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Abstract. It is investigated how much information of a random set
can be preserved if one splits the random set into two halves or, more
generally, cuts out an infinite portion with an infinite recursive set. The
two main results are the following ones: 1. Every high Turing degree
contains a Schnorr random set Z such that Z ≡T Z ∩ R for every
infinite recursive set R. 2. For each set X there is a Martin-Löf random
set Z ≥T X such that for all recursive sets R, either X ≤T Z ∩ R or
X ≤T Z ∩R.

1. Introduction

We contribute to the ongoing investigation of the interplay between random-
ness and computational complexity. Our main question is: how is informa-
tion distributed over a random set Z ⊆ N? Our answer is that the higher the
Turing degree the easier is it to find a random set in it whose parts contain
useful information. Here we ask whether either the information is in every
part or whether it is at least one one of the two parts of each given recursive
splitting. Here our notion of a “part” of a set Z ⊆ N is intersections of the
form Z ∩R, where R is an infinite and co-infinite recursive set. We refer to
Z ∩ R, Z ∩ R as a (recursive) splitting of Z. We call the two components
the halves of the splitting. We study the computational complexity of such
parts Z ∩R. In particular, we ask:

(a) Is it possible that all parts of a random set Z compute Z?
(b) If not, can we still have complex information in at least one of the

halves of every splitting of a random set Z?

Our first result, Theorem 3.1, provides a strong affirmative answer to (a) for
Schnorr randomness. In every given high Turing degree we build a Schnorr
random set Z where all parts compute Z. The mere existence of such a set
Z was previously known by combining several results: if a degree is minimal,
the parts of a random set in it, being non-recursive, automatically preserve
the information. High minimal degrees exist and every high degree contains
a Schnorr random set [18].

Let Z satisfy the stronger notion of being Martin-Löf random. We cannot
expect an affirmative answer to (a). Any set A Turing below both halves
of a splitting of Z must be a base for Martin-Löf randomness as each half
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André Nies is partially supported by the Marsden Fund of New Zealand, grant no.

08-UOA-187.
Frank Stephan is supported in part by NUS grant R252-000-420-112.

1
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is Martin-Löf random in the other. If A is a base for Martin-Löf random-
ness then A is K-trivial [10] and hence ∆0

2. Since the K-trivials are closed
downward under Turing reducibility [15], this shows that Z 6≤T A. Every
non-high Schnorr random set is Martin-Löf random [18]. Thus, we can con-
clude that Theorem 3.1 is optimal in that the high degrees are the largest
class of Turing degrees where it works.

Our second result, Theorem 4.1, answers (b) in the affirmative for Martin-
Löf randomness. We build a Martin-Löf random set Z such that for every
splitting given by a recursive set R, at least one half computes Chaitin’s Ω,
which is Turing equivalent to the halting problem. Note that the two halves
must be Turing incomparable (unless R is finite or co-finite), so we cannot
expect the half to compute Z. However, it is in fact possible to replace Ω
by an arbitrarily complex set at the cost of a more complicated argument.

While Theorem 3.1 dealt with Schnorr random sets where the information
is distributed very evenly and every recursively cut out infinite part permits
to reconstruct the whole set, Theorem 4.1 dealt with Martin-Löf random
sets where the useful information is concentrated into the complement of an
r-maximal set so that each splitting has a half containing almost all of this
complement and therefore permitting the half to reconstruct Ω from this
half. In our last result we show that for any random set Z of hyperimmune-
free Turing degree (where the notions of Kurtz random, Schnorr random and
Martin-Löf random coincide), the information is neither distributed evenly
nor concentrated somewhere, instead for every non-recursive set A there is
a recursive splitting such that neither of the halves computes A.

Please see the textbooks of Nies [16, Chapter 3] or Li and Vitányi [13] for
definitions and context from algorithmic randomness and recursion theory.

2. Background

First we discuss the questions above in the purely recursion theoretic setting,
without requiring that the set Z is random. Then we relate splitting to
algorithmic randomness.

