
SPLITTING INTO DEGREES WITH LOW

COMPUTATIONAL STRENGTH

ROD DOWNEY AND KENG MENG NG

Abstract. We investigate the extent to which a c.e. degree can be
split into two smaller c.e. degrees which are computationally weak. In
contrast to a result of Bickford and Mills that 0′ can be split into two
superlow c.e. degrees, we construct a SJT-hard c.e. degree which is not
the join of two superlow c.e. degrees. We also prove that every high
c.e. degree is the join of two array computable c.e. degrees, and that
not every high2 c.e. degree can be split in this way. Finally we extend a
result of Downey, Jockusch and Stob by showing that no totally ω-c.a.
wtt-degree can be cupped to the complete wtt-degree.

1. Introduction

A classic result in computability theory is the result of Sacks which states
that every c.e. set can be split into a pair of disjoint c.e. sets. Moreover, as
Sacks also observed, these sets can be made low. Thus the low c.e. degrees
generate the c.e. degrees under join1.

In the last fifty or so years, there have emerged a large number of lowness
notions associated with c.e. (as well as other classes of) sets and degrees.
Some notable examples include the array computable degrees, the superlow
degrees, the K-trivial degrees, the contiguous degrees, the strongly jump
traceable degrees, the totally ω-c.a. degrees and a whole infinite hierar-
chy introduced by Downey and Greenberg [4]. These concepts will, where
necessary, be defined later in context.

It is natural to ask the extent to which the global structure of the c.e.
degrees relates to these lowness classes. For example, the celebrated work
of Nies and others shows that the K-trivial degrees form an ideal ([10, 6])
in the superlow degrees, where A is superlow if A′ ≡tt ∅′. So, in particular,
not every c.e. degree is the join of two K-trivial degrees.

Most of the lowness concepts are concerned with how hard the set is
to approximate. Thus A is called array computable if for each f ≤T A,
f has a uniformly ω-c.a. approximation. That is, there is a computable
function h such that for all f ≤T A, there is a computable function g with
f(x) = lims g(x, s) where |{s : g(x, s + 1) 6= g(x, s)}| < h(x). We note

Date: March 31, 2018.
The first author thanks the Marsden fund for support of this research. The second

author is partially supported by the grants MOE-RG131/17 and MOE2015-T2-2-055.
1All sets and degrees mentioned in this paper are c.e. unless otherwise stated.

1

2 ROD DOWNEY AND KENG MENG NG

here that this is not the original definition of array computability; it is a
characterization due to Downey, Jockusch and Stob [7]. In fact, one can
easily see that any choice of an order function will do for h, so typically we
use h(n) = n.

Array computability is the uniform version of being totally ω-c.a., which
has a similar definition, except that h can now depend on f . In other words,
every function computable from A has an ω-c.a. approximation, hence the
name “totally ω-c.a.”. The totally ω-c.a. degrees form the first level of
a hierarchy based on ordinals due to Downey and Greenberg [4]. Each
superlow degree is array computable, and each array computable degree is
totally ω-c.a.

Many results for low degrees do transfer to superlow ones. For instance,
the low basis theorem which states that every nonempty Π0

1 class has a low
member, can be easily seen to be replaced by the superlow basis theorem (see
for example, Downey and Hirschfeldt [5, Section 2.19.3]). Another example
relevant to this paper is the result of Bickford and Mills [1] that 0′ is the
join of two superlow c.e. degrees.

The first question that follows naturally from these results is of course:
Is every c.e. degree the join of two superlow degrees? It is reasonable to
believe or conjecture that this holds. The proof of Bickford and Mills uses
the fact that 0′ is the top c.e. degree and can produce enough changes to
allow the join of two c.e. sets to be complicated while maintaining that each
set is itself close to being computable. This is fundamentally impossible if
the degree we want to split is Turing incomplete. We prove the following:

Theorem 3.1. There are c.e. degrees which cannot be split into the join of
two superlow c.e. degrees.

The reader might be tempted to guess that some assurance of computa-
tional power, such as highness, or being close to ∅′ in some sense, might still
allow the given degree to be split in a similar way. We are able to show that
this intuition is false. Indeed we show that the constructed degree can be
extremely close to 0′. More specifically, such sets B can be SJT-hard, or
even ultrahigh. This means that ∅′ is strongly jump traceable relative to B,
as we will define in the relevant later section.

Nevertheless, we can recover part of the Bickford and Mills’ result for 0′

for the high degrees:

Theorem 2.1. Every high c.e. degree is the join of two array computable
(and low) c.e. degrees.

One might then be tempted to revise the conjecture to say that every c.e.
degree is the join of two array computable degrees. Again, we show that
this is false. In fact, we prove something stronger:

Theorem 4.1. There is a high2 c.e. degree a which is not the join of two
totally ω-c.a. degrees.

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 3

There are also low degrees where this is true.
The last section briefly explores the notion of “strong cupping”; cupping

under the strong reducibility ≤wtt . We know that the Turing degree of ∅′
is the join of two superlow degrees in the Turing degrees, but it is easy to
show that this is not true in the wtt-degrees (see [7]). In our section, we
prove something stronger. No c.e. set of totally ω-c.a. degree can even be
wtt-cupped to the complete wtt-degree.

Theorem 5.1. No totally ω-c.a. set can be wtt-cupped. That is, if ∅′ ≤wtt
A⊕D and A is totally ω-c.a., then ∅′ ≤wtt D.

Again, we remind the reader that everything in this paper is c.e. unless
otherwise stated. We freely identify finite strings with the code numbers
for them; this allows for functions mapping N 7→ N to have finite strings as
outputs. When we say that we pick a fresh number x at stage s, we mean
that we choose x to be the least number x > s, and x > any number used
or mentioned so far. We will also drop the stage number from the notations
if the context is clear. All parameters will retain their assigned values until
initialized or reassigned. We append [s] to an expression to mean the value
of the expression as evaluated at stage s.

2. Every high c.e. degree can be split into two array
computable c.e. degrees.

In this section, we prove Theorem 2.1, that every high c.e. degree can be
split into two low array computable c.e. degrees.

Theorem 2.1. Every high c.e. degree is the join of two array computable
c.e. degrees. Furthermore the two degrees can be made low.

2.1. Requirements. Let C be a high c.e. set. We build two c.e. sets
A0 and A1, and the Turing reduction ∆ such that C = ∆A0⊕A1 . As in
convention, we let lowercase Greek alphabets denote use functions. The
reduction ∆ is built by movable markers, with the usual marker rules. That
is, δ(n)[s] ↓ iff there is a ∆(n)-computation which currently applies at s.
Before a marker is lifted or moved, it has to be first made undefined. A
marker δ(n) which is defined at s will be made undefined if some number
x ≤ δ(n)[s] is enumerated into A0 or A1.

Recall Martin’s famous characterization of the high degrees as those de-
grees a where every a-computable function is dominant. In particular, as
C is of high degree, the principal function p(n) of C is dominant. We use
this fact to ensure Ai ≤T C via high permitting. We make sure that if
we enumerate x into Ai at stage s then ps−1(n) 6= ps(n) for some n ≤ x;
this clearly ensures that Ai ≤T C. Since every c.e. traceable set is array
computable, we meet the requirements

Re,i : If ΦAi
e is total, then build a c.e. trace T (x) for ΦAi

e (x)

with at most h(x) many mind changes.

4 ROD DOWNEY AND KENG MENG NG

Here h is a computable function to be defined later. We do not arrange
for priority amongst the requirements Re,i. Each Re,i is split into modules
Me,i,0,Me,i,1, · · · , with Me,i,k being in charge of tracing ΦAi

e (k). We write
M〈e,i,k〉 instead of Me,i,k. We arrange instead for priority amongst the mod-
ules, and we order the modules in the order M0 < M1 < · · · (lower numbers
have higher priority). The module Mn will disengage the δ(n)-marker be-
fore tracing a convergent computation. In order to distinguish between two
computations ΦAi

e (x)[s] and ΦAi
e (x)[t] with different use, but yet having the

same output, we will trace in T (x) the use of computations (as finite strings),
instead of their output values.

2.2. Description of strategy. The key driving force behind many theo-
rems which degree splits ∅′, is the idea of disengagement of markers. For
instance, if we wanted to show that ∅′ ≡T A0 ⊕ A1 where A0 and A1 are
superlow, we would wait for jump computations JA0(x) to converge, and
then enumerate the marker δ(x) into the other side A1 to lift the use δ(x) >
use of JA0(x). (Here we write JX(n) := ΦX

n (n)). Only then do we believe
the jump computation JA0(x) and trace it; this ensures that we make com-
putably bounded many mistakes in tracing the jump computations. The
completeness of ∅′ allows us to enumerate δ(x) whenever we want.

Let us suppose that we wanted to show instead that every c.e. degree C
was the join of two superlow degrees (which is of course false). In addition
to having to disengage markers, we now have to build A0 and A1 below C.
In particular, before we are allowed to disengage δ(x) from below the use
of some jump computation JAi(x), we have to wait for a C-change. The
reader might imagine that if C was close to the Halting problem, such as
being high, then this would be enough. Informally the highness of C allows
us to force C to change below almost every challenge we issue it. A plausible
plan would then be the following: when we see a jump computation JAi(x)
converge and we need to disengage δ(x), we will issue a challenge for C to
change below p(δ(x)). Since C will permit at almost all of these challenges,
hence we will be able to disengage almost every marker we wished, so that
almost every convergent jump computation is traced.

The above plan cannot work, since of course not every high c.e. set is
the join of superlow sets. The problem is, for instance JAi(x) converges
before JAi(y) for x > y. When we challenge p(δ(x)) to change, we have
to simultaneously challenge p(δ(y)) to change. This is because we have to
define some total computable function f which p will dominate, so we cannot
leave f(δ(y)) ↑. The problem is that we are forced to issue a challenge for
p(δ(y)) when we were not ready; when p(δ(y)) changes later to witness the
domination of p, we are left with a dilemma: if we choose not to lift δ(y) to
a fresh value, and keep δ(y) the same, then we lose the ability to challenge
p(δ(y)) to change again, if JAi(y) converges later. On the other hand if we
always lift δ(y) to a new value and JAi(y) never converges, then δ(y) will
be driven to infinity.

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 5

However note that the above problem is really due to the fact that we
were trying to trace partial functions. If we were only required to trace
total functions, then this issue does not arise. We would challenge p(δ(y)) to
change only when ΦAi(x) has converged for every x ≤ y. Each module Me,i,x

will run the following basic strategy: first it waits for ΦAi
e (z) to converge

for every z ≤ x. Then we enumerate a challenge fe,i(δ(e, i, x)) ↓ and larger
than p(δ(e, i, x)). Then we wait for C to permit, namely for p(δ(e, i, x)) to
enter C. When this happens we enumerate δ(e, i, x) into A1−i to disengage
the marker and then trace the computation.

The basic strategy is clear. We now address the technical issues arising
from combining the different modules. The only numbers we enumerate
into A0 or A1 are marker values. There are two reasons why we enumerate
δ(n); the first is due to coding when n has entered C. This happens at
most once for each n = 〈e, i, x〉. The other reason is due to the module Mn

when C has permitted on Mn’s challenge. Note that C can take as long
as it likes before permitting Mn’s challenge. In the meantime Mn will have
a convergent computation ΦAi

e (x) which is waiting for disengagement; we
call computations of this type pending computations. Each time a pending
computation is destroyed, we might get C-permission to disengage δ(n) be-
fore ΦAi

e (x) has re-converged. In this case we have to move δ(n) to a fresh
value anyway, because we want to able to allow Mn to issue a new challenge
when ΦAi

e (x) converges again. Hence we have to ensure that Mn preserves
pending computations while it is waiting for disengagement.

There are two reasons why a module Mn wants to limit the changes in
A0 or A1. The first is for us to count the number of injuries to a traced
computation; this is to make Ai c.e. traceable. The second is to ensure
that pending computations are destroyed only finitely often; as mentioned
above this is to ensure that δ-markers settle. We only care about having an
effective bound for injuries of the first type. We do not need, and in fact
cannot have an effective bound for injuries of the second type.

During the construction each module acts according to the basic strategy
above. A traced computation can be destroyed by any action. A pending
computation can only be destroyed by actions of lower priority modules.
To determine an upperbound on the number of times a traced computa-
tion may be destroyed, we calculate how many times each marker δ(n) is
moved, where n = 〈e, i, x〉. It is moved once due to coding. Suppose it
is moved by Mn. If this action successfully disengages δ(n) from below a
pending Mn-computation, then we get a bound by working inductively. On
the other hand when δ(n) was moved, it might be that ΦAi

e (x) ↑. In this
case we can also proceed inductively since pending computations are only
destroyed by the actions of higher priority requirements. Lastly when δ(n)
was enumerated it might be that ΦAi

e (x) ↓, but we are not able to disengage
δ(n) because some higher priority requirement Mn′ has a pending compu-
tation with use larger than δ(n). In this case we enumerate δ(n) into Ai
destroying the convergent ΦAi

e (x) ↓ without tracing it. We then lift δ(n)

6 ROD DOWNEY AND KENG MENG NG

above the use of the pending Mn′-computation. If this computation is never
again injured, then Mn′ will never block Mn from subsequent disengagement
attempts. If on the other hand the pending Mn′-computation is injured it
has to be through the movement of one of δ(0), · · · , δ(n − 1); and we can
use the inductive bounds on these.

2.3. Notations. We write δ(e, i, k) instead of δ(〈e, i, k〉). Each requirement
Re,i defines a computable function fe,i that serves as a challenge for C-
permitting. We also build the trace Te,i(x) for ΦAi

e (x). We define `e,i[s] =
max{y < s | (∀x < y)ΦAi

e (x)[s] ↓}.
A computation is said to be traced at a stage s, if it is ΦAi

e (x)[s] ↓ for some
e, i, x, and the use of the computation is in Te,i(x). A computation ΦAi

e (x)[s]
is pending at a stage s, if `e,i[s] > x for some e, i, x, and fe,i(δ(e, i, x))[s] ↓ and
it is not yet traced. Basically, pending computations are those convergent
computations where a challenge has already been issued for C to change, and
we are waiting for the chance to disengage the appropriate δ-marker from
below the use. In both cases we also say that Me,i,x has been traced or is
pending, for the appropriateMe,i,x. The use of a pendingMe,i,x-computation
is simply ϕAie (x)[s].

At a stage s, we say thatMe,i,x requires attention if `e,i[s] > x, δ(e, i, x)[s] ↓,
Me,i,x is not traced and fe,i(δ(e, i, x))[s] ↑. A fresh number at stage s is a
number larger than s, and not yet mentioned so far.

2.4. The construction. At stage s, the actions are divided into the fol-
lowing phases. Only the modules Mn for n < s are considered.

(1) challenge phase: we look for the least module Me,i,x requiring at-
tention (if any). For every z ≤ δ(e, i, x)[s] such that fe,i(z) is not
yet defined, we set fe,i(z)[s] ↓ to a fresh number and larger than
p(δ(e, i, x))[s].

(2) coding phase: look for the least n such that ps−1(n) 6= ps(n) (i.e.
ps−1(n) has entered C). We need to enumerate δ(ps−1(n)) into ei-
ther A0 or A1: find the highest priority Me,i,x that is pending, such
that δ(ps−1(n)) < the use of the pending computation. Enumerate
δ(ps−1(n)) into A1−i, and into A0 if Me,i,x does not exist.

(3) disengagement phase: let n be as above, i.e. the least such that
ps−1(n) has entered C. Find the highest priority Me,i,x such that
δ(e, i, x) ↓≥ n, Me,i,x is not traced and fe,i(δ(e, i, x))[s] ↓. If such
Me,i,x exist, we have to enumerate δ(e, i, x) into either A0 or A1; the
decision as to which side to enumerate is based on the following: find
some Me′,i′,x′ (of the highest priority) which is of priority no lower
than Me,i,x such that Me′,i′,x′ is pending, and δ(e, i, x) < the use of
the pending computation. If Me′,i′,x′ exists, enumerate δ(e, i, x) into
A1−i′ otherwise enumerate it into A0.

