act for Ti with e at any stage r
with r P pq, sq.

Now suppose that Ei,s´1 ‰ r0, is. Suppose that we act for Ti in case 2b at some stage
r with r P pq, sq. Then for some e 6 i, we say that we have found Φe-splits above δr´1 at
stage r. Since part (9) holds at stage s ´ 1, there are at most pi ` 1q.pmi,l`1 ´ 1q many
stages r with r P pq, sq at which we act for Ti in case 2b. �

Lemma 4.7. The construction can be carried out as described.

Proof. We show this by induction on the stage number. It is clear that stage 0 of the
construction can be carried out as described. So let s ą 0, and suppose by induction that
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all stages before stage s can be carried out as described. Let l “ |λi,s´1|. Below, we shall
frequently refer to the various parts of Lemma 4.2.

First suppose that s “ 4n ` 1 for some n P ω. It is clear that stage s can be carried
out as described.

Now suppose that s “ 4n` 2 for some n P ω. Let Pi be as at stage s. It is clear that
if case 1a or case 1d applies at stage s, then stage s can be carried out as described.

Suppose that case 1b applies at stage s. The only difficulty is if Ei,s´1 ‰ H, so assume
this. We must show that there is some string α in Ti,s which is of level l and not in Fi,s.
We have that λi,s´1 “ λi,s. Since part (5) hold at stage s´ 1, there are mi,l many strings
in Ti,s´1 of level l. If Ei,s´1 “ r0, is, then by Lemma 4.6, and the fact that mi,l > 2 for
all i P ω and all l P r1, his, there is some string α as required, and if Ei,s´1 ‰ r0, is, then
by Lemma 4.6 and the definition of mi,l, there is some string α as required.

Suppose that case 1c applies at stage s. The only difficulty is showing that a string γ
as in the construction can be chosen. This follows from Lemma 4.4 and Lemma 4.3.

Now suppose that s “ 4n ` 3 for some n P ω. First suppose that case 2a applies at
stage s. Let i, e, and l be as at stage s. We must show that we there is some set T as in
the construction at stage s.

Suppose that l “ 0. Then since Ti requires attention via e at stage s, we have that
Ti,s´1 ‰ H, and since part (12) holds at stage s´ 1, we have that Ti,s´1 “ tεi,s´1u. Now
since parts (1) and (4) hold at stage s´ 1, εi,s´1 R Fi,s´1. Then we may take T to be Ss.

Now suppose that l ‰ 0. Then there are mi,l`1 many strings in Ti,s´1 of level l which
are not in Fi,s´1, and above which we have found Φe-splits. Let ∆ be the set of all such
strings. For all δ P ∆, suppose that we found Φe-splits above δ at stage sδ. We write Sδ
for Ssδ . Given tSδuδP∆, let S∆ be the set produced by Lemma 4.5. It is clear that S∆ is a
set of Φe-splits of cardinality mi,l`1 where every string in S∆ extends some unique string
in ∆. It suffices to show the following.

Claim 4.8. ΦepS∆q is sparse.

Proof. Let σ0, σ1 P S∆. So for i ă 2, suppose that δi P ∆ is such that σi P Sδi . By
uniqueness, we have that δ0 ‰ δ1. Without loss of generality, we may assume that sδ0 ă
sδ1 . Then σ1 was enumerated into Ze after σ0 was enumerated into Ze. Now by the
definition of requires attention at stage sδ1 , we have that |Φepσ1q| ą |Φepσ0q|, which
suffices to establish the claim. �

Now suppose that case 2b applies at stage s. Then l ‰ 0, and since part (4) holds at
stage s ´ 1, there are mi,l many strings in Ti,s´1 of level l. Since we act for Ti with e
at stage s, by the definition of requires attention, e R Ei,s´1. So Ei,s´1 ‰ r0, is, and by
Lemma 4.6, there are at most pi` 1q.pmi,l`1 ´ 1q ` 1 many strings in Ti,s´1 which are of
level l and in Fi,s´1. Then since part (9) holds at stage s ´ 1, and by the definition of
mi,l, we may choose a string α as in the construction at stage s.

Finally, suppose that s “ 4n for some n > 1. Let δ and M be as at stage s. Then
δ P M . Suppose that we wish to act for Qe,i at stage s. The only difficulty is if for some
ν P Ne,i,s and for some string ρ, we wish to update the arrow for ρ in tν in case 3a at
stage s. So assume this. Then ρ ă Φepδq. Since part (11) holds at stage s ´ 1, M is a
set of Φe-splits, and ΦepMq is sparse. Therefore, no initial segment of Φepδq is equal to
Φepµq for some µ PM , and now by Lemma 4.3, we can define aτ,spρq as required. �

Lemma 4.9. Suppose that Pi is initialised for the final time at stage s˚. Then we may
act for Pi at at most finitely stages after stage s˚.