Recursion theoretic facts. Dekker and Myhill [2] showed that every Turing
degree contains an introreducible set, that is, a set A which is Turing re-
ducible to each of its infinite subsets. Hence for every recursive set R, either
A ≡T A ∩R or A ∩R is finite.

Let us call a set A self-reducing if A ≡T A∩R for every infinite recursive
set R. Equivalently, whenever B ≤m A via a function with infinite range
then B ≡T A.

Recall that an infinite co-infinite set A is called bi-immune if neither A
nor A contain an infinite recursive set R. Clearly every non-recursive self-
reducing set is bi-immune. Conversely, if A is bi-immune and of minimal
Turing degree, then A is self-reducing. Jockusch [11] constructed a non-
recursive degree a ≤ 0′′ such that no degree b ≤ a contains any bi-immune
sets. This gives examples of degrees without self-reducing sets. He also
showed that every hyperimmune degree contains a bi-immune set. We now
show that every ∆0

2 degree contains a self-reducing set.
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Proposition 2.1. Every ∆0
2 Turing degree contains a set A such that for

every infinite r.e. set R we have A ≤T A ∩R.

Proof. We fix a given non-recursive set B ∈ ∆0
2 with a recursive approxima-

tion Bs, that is, for all x and almost all s, Bs(x) = B(x). The convergence
module

cB(x) = min{s > x : ∀y ≤ x [Bs(y) = B(x)]}
satisfies that B ≤T f for every function f majorising cB – see for instance
[16, Proposition 1.5.12]. Now one B-recursively splits the integers into in-
tervals I0, I1, . . . with In consisting of cB(n) elements. Note that there is
no recursive function f with ∀n [f(min(In)) ≥ max(In)]; if such an f would
exist, one could directly compute a function g majorising cB by letting
g(0) = f(0) and g(n+ 1) = max{f(m) : m ≤ g(n) + 1}.

One constructs a set A which is constant on each interval In, that is, sat-
isfies A(x) = A(y) for all x, y ∈ In. This is done via a priority construction
similar to the one of Jockusch [11] which shows that every hyperimmune
degree contains a bi-immune set.

In stage n one defines A(x) for all x ∈ In. The requirement R〈i,j〉 needs
attention if the requirement has not acted in stages 0, 1, . . . , n − 1 and Wi

enumerates within cB(n) steps an element into In. If R〈i,j〉 receives attention
then it acts as follows: If j is even then let A(x) = 0 for all x ∈ In else let
A(x) = 1 for all x ∈ In.

Assuming that W0 enumerates all elements of N within 0 steps, it is clear
that in every stage some requirement needs attention and therefore A will
be defined on all intervals In. Assume that there is a pair 〈i, j〉 such that Wi

is infinite and the requirement R〈i,j〉 never acts; without loss of generality
let 〈i, j〉 be the least such pair. If n is sufficiently large then all requirements
of higher priority do require attention only before stage n – either they
require attention only finitely often (without being successful) or they act
eventually and will never require attention again. Let f(m) = x+ t for the
first pair 〈x, t〉 found such that x ≥ m and x ∈ Wi,t. The function f is
total as Wi is infinite. If now f(min(In)) > cB(n) for almost all n, then cB
would be majorised by a recursive function; hence there are infinitely many
n such that f(min(In)) < cB(n) and the requirement R〈i,j〉 would require
attention in these stages n and therefore act eventually in contradiction to
the assumption.

It follows from the construction that every infinite r.e. set R intersects
infinitely many In ⊆ A and infinitely many In ⊆ A. Thus one can construct
relative to R∩A a function h with h(n) ∈ R for all n, h(n) < h(n+1) for all n
and h(n) ∈ A iff n is even. As R〈0,0〉 requires attention at stage 0, h(0) /∈ I0.
Furthermore, one can see by induction that the facts that h(n) /∈ ∪m≤nIm,
h(n), h(n+ 1) being in different intervals and h being strictly monotonically
increasing imply that h(n+ 1) /∈ ∪m≤n+1Im. Thus h(n) ≥ max(In) ≥ cB(n)
and so B ≤T h. As h ≤T A ∩R, it follows that B ≤T A ∩R. �

Facts related to randomness. One can split every complete Turing degree
into Turing incomplete Martin-Löf random degrees. We would like to thank
Yu Liang for a simplification of our original proof of this fact.
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Proposition 2.2. Every Turing degree above that of Ω contains a Martin-
Löf random set of the form X ⊕ Y such that X is low and Y is Turing
incomplete.