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 7

(4) tracing phase: for every module Me,i,x such that `e,i[s] > x, and
either δ(e, i, x) ↑ or δ(e, i, x) ↓> ϕAie (x), we enumerate the use of the
computation into Te,i(x).

(5) extension phase: find the first m such that δ(m) is undefined. Give
δ(m) a fresh value and set Cs(m) = ∆A0⊕A1(m) with use 2δ(m) + 1.

2.5. Verification. It is obvious that A0⊕A1 ≤T C by permitting via p(n),
because δ(ps−1(n))[s] > ps−1(n) ≥ n for any n and s. We next prove the
crucial lemma.

Lemma 2.2. There is a computable function h̃ such that the number of
times δ(n) is enumerated into A0 or A1 is at most h̃(n).

Proof. We proceed by induction on n = 〈e, i, x〉, and define h̃ inductively.

Let h̃(0) = 1 + 1 = 2; it is not hard to see (by following a similar argument
as the inductive step below) that this bound is sufficient. This is because
δ(0) is enumerated under the coding phase at most once, and enumerated
under case (i) or (ii) below at most once. Case (iii) is not possible.

Now consider n = 〈e, i, x〉 > 0, and suppose that H = 1 + h̃(0) + · · · +
h̃(n − 1) have all been defined. δ(n) can be enumerated under the coding
phase at most once. Suppose δ(n) is enumerated under the disengagement
phase, at stage s. At s one of the following three scenarios must hold:

(i): there is some Mn′ of highest priority n′ ≤ n which is pending at s,
and δ(n) < use of the Mn′-pending computation.

(ii): not (i) and `e,i[s] > x.
(iii): otherwise.

If we enumerate δ(n) under scenario (i) and some n′, then in order for us
to enumerate δ(n) again under (i) and the same n′, we must have one of
δ(0), · · · , δ(n − 1) being enumerated. Hence the total number of times we
enumerate δ(n) due to (i) is at most (n+1)H. Note that `e,i[s] might not be
larger than x. Suppose we enumerate δ(n) under scenario (ii). Then Me,i,x

is pending at s since `e,i[s] > x, so the enumeration of δ(n) does not kill the
pending Me,i,x-computation, because of the failure of (i). Hence we would
trace ΦAi

e (x)[s] under the tracing phase at s , and we never enumerate δ(n)
under (ii) again unless one of δ(0), · · · , δ(n − 1) is enumerated. The total
number of times we enumerate under scenario (ii) is at most H. Consider
scenario (iii); we claim that this is not possible.

Let t1 be a stage where we enumerate δ(n) under (iii), and we want
to get a contradiction. At t1, fe,i(δ(e, i, x))[t1] is defined. Since uses are
always chosen fresh, we let t0 < t1 be the stage where fe,i(d) is defined,
where d = δ(e, i, x)[t1]. The action of defining fe,i(d) immediately makes
Me,i,x pending. This pending computation has to be destroyed, say at t′

between t0 and t1, in order for (i) and (ii) to fail at t1. At t′ there has
to be a pending Mn′-computation of strictly higher priority n′ < n such
that δ(n) < the use of the pending Mn′-computation. Otherwise Mn is the
highest priority module being considered at t′, and the action will not be

8 ROD DOWNEY AND KENG MENG NG

allowed to injure Mn. We let N be the module of the highest priority with
a pending computation with use larger than d between t′ and t1. Clearly
N ≥ n′ > n. Before t1, no marker ≤ d can be enumerated, lest δ(n) is
moved. Hence at t1, MN cannot be traced, fb0,b1(δ(N)) is defined where

N = 〈b0, b1, b2〉, and furthermore `
Ab1
b0

[t1] > b2 also holds because MN is the

highest priority module with the above-mentioned properties (hence cannot
be injured). Hence at t1, MN is pending and in fact will still have pending
computation with use larger than d. This shows that (i) must hold at t1.
The resulting contradiction shows that stage t1 does not exist, and (iii)
cannot be possible. Totalling up the figures obtained from (i) and (ii), we

can safely define h̃(n) = 1 + (n+ 2)H. �

Therefore each δ(n) eventually becomes defined and settles. Hence ∆A0⊕A1

is total, and equals C.

Lemma 2.3. Both A0 and A1 are low.

Proof. Let Q(z, t) = 1 if `e,i[t] > x, where z = 〈e, i, x〉, and let Q(z, t) = 0
otherwise. As usual we assume the hat trick. Suppose for every z′ < z, both
δ(z′) and Q(z′, t) have settled. Also assume that no number less than any

convergent Φ
Ai′
e′ (x′) is ever enumerated (in either side) where 〈e′, i′, x′〉 < z.

Let z = 〈e, i, x〉. Suppose `e,i[t] > x at infinitely many stages t. If Me,i,x is
ever traced then the traced computation would be preserved forever (since
δ(0), · · · , δ(z − 1) have settled). Hence Q(z) = 1 forever. Suppose Me,i,x is
never traced. Then Me,i,x will be pending eventually at one of these stages
t. It is simple to verify that Ai cannot change below the use of the pending
Me,i,x-computation at t ever again. Hence Q(z) settles.

The fact thatA0 andA1 are low follows from the fact thatQ(〈g(e), i, g(e)〉)
settles, where we define ΦX

g(e) to be total if e ∈ X ′ and is empty if e 6∈ X ′. �

Again we draw the reader’s attention to the following fact. We are only
interested in getting an effective bound for the number of times a traced
computation can be destroyed. We do not need to compute a bound for
the number of times a pending computation can be destroyed; indeed there
cannot be an effective bound for the number of changes in Q(z), otherwise
A0 and A1 would be superlow. Observe that Q(z) can change from 1 to
0 because some higher priority pending computation is blocking a coding
attempt; the number of times this happens, though finite, will depend on
the use of higher priority pending computations which we cannot expect to
know beforehand.

We now prove that A0 and A1 are both c.e. traceable. It is obvious that
|Te,i(x)| ≤ h(e, i, x) where h(0) = 1 and h(n + 1) = 1 + h̃(0) + · · · + h̃(n).
Finally suppose that lims `e,i[s] =∞. We suppose there are infinitely many
x such that ΦAi

e (x) 6∈ Te,i(x) (more precisely the use). Fix one such x, and
let d = lim δ(e, i, x). Suppose d was picked under the extension phase at
some stage s. Clearly Me,i,x is not traced at s because δ(e, i, x) has settled

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 9

down at s. In fact Me,i,x can never be traced at any stage after s. At s
we picked d fresh so fe,i(d)[s] ↑. It is not hard to see that Me,i,x has to
receive attention under the challenge phase at some time t after s, where
we will define fe,i(d) > pt(d). We claim that none of pt(0), · · · , pt(d) gets
enumerated into C after t: if one of them enters C then we will enumerate
d (or some number smaller than d) into A0 or A1, violating the fact that
δ(e, i, x) is stable. This means that infinitely often fe,i(d) is defined and
is > p(d), which means that fe,i is total computable and witnesses the fact
that p fails to be dominant. This contradiction shows that almost all ΦAi

e (x)
have to be traced.

3. An ultrahigh c.e. degree which cannot be split into two
superlow c.e. degrees

We show that not every c.e. degree can be split into two superlow ones.
By Sacks splitting theorem, every c.e. set can be split (as sets) into two
disjoint low sets. On the other hand, as we mentioned earlier, Bickford
and Mills [1] used disengagement of markers to prove that the complete c.e.
Turing degree can be split into two superlow degrees.

Notice how, with this result, the fact that ∅′ allows us to move all markers
is what enables us to force superlowness of the Ai using additional coding;
this is weakly reflected in the previous section where the highness allowed
for the movement of almost all markers, but with a weaker result of array
computability rather than superlowness. Array computability is concerned
with total functions which works well with highness. In both proofs, the
problem is that in general we have no idea whether smaller codings will
happen killing computations we like to preserve. This is what we exploit in
the next proofs.

We give an example of an incomplete c.e. degree which cannot be split in
such a way; in fact we can make the example very close to ∅′.

We show that Sacks’ splitting cannot be achieved for superlow sets; in fact
we cannot even do a degree split. It is easy to see that this counterexample
can be made low, and hence gives another proof that the low c.e. sets and
the superlow c.e. sets are not elementarily equivalent.

In the “highness” hierarchy, there are various notions of being “very high”.
For example, a set A is called superhigh if A′ ≡tt ∅′′. Recall that A being
superlow is equivalent to having each partial A-computable function f being
traced with a small number of possibilities. That is, there is an order h and
a weak array Wg(x) of finite sets with |Wg(x)| < h(x) and f(x) ∈ Wg(x),
for all x. A is called strongly jump traceable if for any order h, and any
partial A-computable function f , there is a collection Wg(x) of finite sets
with |Wg(x)| < h(x) and f(x) ∈Wg(x), for almost all x.

In the same way that there are stronger lowness notions than being super-
low, there are also stronger highness notions than being superhigh. Being
superhigh means that for some choice of an order function h, every partial

10 ROD DOWNEY AND KENG MENG NG

function f relative to ∅′ can be traced relative to A by a family WA
g(x) of

finite sets with |WA
g(x)| < h(x) and f(x) ∈ Wg(x), for almost all x. We can

call A SJT-hard if the above definition works for any order h and A is ul-
trahigh if it works for any A-computable order hA. That is, for any partial
f relative to ∅′ and any order hA, there is a family WA

g(x) of finite sets with

|WA
g(x)| < h(x) and f(x) ∈Wg(x), for almost all x.

SJT-hard sets were used by Downey and Greenberg to give an example
of a pseudo-jump operator which could not avoid an upper cone. The c.e.
SJT-hard sets form a collection with a non-zero degree below all of them.
(Downey and Greenberg [3].) The ultrahigh degrees were introduced by Ng
in his thesis [12] and the paper [11]. Thus, SJT-hard (and ultrahigh) sets
resemble ∅′ so much that they cannot avoid an upper cone.

Recall that 0′ can be split into two superlow c.e. degrees. We construct
an ultrahigh c.e. set which cannot be split in this way; this shows that
splitting into superlow degrees cannot be achieved even if we consider sets
which resemble ∅′ very closely.

Theorem 3.1. There is an ultrahigh c.e. degree which cannot be split into
two superlow c.e. degrees.

3.1. Requirements. We build a c.e. set A satisfying the following require-
ments

Ne : If A = ΦWe⊕Ve
e and We ⊕ Ve = ∆A

e , then one of We or Ve

is not superlow.

Pe : If ΦA
e is an order, make ∅′ A-jump traceable via ΦA

e ,

Here, we let 〈Φe,∆e〉 denote the eth pair of Turing reductions, and J∅
′
(k) de-

note the value of the universal ∅′-partial recursive function {k}∅′(k). 〈We, Ve〉
is the eth pair of c.e. sets. Both kinds of requirements above will be fur-
ther divided into subrequirements; we will describe how to do this in the
following section.

3.2. Making A not the join of superlow sets. Since the superlow c.e.
sets are exactly the jump traceable c.e. sets, we will diagonalize against
all the possible traces for the jump J∅

′
. The requirement Ne is divided

into subrequirements Ne,i,j , and Ne is satisfied in a non-uniform manner
depending on the outcomes of the individual subrequirements (i.e. we ensure
that one of We or Ve is not superlow, but we do not know which). Basically
each Ne,i,j aims to make either JWe not traced by Ti, or it makes JVe

not traced by Tj . Here, we let T0, T1, · · · be an effective list of all possible
c.e. traces. That is, Te is a uniform sequence of c.e. sets Te(0), Te(1), · · · .
Also associated with each sequence Te is a partial computable function te
of a single variable. We say that W is jump traceable via Te, if for all x,
|Te(x)| < te(x) and whenever JW (x) ↓ implies that JW (x) ∈ Te(x). Every
superlow c.e. set will be jump traceable via some Te.

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 11

If every Ne,i,j is satisfied, then clearly Ne itself will be satisfied: if ∀i∃j
such that Ne,i,j succeeds in the first alternative, then We is not superlow.
Otherwise Ve will not be superlow. We first describe the Ne,i,j-strategy in
isolation, then we will describe the ultrahigh strategy, and finally we will see
how to put both strategies together. We see the Ne,i,j-strategy as having
primarily a negative role blocking elements from entering A. However, like
many other strategies which tries force every set in a constructed Turing
degree avoid a certain property, there is a certain amount of finite positive
action. Examples include constructing a Turing degree free of semi- or hemi-
maximal sets, and a d.c.e. degree which is not of c.e. degree.

Consider an arbitrary N -requirement (we drop all indices, since we are
considering it in isolation). Suppose A ≡T W ⊕ V via the reductions Φ,∆.
The basic plan to make either JW not traced by T or JV not traced by T
is the following. By the Recursion Theorem, we control parts of the jump.
To wit, we are supplied with an infinite list of indices x for which we are
able to build the xth Turing functional JX(x). We pick a number of indices
η0, η1, · · · , ηm and we will use JX(ηi) to diagonalize against the trace T (ηi).
If we were merely trying to make A itself not superlow (this is weaker than
N), we could do the following. We wait for t(η0) ↓ and then start the
following cycle. Set JA(η0)[s] ↓= s and wait for s to be enumerated in
T (η0). When s enters T (η0) (at t > s) we change A to make the previous
axioms invalid, and then set JA(η0)[t] ↓= t and repeat. This cycle repeats
at most t(η0) times, so we only need to change A (for the sake of a single
requirement) finitely often.

However we need to make A not of the same Turing degree as the join of
superlow sets. We need to simultaneously run two of above strategy (one
for W and one for V). Each change in A will make progress towards one
of the two strategies. Hence we will just need to repeat the above cycle
more times; in this case we need to freeze A in between cycles, so that
any progress towards either side does not become undone. Specifically, the
modified strategy is:

(1) pick a number of followers (targeted for entry intoA) x1, · · · , xN such
that xi+1 > δ(ϕ(xi)) for all i. These followers will be enumerated in
decreasing order of magnitude. Freeze A below all these use.

(2) define JW (η0) ↓ and JV (η1) ↓ both with use ϕ(xN). Wait for these
values to enter T (η0) and T (η1) respectively.

(3) enumerate xN into A. Then one of W or V has to change below
ϕ(xN). If we get a W -change, repeat steps (2)-(3) with the next
index JV (η2) and next follower xN−1. If we get a V -change, repeat
steps (2)-(3) with the same indices JW (η0) and JV (η1), and next
follower xN−1.

If we have many consecutive V -changes without a W -change, then we would
have made JV (ηi) 6∈ T (ηi) for some i. If on the other hand we are inter-
rupted with a W -change at each index JV (η1), · · · JV (ηm), then we have

12 ROD DOWNEY AND KENG MENG NG

made JW (η0) 6∈ T (η0). It is important that once we start on the diagonal-
ization, we freeze A below the uses, and also we enumerate the followers
xN , · · · , x1 in decreasing order of magnitude; this is to ensure that we keep
the W -use of JW (η0) above ϕ(x) for any follower x not yet in A.

We draw the reader’s attention to the following fact. Step 1 consists of
many individual actions. Namely we first pick x0 and wait for δ(ϕ(x0)) ↓,
before selecting x1, and so on. We could have increased the A-restraint to
δ(ϕ(x0)) the moment we see it converge, so that we never need to re-select
x1. However, for technical reasons which will be explained later, we will
not do this. Observe that we only need to increase A-restraint once all of
the xi have been picked. For instance if A changes below δ(ϕ(x0)) while we
were waiting for δ(ϕ(x1)) to converge, then we would pick a new value for
x1 above the new use δ(ϕ(x0)). If infinitely often we do this, then δ(ϕ(x0))
would →∞, and we would not need to act for N after all.

It is easy to see that we can combine all of the different N -requirements
in a finite injury argument. These requirements guarantee that A is of
intermediate Turing degree (0 < degT (A) < 0′). It is easy to see that we
can throw in lowness requirements to make A low, but clearly not superlow
(because we do not know a forti the number of injuries). This strategy also
admits variations; for instance it is not hard to see that one can make A not
of the same Turing degree as the join of two sets W,V where W is low and
V is superlow. This will involve considering all the possible lowness indices,
and a straightforward modification of the above strategy together with a
standard infinite injury argument will settle the issues.