Proof. We may act at most once for Pi in case 1a after stage s˚, and at most once for Pi
in case 1b after stage s˚. As xfi,s, oi,sysăω is an pα ` 1q-computable approximation, we
may act at most finitely many times for Pi in case 1d after stage s˚. For any t P ω, if we
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do not act for Pi in case 1d at any stage after stage t, then we may act at most once for
Pi in case 1c after stage t. �

Lemma 4.10. Suppose that Ti is initialised for the final time at stage s˚. Then

‚ we may act for Ti in case 2a at at most hi many stages after stage s˚, and
‚ we may act for Ti in case 2b at at most finitely many stages after stage s˚.

Proof. The first part follows from part (3) of Lemma 4.2. Now since the first part holds,
to show that the second part holds, it suffices to show that if s ą s˚ is such that we do
not act for Ti in case 2a at any stage after stage s, then we act for Ti in case 2b at at most
finitely many stages after stage s. So let s be as above. By assumption λi,t “ λi,s for all
t > s. Therefore, if λi,s “ xy, we cannot act for Ti in case 2b at any stage after stage s.
So suppose that λi,s ‰ xy. Let l “ |λi,s|. For all t > s, by part (5) of Lemma 4.2, there
are mi,l many maxmal strings in Ti,t. Then since the construction can be carried out as
described, we may act for Ti in case 2b at at most mi,l many stages after stage s. �

Lemma 4.11. Suppose that Qe,i is initialised for the final time at stage s˚. Then we
may act for Qe,i at at most finitely stages after stage s˚.

Proof. By Lemma 4.9 and Lemma 4.10, it suffices to show that for all s ą s˚, if we do not
act for any P - or T -requirement at any stage after stage s, then we act for Qe,i at at most
finitely many stages after stage s. So let s be as above. If Qe,i is satisfied at stage s, then
we cannot act for Qe,i at any stage after stage s. So suppose that Qe,i is not satisfied at
stage s. Then we may act at most once for Qe,i after stage s. �

Lemma 4.12. We act for every P -requirement at at most finitely many stages, for every
Q-subrequirement at at most finitely many stages, and for every T -requirement at at most
finitely many stages.

Proof. By induction, with Lemma 4.9, Lemma 4.10, and Lemma 4.11. �

Let A “ lim infsÑ8As. The following is a straightforward consequence of Lemma 4.12.

Lemma 4.13. A is ∆0
2.

Lemma 4.14. Γ is consistent and ΓpAq is total.

Proof. The instructions we follow at the end of every stage ensure that ΓpAq is total.
These instructions also ensure that for all n P ω, then if n is not the follower of any
P -requirement at some stage, then Γ is consistent for n.

So suppose that we choose the follower n for Pi at stage s. We define an axiom for n
at some stage t only if n is the follower of Pi at stage t, so we may assume that we do not
initialise Pi at any stage after stage s.

Claim 4.15. For all t > s, Ti,t “ Ti,s.

Proof. This follows from the fact that we cannot act for Ti in case 2a at any stage after
stage s. �

By the instructions in case 1c of the construction, it suffices to establish the following.

Claim 4.16. For all t > s and all strings δ which are maximal in Ti,t´1, there is no string
in dom Γt´1pnq which is an initial segment of δ.

Proof. By induction on t. First suppose that t “ s. Since n is large at stage s,
dom Γs´1pnq “ H. The inductive step follows from the previous claim, together with
the fact a string which enters the domain of Γ at stage t must be of a large length. �

�

Lemma 4.17. Every P -requirement is met.
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Proof. By Lemma 4.12, suppose that Pi is initialised for the final time at stage s˚. Then
by Lemma 4.7 and Lemma 4.14, it can easily be seen that Pi is met. �

We now turn to showing that the Q-requirements are met.

Lemma 4.18. Suppose that X is set, δ ă X, Φ is a Turing functional with a length
increasing computable enumeration, and that ΦpXq is total and noncomputable. Then for
all l,m P ω, there is some set S of Φ-splits of cardinality m such that for all σ P S, δ ă σ,
and |Φpσq| ą l. Moreover, S can be chosen such that ΦpSq is sparse.

Proof. The first part is standard. The fact that there are arbitrarily many splits means
that S can always be chosen such that ΦpSq is sparse. �

Lemma 4.19. Suppose that d is such that ΦdpAq is total and noncomputable. Then for
all i > d, Qd,i is satisfied at all but finitely many stages.

Proof. Suppose for contradiction that ΦdpAq is total and noncomputable, and that there
is some i > d such that Qd,i is not satisfied at all but finitely many stages. Let i be the
least such. By Lemma 4.12, suppose that we do not act for any R P R with R 6R Ti at
any stage after stage s. Let l “ |λi,s|. Suppose that δ is the string in Ti,s of level l which
As extends. We have that δ ă At for all t > s.

By the choice of s and the definition of requires attention, we cannot act for any
T -requirement of weaker priority than Ti with e at any stage after stage s. Therefore,
Ze,t “ Ze,s for all t > s.

First suppose that d P Ei,s. Then by the choice of s, we could not remove d from
Ei at any stage after stage s, and so d P Ei,t for all t > s. Again by the choice of s,
and Lemma 4.17, all P -requirements P with P 6R Qd,i are satisfied at stage s, and at
all later stages. Yet again by the choice of s, if ϕd,i,s were defined, then ϕd,i,t would be
defined for all t > s, and Qd,i would be satisfied at all but finitely many stages. So ϕd,i,s
is not defined. Therefore, Qd,i does not require attention at any stage after stage s, which
contradicts the fact that ΦdpAq is total.