Proof. Let Z ≥T Ω be in the given Turing degree and let X be a low Martin-
Löf random set, for example a half of Ω. Relativising the Theorem of Kučera
and Gács toX gives that there is a set Y which is Martin-Löf random relative
to X and which satisfies Z ≡T X⊕Y . Now X is Martin-Löf random relative
to Y by the Theorem of van Lambalgen [12] and therefore X 6≤T Y ; hence
Y is Turing incomplete. �

In the first section, we discussed the fact that every set A below both halves
of a splitting of a Martin-Löf random set is K-trivial. In recent work, Bien-
venu, Kučera, Greenberg, Nies and Turetsky [1] have built a K-trivial set
A that is not below both halves of any such splitting. On the other hand,
every strongly jump traceable set is below every ω-r.e. Martin-Löf random
set [9] and hence below, say, Ω ∩R for every infinite recursive set R.

For some Demuth random sets Z, there is still such a set A: Nies [17]
builds a Demuth random ω2-r.e. set Z; he also observes that there is a non-
recursive r.e. set Turing below all ω2-r.e. Martin-Löf random sets. Note
that this stands in contrast to Martin-Löf random sets Z of hyperimmune-
free degree where it is impossible to find any non-recursive set A which is
retrievable from at least one half of every recursive splitting, see Theorem 4.3
below.

3. Schnorr random sets

Theorem 3.1. Every high Turing degree contains a Schnorr random set Z
such that Z ≤T R∩Z for every infinite r.e. set R. Thus, if R is an infinite
recursive set then Z ≡T R ∩ Z.

Proof. Let g be a function in the given Turing degree which dominates all
recursive functions. Define recursively in g a function f such that f(n)
is the sum of all ϕk(n) where k ≤ n and ϕk(n) is computed within g(n)
computation steps. Note that the function f also dominates all recursive
functions.

Fix a set X. We will define a Schnorr random set Z ≤T g ⊕X such that
X ≤T R ∩ Z for every infinite r.e. set R. The theorem is then obtained by
letting X be any set in the given high degree.

Inductively define for each n and each k = 0, 1, . . . , n, the set En,k to be
the first 2n+ 5 elements enumerated into

Wk,g(f(n)) − {0, 1, . . . , f(n)} −
⋃

(n′,k′):(n′,k′)<lex(n,k)∧k′≤n′

En′,k′ ;

whenever they exist; if they do not exist then En,k = ∅. Note that the
double sequence (En,k)n,k∈N, when viewed as a double sequences of strong
indices for finite sets, is g-recursive.

We define the set Z in two parts. First, we specify the digits of Z at the
coding locations in En,k 6= ∅ by the following. If i = minEn,k we define

Z(i) = X(n). If i is the (j + 1)th element in En,k we put Z(i) = 1 if and
only if ϕj(n + 1) contributes to f(n + 1), where j = 0, 1, . . . , n + 1. If i is



THE COMPLEXITY OF RECURSIVE SPLITTINGS OF RANDOM SETS 5

the (n + 3 + j)th element in En,k we put Z(i) = 1 if and only if En+1,j is
non-empty, where j = 0, 1, . . . , n+1. So in total 2n+5 coding bits are used.

The intuition behind this coding is the following. En,k is a set of coding
locations to allow Wk ∩ Z to decipher X(n). Since Wk ∩ Z may be empty
outside of the Wk-reserved blocks E−,k, the location of the next block En+1,k

must therefore be coded into Wk ∩ Z within the block En,k. This is coded

in the (n+ 3 + j)th locations. Furthermore, to make Z Schnorr random, we
need to ensure that the coding blocks (where we have no control over the
value Z takes) are spaced out in a sparse way This will force us to place En,k

above the value f(n). We must then code the value of f(n+ 1) (indirectly)
into En,k via the (k + 1)th element in order to allow Wk ∩ Z when reading
the block En,k to find the next block.