3.3. Making A ultrahigh. The construction takes place on a tree, which
grows downwards. We order the nodes lexicographically. We use ⊃ for string
extension. We let α <L β denote that α is strictly to the left of β. If R is
a requirement, we say that α is an R-node, if α is assigned the requirement
R. A negative node is a Ne,i,j-node for some e, i, j, while an ultrahigh node
is a Pe,k-node for some e, k. A top node or a mother node is a Pe-node for
some e. We call the N -nodes negative, even though their actions are not
solely to prevent numbers from entering A; they do themselves enumerate
numbers into A (though only finitely often before being injured).

We now describe the basic strategy to make A ultrahigh; see Ng [11] for
more details. If ΦA

e is an order, the requirement Pe will build an A-u.r.e.

sequence {V A
k }k∈N such that for all k, |V A

k | ≤ ΦA
e (k) and J∅

′
(k) ∈ V A

k .

To do this, PAe will divide the task into infinitely many substrategies, or
modules. The kth module will be responsible for building V A

k . To build V A
k ,

we define a functional ΨA(k, n) for n < ΦA
e (k), and let V A

k = ∪nΨA(k, n).

Suppose α is an ultrahigh node assigned the kth-module. If J∅
′
(k) ↓, then α

has to ensure that ΨA(k, n) = J∅
′
(k) for some n. Even though J∅

′
(k) ↓, it

might be that the computation J∅
′
(k)[s] converges to many different values

before settling on the final correct value, and we have absolutely no control
over when this happens. As with making A high, we have to allow for

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 13

opportunities to redefine ΨA(k, n) for various n. As is customary we now
let α have two outcomes; ∞ to the left of f , which guesses respectively that
there are infinitely (and finitely) many different J∅

′
(k)[s]-values observed

during the α-stages.
During the construction, we decide the α-outcome based on the following

rules. If J∅
′
(k) ↑ [s] at an α-stage s, or J∅

′
(k) ↓ [s] 6= J∅

′
(k)[s − 1], then

we play the outcome ∞ to record the belief that either J∅
′
(k) ↑ or α had

previously traced a wrong value. At such stages α will make ΨA(k, n) unde-
fined (for some previously defined n) by changing A below the ψ-use. If we

observe that J∅
′
(k)[s] has converged and there had been no change below

the ∅′-use for a sufficiently long time, then we will play the α-outcome f .
In this case, we believe that the current convergent J∅

′
(k)[s] is correct, and

we make α define ΨA(k, n) on some large n (if none of the other ns record
the correct value) with some fresh A-use. Clearly if ∞ is the true outcome
of α, then infinitely many ψ-uses will be enumerated into A; negative re-
quirements extending α̂∞ will never believe any A-computation until all
the relevant ψ-uses have been enumerated by α. That is, negative nodes
always wait for a believable computation before proceeding.

We remind the reader on how to make the set A superhigh. One method
is to construct a binary functional ΓA(k, x) such that for all k ∈ ω, Tot(k) =
limx→∞ ΓA(k, x) with |{x : ΓA(k, x) 6= ΓA(k, x+1)}| bounded by some com-
putable function. Then Tot ≤tt A′ by employing the relativized version of
Shoenfield’s Limit Lemma in the tt-case. We remark that constructions of
superhigh sets in this way, combined with some form of negative require-
ments restraining elements from entering the set, will usually end up with
an exponential bound (usually like h = 22k). Since every superhigh c.e.
set A is also ∅′-jump traceable, it follows that we can also perform the
above construction in terms of the tracing of J∅

′
. Instead of defining the

sequence ΓA(k, x), we can build a trace ΨA(k, x) for J∅
′
(k), where x < 22k.

There will usually be 22k many highness nodes at level k in charge of tracing
J∅

′
(k); each of the nodes on this level will be in charge of a different location

ΓA(k, x).
The situation in our case is a little bit different, for we have to do much

better than just making A superhigh. The trouble is that at the level of α,
we are only allowed to define ΨA(k, n) at ΦA

e (k) many values of n. The func-
tion ΦA

e (k) may grow quite slowly (almost certainly will be sub-exponential);
in this case, each module will have very few chances to make mistakes when
tracing J∅

′
(k). The actions of a higher priority N -strategy may force α to

make a mistake. In particular, if the N -strategy is already holding some
restraint on A, then this restraint must be obeyed by α. Therefore the num-
ber of higher priority N -requirements we allow above a particular module
will be determined by ΦA

e . In particular, if ΦA
e (k) < 2n, then there cannot

be more than n many such N -strategies.

14 ROD DOWNEY AND KENG MENG NG

To achieve this, we arrange for several modules to be grouped into a
block. The bth block is denoted by Bb. The contents of Bb will change
from time to time, during the construction, and depends on ΦA

e [s]. The
subrequirement Pe,b is assigned the block Bb. We arrange for exactly n
many N -strategies before block Bn. We say that α is a B-node, if it is
assigned the block B. We explain why such an arrangement of blocks will
work. We claim that if k ∈ B1, then either ΨA(k, 0) or ΨA(k, 1) will contain

the correct J∅
′
(k) (if convergent) value. Suppose this block is operating at

level k′, and β0, · · · , βM are all the negative nodes (on the same level) placed
above B1, and β0 is the leftmost node accessed infinitely often during the
construction. We will need to coordinate the actions amongst all the nodes
at level k′. As mentioned above, in a usual high or superhigh construction,
even though all of these highness nodes are on the same level, and working
for the same (sub)-requirement, they will make separate attempts at tracing

J∅
′
(k) by defining and undefining ΨA(k, r) for distinct r’s. This clearly

cannot work here. Due to the arrangement of the blocks we may have much
more than just 2 nodes at level k′, but being in B1 we are only allowed to
define ΨA(k, 0) and ΨA(k, 1). Therefore, all nodes at level k′ will have to be
allowed access to the definition of ΨA(k, 0) and ΨA(k, 1). The heuristics is
that in a superhigh construction, we only care about having a computable
bound. In an ultrahigh construction, we need to save on the trace locations.

At a level devoted to a negative requirement, we need to ensure that we
have only one active restraint at a time for the entire level. More specifically,
once some βm puts up a restraint to protect a disagreement, all the blocks
B1,B2, · · · will have to respect this restraint. If J∅

′
(k) later changes such

that ΨA(k, 0) is wrong, then we will have to use ΨA(k, 1) to record the

new J∅
′
(k)-value. Note that as long as the restraint on βm remains in

force, and does not increase, we will always be able to correct ΨA(k, 1) if
we need to, since this ψ-use is always larger than the restraint. To make
sure that each negative level only imposes a single restraint at a time, we
need more coordination amongst the negative nodes β0, · · · , βM on the same
level. Once some negative node βm puts up a restraint, then every βi to the
right of βm will also hold the same restraint as βm, and does not put up
any new restraint of its own. Consequently every βi to the right will run
the basic βm-strategy, and enumerate the βm-followers (instead of its own
followers). This happens even though we might be currently on the right
of βm. We call this acting on βm’s behalf. This remains true until we visit
left of βm, in which case a new restraint may be put up (by some β to the
left of βm). Thus if β0 is the leftmost node visited infinitely often, and if
β0 ever puts up any restraint, then this restraint will be in force forever, so
that ΨA(k, 1) will record the correct J∅

′
(k)-value. If β0 never gets to put up

a restraint, then ΨA(k, 0) will record the correct J∅
′
(k)-value. Each time β0

is visited we will clear ΨA(k, 1) of any value it is currently recording. This is

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 15

the reason why in the atomic strategy for N , we only put up an A-restraint
when all the followers have been picked.

The above extends to the nth block as well, and generally we need ΨA(k, 0),
· · · ,ΨA(k, 2n − 1) for every k in Bn, since we need to record all possible
restraint-states that the higher priority negative requirements are in. Note
that due to the arrangement of the blocks, generally the nth negative re-
quirement will be placed at a level much larger than 2n, and so there can
be much more than 22n many different versions of the negative requirement.
Hence the number of mistakes in which a module in Bn will make does not
depend on the level at which it is operating at (as is the case in a high
or superhigh construction), but rather on the number of levels of negative
requirements which are placed before it.

3.4. Technical considerations on the tree. In this section we describe
the technical aspects when combining the ultrahigh strategies with the neg-
ative strategies on the tree. Suppose β0 is on the true path, and βi to the
right of β0 is acting on behalf of β0. Because β0 and βi are at different po-
sitions on the construction tree, we have to consider issues which will arise
from enumerating β0-followers when we are at the right of β0. The first
issue is the difference in believable computations. Remember that β0 only
puts up a restraint if all the β0-followers have seen computations which are
β0-believable. In future when βi enumerates these followers on behalf of β0,
we cannot expect that upon recovery, these followers will have β0-believable
computations. However note that the only reason why we enumerate any
β0-follower is to produce W ⊕ V -changes. Hence even if the recovered com-
putations were not β0-believable (and may never become β0-believable), it
does no damage to β0’s strategy, since we would have obtained our desired
W ⊕ V -change.

The above issue arises because we had to allow more than one node
on some level l devoted to some block Bn access the same trace location
ΨA(k,m) for some m < 2n. This creates another curious situation when
considering the interaction between two such levels l < l′. This is best il-
lustrated by an example: take a node α on level l, and β0 ⊃ α̂∞ and
β1 ⊃ α̂f both be on level l′. At some stage s, we might visit β0, which
decides to play outcome f . We will then make a trace ΨA(k′,m′) for some
m′. Later on, we might then visit α, where we also make a trace ΨA(k,m).
Note that the use ψ(k,m) > ψ(k′,m′) since it was traced later. If finally β1
is visited and sees a new J∅

′
(k′)-value, it will (and indeed must) record this

new value at the same trace location ΨA(k′,m′), because we really do not
want to use a new valuable trace location simply because we were blocked
by another ultrahigh strategy. Hence, β1 would have to clear ΨA(k′,m′)
by enumerating the use, which in turn clears the location ΨA(k,m) as well.
This creates the situation where a lower priority requirement β1 takes an
action which “injures” a higher priority requirement α. Once again we com-
pare this with the case of a high or superhigh construction; this situation

16 ROD DOWNEY AND KENG MENG NG

described does not happen there because at stage t when β1 decides to trace
the new J∅

′
(k′)-value, it will simply use another trace location to record this

value (instead of clearing the old one).
We note that this situation is easily resolved by the tree mechanism, and

in fact poses no real problem at all. The above situation of β1 injuring α
may repeat infinitely often, but only if α has infinitely many expansionary
stages. In this case, α gets its trace cleared infinitely often by β1, but it
would not matter since J∅

′
(k) ↑. On the other hand if J∅

′
(k) ↓, then there

will only be finitely many α-expansionary stages. Eventually at one of the
α̂f -stages, we would make a ΨA(k,m) definition before any ΨA(k′,m′)
definition is made, after which the action of β1 will no longer affect α.

Such arrangements might also affect nodes of higher priority, but which
are further down the construction tree. Suppose now we consider α0 to the
left of α1, which are both on the same level l and working for some block Bn.
Suppose we visit α0̂f and we make a trace ΨA(k,m). If later on we visit α1

but we see a new J∅
′
(k)-value, we will need to clear the same trace ΨA(k,m)

with a use set by α0 earlier. This will cause nodes extending α0̂f to be
injured; again this is due to a lower priority α1. In particular, this might
cause some negative node working on level l′ > l to be initialized. In this
case, when we next visit α0, we will allow α0̂∞ to be visited once (regardless

of the current J∅
′
(k)-status). This gives the version of the negative node on

level l′ extending α̂∞ a chance to act.
We describe another situation where nodes on the right are allowed to

injure nodes to the left. Suppose β is a negative node to the right of another
negative node β̃ on the same level, and β was allowed to act on behalf of β̃.
Because β̃-followers were picked very early, so this action will injure nodes of
every kind which are of lower β̃-priority. This can include nodes which are
to the left of β, and even β itself. However this only happens finitely often to
nodes on the true path (once all historical followers have been enumerated,
we are safe).

An alternative presentation of the proof would have been the use of a
pinball machine; indeed a pinball machine eliminates the above situation
where lower priority nodes injure higher priority ones. However there are
advantages of the tree method over the pinball machine in this case. This
will be made clear in the following section. Basically the tree can handle
the dynamic variations in block sizes easily, while in a pinball machine we
would have to dynamically generate or modify the pinball machine when the
distance between the gates (negative requirements) increases.

3.5. Tree layout and notations. So far we have only dealt with a single
fixed order ΦA

e . This is too simple for two reasons: firstly in the actual
construction, we have to deal with infinitely many of these orders. Secondly,
the values of ΦA

e can only be approximated during the construction; however
A will change during the construction. These changes will occur during the
construction due to the other requirements, and we cannot hope to block

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 17

changes in A to make ΦA
e a computable order. Therefore it is possible that

blocks get shuffled around; we have to constantly adjust the size of blocks.
It will be difficult to dynamically change the assignment of requirements

to the nodes extending τ . Instead, we will choose a presentation which fixes
the labels on the construction tree, albeit at the cost of working with an ω-
branching construction tree. To wit, the entire block Bn will be assigned to a
single node α. Suppose that k0, · · · , km are the modules in the same block.
Then α will be responsible for tracing all of J∅

′
(ki) for i ≤ m. We need

to equip α with many outcomes; in fact we need outcomes which describes
whether or not J∅

′
(k0), · · · , J∅

′
(km) are currently believed to be convergent.

Thus, the outcomes of α will be finite strings of length m + 1 with word
{∞, f}. We want the outcome x0 · · ·xm to be the true outcome of α if

and only if for every i ≤ m, J∅
′
(ki) ↓⇔ xi = f . Suppose that J∅

′
(k0) ↑

and J∅
′
(k1) ↑. Then, we want to arrange for ∞∞ to be played infinitely

often. If we simply play the natural outcome which codes the current state
of convergence of J∅

′
(k0)[s], · · · , J∅

′
(km)[s], then the trouble will be that

J∅
′
(k0) and J∅

′
(k1) takes turns to show us a new value. Then, we will cycle

through the outcomes f∞ and ∞f , when in fact we really want to record
this as the outcome ∞∞.

In order to record the outcomes correctly, at each α-stage, we will play the
outcome in the following way. We want to make it as difficult as possible
to output outcome f for any of the ki’s. After all if it is truly the case
that J∅

′
(ki) ↓, we can afford to delay for as long as we want before playing

an outcome f for ki (and hence begin the tracing of the correct J∅
′
(ki)).

Therefore at an α-stage s, we only output outcome f for ki if J∅
′
(ki) ↓ [s]

has been stable for a long time (since some stage t), and for every other kj
such that J∅

′
(kj)[t] ↓ and is different from J∅

′
(kj)[s], we would have output

∞ for all of these kj ’s before s. It is clear that this prevents the situation

above where we cycle through f∞ and∞f , and furthermore if J∅
′
(ki) truly

does converge, then we will eventually always output outcome f for ki.
We now define the priority tree. If |α| = 2〈e, i, j〉 we assign the require-

ment Ne,i,j to it. There are two outcomes for α, w to the left of d. The main
requirement Ne is satisfied via the actions of Ne,i,j , and we do not require its
presence on the tree. Nodes α of length 2〈e, k〉+ 1 are assigned requirement
Pe if k = 0, and to the subrequirement Pe,k if k > 0. Pe-nodes are called
mother nodes, with two outcomes∞ <L f . If α is an Pe,k-node and τ ⊂ α is
a Pe-node, we say that τ is the mother node of α, and we denote τ = τ(α).
If α <L β are both Pe,k-nodes such that τ(α) = τ(β), we say that α is a left
sibling node of β.

The outcomes of a Pe,k-node are 0 <L 1 <L 2 <L · · · . Outcome 0 is a
distinguished outcome, placed to the extreme left signifying the Σ0

3-outcome
of a global win. The other outcomes each represent the code number of
a finite sequence of pairs (n0, x0), (n1, x1), · · · ,(nj , xj) where the ni’s are
distinct natural numbers, and xi ∈ {∞, f}, in some effective coding 〈·〉 with

18 ROD DOWNEY AND KENG MENG NG

range N \ {0}. The only restriction we demand on the coding is to ensure
that if σ and η are two such sequences, then 〈σ, (n,∞), η〉 < 〈σ, (n, f), η〉.
For instance, we could just code the sequence (0, f), (1,∞), (2, f) as 213051.
We say that m specifies the pair (k, x), if m is an outcome where (k, x)
appears. We say that m specifies the finite set A ⊂ N if A = {k | m specifies
(k, f) or (k,∞)}.