Now suppose that d R Ei,s. Then by the choice of s, d R Ei,t for all t > s. By the
choice of i, every Qd-subrequirement Q with Q ăR Qd,i is satisfied at stage s, and by the
choice of s, is satisfied at all later stages. Then Ti does not require attention via d at any
stage after stage s, which contradicts Lemma 4.18. �

Lemma 4.20. If e P Ei,s´1, then every Qe-subrequirement of stronger priority than Qe,i
is satisfied at stage s.

Proof. Suppose that stage r is the last stage before stage s at which we enumerated e
into Ei. Then we act for Ti with e at stage r, and by the definition of requires attention
at stage r, every Qe-subrequirement of stronger priority than Qe,i is satisfied at stage r.
Let Qe,j be of stronger priority than Qe,i. We show that e P Ej,s´1 and that ϕe,j,s´1 is
defined.

Suppose for contradiction that e were removed from Ej at some stage t with t P pr, sq.
Then we must either initialise Tj at stage t, or act for Tj in case 2a at stage t. In either
case, we then initialise Ti and remove e from Ei at stage t, which is a contradiction.

Now suppose for contradiction that ϕe,j,s´1 is not defined. Then we must initialise
Qe,j at some stage t with t P pr, sq. Then we must initialise Ti and remove e from Ei at
stage t, which is a contradiction. �

Lemma 4.21. If the Qe-subrequirement Q is satisfied at stage s, then every Qe-subrequirement
of stronger priority than Q is satisfied at stage s.

Proof. By the definition of satisfied and Lemma 4.20. �

Lemma 4.22. If we act for some Q-subrequirement at stage s, then As “ As´1.
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Proof. This is immediate. �

Lemma 4.23. Let k, l ă |λi,s|. Then every string in Ti,s of level l extends a string in Ti,s
of level k. Furthermore, distinct strings in Ti,s of level l extend distinct strings in Ti,s of
level k.

Proof. By induction on the stage number. �

Lemma 4.24. Suppose that aν,s´1pρq ę Φe,spAs´1q. Then we cannot update the arrow
for ρ in tν at stage s.

Proof. In order to update the arrow for ρ in tν at stage s, we must act for some Qe-
subrequirement at stage s. Let ϕ be as at stage s. Then ϕ ă As´1 and so Φepϕq 4
Φe,spAs´1q. Now since aν,s´1pρq ę Φe,spAs´1q, we have that aν,s´1pρq ę Φepϕq, and we
cannot update the arrow for ρ in tν at stage s. �

Lemma 4.25. Suppose that ρ ę Φe,spAs´1q. Then we cannot update the arrow for ρ in
tν at stage s.

Proof. By Lemma 4.24, noting that aν,s´1pρq < ρ. �

Lemma 4.26. Suppose that i ă j, and that Qe,i and Qe,j are satisfied at stage t ` 1.
Then Φepϕe,i,tq ă Φepϕe,j,tq

Proof. This follows immediately from the definition of requires attention. �

Fix some e such that ΦepAq is total and noncomputable. Let νe P tinf, finu
e be such

that for all d ă e, νepdq “ inf if for all i > d, Qd,i is satisfied at all but finitely many
stages, and νepdq “ fin otherwise.

Lemma 4.27. Suppose that d is such that νepdq “ fin. Then there are at most finitely
many stages at which we act for some Ti with d.

Proof. By the definition of νe, there is some i > d such that Qd,i is not satisfied at infinitely
many stages t. By Lemma 4.12, Qd,i must not be satisfied at all but finitely many stages.
Let s be such that Qd,i is not satisfied at any stage t with t > s. Then by the definition
of requires attention, we could not act for any T -requirement T with Ti 6R T with d at
any stage after stage s. The lemma now follows by Lemma 4.12. �

Lemma 4.28. tνe is reset at at most finitely many stages.

Proof. tνe is reset at some stage s only if we either act for some R P R with R ă Qe at
stage s, or for some d ă e such that νepdq “ fin, we act for some Ti with d at stage s.
The lemma now follows from Lemma 4.12 and Lemma 4.27. �

Lemma 4.29. tνe is an α-change test.

Proof. We write ν for νe. By Lemma 4.28, suppose that the last stage at which tν is reset
is stage s0. It is clear that for all strings ρ and all s P ω, aν,spρq < ρ. Therefore, it suffices
to show that for all strings ρ and all s ą s0, if we update the arrow for ρ in tν at stage s,
then bν,spρq ă bν,s´1pρq.

Fix some string ρ. If we do not update the arrow for ρ in tν at any stage after stage
s0, then we are done. So suppose we do. Let s1, s2, . . . be the nonempty and possibly
infinite sequence of stages after stage s0 at which we update the arrow for ρ in tν . We
have bν,s1´1pρq “ 8 and bν,s1pρq ă 8. So suppose by induction that for some k ą 1, sk
is defined, and that for all j P r1, ks, bν,sj pρq ă bν,sj´1pρq. If sk`1 is not defined, then we
are done. So suppose that sk`1 is defined. We show that bν,sk`1pρq ă bν,sk pρq.