We now describe how to define Z on the bits which are not in En,k for
any n, k. By a result of Schnorr – see [16, Lemma 7.5.1] – there is a fixed
g-recursive martingale L with rational values which dominates all recursive
martingales M up to a multiplicative constant v, namely, M(σ) ≤ vL(σ) for
each σ. For every k, Wk∩Z does not look at these digits when recovering X.
Hence we define Z on these digits so that L does not increase. Namely if we
have already defined Z(0)Z(1) . . . Z(x−1) and x is not in a coding block then
we define Z(x) = 0 iff L(Z(0)Z(1) . . . Z(x−1)0) ≤ L(Z(0)Z(1) . . . Z(x−1)1).

We now verify that Z is Schnorr random. For each n, there are at most n2

many different coding blocks below f(n), hence L(Z(0)Z(1) . . . Z(f(n)−1))

≤ 2(2n+5)2 . Now if Z is not Schnorr random there is a recursive martingale
M and a recursive function h such that M(Z(0)Z(1) . . . Z(h(n) − 1)) > n
for infinitely many n – see [16, Theorem 7.3.3]. It is not hard to see that
for each constant v there is a recursive function p such that for infinitely

many k, we have M(Z(0)Z(1) . . . Z(` − 1)) > v2(2k+5)2 for some ` ≤ p(k).
Since f dominates every recursive function, we have a contradiction to the
dominating property of L.

Clearly Z is recursive in X ⊕ g. Now let We be an infinite r.e. set. As g
dominates all recursive functions, one can find for almost all n more than
(2n + 5)3 elements in We above f(n) in time g(f(n)). Therefore, En,e is
non-empty for almost all n. So when starting with a sufficiently large n,
using Z and the enumeration of We one can find all the entries for Em,e

with m ≥ n, and therefore compute X using only Z ∩We. Note that Z ∩We

allows us to compute the elements of En′,e′ for every n′, e′, but does not tell
us whether such an element is in Z (we do not need to know this), unless
e′ = e. �

The following corollary is now easily obtained.

Corollary 3.2. A degree is high if and only if it contains a Schnorr random
set Z such that we have Z ≡T R ∩ Z for every infinite recursive set R.

Proof. The implication from left to right is immediate from the theorem.
For the converse implication, note that Z is not Martin-Löf random by
van Lambalgen’s theorem. Nies, Stephan and Terwijn [18] showed that the
degree of each Schnorr but not Martin-Löf random real is high, therefore it
follows that the degree of Z is high. �
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4. Martin-Löf random sets

Theorem 4.1. There is a Martin-Löf random set Z such that Ω ≤T Z ∩R
or Ω ≤T Z ∩R for every recursive set R.

Proof. The proof is in two steps:

• First we construct an r-maximal set S with complement E0 ∪ E1 ∪
E2∪ . . . where the parts E0, E1, E2, . . . are finite sets with maxEn <
minEn+1 which each maximise their e-state (recall that an r-maxi-
mal set S is one where there is no recursive set R for which both
R ∩ S and R ∩ S are infinite). This construction is different from
the usual e-state construction of a maximal set – see Friedberg [8]
– in the following way. In the usual construction each current nth

element of the complement of S is given an e-state to maximise.
Here we collect elements in the complement of S into groups En. To
each group En we assign a single e-state to maximise.
• Once the r.e. set S is constructed, we define Z in two parts. We

code Ω into Z on the digits specified by the complement of S. The
other digits of Z are filled by a sufficiently random sequence, which
is chosen to ensure that Z is Martin-Löf random.

We first construct S. Thereafter we give the detailed definition of Z. Lastly
we will show that Z is Martin-Löf random, and that for every recursive
splitting of Z, one half is Turing above Ω.