To measure if ΦA
e is an order, we define the nondecreasing length of con-

vergence for ΦA
e at stage s to be

`e[s] = max{x < s : (∀y ≤ x)ΦA
e (y)[s] ↓≥ ΦA

e (y − 1)[s] ↓}.
This is measured at mother nodes, and we also write `τ [s] in place of `e[s].
We say that s is a τ -expansionary stage if s = 0 or `τ [s] > `τ [s−], where
s− < s is the largest τ -expansionary stage before s. Generally if s is an
α-stage, then we let s− denote the previous α-expansionary stage, if α is a
mother node, and the previous α-stage otherwise.

If τ is an Pe-node, we define mτ
b = 〈e, b〉 − 〈e, 0〉. This is basically the

number of levels j between τ and its bth block devoted to a negative require-
ment. A b-daughter node α of τ (i.e. a daughter node assigned Bτb) will be

allowed 2m
τ
b many boxes at its level. We let M τ

b = {x : 2m
τ
b < x ≤ 2m

τ
b+1}.

Again if α is a Pe,b-node with top τ , we write mτ
α and M τ

α in place of mτ
b and

M τ
b . Note that M τ

1 ,M
τ
2 , · · · gives a fixed partition of a cofinite segment of N.

The bth block Bτb will contain all the modules k such that ΦA
e (k) ∈M τ

b ; this
changes with time. Hence with each Bτb -node, we associate the parameter

Lα[s] = {k < `τ [s] : ΦA
e (k)[s] ∈M τ

α}.
That is, Lα[s] gathers all the modules of τ which should be put into block
Bτb at stage s. All sibling nodes of α will have the same list Lα at all times,
so they will all run the same modules.

Note that if ΦA
e is an order, then every τ -block will eventually settle on a

finite set, and Lα[s] also reaches a limit for every daughter node α of τ . On
the other hand, it might be possible for us to have the other possibility, in
which ΦA

e is a constant function, but at all stages appear to be an order. For
instance, ΦA

e at various stages may look like 12345 · · · , 11234 · · · , 11123 · · · ,
11112 · · · and so on. In this case, at some α, lims Lα[s] will be a cofinite
set. The other possibility which will give rise to a similar situation is when
ΦA
e (x) ↑, but converges infinitely often. This will also cause some Lα[s] to

change infinitely often at some block. This is why we need each daughter
node α of τ to have a special outcome 0, which is placed to the left of all
the other α-outcomes. The role of outcome 0 will be described later.

If α is a Pe,b-node, we denote the label of α by its position on the tree. This

is denoted by lbα, which is a finite string of length m
τ(α)
α with word {w, d},

and is determined by the outcomes of the negative nodes lying between τ(α)
and α, when read off starting from τ . For example, if N2,N3 and N4 lies
between τ(α) and α, with outcomes w, d and w respectively, then lbα = wdw.
Again we can partially order all such labels in {w, d}<ω lexicographically,

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 19

with w to the left of d; we also use <L for this ordering. If τ is a top node,
and δ ⊃ τ is any node (including negative nodes), we can extend the above
definitions to define mτ

δ and lbτδ . In the above, lbα is just a special case of

lb
τ(α)
α .
The point of introducing labels for an ultrahigh node α, is to easily express

the following actions. Each α will be in charge of defining Ψτ (k, lbα) for every
k ∈ Lα. Here, Ψτ is a functional built at τ ; we drop all mention of oracle
A. In the end we let V τ

k = {Ψτ (k, lbα) : τ = τ(α) and k ∈ Lα}, so that

|Vk| ≤ 2m
τ
α . We refer to each value Ψτ (k, σ) as a box, which we will fill

with a number. Note that in this construction, the label or pointer lbα is
fixed; unlike the construction of a cappable ultrahigh set in [11], where the
label changes dynamically. Each ultrahigh node α will start work only if it
is active. The label lbα specifies the particular box at which α will fill or
clear for every k ∈ Lα. α will fill the box Ψτ (k, lbα) each time it plays an
outcome specifying (k, f), and will clear Ψτ (k, lbα) each time the outcome
specifies (k,∞).

At some stage s, when we say that we fill Ψτ (k, σ) with use u, we mean

that we enumerate the axiom 〈〈k, σ〉, J∅′(k)[s], As � u+ 1〉 into Ψτ . The sth

stage use of the computation Ψτ (k, σ)[s] is denoted by uτk,σ[s]. To clear, or

to empty Ψτ (k, σ) at a stage s, means that we enumerate uτk,σ[s] into A. As
usual we associate finite strings with their code numbers. During a stage
s of the construction in which we visit an ultrahigh node α, and we filled
some box for the sake of α, we will say that the box was filled by α at stage
s. This remains true until the box is next emptied.

We say that α is active at stage s, if τ allows α to run the modules in its
instruction list Lα. That is, α ⊃ τ̂∞ and we have all of the following:

• (AC.1): ΦA
e (`τ)[s] 6∈M τ

α .
[Hence we do not expect new numbers to appear in the instruction
list L(α), unless there is an A-change.]
• (AC.2): Lα[s] 6= ∅.

[Otherwise α has nothing to do.]
• (AC.3): there is some largest t < s which are both α-stages, Lα[t] =
Lα[s], and for every k ≤ 1+maxLα[s], the computation ΦA

e (k)[s] has
persisted for at least two visits to α (i.e. A � ϕe(k)[t] = A � ϕe(k)[s]).
[This ensures that the true path is well-defined. That is, we ensure
that α switches from being active to inactive each time there is a
change in some use in Lα.]

If α is active then it will play an outcome specifying Lα. We also say that α
is permanently active at stage s, if it is active at every visit to α after stage
s. We now define what it means for a computation measured by a negative
node α to be believable.

If α is active, then α will continue tracing J∅
′
(k)-values for all k ∈ Lα[s].

The uses of these traces are chosen fresh (in particular, larger than the ΦA
e -

uses), so that when α next plays the outcome 0, all of the previous traces

20 ROD DOWNEY AND KENG MENG NG

would have been automatically cleared. This is important because each
time the Bτb -node α plays outcome 0, there would be some rearrangement

of τ -modules amongst Bτb ,Bτb+1, · · · . For instance, the kth module may have
moved from Bτb+1 to Bτb . It is important that when the Bτb -nodes begin the
next tracing phase, they start with a clean slate.

Definition 3.2. For a negative node α, we say that a computation ∆A(n)[s]
with use u is α-believable at stage s, if all the following hold:

• for every ultrahigh node β ⊂ α, and every k such that α(|β|) specifies

(k,∞), the box Ψτ(β)(k, lbβ) is either empty or has use > u.
• for every ultrahigh node β which has been visited prior to s, such

that τ(β)̂∞ ⊂ β̂0 ⊆ α, and all k, the box Ψτ(β)(k, lbβ) is either
empty or has use > u.
• every box of lower α̂w-priority is either empty, or has use > u.

At the negative node α, we measure the believable length of agreement for
A ≡T We ⊕ Ve to be:

`bα[s] = max{y < s | (∀x < y) As(x) = ΦWe⊕Ve
e (x)[s] ∧

(∀z < ϕe(x)[s])∆A
e (z)[s] = (We ⊕ Ve)(z)[s]}.

We require that all the ∆A
e -computations mentioned are α-believable at s.

We distinguish this from the plain length of agreement, which we denote
simply as `α[s], where the definition is as above except that we do not
require the ∆A

e -computations to be α-believable. If x < `α[s] or `bα[s], then
we denote the nested use by δe(ϕe(x)). This is not to be confused with the
length of convergence when τ is a mother node, which we also denote by `τ .

By the Recursion Theorem, we are supplied with an infinite list of indices
x for which we are able to build the xth Turing functional JX(x). When
a negative node α picks a fresh index at stage s, we will pick for α an
index from this list which is a fresh number. As usual, a fresh number
at stage s is a number larger than s, and larger than anything mentioned
so far. We now define the parameters needed for a negative node α. The
indices used are: the special index ηα0 aimed at W ′e, and the others denoted
by ηα1 , η

α
2 , · · · , ηαti(ηα0) which are all aimed at V ′e . The followers are denoted

by xα1 , x
α
2 , · · · , xαN where N = ti(η

α
0)tj(η

α
ti(ηα0)

). Note that N will be used

throughout the construction and verification if everything converges. The
indices and followers are picked in increasing order, i.e. xαp < xαq and ηαp < ηαq
whenever p < q. We assume that t0, t1, · · · are all non-decreasing functions.
Associated with each negative α is a state Fα. This may be either 1, 2 or 3
depending on how far along the basic strategy α is. Fα = 1 means that α is
still picking the indices ηαn . State 2 means that α has picked its indices and
is now in the process of setting up its followers. In state 3 means that α has
begun diagonalization. Note that if α is in state 3, then it cannot tolerate
any small A-change unless it is initialized.

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 21

During the construction, if s is an α-stage and some computation is con-
vergent at s, then we say that this computation has persisted for at least two
visits to α, if this computation is also convergent at the previous visit to α,
and there has been no change below the use. Given a node α on the tree,
and a box Ψτ (x, σ), we say that the box is of lower α-priority, if τ̂∞ ⊆ α
and σ >L lb

τ
α.

When we initialize a node α at s, we do the following. If α is a mother
node we make Ψτ (−) and uτ− undefined at all arguments. Ultrahigh nodes
are not initialized in this way; the boxes they control will be cleared when a
negative node with a higher priority label is visited. If α is a negative node,
we make all the ηα− and xα− undefined, and set Fα = 1.

3.6. The construction. At stage 0, initialize every node and clear every
box. At stage s > 0, we inductively define the stage s approximation to the
true path, δs of length s, and we state the actions taken by the nodes on
δs. Suppose that α = δs � d has been defined for d < s. We will also define
o = δs(d), the α-outcome. There are three cases:

(1) α is a Pe-node. We let o = ∞ if s is α-expansionary, and o = f
otherwise. Initialize all the nodes to the right of α̂o and clear every
box of lower α̂o-priority.

(2) α is a Pe,i-node. We first figure out what the outcome is at the
current stage s. If α is currently not active, we let o = 0. Otherwise,
for each k ∈ Lα[s], we have to let o specify either (k,∞) or (k, f).
Check if the following holds:
• (OUT.1): the box Ψτ(α)(k, lbα) is either unoccupied, or it is

occupied by the correct value (i.e. equals to J∅
′
(k)[s]).

• (OUT.2): J∅
′
(k)[s] ↓, and this computation has persisted for

at least two visits to α. We let t < s be the least stage such
that the same computation J∅

′
(k)[s] ↓ also applies at t (i.e.

J∅
′
(k)[t] ↓ with ∅′t � j(k)[t] = ∅′s � j(k)[t]).

• (OUT.3): we also require that for every k′ ∈ Lα[s]− {k}, such

that J∅
′
(k′)[t] ↓ and ∅′t � j(k′)[t] 6= ∅′s � j(k′)[t], that the current

stage s is not the first α-stage after the change. That is, there
is a smaller α-stage u such that t < u < s, and ∅′t � j(k′)[t] 6=
∅′u � j(k′)[t].

If all of the above hold for k, we let o specify (k, f), otherwise
we let o specify (k,∞). Specifically we let o = code of the pairs
(k0, x0), · · · , (kp, xp), where ki’s are precisely all the distinct elements
of Lα[s], and the xi’s are determined above. We explain the choices
for the conditions OUT.1-3 above - these are implemented purely
for technical reasons. OUT.1 ensures that if the box is occupied by
the wrong value, then we immediately force outcome (k,∞) to clear
it. The combination of OUT.2 and 3 ensures that the true path is
consistent with the “truth of outcome”, as explained in the earlier
section. We now take actions for α. Do all the following

22 ROD DOWNEY AND KENG MENG NG

• we clear all the boxes which need clearing. For each k such that
o specifies (k,∞), we clear Ψτ(α)(k, lbα). Also clear every box
of lower α̂o-priority. Finally for each ultrahigh node β >L α

such that τ(β) ⊂ α, and lbβ 6<L lb
τ(β)
α , and x such that the

Ψτ(β)(x, lbβ)-box is currently full and was filled by β, we clear
it. Basically this last action clears all the boxes filled by nodes
to the right.
• fill all the boxes which need filling, unless some box which is ex-

pected to be occupied is not. That is, if there is some ultrahigh
node ξ ⊂ α such that the ξ-outcome along α specifies (k′, f) for

some k′, but the box Ψτ(ξ)(k′, lbξ) is currently empty, then we
skip the following action for α: for every k such that o specifies
(k, f), we fill Ψτ(α)(k, lbα) with a fresh use (unless the box is
already full). We do this to ensure that the use of α-boxes are
always larger than the use of ξ-boxes.
• initialize all the nodes to the right of α̂o. If this is not the first
α-stage, we also initialize all the negative nodes to the left of α
which have believed in incorrect computations. For each sibling
node β <left α or β = α, and for each outcome o′ > 0 such that

– either o′ and o do not specify the same set of numbers, or
– there is some k such that o′ specifies (k, f) and o specifies

(k,∞),
we initialize every node extending β̂o′. Note that this is pos-
sible even if o′ is placed to the left of o. We injure nodes to the
left via this action; we have to show during the verification that
nodes on the true path are injured by action to the right only
finitely often.

(3) α is an Ne,i,j-node. If no left sibling of α is in state 3, we do the
following, depending on the state Fα:
• Fα = 1: look for the least n such that ηαn is undefined. If n = 0,

we pick a fresh index for ηα0 . If n > 0 and ti(η
α
0) ↓, pick fresh

indices for ηα1 < · · · < ηαti(ηα0)
and set Fα = 2.

• Fα = 2: if one of tj(η
α
1), · · · , tj(ηαti(ηα0)) has not yet converged, do

nothing. Otherwise do the following. We want to get rid of the
followers x where there has been a change in A below δe(ϕe(x)).
Look for the smallest n such that xαn ↓ and `bα[s−] > xαn and
A � δe(ϕe(x

α
n))[s−] has changed between s− and s. Such a

change is possible due to lower priority requirements acting. If
such n exists, pick the least one and make all xαn+1, x

α
n+2, · · ·

undefined. Note that we do not undefine xαn itself.
Next, pick the least n ≤ N such that xαn is undefined. If n = 0
we give xαn a fresh value, otherwise we give xαn a fresh value
only if `bα[s] > xαn−1. Finally if there is no such n (i.e. all the

followers have been defined) and `bα[s] > xαN , we set Fα = 3,

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 23

initialize every node extending α and clear every box of lower
α̂w-priority.
• Fα = 3: if `α[s] ≤ xαN , do nothing else (we wait for recovery).

Also if |Ti(ηα0)| ≥ ti(η
α
0) or |Tj(ηαm)| ≥ tj(η

α
m) for some m > 0,

we do nothing else (since the traces do not obey the bounds).
Otherwise we let k = |Ti(ηα0)| + 1, and we will play the index
ηα0 and ηαk . Also let x be the largest of the α-followers that has
not yet entered A.
We check if either of JWe(ηα0)[s] or JVe(ηαk)[s] is undefined; if so
define it (or them) to give output s with use ϕe(x)[s], and do
nothing else. Otherwise we have both convergent. In this case,
we check if both JWe(ηα0)[s] ∈ Ti(ηα0) and JVe(ηαk)[s] ∈ Tj(ηαk).
If both are in the respective traces, we enumerate x into A and
initialize every node extending α. Otherwise do nothing.

Note that we use the believable length of agreement when setting
up the followers in state 2, and we only talk about the plain length
of agreement while diagonalizing in state 3. This is because in state
3 all we really want are We ⊕ Ve-changes that follow the enumera-
tion of a follower x into A, and we are not really interested in the
actual recovery of the computation ∆A

e (ϕe(x)). Now we decide the
α-outcome. If Fα = 3 let o = d, otherwise the outcome is w. Ini-
tialize all the nodes to the right of α̂o and clear every box of lower
α̂o-priority.