To slightly ease the notational burden, we write s for sk, w for sk`1, and Is for Iν,ρ,s.
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Claim 4.30. Suppose that aν,spρq is incomparable with Φepθq. Then there is some t P
ps, wq such that θ ⊀ At.

Proof. Suppose not. Then θ ă Aw´1, and so Φepθq 4 Φe,wpAw´1q. By the choice of w,
aν,w´1pρq “ aν,spρq. Since aν,spρq is incomparable with Φepθq, aν,w´1pρq is incomparable
with Φe,wpAw´1q, so by Lemma 4.24, we cannot update the arrow for ρ in tν at stage w,
which is a contradiction. �

Claim 4.31. We cannot act for any R P R with R ă Qe at any stage after stage s0.

Proof. Doing so would reset tν . �

We must act for some Qe-subrequirement at stage s. Suppose that we act for Qe,i at
stage s. Let M be as in the construction at stage s.

Claim 4.32. Suppose that for some j, we act for Pj or Tj at some stage u. Further
suppose that Tj was initialised at some stage t with t ă u, and that t is the greatest such.
Then if α ă At´1 is of length at most t, α ă Au.

Proof. At stage t, we initialise all P - and T -requirements R with Tj 6R R.
Since we initialise Tj at stage t, εj,t is undefined. In order to act for Pj or Tj at stage

u, εj,u´1 must be defined. Therefore, at some stage v with v P pt, uq, we must define εj,v.
By the choice of t, there is in fact some unique such stage v. Let α ă At´1 be of length
at most t.

Claim 4.33. α ă Av´1.

Proof. We cannot act for any R P R with R ăR Tj at any stage after stage t and before
stage v, since this would initialise Tj . Now by the definitions of requires attention for the
different requirements and subrequirements, we cannot act for any R P R with Tj 6R R
at any stage after stage t and before stage v. �

We define εj,v to be some initial segment of Av´1 of a large length, and so in particular,
|εj,v| ą t, and α ă εj,v. A straightforward induction shows that εj,v ă Aw for all
w P pv, us. �

Claim 4.34. Suppose that u > s, and that we do not initialise Ti at any stage t with
t P ps, us. Then Au extends some string in M .

Proof. By induction on u, using Lemma 4.23. �

Claim 4.35. There is some j P Is and some u P ps, wq such that we act either for Pj or
for Tj at stage u.

Proof. First suppose that we update the arrow for ρ in step 1 or in case 3b at stage s.
Then Is “ re, is. Let ϕ be as in the construction at stage s. We define aν,spρq to be
incomparable with Φepϕq. By Claim 4.30, there must be some stage u with u P ps, wq
such that ϕ ⊀ Au. Let u be the least such. By Lemma 4.22, there is some j P ω such
that we act for Pj or for Tj at stage u. By Claim 4.31, we cannot act for any R P R
with R ă Qe at stage u. We initialise all R P R with Qe,i ă R at stage s. Note that
by the definition of requires attention, |ϕ| ă s. In addition, we have ϕ ă As´1. Then by
Claim 4.32, we must have j P re, is.

Now suppose that we act in case 3a at stage s. Then Is “ re, iq. We define aν,spρq to
be incomparable with Φepµq for all µ PM . By Claim 4.34, As extends some string in M .
Now by Claim 4.30, there must be some stage u with u P ps, wq such that µ ⊀ Au for all
µ P M . Let u be the least such. By Lemma 4.22, there is some j P ω such that we act
for Pj or for Tj at stage u. By Claim 4.31, we cannot act for any R P R with R ă Qe at
stage u. We initialise all R P R with Qe,i ă R at stage s. Note that for all µ PM , by the
definition of requires attention, |µ| ă s. Then by Claim 4.32, we have j P re, is. Suppose



SEPARATING WEAK α-CHANGE AND α-CHANGE GENERICITY 23

for contradiction that j “ i. Again by Claim 4.32, we cannot initialise Ti at any stage t
with t P ps, uq. Then by Claim 4.34, Au ą µ for some µ P M , which is a contradiction.
Therefore, j ‰ i, and j P Is. �

By Claim 4.35, let k P Is be least such that we act for Pk or for Tk at some stage u
with u P ps, wq.

Claim 4.36. There is some ζ P Ze,s´1 such that Φepζq “ ρ.

Proof. As noted above, bτ,s1´1pρq “ 8 and bτ,s1pρq ă 8. So we must act in step 1 at
stage s1. Let δs1 be the string δ as at stage s1 of the construction. Then Φepδs1q “ ρ. We
have that δs1 P Ti,s1´1 and in addition, δs1 P Ze,s1´1. Finally, note that we never remove
any elements from Ze at any stage, and s1 ă sk “ s. �

Claim 4.37. All Qe-subrequirements Q with Q 6R Qe,i are satisfied at stage s.