Construction of the r-maximal set S. We modify the usual Friedberg con-
struction of an r.e. maximal set. Given a finite set D, we define the n-th
e-state of D as the sum 3na0 + 3n−1a1 + . . . + 3an−1 + an where for each
k ≤ n, we have

ak =


2 if ϕk(x) is defined and positive for every x ∈ D,

1 if ϕk(x) is defined and equal 0 for every x ∈ D,

0 otherwise.

For each D and each n there is a natural uniform approximation to the n-th
e-state at any given time. We now build the r.e. set S by initially setting

each En,0 to be an interval of length 23n+1 · n2. Its initial n-th e-state is
0. The construction ensures that for every n, s, maxEn,s < minEn+1,s and

∪nEn,s = Ss at stage s. Furthermore, when the n-th e-state of En is p then

we ensure that En has n2 · 23n+1−p many elements.
Now at stage s search for the least n < s such that En,s can be redefined

to improve its n-th e-state. This means that there exists a finite set D ⊆ Ss

with maxEn,s < minD such that D has n-th e-state p larger than the n-th

e-state of En,s, where D has n2 · 23n+1−p many elements. If such least n < s
is found at stage s we redefine En,s+1 = D and for every m > n we redefine
Em,s+1 larger than s. All elements below s which are not on an interval En

at stage s are enumerated into S.

Verification of the construction. It is easy to argue, as in the usual construc-
tion of a maximal set, that each En moves only to improve its n-th e-state
and hence is moved only finitely often. For each n let an0 , a

n
1 , . . . , a

n
n be the
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final limiting values of the parameters a0, a1, . . . , an in the definition of the
n-th e-state. It follows easily by induction that for every k ∈ ω, limn→∞ a

n
k

exists.
We argue that S is r-maximal. This is the same as showing that for

each k, if ϕk is total then limn→∞ a
n
k 6= 0. Suppose not, and fix a least

counterexample k. Fix a large enough n so that an0 , . . . , a
n
k are all stable.

Since ϕk is total it has to converge to the same value, say 0, on at least half
of the elements in En+1. Since at the end we only care about the functions
which are total, we may adopt the convention that if ϕi(j) converges at a
stage s then for every j′ ≤ j, ϕi(j

′) has also converged by stage s. Then,
for every subset X of En+1, the k − 1-th e-state of X equals 3nan0 + . . . +
3n−k+1ank−1. Now pick X to be the subset of En+1 where ϕk converges to

0. The size of X is at least 1
2(n + 1)223n+2−q where q is the (n + 1)-th e-

state of En+1. If p is the n-th e-state of X then clearly p is larger than the
n-th e-state of En and furthermore 3p > q. It is easy to see that X has at

least n2 · 23n+1−p many elements, which means the construction would have
ensured that En is moved, a contradiction.

Construction of Z. Let E = S = ∪k∈ωEk and let ek be the k-th element of
E (in ascending order). Now let Z(ek) = Ω(k). Note that whenever ek ∈ En

then ek+1 ∈ En ∪En+1. By the low for Ω basis theorem [5, 14], we fix a set
P which is low for Ω and PA-complete. Let V be a set which is Martin-Löf
random relative to P ⊕ Ω and for x ∈ S, let Z(x) = V (x). This completes
the construction of Z.

Ω is computable from Z ∩ R or Z ∩ R. Note that from the final e-states of
E0, E1, . . . , En we can compute the sets E0, E1, . . . , En explicitly by simply
simulating the construction until for all k ≤ n the e-states of Ek,t have
reached the corresponding values.

The size of E0 ∪ E1 ∪ . . . ∪ En is at least O(n3) while the e-states of

E0, E1, . . . , En, En+1 together can be described with log(3) · n(n+1)
2 ∈ O(n2)

bits. Therefore, the positions of E0, E1, . . . , En, En+1 are reached at some
stage t before the left-r.e. approximation of Ω stabilizes on the first |E0 ∪
E1 ∪ . . . ∪ En| many bits. To see this, assume not, and let F (n) be the
first stage t such that E0,t, E1,t, . . . , En,t, En+1,t have all reached their final
positions. Then for infinitely many n, F (n+1) and hence Ω(0)Ω(1) . . .Ω(n3)
can be described using O((n + 1)2) many bits of information, which is a
contradiction.