If there is some left sibling of α in state 3, we let α̃ be the left-
most one. We take actions under state 3 above, replacing α by α̃.
The only difference is that if we enumerate some x into A, we will
initialize every node β ⊃ α̃ as well as β >L α̃. This may include
nodes β of higher priority than α, and can even be α itself. In the
verification we will show that this injury is finite if α is on the true
path. We will call this action α enumerates x on behalf of α̃. When
α acts on behalf of α̃, we are only waiting for the plain length of
agreement `α̃ = `α to recover; it is unreasonable to wait for all these
computations to become α̃-believable while we were at α (nor is it
necessary to do so). Let the outcome o of α be d, initialize every
node to the right of α̂o and clear every box of lower α̂o-priority.

3.7. Verification. It is easy to see that there is a leftmost path visited
infinitely often: if α is an ultrahigh node and is never permanently active,
then 0 is the leftmost outcome it plays infinitely often; on the other hand
if α does become permanently active, then Lα eventually settles and α will
have to play one of the 2|Lα| many possible outcomes specifying Lα. Let TP
be the true path of the construction, defined as usual to be the leftmost path
visited infinitely often. We let Trueα be the true stage of α, i.e. least α-stage
s such that (∀t > s)(δt ≮L α). Clearly if α ⊆ β ⊂ TP then Trueα ≤ Trueβ.
If we ever visit left of a node α we will initialize α in the same stage. It is

24 ROD DOWNEY AND KENG MENG NG

not hard to verify also that if α ⊂ β and α is initialized, then β is initialized
by the same action as well.

We have two (possibly conflicting) concepts of “priority” for a node α on
the construction tree. The first is determined by the position of α on the
tree. The second is determined by the label of α (relative to some top node
τ). It is possible for a node α to be physically left of another node α′, but
yet has a lower priority label than the label of α′. In the next lemma, we
reconcile these conflicts; in particular we show that the only way for us to
first visit α, and then visit α′ later in the construction, is for us to injure α
in the meantime.

Lemma 3.3. Suppose α, α′ are negative nodes which are siblings, s is a
α̂d-stage and t > s is a α′̂w-stage, and α has been visited prior to s.
Then there is some s ≤ s′ ≤ t such that α is initialized at s′.

Proof. If α′ <L α then we are done, so assume that α′ ≥L α. Observe
that the only way for any negative node to get out of state 3 is for it to
be initialized. At stage s either Fα = 3 or some left sibling of α is in
state 3. If the former holds then α has to be initialized to make Fα 6= 3
before α′ is visited. Suppose the latter holds, and at s α acts on behalf of
α̃ <L α. Similarly α̃ has to be initialized at some s′ between s and t. If this
initialization of α̃ was not because α̃ believed in an incorrect computation,
then it is trivial to verify that the same action would also initialize α to the
right of α̃. Therefore the initialization to α̃ was because α̃ had previously
believed in an incorrect computation. That is, α̃ extends some β̃̂o′ for
some ultrahigh node β̃ and outcome o′ > 0, which is deemed to be incorrect
by δs′ � |β̃| visited at s′. Now α also extends some β̂o for |β| = |β̃|. If

τ(β) 6= τ(β̃) then by the fact that the nodes δs′ � |β̃| and β̃ are siblings, we
have α initialized at s′ since α is strictly right of δs′ . Hence we may assume
that τ(β) = τ(β̃). We analyze o′ and o. At s when β̂o was visited we had
not initialized α̃, which implies that o and o′ specifies the same set (hence
o > 0), and whenever o′ specifies (k, f) we must also have o specifies (k, f).

This means that at s′, δs′ � |β̃| would also consider β and o to be incorrect,
and so α extending this will be initialized at s′. �

For the next lemma 3.4, we let α be a Pe,i-node and τ = τ(α) such that
α ⊃ τ̂∞. Assume α lies on the true path. Let L := lims Lα[s], which may
not exist. It is not hard to see that

• ΦA
e is an order ⇒ L exists and L = {k | ΦA

e (k) ∈M τ
i }.

• α becomes permanently active iff L exists, L 6= ∅ and for all k ≤
1 + maxL, ΦA

e (k) ↓.
• If α never becomes permanently active, then 0 is the true outcome

of α.

In the next lemma, we show that the true α-outcome is consistent with the
“truth of outcome”. This is instrumental in showing later that nodes on the
true path are injured by action on the right only finitely often. In (ii) we

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 25

show that if J∅
′
(k) ↓, then not only will the true outcome specify (k, f), but

there will also be only finitely many outcomes (k,∞) being played at the
whole level. This ensures that boxes filled by a positive node on the true
path, never becomes emptied if J∅

′
(k) ↓.

Lemma 3.4. Suppose that α becomes permanently active.

(i) Let L = {k0, · · · , kp}. The true outcome of α is (k0, x0), · · · , (kp, xp)
where for each i, xi =∞ iff J∅

′
(ki) ↑.

(ii) For each k ∈ L such that J∅
′
(k) ↓, there can only be finitely many

stages t such that δt ⊃ τ̂∞ and δt(|α|) specifies (k,∞).
(iii) For all but finitely many stages t, whenever δt ⊃ τ̂∞ then

– if t is the first visit to δt � |α| then δt(|α|) = 0, and
– if t is not the first visit to δt � |α| then δt(|α|) specifies L, and

furthermore δt(|α|) 6<L (k0, x0), · · · , (kp, xp).

Proof. (i) We partition L into the two parts, L∞ := {k ∈ L | J∅′(k) ↑}, and
Lf := L− L∞. We let s0 > Trueα be a large enough α-stage, such that

• Lα has settled,
• α is always active when visited,
• for each k ∈ Lf , J∅

′
(k) ↓ has stabilized on the correct use, and

• for each k ∈ Lf , the box Ψτ (k, lbα) is not occupied by an incorrect
value. This is possible because if the box is occupied by a number
other than J∅

′
(k), then α will play an outcome specifying (k,∞)

every time it is visited until the box is cleared.

At every visit to α after s0, α will play an outcome specifying L. To prove
that the true outcome of α is (k0, x0), · · · , (kp, xp), we do it in two parts.
Firstly, we show that for each k ∈ Lf , there are only finitely many stages
such that α plays an outcome specifying (k,∞). Secondly, we will show that
there are infinitely many stages such that α plays an outcome specifying all
of {(k,∞) | k ∈ L∞}.

To prove the first part, we fix a k ∈ Lf . Let s1 ≤ s0 be the least such that

J∅
′
(k)[s1] ↓ on the correct use. For each k′ ∈ L∞ such that J∅

′
(k′)[s1] ↓,

there must be a change in ∅′ below the k′-use after stage s1. Wait until
all these changes occur, for all these k′ ∈ L∞, and we let s2 > s0 be a
large enough α-stage after these changes. We claim that after stage s2, any
outcome played by α has to specify (k, f): Pick k′ ∈ L − {k}, such that

J∅
′
(k′)[s1] ↓ with ∅′s1 � j(k′)[s1] 6= ∅′s2 � j(k′)[s1]. We want to show that s2 is

not the first α-stage after the change. If k′ ∈ Lf then s0 would be a better
candidate instead of s2, since any such change has to occur by stage s0; on
the other hand if k′ ∈ L∞ then it follows by the choice of s2 large.

To prove the second part, we let s3 > s0 be an α-stage. We show that
there is a stage s4 ≥ s3 such that α plays an outcome specifying all of
{(k,∞) | k ∈ L∞}. We may assume that L̃ := {k ∈ L∞ | J∅

′
(k)[s3] ↓} 6= ∅

(otherwise we can let s4 = s3). For each k ∈ L̃, there is a least α-stage

sk4 > s3 such that ∅′ would have changed below the use of j(k)[s3]. Let k̃

26 ROD DOWNEY AND KENG MENG NG

be some member of L̃ with the largest sk̃4, and let s4 = sk̃4. Thus s4 is the
largest α-stage amongst all the first changes. We argue that this choice of s4
works, in particular we fix a k ∈ L∞ such that J∅

′
(k)[s4] ↓, and we want to

show that the outcome played by α at stage s4 specifies (k,∞). Assume the

computation J∅
′
(k)[s4] ↓ has persisted for two visits (otherwise it is trivial).

Hence k 6= k̃, and therefore condition (OUT.3) in the construction is not
met when deciding the outcome for k, because s4 is the first α-stage after a
j(k̃)-change. Hence (k,∞) is played at stage s4.

(ii) This is proved in a similar way as in the first part of (i). Fix a k ∈ L
such that J∅

′
(k) ↓, and let s1, s2 be as in (i). The stage s2 works for (i),

but not for us in this case; we have to wait until every right sibling node α′

of α which had been visited prior to stage s2, is visited again at least one
more time (if ever). Say this happens by stage s5 > s2. Now the argument
in (i) can be used to show that at every stage t > s5 such that δt ⊇ τ̂∞,
we either have δt(|α|) = 0, or else δt(|α|) specifies (k, f).

(iii) Immediate from (ii). �

The next lemma tells us that each time some computation in Lα changes,
certain τ -boxes will automatically be cleared. That is, if k is not eventually
in Lα, then all the Ψτ (k, γ)-boxes with |γ| = mτ

i , which are incorrect coding
locations for the kth row, will be unoccupied in the limit. Part (ii) covers the
case when k eventually does enter Lα (and is in Lα at every α-stage), but
yet α has true outcome 0. This might be possible if we have infinitely many
uses for ΦA

e (k)[t], so that ΦA
e (k) ↑, but ΦA

e (k)[t] ∈M τ
i whenever it converges.

Every time α plays outcome 0, this box might be occupied; unlike in (i),
because some sibling node of α to the right might fill the box after each
change in the use for ΦA

e (k)[t]. In this case we get a global win at τ , and
τ would not care which boxes are filled; however this is important for the
negative nodes in the construction tree extending α̂0 which might be on
the true path. These negative nodes might see ∆-computations which they
would like to freeze, but there is currently a use of some τ -box below the δ-
use, which will later be cleared (by the lemma below). Hence these negative
node would know not to believe in these ∆-computations until these τ -boxes
are cleared.

Lemma 3.5. Let α be a Pe,i-node and τ = τ(α) such that α ⊃ τ̂∞.
Assume α lies on the true path and s is an α-stage which is not the first
one.

(i) If α plays outcome 0 at stage s, then for every number k 6∈ Lα[s] and
string γ of length mτ

i , the box Ψτ (k, γ) has to be empty at stage s.
(ii) For every k and string γ of length mτ

i , if the box Ψτ (k, γ) gets filled
by the actions at stage s (if not already full), then the box will have
to be emptied at least once before α can next play outcome 0.

Proof. (i) Suppose the contrary, let k 6∈ Lα[s] and γ of length |γ| = |lbα| be
such that the box is full with use uτk,γ [s] ↓. This box must have been filled

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 27

at some stage t < s, in which δt(|α|) was active and k ∈ Lα[t]. The fact
that k is no longer in Lα[s], means that A has to change below t. Hence
this change will happen after uτk,γ [s] > t was set, a contradiction. In fact,
we don’t need that α plays outcome 0; this will always be true if k goes out
of Lα.

(ii) Again the box must have been filled when k ∈ Lα[t]. Before α can
next play outcome 0 after stage s, there must be a change some computation
in Lα[t], which would clear the box before the next α̂0-visit. Note that we
are not claiming that the box is empty at the next α̂0-stage after s; just
that the box would be emptied at least once in between. �

Now we will show that despite the fact that nodes can be injured by action
on the right, this only happens finitely often to nodes on the true path.

Lemma 3.6. Every node on the true path is initialized finitely often.

Proof. We proceed by induction on the length. Let α be on true path, and
suppose no node β ⊂ α gets initialized anymore. We consider all possibili-
ties, i.e. we suppose α gets initialized by the actions of some node β. We
may assume that β 6<L α. Since β cannot be a top node, we divide the
proof into two parts. Firstly suppose that β is a negative node. If β is not
acting on behalf of some sibling node, then we must have β ⊂ α and so this
happens only finitely often (because β never picks new followers). Suppose

β was acting on behalf of some sibling node β̃ <L β. We must have either
β̃ ⊂ α or else β̃ <L α. If we let X[t] be the collection of all numbers x
such that x is a follower (at stage t) of some negative node in state 3, which
is either to the left of α or it is extended by α. Observe that for all large
enough t, X[t] is non-increasing, i.e. X[t + 1] ⊆ X[t]. Now each time α is

initialized by β acting on behalf of some β̃, this event will also correspond
to some number in X[t] being enumerated into A. So, this only happens
finitely often (since X[t] is finite).

Now for the second part we assume that β is an ultrahigh node. Hence
β initializes α because it thought that α had believed in incorrect compu-
tations. So α extends some β̃̂o′ for some outcome o′ > 0 and some sibling
β̃ <L β or β̃ = β. Let o be the β-outcome played at stage t, when this
initialization took place (at a very large stage t). Since o′ > 0 and is the

true outcome of β̃, it follows that β̃ will become permanently active, and by
Lemma 3.4, and the fact that t is not the first visit to β, we must have both o
and o′ specifies the same set. Hence there is some k where o′ specifies (k, f)
and o specifies (k,∞), which is a contradiction. So after a large enough t
no ultrahigh node can initialize α. �

As an important consequence to Lemmas 3.3 and 3.6, we have that if
i < j then for almost every stage t, we have

lbTP �i
TP �j ≤L lb

δt�i
δt�j

.

This will be assumed in the rest of the proof.

28 ROD DOWNEY AND KENG MENG NG

Lemma 3.7. Along the true path, all the negative requirements are satisfied.

Proof. Take a Ne,i,j-node α on the true path, and suppose that α is never
initialized after some stage s0. Assume also that ti and tj are total, and
|Ti(x)| < ti(x) and |Tj(x)| < tj(x) for all x. Also assume that A = ΦWe⊕Ve

e

and We⊕Ve = ∆A
e . If any of the assumptions above are not met, then Ne,i,j

is satisfied vacuously. It is easy to see that `α →∞.
Claim 1. There is a leftmost node β, such that |β| = |α| and Fβ = 3 at

almost all stages. If there is a left sibling node of α with this property, then
we are done. Otherwise at almost every visit to α, we must in fact have no
left sibling of α is at state 3. Since α is never initialized after s0, hence its
state never decreases. We claim that limFα = 3. If not, then limFα = 1
or 2. It is obvious that limFα = 1 is not possible, so at some point all the
indices will be picked and limFα = 2.

We argue inductively that for every 0 ≤ i ≤ N , xαi will become eventually
defined forever, and also that lim inf `bα > xαi . xαi will clearly be defined (and
never again undefined) when ∆e(ϕe(x

α
i−1)) has settled, and is believable. To

see that `bα has lim inf greater than xαi , we suppose that there is there is some
box with use uτk,σ < δe(ϕe(x

α
i)) where δe(ϕe(x

α
i)) is the correct use. We show

that this box must be emptied at the next visit to α (if not before), which
gives a contradiction. To see this, suppose the second option in Definition
3.2 fails (the first option fails is trivial). We apply Lemma 3.5(ii) to get a
contradiction. Suppose the third option fails. Since α always play outcome
w when visited, hence at the next α-stage this box will be cleared. This
contradiction says that `bα is almost always larger than xαi . Hence there will
be a stage where we give Fα state 3, a contradiction.

Let s2 be the final stage where β moves from state 2 to 3. It is easy to see

that for all i, xβi+1 > δe(ϕe(x
β
i))[s2] and `bβ[s2] > xβi . By Lemma 3.3, for any

i < |β| and all t ≥ s2, we must have lbβ�iβ̂d ≤L lbδt�iδt�1+|β|. We can in fact say

something more: if τ ⊂ β and a node ξ ⊃ τ is visited at some stage after
s2, such that |ξ| > |β|. Then we in fact have lbτβ̂w <L lbτξ . This is because

lbτβ̂d = (lbτβ)̂d >L (lbτβ)̂w = lbτβ̂w.