Proof. We act for Qe,i at stage s, so it is clear that Qe,i is satisfied at stage s. Now use
Lemma 4.20. �

Claim 4.38. Suppose that Qe,j 6R Qe,i, and that Qe,j is the Qe-subrequirement of
strongest priority which is not satisfied at some stage t with t P ps, ws. Then we must
act for Qe,j at stage w.

Proof. Suppose not. We must act for some Qe-subrequirement at stage w, so suppose
that we act for Qe,l at stage w.

First suppose that Qe,l is of stronger priority than Qe,j . By Claim 4.37, Qe,l is satisfied
at stage s, and by assumption, Qe,l is satisfied at stage w. So we cannot act for Qe,l at
stage w.

Now suppose that Qe,l is of weaker priority than Qe,j . Since we act for Qe,l at stage w,
e P El,w´1, so by Lemma 4.20, all Qe-subrequirements of stronger priority than Qe,l are
satisfied at stage w, and in particular, Qe,j is satisfied at stage w. Since Qe,j is not satisfied
at some stage t with t P ps, wq, we must act for Qe,j at some stage v with v P pt, wq. Let
v be the greatest such. Then ϕe,j,w “ ϕe,j,v. By Claim 4.36, let ζ be such that ζ P Ze,s´1

and Φepζq “ ρ. Since s ă v, we have that ζ P Ze,v´1. Now by the definition of requires
attention at stage v, we have that |Φepϕe,j,vq| ą |ρ|. Then by Lemma 4.26, and the fact
that we act for Qe,l at stage w and update the arrow for ρ in tν , we have that

Φepϕe,j,vq “ Φepϕe,j,wq 4 Φepϕe,l´1,wq ă ρ 4 Φepϕe,l,wq

which is a contradiction. �

Claim 4.39. Suppose that we act for Qe,j at stage w, and that e was removed from Ej
at some stage u with u P ps, wq. Then we act in case 3a at stage w.

Proof. Let u P ps, wq be greatest such that we remove e from Ej at stage u. Since we act
for Qe,j at stage w, we must have that e P Ej,w´1. Therefore, we must enumerate e into
Ej at some stage v with v P pu,wq. Let v be the greatest such. Let T be as at stage v.
Then T Ă Yj,e,v. We empty Yj,e at stage u, so every element of T was enumerated into
Yj,e at some stage after stage u. Let σ P T . By Claim 4.36, let ζ be such that ζ P Ze,s´1

and Φepζq “ ρ. Then since s ă u, we have that ζ P Ze,u´1. Now by the definition of
requires attention, we have that |Φepσq| ą |Φepζq| “ |ρ|.

Let δ be as at stage w. Then by the choice of v, δ P T . Since ρ and Φepδq are
comparable, by the above, we must have that ρ ă Φepδq. �

Claim 4.40. Suppose that I Ď re, is, and that for all j P I, we do not initialise Pj or act
for Pj in case 1b at any stage t with t P ps, wq. Then for all j P I and all t P rs, ws,

‚ Pj has some follower nj,s at the beginning of stage s, and Pj has follower nj,s at
the beginning of stage t, and
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‚ Pj has been realised with its follower by the beginning of stage t if and only if Pj
has ben realised with its follower by the beginning of stage s.

Proof. We act for Qe,i at stage s, and so every P -requirement P with P 6R Qe,i is
satisfied at stage s, and so in particular, P must have a follower at the beginning of stage
s. The claim now follows directly from the assumptions. �

First suppose that we initialise Tk at some stage t with t P ps, wq. Then by the choice
of k, we must act for some Q-subrequirement of stronger priority than Tk at some stage
t with t P ps, wq. Suppose that Qe,l is of equally strong priority as the strongest priority
Q-subrequirement for which we act at some stage t with t P ps, wq.

Claim 4.41. We act for Qe,l`1 in case 3a at stage w.

Proof. By the choice of l, l ă k. Let t P ps, wq be the greatest such that we act for some
Q-subrequirement of equally strong priority as Qe,l at stage t. We initialise Qe,l`1 at stage
t, and again by the choice of l, Qe,l`1 is the Qe-subrequirement of strongest priority which
is not satisfied at some stage after stage s and before stage w. Therefore, by Claim 4.38,
we must act for Qe,l`1 at stage w. At stage t, we reset El`1, and so we remove e from
El`1. Now by Claim 4.39, we must act in case 3a at stage w. �

Claim 4.42. bν,wpρq ă bν,spρq.

Proof. By Claim 4.41, Iw “ re, l`1q. By the choice of l, for all j P Iw, we do not initialise
Pj or act for Pj in case 1b at any stage after stage s and before stage w. By Claim 4.40
and the definition of bν,wpρq, it suffices to show that |Iw| ă |Is|. First suppose that we
act for Qe,i via step 1 or in case 3b at stage s. Then Is “ re, is. Since l ă k 6 i and
Iw “ ri, ls, we have |Iw| ă |Is|. Now suppose that we act for Qe,i in case 3a at stage s.
Then Is “ re, iq. Then l ă k ă i, which suffices as above. �

Now suppose that we do not initialise Tk at any stage t with t P ps, wq. By Claim 4.37,
e P Ek,s´1. Suppose that stage r is the last stage before stage s at which e was enumerated
into Ek. Let le,k “ |λk,r|, and let δk,s be the string in Tk,s of level le,k which As extends.