This fact can then be used to compute Ω from Z in an iterative manner:
Knowing the bits of Ω coded on E0 ∪E1 ∪ . . .∪En allows us to compute the
position of En+1, which then again enables us to look up in Z the bits of Ω
coded on En+1. So Ω ≤T Z by only taking into consideration the positions
in E. As S is r-maximal, for any recursive set R, either almost all elements
of E are in R, or almost all elements are out of R; depending on which case
holds, one can compute Ω from either Z ∩R or Z ∩R.

Z is Martin-Löf random. Assume that this is not the case. Then, since
P is PA-complete, there is a P -recursive martingale M succeeding on Z.
There is a partial recursive function γ from finite strings to finite strings
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that while processing the input from Z, computes the set En+1: whenever
it has processed all the members of E0 ∪E1 ∪ . . .∪En and found the corre-
sponding values of Ω, it uses the time the left-approximation takes to reach
these values to get the position of En+1. Formally we have for every n,
γ(Z(0)Z(1) . . . Z(n)) = S(n+ 1). Of course γ might be wrong or undefined
if the input is not a prefix of Z. Now let

qn =
M(Z(0)Z(1) . . . Z(n)Z(n+ 1))

M(Z(0)Z(1) . . . Z(n))
;

sn =
∏

m∈{0,1,...,n}∩S

qm;

tn =
∏

m∈{0,1,...,n}∩E

qm.

As the limit superior of sn · tn = M(Z(0)Z(1)...Z(n)Z(n+1))
M(Z(0)) is ∞, it follows that

(a) the limit superior of the sn is ∞ or (b) the limit superior of the tn is ∞.
We now show that in both cases (a) and (b) a contradiction can be derived.

Recall that by hypothesis, Ω is Martin-Löf random relative to P , V is
Martin-Löf random relative to Ω ⊕ P . Then, by the Theorem of van Lam-
balgen relativized to P , Ω is Martin-Löf random relative to V ⊕ P .

Case (a): the limit superior of the sn is ∞. In this case, one can define a

modification M̃ of M which bets using information from γ. The modified

martingale M̃ will be recursive in P ⊕Ω and succeeds on V . The martingale

M̃ will use P to consult M and use Ω to obtain Z(0)Z(1) . . . Z(n− 1) from
V (0)V (1) . . . V (n − 1). More specifically when given a string σ ⊂ V and
the members of E below |σ|, we check γ(σ′) to see if |σ| ∈ E, where σ′ is
modified from σ by filling in all the positions of E on σ using the bits of Ω

(hence σ′ ⊂ Z). If γ tells us that |σ| ∈ E then M̃ refrains from betting else

|σ| ∈ S and M̃ bets proportionally using the ratio from M . This allows M̃

to compute M̃(σ0) and M̃(σ1) given M̃(σ) and also to compute a guess at
whether |σ| ∈ E.

This procedure clearly applies (inductively) for all strings σ. While M̃
is not a total martingale, it is defined on all initial segments of V . Thus,
we can alternately use the bits of Ω and the function γ to correctly predict
E along V , and bet according to M along Z. Hence the partial martingale

M̃ succeeds on V and V is not Martin-Löf random relative to P ⊕ Ω, a
contradiction.

Case (b): the limit superior of the tn is ∞. In this case, we make another

modification M̂ of M such that the resulting partial P⊕V -recursive martin-

gale M̂ bets the value qen+1 = ten+1/ten on Ω(n+ 1). Given a string σ ⊂ Ω

and the first |σ| elements of E, M̂ uses V to fill in the bits on S and σ to
fill in the bits on E. From this resulting string η ⊂ Z it asks γ for the next
element of E, padding η with the bits of V until γ returns the next element
of E. We can then obtain the ratio qen+1 from M .
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Thus along Ω it is easy to see that each η is an initial segment of Z. So

γ is always returns the correct answers, whence M̂ is defined along Ω using
the correct ratios. This shows that Ω is not Martin-Löf random relative to
P ⊕ V , a contradiction. �

Remark 4.2. This argument can be extended in order to show that for any
given set Y , there is a Martin-Löf random Z such that either Y ≤T Z ∩ R
or Y ≤T Z ∩R for every recursive set R.