Claim 2. After s2, no A-change below q := δe(ϕe(x
β
N))[s2] is possible apart

from an enumeration of some xβi . Any such change has to be produced by
the actions of some node ξ at stage t ≥ s2. Let o be the outcome played by
ξ at t. Suppose ξ was clearing a box of lower ξ̂o-priority. The box would
be Ψτ (k, σ) for some τ ⊂ ξ and k, and σ >L lbτξ̂o. We may assume that

τ ⊂ α, β, otherwise the box is only filled after s2 and poses no threat to us.
By the above observation about the priority of labels, we must either have
lbτξ̂o >L lbτβ̂w or else lbτξ̂o ⊂ lbτβ̂w. Thus σ is strictly to the right of lbτβ̂w,

which means that the box Ψτ (k, σ) is of lower β̂w-priority. Hence it would
be cleared by β at s2 itself, and the only possibility is if ξ = β and t = s2.
By β-believability this action does not change A below q.

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 29

Suppose on the other hand, ξ is a negative node which changed A � q
because it was clearing a box of lower ξ̂w-priority (as it moved from state 2
to 3). At t, ξ is visited and it moved from state 2 to 3. Also, the outcome of
ξ at t is d. As above, the box being cleared is Ψτ (k, σ) for some τ ⊂ ξ, α, β
and k, and σ >L lb

τ
ξ̂w = lbτξ̂w. If |ξ| > |β| then it is easy to see once again

that the box Ψτ (k, σ) is of lower β̂w-priority. We suppose on the other
hand that |ξ| ≤ |β|; and show that this is impossible. Since at t, ξ would
initialize every node extending it, we must in fact have β <L ξ. We may
assume lbτξ̂d ⊆ lbτβ̂d (because the alternative lbτξ̂d >L lbτβ̂d is treated as

above), it is not hard to verify that after s2, ξ to the right of β can never
play outcome w again. However observe that at s2, ξ would be initialized
since it is to the right of β. The only way for us to have stage t after s2, is
for ξ to promote its state first from 1 to 2 at some stage t′ strictly between
s2 and t. At such a stage t′, ξ must be acting for its own sake, and be having
outcome w, a contradiction. This shows that the box Ψτ (k, σ) is of lower
β̂w-priority, and will be cleared at s2, a contradiction to the existence of ξ
and t.

Now we can assume ξ changed A for a different reason (other than clearing
boxes of lower priority). Hence ξ has to be either an ultrahigh or a negative
node. Suppose first that ξ is a negative node. At t, ξ can either be acting
for itself, or it is acting on behalf of some sibling ξ̃. Consider first the case
when ξ is acting for itself. Since ξ cannot be initialized at s2, so ξ 6⊃ β
and ξ 6>L β. ξ also cannot be to the left of β, and if ξ ⊂ β then it would
initialize β after s2. The only possibility is ξ = β, which means that one of

the xβi would be enumerated. If ξ was acting on behalf of ξ̃ then a similar

argument follows with ξ̃ in place of ξ.

Now suppose that ξ is an ultrahigh node, so that u
τ(ξ)
k,lbξ

[t] is enumerated

into A, for some k such that o specifies (k,∞). Again we may assume that

τ(ξ) ⊂ β otherwise u
τ(ξ)
k,lbξ

[t] is picked after s2. If |ξ| > |β| then we have

lbξ >L lb
τ(ξ)
β̂w, so it would have been cleared by β at s2, and so has use at

stage t larger than q. On the other hand suppose |ξ| < |β|. Let ξ̃ = β � |ξ|.
Since β cannot be initialized by ξ at stage t, the outcome of ξ̃ along β is
either 0 or else it specifies (k,∞). In both cases, the use cannot be less than
q, again due to β-believability.

Lastly suppose that ξ is an ultrahigh node clearing a box filled by some
ultrahigh node ξ′ to its right. The box is again of the form Ψτ(ξ′)(x, lbξ′) for

some x and lbξ′ 6<L lb
τ(ξ′)
ξ . Note that ξ′ must have filled this box at a stage

strictly before s2. Again we may assume that τ(ξ′) ⊂ β; we divide into three
cases. Firstly if |ξ| < |β|, then β � |ξ| will be strictly to the left of ξ′, and at

s2 when β � |ξ| is visited we cannot have lbξ′ <L lb
τ(ξ′)
β�|ξ| , otherwise we will also

have lbξ′ <L lb
τ(ξ′)
ξ . This means that the box Ψτ(ξ′)(x, lbξ′) will be cleared by

the action of β � |ξ| at s2, which is a contradiction. For the second scenario

30 ROD DOWNEY AND KENG MENG NG

we assume that |ξ| > |β| > |ξ′|. Then we have lb
τ(ξ′)
ξ >L lb

τ(ξ′)
β̂w . In this case,

β � |ξ′| is visited at s2 and is strictly to the left of ξ′, and again we cannot

have lbξ′ <L lb
τ(ξ′)
β�|ξ′|, so that the box Ψτ(ξ′)(x, lbξ′) will also be cleared by the

action of β � |ξ′| at s2. Lastly both |ξ′|, |ξ| > |β|. Then neither lbξ′ <L lb
τ(ξ′)
β̂w

nor lbξ′ ⊇ lb
τ(ξ′)
β̂w is possible since lb

τ(ξ′)
β̂w <L lb

τ(ξ′)
ξ . Since ξ′ is long, we also

cannot have lbξ′ ⊂ lb
τ(ξ′)
β̂w . The last case is lb

τ(ξ′)
β̂w <L lbξ′ , in which case the

box Ψτ(ξ′)(x, lbξ′) is of lower β̂w-priority, so that it will be cleared by β at
s2. This concludes the verification of claim 2.

Note that we are not claiming that δe(ϕe(x
β
N))[t] = q for every t. In

fact, the nested use δe(ϕe(x
β
N))[t] can become larger than q when xβN enters

A. Subsequently we may have other nodes changing A below δe(ϕe(x
β
N))[t],

but always does so above q. By Claim 2 we have that at every stage t

after s2 and for every k, whenever xβk 6∈ At then ϕe(x
β
k)[t] = ϕe(x

β
k)[s2] and

δe(ϕe(x
β
k))[t] = δe(ϕe(x

β
k))[s2], and furthermore the respective sets have not

changed up till these uses. This is because if We⊕Ve changes without being
permitted by us, then β (or any sibling acting on behalf of β) immediately
becomes inactive to preserve the disagreement.

We also have infinitely many chances to act for β, or act on behalf of β.

Suppose some largest xβc is never enumerated into A. Let k = |Ti(ηβ0)| + 1

(the actual size), and k ≤ ti(η
β
0). Since ϕe(x

β
c) settles, it follows that both

JWe(ηβ0) and JVe(ηβk) are eventually defined. This means that one of the
two final values will not be in the respective traces, so Ne,i,j is satisfied. We
may therefore assume that every one of the followers is enumerated into A.

Let tc be the stage where xβc is enumerated into A. We prove the crucial
claim:

Claim 3. Between tc+1 and tc, either Ti(η
β
0) has a new number enumerated

into it, or else some number strictly between tc+1 and tc is enumerated into

one of Tj(η
β
1), · · · , Tj(ηβ

ti(η
β
0)

). Let k = |Ti(ηβ0)[tc+1]|+1, and suppose that no

new number enters Ti(η
β
0) between the two stages. Now both JWe(ηβ0)[tc+1]

and JVe(ηβk)[tc+1] are defined, and are in the respective traces. Since these
computations were defined before tc+1 (say at t′), it follows that they have

use at least as large as the use ϕe(x
β
c+1)[t

′]. By the remarks after Claim 2,

it follows that ϕe(x
β
c+1)[t

′] = ϕe(x
β
c+1)[tc+1]. This is the crucial part where

we use Claim 2. There must be a recovery of lβ some time between tc+1

and tc (in which β or some sibling acting on behalf of β got to act). At

that stage we have either We-change (hence JWe(ηβ0) ↑) or Ve-change (hence

JVe(ηβk) ↑). Now we cannot have a We-change, because otherwise we give

JWe(ηβ0) a new value which will be in Ti(η
β
0)[tc]. Hence we must have a

Ve-change at recovery, and we will give it a new value which will be reflected

in Tj(η
β
k).

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 31

By a simple counting argument and Claim 3, it follows that we cannot

have enumerated all of xβ1 , · · · , x
β
N , giving a contradiction. This shows that

Ne,i,j is satisfied. �

Lemma 3.8. Along the true path of construction, all the positive require-
ments are satisfied.

Proof. Let τ be a PAe -node on the true path, such that ΦA
e is an order. The

true τ -outcome is clearly∞. We will show that {V τ
k }k∈N traces J∅

′
correctly.

We fix a number k, and let i be such that ΦA
e (k) ∈M τ

i , and α be the version
of PAe,i on the true path with true outcome o. Hence α will eventually be

responsible for tracing J∅
′
(k), when Lα settles.

We first of all show that |V τ
k | < ΦA

e (k). Take a box in the kth row, i.e
Ψτ (k, σ) for some σ. If this is filled by a node β where |β| 6= |α|, then
β must have done so when k was in Lβ. Since k has to leave Lβ, hence
the box must be cleared before that. Therefore any such box Ψτ (k, σ) on
row k can only be defined permanently by a node at level |α|. There are
at most 2m

τ
i many distinct labels of the nodes at that level, so Ψτ (k, σ) is

only defined permanently in at most 2m
τ
i < ΦA

e (k) many different σ. Next,

suppose that J∅
′
(k) ↓. We want to show that J∅

′
(k) ∈ V τ

k . We know α will
become permanently active and o will specify (k, f). It is enough to prove
the following claim (by induction):

Claim 1. For any ultrahigh node α along the true path and any k such
that the true α-outcome specifies (k, f), the box Ψτ(α)(k, lbα) receives a per-

manent definition with value J∅
′
(k). We proceed by induction on the length

of α. Take α on the true path with true outcome o specifying (k, f) for

some k, and τ = τ(α). Clearly J∅
′
(k) ↓; let s0 be a large α̂o-stage. By

induction hypothesis at s0, α would not be stopped from putting J∅
′
(k) into

the box Ψτ (k, lbα), unless of course the box Ψτ (k, lbα) itself is occupied.
In that case it has to be occupied by the correct value, since α only plays
an outcome specifying (k,∞) finitely often. This can in fact be said about
every α̂o-stage after s0; we must have the box Ψτ (k, lbα) occupied (pos-
sibly filled by α). The only issue is whether we can get it to be occupied
permanently without being made undefined infinitely often. We assume for
a contradiction that infinitely often we have the box Ψτ (k, lbα) being made
undefined infinitely often. In particular, there are infinitely many α-stages
s and some stage t ≥ s such that an enumeration of a number p ≤ uτk,lbα [s]

is made at stage t. In the following, s is an arbitrary α̂o-stage.

• p is the use of a box Ψτ ′(k′, σ) which is filled by a node ξ with

|ξ| > |α|. We claim that if Ψτ ′(k′, σ) was filled after s0, then it
would not be possible for it to do the above. In particular, assume
that p ≤ uτk,lbα [s] is enumerated at t for some s0 ≤ s ≤ t and s is an

α̂o-stage. Say ξ is an ultrahigh node which filled p, which must be
at or before s. ξ cannot be to the right of α̂o, because at s, α would
clear the ξ-box. ξ 6⊆ α because ξ is long. So ξ ⊇ α̂o is the only

32 ROD DOWNEY AND KENG MENG NG

possibility left. Since ξ would have filled p strictly before s, and also
the fact that when ξ filled p (at s′ < s), we ensured that uτk,lbα [s′] ↓,
we have uτk,lbα [s′] < p ≤ uτk,lbα [s], which means an A-change below p
will take place before s, a contradiction.
• p is the use of a box Ψτ ′(k′, σ) of lower β̂o′-priority (when β̂o′ is

visited). We cannot have τ ′ <L α because we never visit left of α.
We cannot have τ ′ >L α because τ ′ is initialized at s. We cannot
have τ ′ ⊃ α as well, because then the box will be filled by some
τ ′-daughter of longer length than α. Suppose now that τ ′ ⊂ α. We
have σ >L lbτ

′

β̂o′ . If |σ| ≥ |lbτ ′α̂o|, then σ has to be filled by a τ ′-

daughter node of a longer length than α, which is already considered
above. So we must have |σ| < |lbτ ′α̂o|, and by Lemma 3.3 we also

have σ >L lb
τ ′

α̂o and so the box Ψτ ′(k′, σ) also of lower priority than

α̂o. This means the box is cleared at s, and by considering labels,
p cannot be picked by α itself. Hence p is picked strictly after s,
which is a contradiction.
• Suppose p is enumerated by an ultrahigh node β. The ultrahigh

node β can be enumerating p either because p is the use of some
box filled by a node to its right, or it is enumerating p because p
is the use of a box which its outcome is telling it to clear. Suppose
the latter holds. p is the use of some box, which is filled by some
ultrahigh node ξ at some stage t′ ≤ s. We claim that if p is filled
after s0, then this will lead to a contradiction. We draw attention
once again to the fact that at s, α will always clear all boxes it needs
to clear, before filling the box Ψτ (k, lbα). There are now three cases

depending on the position of ξ; remember that the box Ψτ(ξ)(k′, lbξ)
is filled by ξ and has to be cleared by β which is a sibling node of ξ.
We want to get a contradiction in all three cases:

(C1) ξ ⊆ α: then ξ is along the true path, so by Lemma 3.5(ii) the
true outcome of ξ cannot be 0. Hence ξ will become perma-
nently active and the true outcome of ξ has to specify either
(k′,∞) or (k′, f). By Lemma 3.4, the true outcome of ξ has to
specify (k′,∞), since β has to play (k′,∞). This means that at
s itself p would have to be cleared, a contradiction. This applies
even if ξ = α.

(C2) ξ >left α: at s, we would have cleared the box with use p
when α is visited. This happens before α fills any box, so is a
contradiction.

(C3) ξ ⊃ α: then |ξ| > |α|, and we have been through this case.
Suppose now the former holds, i.e. β is enumerating p because it is
the use of a box filled by some node ξ to its right. In this case, it
is not hard to see that the only possibilities for ξ are (C2) and (C3)
above, and the same argument there applies.

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 33

• lastly p is enumerated by a negative node β. β can either be enu-
merating some follower (of its own or some left sibling), or it could
be clearing a box of lower β̂w-priority as it moved from state 2 to
3. Suppose the latter holds, i.e. β is clearing the box Ψτ ′(k′, σ). If
|β| > |α| then the argument will be similar to the case when a box
of lower β̂o′-priority is cleared. Suppose |β| < |α|, and in fact we

may assume that lbτ
′

β̂d ⊆ lbτ
′
α (because the alternative lbτ

′

β̂d >L lbτ ′α
can be treated as above). This is now dealt with in a similar fashion
as one of the cases in Lemma 3.7. After s, β to the right of α can
never play outcome w again. At s, β would be initialized since it
is to the right of α. β must promote its state first from 1 to 2 at
some stage t′ strictly between s and t. At such a stage t′, β must be
acting for its own sake, and be having outcome w, a contradiction.

Assume further that s0 is large enough such that p cannot be
enumerated under the situations described above. We consider the
following well-ordering of nodes on the construction tree, by letting
ζ1 <P ζ2 iff either ζ1 <L ζ2 or else ζ1 ⊂ ζ2. Let ξ be the least negative
node wrt <P extending α̂o, and has a follower enumerated into A
after s0 (this may be due to ξ or some sibling node acting on behalf
of ξ); if ξ does not exist then we are done. If only finitely many
ξ-followers are enumerated into A, let s1 > s0 be the first α̂o-stage
after the last enumeration of a ξ-follower. Otherwise if infinitely
many ξ-followers are enumerated into A, then ξ must be to the right
of the true path; let s1 > s0 be an α̂o-stage such that we moved
left of ξ.

We claim that no p below uτk,lbα [s1] can ever enter A after s1.
This can only be due to the enumeration of some β-follower for
some β ⊇ α̂o (again this can be due to either β or some β-sibling).
If ξ was to the right of the true path then it is not hard to see
that no β extending α̂o can have a follower enumerated at or after
s1. In the other case if the final ξ-follower was enumerated prior
to s1, then every negative node extending α̂o and >P ξ would be
initialized when the ξ-follower was enumerated, and have to pick
their followers larger than uτk,lbα [s1]. This is because if a negative
node is initialized, then within the same stage, it will not pick new
followers (being in state 1).