Claim 4.43. Φepδk,sq 4 ρ.

Proof. First suppose that k ă i. Φepϕe,i´1,sq ă ρ 4 Φepϕe,i,sq. By Claim 4.37, and
Lemma 4.26, Φepϕe,k,sq ă Φepϕe,i,sq and so Φepϕe,k,sq 4 Φepϕe,i´1,sq Let stage q be the
last stage before stage s at which we act for Qe,k. By the choice of q, we cannot initialise
Qe,k at any stage t with t P pq, sq. Therefore, we cannot initialise Tk at any stage t with
t P pq, sq, and so cannot remove any string from Tk at any stage t with t P pq, sq. So δk,s
is in fact the string in Ti,q which Aq extends, and δk,s ă ϕe,k,q. Then, using the fact that
we act for Qe,i and update the arrow for ρ in tν at stage s,

Φepδk,sq 4 Φepϕe,k,qq “ Φepϕe,k,sq 4 Φepϕe,i´1,sq ă ρ.

Now suppose that k “ i. Since k P Is, i P Is, so we must have that Is “ re, is.
Therefore, we must update the arrow for ρ via step 1 or case 3b at stage s. First suppose
that we update the arrow for ρ via step 1 at stage s. Then by the choice of δk,s and our
assumptions, ρ “ Φepδk,sq. So now suppose that we update the arrow for ρ via case 3b at
stage s. Then Φepδk,sq 4 ρ. �

There are two further cases that we consider. First consider the case where we act for
Tk or for Pk in case 1b at some stage u with u P ps, wq.

Claim 4.44. Suppose that we act for Tk in at some stage u with u P ps, wq and that u is
the least such. Then we must act with some f ą e at stage u.
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Proof. Suppose for contradiction that we act with some d 6 e at stage u.
First suppose that d “ e. We act for Qe,i at stage s, so e P Ei,s´1. By Claim 4.37, we

have that e P Ek,s´1. We do not initialise Tk at any stage t with t P ps, wq, and by the
choice of u, we cannot remove any elements from Ei at any stage after stage s and before
stage u. Therefore, e P Ek,u´1, so by the definition of requires attention, we cannot act
with e at stage u, which is a contradiction.

So suppose that d ă e. Since we update the arrow for ρ in tν at stage s, we have that
ν P Ne,i,s. There are two cases to consider. First consider the case where νpdq “ inf. By
the definition of Ne,i,s, we have that d P Ei,s´1. Then by the same argument as above,
we cannot act with d at stage u, which is a contradiction. Now consider the case where
νpdq “ fin. Then we reset ν at stage v, which is a contradiction, since v ą s0. �

Claim 4.45. Suppose that we act for Tk or for Pk in case 1b at some stage u with
u P ps, wq. Then we must act for Tk in case 2a at some stage v with v P ru,wq.

Proof. Let u P ps, wq be least such that we act for Tk or for Pk in case 1b at stage u. If
we act for Tk in case 2a at stage u, then we are done. So suppose that we act for Tk in
case 2b or for Pk in case 1b at stage u.

Suppose for contradiction that we do not act for Tk in case 2a at any stage v with
v P pu,wq. Then by the choice of u, δk,s is the string in Tk,u´1 of level le,k which Au´1

extends.
First suppose that we act for Tk in case 2b at stage u. Then by Claim 4.44, for

some f ą e, we say that we have found Φf -splits above δk,s. Using the fact that the
construction can be carried out as described, an induction using Lemma 4.23 shows that
for all v P pu,wq, Av´1 extends some string in Tk,v´1 of level le,k not equal to δk,s. Now
since the set of strings in Tk,v´1 of level le,k is a set of Φe-splits, and by Claim 4.43, for
all v P pu,wq, ρ ę Φe,vpAv´1q. By Lemma 4.25, this is a contradiction.

Now suppose that we act for Pk in case 1b at stage u. Then we enumerate δk,s into Fk
at stage u. By part (2) of Lemma 4.2, for all v P pu,wq, Av´1 does not extend δk,s. Then
as above, for all v P pu,wq, ρ ę Φe,vpAv´1q, which is a contradiction. �

Claim 4.46. We act for Qe,k in case 3a at stage w.

Proof. Let u P ps, wq be least such that we act for Tk or for Pk in case 1b at stage u. Then
at stage u, we initialise Qe,k, so Qe,k is not satisfied at stage u. By the choice of k, Qe,k
is the Qe-subrequirement of strongest priority which is not satisfied at some stage t with
t P ps, wq. So by Claim 4.38, we must act for Qe,k at stage w. By Claim 4.45, we must
act for Tk in case 2a at some stage v with v P ru,wq, and by Claim 4.44, we must act with
some f ą e at stage v. Then we remove e from Ek at stage v. Now by Claim 4.39, we
must act in case 3a at stage w. �

Claim 4.47. bν,wpρq ă bν,spρq.