The next result shows that for Z of low computational power, one cannot
code any non-recursive set into Z such that it can always be retrieved from
some half of a recursive splitting.

Theorem 4.3. Assume that Z is Martin-Löf random and has hyperimmune-
free Turing degree. Then there is no non-recursive set A such that for every
recursive set R, either A ≤T Z ∩R or A ≤T Z ∩R.

Proof. Let Z be as given and assume by way of contradiction that such a
non-recursive A ≤T Z exists. Then A ≤tt Z as Z has hyperimmune-free
Turing degree. Demuth [3] showed that there is a Martin-Löf random set
B ≡T A; as the Turing degree of A is hyperimmune-free as well, B ≤tt Z.
Let f be a recursive use function for the reduction witnessing B ≤tt Z such
that it computes B(0)B(1) . . . B(n) from Z(0)Z(1) . . . Z(f(n)). Now one
can choose a recursive set R =

⋃
n{a2n, a2n + 1, . . . , a2n+1−1} where a0 = 0

and am+1 = am + 1 + f(am + 2m) for all m. Let X and Y be the splitting
of Z along R, that is X(n) = Z(pR(n)) and Y (n) = Z(pR(n)) where pS(n)
is the n-th member of a set S. By assumption B ≤tt X or B ≤tt Y , say the
second and let Φ be the corresponding truth-table reduction. Furthermore,
Φ−1(σ) denotes the class {Ỹ : Φ(Ỹ ) � σ}. There are now two cases.

First, assume that for infinitely many even n the set Φ−1(B(0)B(1) . . .
B(an + 2n− 1)) has at least the measure 2−an−n. There are at most 2an+n

strings σ ∈ {0, 1}an+2n for which the class Φ−1(σ) has at least measure

2−an−n. Now let Un = {B̃ : Φ−1(B̃(0)B̃(1) . . . B̃(an + 2n − 1)) has at least
measure 2−an−n}; each Un has at most measure 2−n. As B is in infinitely
many of the Un, B cannot be Martin-Löf random contradicting the above
choice of B, so this case does not occur.

Second, assume that for infinitely many even n the set Φ−1(B(0)B(1) . . .
B(an + 2n − 1)) has at most the measure 2−an−n. For even n, one can
compute σ = B(0)B(1) . . . B(an + 2n− 1) relative X using as an additional
input τ the first an bits of Z via the following truth-table reduction with
oracle X: let τ 7→ σ(τ) be the X-recursive function which is defined for all
τ ∈ {0, 1}an for even n and which evaluates the truth-table reduction from
B to Z by taking Z(k) = τ(k) for k < an and by retrieving Z(k) from X for
k ∈ {an, an+1, . . . , f(an+2n−1)}. Note that σ(Z(0)Z(1) . . . Z(an−1)) is the
correct value while other strings of length an can result in incorrect values.
For even n, let Vn be the union of all those Φ−1(σ(τ)) where τ ∈ {0, 1}an
and the measure of Φ−1(σ(τ)) is at most 2−an−n. As this is the union over at
most 2an components, the overall class Vn has at most measure 2−n. Again,
there are infinitely many even n such that Vn contains Y , a contradiction to
the Theorem of van Lambalgen which implies that Y is Martin-Löf random
relative to X. So this case also cannot occur.
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Hence, in both cases, there is a contradiction. Since at least one of these
two cases has to apply, it follows that A and B cannot exist in contrary to
the assumption. This proves the theorem. �
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[15] André Nies. Lowness properties and randomness. Advances in Mathematics, 197:274–
305, 2005.
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