Hence the box Ψτ (k, lbα) will receive a permanent definition. This com-
pletes the induction step for Claim 1. Hence A is ultrahigh. �

4. Not every high2 c.e. degree can be split into totally ω-c.a.
degrees.

In Section 2, we showed that every high c.e. degree could be split into
lower c.e. degrees which are array computable. One might ask if high
permitting was necessary; a weaker highness property such as nonlow2 might

34 ROD DOWNEY AND KENG MENG NG

possibly suffice. Perhaps even every (non-zero) degree was the join of two
array computable degrees. We show that this is not the case - highness is
in fact necessary for splitting into array computable halves:

Theorem 4.1. There is a high2 c.e. degree a such that whenever a =
a0 ∪ a1, then one of a0 and a1 is not totally ω-c.a.

We divide the discussion of the proof of the theorem in the following parts.
First we discuss in Section 4.1, the plan on how to build a c.e. set A and
make deg(A) not contain the join of totally ω-c.a. sets. We then discuss in
Section 4.2 why injecting highness requirements into the construction will
fail, and discuss why high2 requirements would be compatible.

4.1. Making deg(A) not contain the join of any totally ω-c.a. sets.
We now need to satisfy the requirements

Ne : If A = ΓWe⊕Ve
e and We ⊕ Ve = ∆A

e , then one of

We or Ve is not totally ω-c.a..

We drop subscript e for the purpose of the following discussion. To satisfy N
we need to ensure that there are total functions FW , GV computable from
W and V respectively, such that one of FW or GV is not ω-c.a.. We remark
that the proof to follow is nonuniform and necessarily so.

We fix an effective enumeration 〈ai, bi〉 of all possible ω-c.a. approxima-
tions. That is, each ai(−,−) is a total computable function, and bi(−) is a
partial computable function. We say that a function F is i-approximated if bi
is total and for every x, the number of mind changes on ai(x,−) is bounded
by bi(x), and lims ai(x, s) = f(x). Every ω-c.a. function is i-approximated
for some i.

The general strategy for making a set X not superlow is very similar to
making X not totally ω-c.a.. Indeed it is easy to see that if X is a c.e.
set, then X is superlow iff for every (partial) function ΦX , there is some i
such that ΦX is i-approximated at every place it is defined. Our strategy in
Section 3 was able to construct partial functions FW and GV such that one
of them was not i-approximated for every i.

To demonstrate, for example, FW is not totally ω-c.a., the idea would be
to defeat all pairs ai, bi, by finding some argument x where we can change
FW (x) more than bi(x) = k many times; waiting for the approximation
ai(x, s) to agree with the current approximation FW (x)[s] before each such
change. This is all as expected. In the superlow case, FW need only be
partial and only defined on some arguments.

The extra difficulty posed by having to ensure totality is the following:
suppose we have selected n1 and n2 with the intention of making one of
FW (n1) or GV (n2) change often. We have to define FW (n1) and GV (n2)
even though the respective bi-bounds might not converge. We might there-
fore set the use of FW (n1) and GV (n2) to be above ϕ(x1), · · · , ϕ(xk), but
later after more of bi has converged we might find that k was insufficient,

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 35

because we might have to force changes in W or V more than k times. We
have to again exploit the fact we are allowed a nonuniform argument; that
is, we are allowed to build more than one pair 〈FW , GV 〉 of functions as
possible candidates to meet N .

The requirement N will build a pair of functions 〈FW , GV 〉 which will
be total in the case when the N -hypothesis is true. The requirement N is
divided into infinitely many subrequirements Ni,j , and each of these subre-
quirements Ni,j will build a pair of functions 〈FWi,j , GVi,j〉. The subrequire-
ment Ni,j will itself be divided into infinitely many sub-subrequirements
Ni,j,k,l, which are each aiming to ensure that, if the N -hypothesis is correct,

then either FW is not i-approximated, or GV is not j-approximated, or FWi,j
is not k-approximated, or GVi,j is not l-approximated.

The atomic action for Ni,j,k,l is the following.

(1) Pick a follower (agitator) x for A, and fresh numbers n1, n2, n3, n4.
Wait for γ(δ(x))[s] ↓, and then define all of

FW (n1), G
V (n2), F

W
i,j (n3), and GVi,j(n4)

convergent with use γ(δ(x))[s]. Freeze A. The role of the follower
will be to induce changes into A and thus, indirectly, into one of W
or V .

(2) Wait for all of bi(n1), bj(n2), bk(n3), bl(n4) to converge. Enumerate
x into A and wait for W ⊕ V -change.

(3) One of W or V will have changed, and the following is completely
symmetric. So suppose that W changed in step 2, so that now both
FW (n1) and FWi,j (n3) are undefined. Now pick x1, · · · , xbi(n1) (b1(n1)

many new agitators) such that xm+1 > γ(δ(xm)) for all m; define
FW (n1) on new use γ(δ(xbi(n1))). Pick a fresh follower ñ2 > n2,

and define GV (ñ2) with use γ(δ(xbi(n1))). Leave FWi,j (n3) ↑. Increase
restraint on A. Note that now, if we put the agitators into A in
reverse order, provided that all the changes occur in W , we have
enough to now kill a1, b1 on n1.

(4) Wait for bj(ñ2) to converge. Once it converges run the basic strategy
in Section 3 to try and make FW not i-approximated at input n1.
That is, we put the followers in reverse order each time we see a
reconvergence of the a1(n1) approximation agreeing with FW (n1)[s].
This process will succeed unless it is interrupted by a V -change. Go
to next step if this happens.

(5) Now pick fresh followers y1, · · · yM (where M = bj(ñ2)+bk(n3)) such
that ym+1 > γ(δ(ym)) for all m; define FWi,j (n3) and GV (ñ2) with

use γ(δ(ybj(ñ2))). Increase restraint on A. Run the basic strategy in

Section 3 to make either FWi,j not k-approximated at input n3, or GV

not j-approximated at input ñ2.

If the N -hypothesis holds, then all γ, δ-uses will converge and the appropri-
ate followers will be chosen when required. Hence we will not wait forever

36 ROD DOWNEY AND KENG MENG NG

in steps 1 and 3. If we wait forever in step 2 then we would succeed trivially
at one of FW , GV , FWi,j or GVi,j . If we wait forever in step 4 then we either

succeed trivially at GV (ñ2), or we succeed at FW (n1). If we ever get to step
5 then we will succeed at either FWi,j (n3) or GV (ñ2).

The basic module succeeds at one of FW , GV , FWi,j or GVi,j as described

above. Note that regardless of the outcome of the basic strategy, FW and
GV will be defined at every input picked by the strategy. Furthermore if
the basic strategy succeeds at neither FW nor GV , then both FWi,j (n3) and

GVi,j(n4) are defined. Therefore the functions FW , GV built atN will be total
regardless of the outcomes of individual sub-subrequirements. We analyze
how the N -requirement will be met. If ∀i∃j, k, l such that Ni,j,k,l succeeds

at FW , then FW is not ω-c.a.. If ∃i∀j∃k, l such that Ni,j,k,l succeeds at GV ,

then GV is not ω-c.a.. If neither of the alternatives above hold, then we
must have some i0, j0 such that ∀k, l, Ni0,j0,k,l succeed at neither FW nor

GV ; hence both FWi0,j0 and GVi0,j0 will be total. In this situation if ∀k∃l such

that Ni0,j0,k,l succeeds at FWi0,j0 , then FWi0,j0 is not ω-c.a.; otherwise GVi0,j0 is
not ω-c.a..

4.2. Making A high2. Suppose we wanted to combine the requirements in
Section 4.1 with highness requirements. Since each atomic node Ni,j,k,l only
increases A-restraint finitely often, and changes A finitely often, it might
seem trivial to combine this with highness requirements. However we know
this to be impossible from Theorem 2.1, so what goes wrong? The conflict
is between an Ni,j,k,l-node σ, and a highness node η such that σ ⊇ η ∗ ∞;
i.e. σ believes that η wants to code an infinite column into A. Now σ
will pick its follower(s) xσ only at an η-expansionary stage; at such a stage
s, η would have enumerated all the contents of a column up to a large
number s′ > s, and xσ chosen less than s′. The trouble is that γ(δ(xσ))
may later converge to a value larger than s′. Remember we had to en-
sure that the functions F,G, Fi,j , Gi,j had to be total; therefore we cannot
afford to wait until σ is next visited and Γ(∆(xσ)) becomes σ-believable
before defining F,G, Fi,j , Gi,j (note that we could do this in Theorem 3.1
because the functions built there were not required to be total). (Essentially
F,G, Fi,j , Gi,j need to be built at a single mother location τ on the tree on
the true path. If this location is above the highness requirement, it cannot
know when a computation associated with some N requirement below the
highness requirement but associated with the mother ν. Hence at the next
η-expansionary stage, η would be unable to code below γ(δ(xσ)) without in-
juring σ. This could happen for infinitely many different sub-subrequirement
nodes extending η ∗∞; which would be bad for η.

The inability to combine highness requirements with certain other require-
ments can sometimes be avoided if capricious destruction helps us make
overall progress in the global setting; by doing so we get a high2 set instead
of a high set. For instance, no c.e. degree which does not bound a minimal

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 37

pair can be high, a result of Cooper [2], but one can overcome the difficulty
of coordinating the local permitting with high coding by capriciously de-
stroying certain computations with pending action. Thus it is possible to
make a high2 c.e. degree bounding no minimal pairs. The reason for this
is that high2-ness is like infinitely many highness requirements, but only
almost all of them need succeed. It is possible to all some to fail to be met if
this makes progress on the greater goal, typically by forcing some functional
to diverge. We refer the reader to Downey, Lempp and Shore [8] for a more
detailed discussion of a high2 construction. We will only briefly describe the
main points here.

To make A high2 we need to code Cof = {e : dom(ϕe) is cofinite} into
A′′. This is done by the Double Limit Lemma. That is, we will need to
build a functional Ĥ(e, i, t) such that for each e, limi limt Ĥ(e, i, t) = Cof(e).

The idea is to split the Ĥ requirements into subrequirements Hτ built at a
e-mother node τ as follows. A typical Pe-mother node τ in the construction
will measure if e ∈ Cof , and constructs a functional HA

τ (i, t) such that HA
τ

is total and computable from A, and e ∈ Cof iff limi limtH
A
τ (i, t) = 1, and

e 6∈ Cof ⇔ limi limtH
A
τ (i, t) = 0. If we could do this, then to compute if

e ∈ Cof , we observe that A′′ can compute the true path of construction; so
we can find the version of τ on the true path and then ask about the double
limit.

The mother node τ will guess at the three quantifier question “e ∈ Cof”
by breaking it up into infinitely many two quantifier questions, and ap-
proximating these individual questions at sub-nodes below it. To wit, each
sub-node η = η(i) will measure if there is x > i such that ϕe(x) ↑. η will
have an expansionary stage whenever it is visited and sees more of ϕe con-
vergent above input i. η will then change A below some HA

τ (i,−)-use to
try and redefine more of HA

τ (i,−) to 1. At non-expansionary stages, η will
extend HA

τ (i, t) to more inputs t with output 0. Eventually η will want to
ensure that if there are infinitely many η-expansionary stages then it records
the limtH

A
τ (i, t) as 1, otherwise it wants to record limtH

A
τ (i, t) as 0

Note that in a high construction, this would be replaced by making sure
limiH(i) = Tot(i) at nodes σ for e, every σ has to record the limit faithfully.
However in a high2 construction, we only need the limit limtH

A
τ (i, t) to be

recorded correctly at almost every level i below τ . We now discuss how to
exploit this to make our construction work. Recall that the conflict was
between a Ni,j,k,l-node σ, and a high2 node η such that σ ⊇ η ∗∞. Let τ(η)

be the mother node of η, and τ(σ) be the master2 N -node of σ. We describe
two typical situations that will arise in the construction:

Case 1. τ(σ) ⊂ τ(η) ⊂ η: in this situation σ picks its follower xσ as usual
at η-expansionary stages. However whenever τ(σ) is visited and witnesses
the convergence of γ(δ(xσ)), it will pre-empt η and immediately enumerate

2We refer to this mother as the master to avoid conflict in the discussion to follow.
This is where the functional F,G are all defined.

38 ROD DOWNEY AND KENG MENG NG

all pending η-markers < γ(δ(xσ)) into A and make more of HA
τ(η)(η,−) = 1.

That is, we attempt to force σ-correctness by removing any coding mark-
ers associated with η from below the use of the computations at σ, and
capriciously destroy the Γ(∆(xσ))-computation in the hope of clearing the
η-markers from below the use. We then travel a link (τ(σ), σ) down to σ.
This happens even at non-η-expansionary stages. If the link between τ(σ)
and σ is travelled infinitely often and never removed, then we will be forced
to make limtH

A
τ(η)(η, t) = 1 even though η might want to record the limit

as 0; however observe that in this situation γ(δ(xσ)) tend to ∞, so that we
have a global τ(σ)-win. In the cone below σ, no other daughter node of
τ(η) will be forced to have an incorrect limit. On the other hand once the
link between τ(σ) and σ is removed, then before a new link can be formed
between τ(σ) and another σ′ ⊃ η ∗ ∞, we must have a new η-expansionary
stage. Therefore if we skip over η infinitely often by jumping from τ to σ′

(for different σ′’s), then we forced to make limtH
A
τ(η)(η, t) = 1 without a

global τ(σ)-win; however in this case η also wants to record the limit as 1,
so we are fine. The point is that limtH

A
τ(η)(i, t) will be forced to record an

incorrect value for finitely many i.
Case 2. τ(η) ⊂ τ(σ) ⊂ η: We ensure that the following feature is present

in the tree architecture: Suppose there are daughter nodes η1, η2 of τ(η)
such that τ(σ) ⊂ η1 ∗ w1 ⊂ η2 ∗ w2, and that w1 6= w2. That is, we will
have come to believe that e is not cofinite or the reverse. Whenever we
see this we will restart a new version of τ(σ) below η2 ∗ w2 (as we do in a
global win); along the true path τ(σ) will be restarted finitely often because
the sub-nodes of τ(η) can only have finitely much alternation in their true
outcomes. Therefore if σ is an active sub-node of τ(σ), and τ(σ) is the final
version of the requirement on the true path, then we may delay extending
the definition of FW , GV until the next σ-stage when the uses become η-
believable. Moreover, this feature means that in the configuration described
all nodes ηi with τ(η) ⊂ τ(σ) ⊂ ηi ⊂ σ will be saying the same thing, either
ηi ∗∞ (guessing cofinite all from the same point onwards generated by some
ηk ∗∞ ⊆ τ(σ)), or ηi∗f . In the former case, when ηk looks correct, all of the
ηi with τ(σ) ⊂ ηi ⊂ σ, also look correct, and hence will have their coding
markers enumerated. Thus when we travel the link either σ looks ηi correct,
or we gain on the plan on proving that some τ(σ) hypothesis is false.

The formal construction below require links, and scouting reports. That
is, before following a link from τ down to σ, we check to see where we would
go if the link was not present; if we wanted to go left of σ, then we cancel the
link and let the construction take us there. The construction will have the
feature that there is a true path, and a genuine true path (GTP) which is
the leftmost set of nodes actually visited infinitely often. This methodology
was first introduced by Downey and Stob [9].

4.3. The Priority Tree. We mention that there is an issue with Case 1
above. In this case, it could be that we might create some link (τ(σ), σ)

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 39

down to σ. and fail to clear the use of the computations of σ but drive one
of the uses to infinity. Evidently this will need some kind of outcome g of
the node σ drawing attention to the fact that we have a permanent link,
and now we can ignore the requirements between τ(σ) and σ. Note that
this means that information on the leftmost path can be false, but not on
the genuine true path. Fortunately in this construction, we only have the
situation where links can be permanent, and not infinitely often created.
Thus a σ node like this has outcomes σ ∗ d (we diagonalize at σ, meaning
that we successfully get through the whole diagonalization process of the
basic module in a σ-correct way), this being stronger than σ ∗ g (meaning
that we have killed τ(σ)) and then right to σ ∗ w meaning that one of the
az, bz fail to live up to their responsibilities).