Proof. By Claim 4.46, we have that Iw “ re, kq. Again by the choice of k, for all j P Iw,
we do not initialise Pj or act for Pj in case 1b at any stage after stage s and before stage
w. By Claim 4.40 and the definition of bν,wpρq, it suffices to show that |Iw| ă |Is|. First
suppose that we act for Qe,i via step 1 or in case 3b at stage s. Then Is “ re, is. Since
k 6 i and Iw “ ri, kq, we have |Iw| ă |Is|. Now suppose that we act for Qe,i in case 3a at
stage s. Then Is “ re, iq. Then k ă i, which suffices as above. �

Now suppose that we do not act for Tk or for Pk in case 1b at any stage u with
u P ps, wq.

Claim 4.48. For all j P re, is, Pj is satisfied at stage s, and in particular, Pj has a
follower at the beginning of stage s.
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Proof. We act for Qe,i at stage s, so every P -requirement P with P 6R Qe,i is satisfied
at stage s. �

Claim 4.49. We must act for Pk in case 1d at some stage v with v P ps, wq.

Proof. By the choice of k, we must act for Tk or for Pk at some stage v with v P ps, wq.
Let v be the least such. From our assumption, we must act for Pk in either case 1a, case
1c, or case 1d at stage v. By Claim 4.48, Pk is satisfied at stage s, and by the choice of v,
Pk must also be satisfied at stage v. Then we cannot act in case 1a or in case 1c at stage
v, so we must act in case 1d at stage v. �

Claim 4.50. We act for Qe,k in case 3b at stage w.

Proof. By Claim 4.49, suppose that stage v is the first stage after stage s at which we
act for Pk in case 1d. Then at stage v, we initialise Qe,k. By the choice of k, Qe,k is
the Qe-subrequirement of strongest priority which is not satisfied at some stage t with
t P ps, ws. By Claim 4.38, we must act for Qe,k at stage w. Let δw be the string δ as at
stage w of the construction. Then by our assumptions and the choice of v, we have that
δw “ δk,s. To show that we act in case 3b at stage w, we must show that Φepδwq 4 ρ.
However, this now follows from Claim 4.43. �

Claim 4.51. Iw Ď Is.

Proof. By Claim 4.50, Iw “ re, ks. First suppose that we update the arrow for ρ via step
1 or case 3b at stage s. Then Is “ re, is. We have that k P Is, so k 6 i, and Iw Ď Is. Now
suppose that we update the arrow for ρ via case 3a at stage s. Then Is “ re, iq. Then
k P Is, so k ă i, and Iw Ď Is. �

Claim 4.52. I`w “ I`s X re, ks.

Proof. By Claim 4.50 and Claim 4.40. �

Claim 4.53. Suppose that Pk has follower n at the beginning of stage s. Then oe,wpnq ă
oe,spnq.

Proof. As above, Pk is satisfied at the beginning of stage s. By Claim 4.49 and Claim 4.40,
Pk has been realised with n by stage s. Therefore, Γs´1pAs´1, nqÓ, and Γs´1pAs´1, nq ą
fi,spnq. Let γ ă As´1 be least such that Γs´1pγ, nqÓ. Let v be as in Claim 4.49. Then
Pk requires attention via (4) at stage v, so Γv´1pAv´1, nq 6 fi,vpnq. By the choice of v,
γ ă Av´1, and so Γs´1pAs´1, nq “ Γv´1pAv´1, nq. Therefore, fi,vpnq ‰ fi,spnq, and so
oi,vpnq ă oi,spnq, and oe,wpnq ă oe,spnq. �

Claim 4.54. bν,wpρq ă bν,spρq.

Proof. By Claim 4.50, Iw “ re, ks, and by Claim 4.49, k P I`w . Now by Claim 4.51,
Claim 4.52, Claim 4.53, and the definition of bν,wpρq, the lemma follows. �

�

Lemma 4.55. ΦepAq does not avoid range tνe .

Proof. We write ν for νe. By Lemma 4.27, let i˚ be such that for all i > i˚ and for all
d ă e with νpdq “ fin, we do not act for Ti with d at any stage.

Let i > i˚. By Lemma 4.12, let si,0 be the last stage at which Ti is initialised. By
Lemma 4.19, Qe,i is satisfied at all but finitely many stages. Therefore, e is an element of
Ei at all but finitely many stages. By Lemma 4.12, let ri be the last stage at which we
enumerate e into Ei, and let le,i “ |λi,ri |. Again by Lemma 4.12, suppose that stage si,1
is the last stage at which we act for Ti or for Pi in case 1b.

Claim 4.56. ν P Ne,i,s for all s > si,1.
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Proof. Suppose that s > si,1, d ă e, and νpdq “ inf. It suffices to show that d P Ei,s. By
the definition of ν, d is in Ei at all but finitely many stages. Now by the choice of si,1,
d P Ei,s. �

We have that si,1 > ri. Let δi be the string in Ti,si,1 of level le,i which Asi,1 extends.
Then by the choice of si,1, δi ă As for all s > si,1. By Lemma 4.17, Pi is satisfied at
all but finitely many stages, and so we must act in case 1c at some stage after stage si,1.
Let si,2 be the first such stage. We initialise Qe,i at stage si,2. Since ΦepAq is total and
noncomputable, we must act for Qe,i in case 3 at some later stage. Let si,3 be the first
such stage.

Let ρi “ Φepδiq. By the choice of si,3 and since ν P νe,i,si,3 , we must act for Qe,i via
step 1 at stage si,3 and define bν,si,3pρiq ă 8. Since δi ă As for all s > si,1, ρi ă ΦepAq.

By the choice of si,0, and since i > i˚, we cannot reset ν at any stage after stage si,1.
Therefore, ρi P range ν.

It now suffices to establish the following.

Claim 4.57. tρi : i > i˚u is cofinal along ΦepAq

Proof. Let i ă j. For k P ti, ju, since δk is a Φe-split in Tk,sk,1 , by part (10) of Lemma 4.2,
δk was enumerated into Ze at some stage qk with qk 6 sk,1. Then qi ă qj , and δi P Ze,qj´1.
Now by the definition of requires attention at stage qj , we have that |Φepδjq| ą |Φepδiq|. �

�

Lemma 4.58. ΦepAq does not meet range tνe .

Proof. We write ν for νe. Let i > e. By Lemma 4.12, let si,0 be the last stage at which Ti
is initialised. By Lemma 4.19, Qe,i is satisfied at all but finitely many stages. Therefore,
e is an element of Ei at all but finitely many stages, and we must act for Ti at some stage
after stage si,0. Again by Lemma 4.12, suppose that stage si,1 is the last stage at which
we act for Ti or for Pi in case 1b.

Claim 4.59. For all i > e and all s > si,1, ν P Ne,i,s.

Proof. As for Claim 4.56 �

By Lemma 4.17, Pi is satisfied at all but finitely many stages. Let si,2 be least such
that Pi is satisfied at all stages s with s > si,2. Note that si,2 ą si,1. We must act
for Pi in case 1c at stage si,2. We initialise Qe,i at stage si,2. Since ΦepAq is total and
noncomputable, we must act for Qe,i in case 3 at some later stage. Let stage si,3 be the
first such stage.

For all i > e, by the choice of si,2 and si,3, we do not act for Qe,i at any stage after
stage si,3, which gives the following.

Claim 4.60. ϕe,i,si,3 ă As for all s > si,3, and so ϕe,i,si,3 ă A.

We therefore let ϕe,i “ ϕe,i,si,3 .

Claim 4.61. tΦepϕe,iq : i > eu is cofinal along ΦepAq.

Proof. By Claim 4.60, ϕe,i ă A, and so Φepϕe,iq ă ΦepAq. For all i, j > e, if i ă j, then
by Lemma 4.26, Φepϕe,iq ă Φepϕe,jq. �

Suppose that ρ ă ΦepAq and that lims bν,spρq ă 8. By Claim 4.61, let i > e be least
such that ρ 4 Φepϕe,iq.

Claim 4.62. bν,si,3pρq ă 8.
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Proof. Suppose for contradiction that bν,si,3pρq “ 8. Then since lims bν,spρq ă 8, there
is some t ą si,3 such that bν,t´1pρq “ 8 and bν,tpρq ă 8. At stage t, we must act for
some Qe-subrequirement via step 1 and update the bound for ρ in tν . Since t ą si,3, we
must act for some Qe-subrequirement of weaker priority than Qe,i.

Suppose that we act for Qe,j at stage t. Then e P Ej,t´1. Let stage r be the last stage
before stage t at which e was enumerated into Ej . Then At extends some string θ in Tj of
level |λj,r|. Since we update the bound for ρ at stage t, we have that Φepθq “ ρ. Suppose
that θ was enumerated into Yj,e at stage q. Then by part (10) of Lemma 4.2, q ą si,3.
By the properties listed in the definition of requires attention at stage q, we have that
|Φepθq| ą |Φepϕe,i,q´1q|. By the choice of si,3, ϕe,i,q´1 “ ϕe,i,si,3 “ ϕe,i. This contradicts
the fact that ρ 4 Φepϕe,iq. �

The instructions in step 2 at stage si,3 of the construction ensure that aν,si,3pρq is
incomparable with Φepϕe,iq. Again by the choice of si,2 and si,3, aν,spρq “ aν,si,3pρq for
all s > si,3. Now by Claim 4.60, ϕe,i ă As for all s > si,3, so lims aν,spρq is incomparable
with ΦepAq. �

Lemma 4.63. Qe is met.

Proof. By Lemma 4.29, tνe is an α-change test, and by Lemma 4.55 and Lemma 4.58,
ΦepAq neither meets nor avoids range tνe . �

�

The following theorem, together with Theorem 4.16 and Theorem 5.4 of [13], gives a
∆0

2 Turing degree separation of each level in the hierarchy of multiple genericity notions.

Theorem 4.64. Let α 6 ε0 be a power of ω. Then there is a ∆0
2 Turing degree which is

weakly α-change generic but not α-change generic.

Proof. By Theorem 4.1, let a be a ∆0
2 degree which is not α-c.a. dominated, and which

does not compute any α-change generic degree. Then by Theorem 4.13 of [13], a computes
a weakly α-change generic degree b. As a does not compute any α-change generic degree,
neither does b. In particular, b itself is not α-change generic. �
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