The priority tree is then constructed in the inductive way, using, say, lists
as per Soare [13]. It is enough to introduce mother nodes τ for high2-ness
in order of e, so that if e < f then τe ⊂ τf . Then, if η is a subrequirement
of e, we ask that τ(η) ⊂ η.

Now we similarly have the τ(σ) masters above the child σ-nodes.
As with typical 0′′′ arguments, if we have an outcome σ ∗g as above, then

below g we would restart all nodes not associated with τ(σ) between τ(σ)
and σ, and have no nodes associated with τ(σ) below σ ∗ g. That is because
we have a global win of the hypothesis of τ(σ) at σ.

In the same spirit, if we have an outcome ηi ∗ w2 which is an alternation
of outcome for ηj ∗ w1 ⊆ ηi ∗ w2 with τ(ηi) = τ(ηj) for the longest such τ ,
then we would restart all requirement of lower global priority than τ (i.e.
e(ν) > e(τ)) below ηi ∗ w2.

With the rules above, generate the priority tree PT.

4.4. The Construction. The construction, as usual, is run in stages and
substages. At each stage s, we begin at the empty string λ, and work our
way down the tree to get the apparent GTP.

Suppose we hit a node ν
If ν is an η-node, see if its hypothesis is correct. If so then for all η-nodes

with η ∗ ∞ � η′ enumerate their coding markers into A, and we put η ∗ ∞
as the next node on GTPs. For any such η′ if later we visit them then we
will additionally put η′ ∗ ∞ on GTP. Move to the next substage to process
η ∗∞.

If ν is a σ-node, and has not yet been processed, assign 4 fresh followers
n1, . . . , n4 as in the basic module, and create a link (τ(σ), σ) back to σ’s
master. This concludes the stage.

If ν is a σ-node and all followers associated with it are σ-correct, and the
module is in a waiting stage for the a, b’s to respond, then play σ ∗ w.

If ν is a σ-node and we are ready to attack, attack as in the basic module,
linking back to τ(σ)).

If ν is a σ-node and we have played previously σ ∗ d with σ-correct com-
putations, and since that stage σ has not been initialized, then play σ ∗ d.

40 ROD DOWNEY AND KENG MENG NG

If ν is τ(σ). If ν is not expansionary, play outcome ν ∗ f . If ν is τ -
expansionary via τ -correct computations, then if there is no link from ν
play ν ∗∞.

If there is a link (τ, σ), look at the nodes between τ and σ. If we were to
pretend the link is not there, see if you would move left of σ. If this is the
case, erase the link, and play τ ∗∞.

If not then we will travel the link. If the computations generated by the
current state of the σ module (i.e. the basic module, as performed at σ) are
σ-correct, perform the next step of the module. If this step actually meets
σ, then play outcome σ ∗ d, from σ. This ends the stage. Declare σ as met.
If this step generates a new follower, generate the new follower, and then the
stage ends at σ. If the computations are σ-correct, but we are now awaiting
the ai, bi, ai,j , bi,j to respond, erase the link, and play outcome σ ∗ w.

If the computation is not σ-correct, then for any η∗∞ with τ ⊆ η∗∞ ⊆ σ,
and e(τ(η)) > e(τ(σ), capriciously enumerate all of η’s unrestrained coding
markers ≤ s into A, and play outcome σ ∗ g.

If ν is a τ(η)) node, then it only has one outcome on the tree, say, τ ∗ o
since this simply records the fact that this is the place we are considering e.

This ends the construction.

4.5. Verification. We define the GTP to be that leftmost collection of
strings ν such that ν is visited infinitely often in the course of the construc-
tion. We prove by simultaneous induction that GTP is infinite,

(i) for each e there are only finitely many τ -nodes with τ ⊂ GTP and
e(τ) = e (we call the longest on the final τ(e)-master or -mother,

(ii) for each τ(η) mother there are only finitely many η ∗w1 η ∗w2 nodes
⊆ GTP with w1 6= w2, (Note that this does not say “on GTP”, but
⊆ GTP .)

(iii) σ ⊂ GTP then one of σ ∗ w, σ ∗ d, σ ∗ g is on GTP. In the first two
cases σ is met. In the final case τ(σ) is met and there are no σ′-nodes
below σ ∗ g with τ(σ′) = τ .

(iv) If η ⊂ GTP one of η ∗ ∞ or η ∗ f is a prefix of GTP. In the former
case almost all of η’s codings happen. In the latter, η is only finitely
active.

(v) If τ ⊂ GTP is a final master node on GTP, then either τ ∗f ⊂ GTP ,
or
(a) either there is a σ ⊃ τ with τ(σ) = τ , and a link (τ, σ) for

almost all stages, or
(b) there are infinitely many τ ∗ ∞ stages, and all links with top

τ are eventually traversed to their bottoms, σ′ and either σ′ is
met, or infinitely often we are left of σ′.

We begin with λ which is on GTP. We might as well suppose that λ is a
τ -master node and look at (v), which is the most complex hypothesis. Note
that τ cannot be initialized by anything as it has highest priority. If τ ∗ f ⊆

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 41

GTPs, for almost all stages, then almost all stages are not expansionary for
τ = λ’s functionals, and hence e(τ) is met, and τ ∗ f ⊆ GTP.

If there are infinitely many τ -expansionary stages, at each such stage we
will either play τ ∗∞ or traverse a link (τ, σ). This link can only be destroyed
by playing some node ρ strictly left of σ (found by a scouting report), or
σ playing outcome σ ∗ w or σ ∗ d. In the former case we will play outcome
τ ∗∞. In the case σ ∗ w, we will have all followers σ-correct but one of the
relevant ai, bj ’s fail to respond. At such at stage, the link will be removed,
and the next τ -expansionary stage will be a τ ∗∞ stage. The same is true for
the next τ -expansionary stage after we play σ ∗d. The only other possibility
is that the link (τ, σ) is permanent. It is never erased by nodes left of σ
but one of the finite number of followers associated with σ fails to achieve
σ-correctness. In this case we see that σ ∗g is played at each τ -expansionary
stage, and hence σ ∗ g ⊂ GTP. This means that we meet e(τ) at σ. Below
σ ∗ g all the requirements of lower priority than η are restarted, and only a
finite number of η with τ ∗ ∞ ⊆ η ∗ ∞ ⊆ σ might have the wrong outcome
by capricious enumeration. Note that this establishes (v) and a bit more.

Similar arguments work for (iii). If σ ⊆ GTP , then from some stage
onwards, when we visit σ we will act. The first time we do this we begin
the analog of the basic module for σ. We link back to σ’s master τ . For
the basic n1, . . . , n4 we will not erase this link until these have σ-correct
computations. If that never happens, then, as above σ ∗ g ⊆ GTP . If it
does happen, then we will play σ ∗w each time we visit σ unless realization
occurs, and we wish to act. At such a stage, we again would link back to
τ and the same reasoning says that either we get σ-correct computations
for all the new followers, or the link is permanent, and in that case, again
σ ∗g ⊂ GTP . Once they are established σ-correctly, then we will again play
σ ∗ w until the a, b functions respond, and the cycle repeats, so that in the
end we see that (iii) holds.

Now notice that for each τ(η) mother, if we have ηk ∗w1 ⊆ ηj ∗w2 ⊆ GTP
with w1 6= w2, suppose that w1 = ∞ and w2 = f . This means that ηi is
saying that from its point of view all the numbers greater than i(ηk) are in
Cof(e). How can this happen if w2 = f since it believes that this is not
the case for i(ηj) > i(ηk), by the way we construct the priority tree? This
can only happen if there is a permanent link over ηk ∗ ∞ and this is not a
correct outcome. Such a link must come from a master τ to some σ ⊂ ηj ∗f .
For this to happen, it must be that e(τ(σ)) < e(τ(η)). Hence this can only
happen finitely many times. For the final τ(η)-mother it is only possible
that w1 = f and w2 =∞ and then for all nodes ηp ⊂ GTP below ηj ∗w2 it
will be that ηp ∗∞ ⊂ GTP. Thus (ii) holds. This reasoning also proves (iv).

The above concludes the verification, and the argument we gave for λ also
works for the final e master node τ .

42 ROD DOWNEY AND KENG MENG NG

5. Strong cupping

In this final section we look at stronger notions of cupping. We know that
∅′ is the join of two superlow degrees in the Turing degrees, but it is easy
to show that this is not true in the wtt-degrees. That is because Downey,
Jockusch and Stob [7] showed that the array computable wtt-degrees form
an ideal in the c.e. wtt degrees, not containing ∅′. In this last section we
prove something stronger. No c.e. set of totally ω-c.a. degree can even be
wtt-cupped to the complete wtt-degree.

Theorem 5.1. No totally ω-c.a. set can be wtt-cupped. That is, if ∅′ ≤wtt
A⊕D and A is totally ω-c.a., then ∅′ ≤wtt D.

Proof. Suppose A,D and Φ are given such that ∅′ = ΦA⊕D and the use ϕ is
computable. We first describe the strategy required if we assumed instead
that A was superlow. We would want to compute ∅′ from D; let us consider
only ∅′(0). We would associate 0 with some g(0) for some (partial) function
g ≤T A which we get to build. Since A is superlow, we can request for
certification that A is correct on the current use of g(0); furthermore we
have a computable bound on the number of wrong certifications which may
be given, say with bound h. Therefore we could prepare in advance h(0)
many agitators c1, · · · , ch(0) targeted for ∅′ (more specifically we are building
a c.e. set C which is hardwired into ∅′), and then compute ∅′(0) from the
first γ(ch(0)) many bits of D. Namely, if 0 does enter ∅′ we want to force
D � γ(ch(0)) to change. We do this by enumerating c1, c2, · · · , ch(0) into ∅′
one at a time. At each single attack, if D � γ(ch(0)) changes then we are
done; otherwise A � γ(ch(0)) has to change, and we can get to redefine a
new value for g(0) at every attack we make. Since the number of wrong
certifications for g(0) is at most h(0), one of the attacks must result in a D
change, and we are done.

In the above argument, note that we can obtain the bound h effectively
from g. Since g obviously can be made total, the above argument works
even when A is only array computable. If A is now totally ω-c.a., we no
longer can obtain the bound h effectively from g. To overcome this, we will
have to “guess” at the correct bound, and build infinitely many reductions
attempting to witness ∅′ ≤wtt D, based on each guess.

Formal proof. We may assume that ϕ is actually the number of bits of A
(or the number of bits of D, if this is larger) which is accessed during the
computation. By the recursion theorem, we can build some c.e. set C as
part of ∅′ which we control, and assume that C = ΦA⊕D. We fix an effective
list 〈fe, he〉 of partial computable functions such that fe is binary and he is
unary.

We perform infinitely many constructions, and argue that one of them
works. The eth construction will produce (uniformly in e) a total function

SPLITTING INTO DEGREES WITH LOW COMPUTATIONAL STRENGTH 43

ge ≤T A, and partial computable function δe. The aim of the eth construc-
tion is to satisfy the single requirement

Re : If lim fe(〈e, x〉, s) = ge(x) for every x with at most he(〈e, x〉) many mind

changes, then ensure ∅′ ≤wtt D with computable use δe.

Construction. We now describe the eth construction; for convenience we
drop e from the notations. Since C = ΦA⊕D, we will only act whenever
C = ΦA⊕D looks correct on a sufficiently long segment. If we take any action
in the construction that kills a current computation, we always wait until the
relevant computations recover. We also assume that new Φ-computations
converge instantly when required.

The parameters that are needed are the following: A list of agitators
ck,0, ck,1, · · · targeted for entry into C, and we single ck,0 out as the leading
k-agitator for each k. We may assume that we fix the leading agitators ck,0 =
2k for all k; the rest of the agitators will be picked during the construction
from the odd integers. We also build a partial computable function δ, which
will be total if the R-hypothesis is correct. At stage s = 0, set everything to
be undefined. At s > 0, we look for the least k such that one of the following
holds.

(A1) δ(k)[s] ↑ and h(k)[s] ↓. In this case pick fresh agitators ck,1 < · · · <
ck,h(k). Set δ(k) = ϕ(ck,h(k)).

(A2) Correction needed : there is some k such that δ(k) ↓, k has entered
∅′ at some stage t < s and D � δ(k)[t] = D � δ(k)[s]. We begin
the sequence of attacks as follow (to force D � δ(k) to change): the
first attack starts by enumerating ck,0 into C, and waits for either
A � ϕ(ck,0) or D � ϕ(ck,0) to change. If D changes then the attack
is successful, otherwise if A changes, we wait for f(x) to switch to
output the current value of A � ϕ(ck,h(k)) (which is different, since A
has changed). We begin the second attack after f(x) changes, and
repeat with ck,1. We stop whenever one of the attacks is successful.

If no such k exists, we do nothing.
Verification. We first of all verify that the eth construction works. Let

h̃(k) := he(〈e, k〉). Define ge(k) by the following. Go to the first stage s

such that A � ϕ(ck,0)[s] = A � ϕ(ck,0). If h̃(k)[s] has not yet converged,
then we output A � ϕ(ck,0). Otherwise output A � ϕ(ck,h̃(k)). Note that ge
is total computable in A, regardless of what happens in the construction.
Suppose the hypothesis in Re holds. First of all, we argue that for each k,
whenever correction is needed under (A2) for k, one of the attacks must be

successful. Suppose all of the h̃(k) + 1 many attacks fail. We must have
ge(k) = A � ϕ(ck,h̃(k)), since the first attack fails. Each time a new attack

fails, fe(〈e, k〉) has to switch to give a new string, since fe predicts ge(k)

correctly and A is c.e. But fe(〈e, k〉) will have to switch h̃(k) many times, a
contradiction.

44 ROD DOWNEY AND KENG MENG NG

It follows therefore that each k receives attention at most twice, and hence
δe is total. To show that ∅′ ≤wtt D with use δe, we fix k and let s be the first
stage where D � δe(k)[s] = D � δe(k). Clearly k ∈ ∅′ ⇔ k ∈ ∅′[s], because if
k enters ∅′ after s, then correction will be needed for k, in which D � δ(k)
will be forced to change after stage s.

Finally, we verify that the theorem holds. Let g(〈e, x〉) := ge(x), which
is total computable since ge is generated effectively. There will be some
e such that the pair fe, he witnesses that g is ω-c.a., and hence satisfies
the hypothesis in Re. As a final note, we remark that even though each
ge ≤wtt A, but the amalgamation g is merely computable in A, as we might
well expect. �

References

[1] M. Bickford and C. Mills. Lowness properties of r.e. sets. Unpublished manuscript,
(1982).

[2] S. B. Cooper. Minimal pairs and high recursively enumerable degrees. Journal of
Symbolic Logic, 39 (1974) pp. 655–660.

[3] Rod Downey and Noam Greenberg. Pseudo-jump inversion, upper cone avoidance,
and strong jump-traceability. Advances in Mathematics, 237 (2013) pp. 252–285.

[4] Rod Downey and Noam Greenberg. A transfinite hierarchy of lowness notions in the
computably enumerable degrees, unifying classes, and natural definability. Submitted.

[5] Rodney Downey and Denis Hirschfeldt, Algorithmic Randomness and Complexity,
Springer-Verlag, 2010.

[6] Rod Downey, Denis Hirschfeldt, Andre Nies and Frank Stephan. Trivial reals. Pro-
ceedings of the 7th and 8th Asian Logic Conferences, (2003) pp. 103–131.

[7] Rod Downey, Carl Jockusch Jr. and Michael Stob. Array nonrecursive sets and multi-
ple permitting arguments. Proceedings of the Conference held at the Mathematisches
Forschungsinstitut, Oberwolfach, March 19–25, 1989, (1990) pp. 141–174.

[8] Rod Downey, Steffen Lempp and Richard Shore. Highness and bounding minimal
pairs. Mathematical Logic Quarterly, 39(1) (1993) pp. 475–491.

[9] Rod Downey and Michael Stob. Minimal pairs in initial segments of the recursively
enumerable degrees. Israel Journal of Mathematics, 100 (1997) pp. 7–27.

[10] Andre Nies. Lowness properties and randomness. Advances in Mathematics, 197
(2005) pp. 274–305.

[11] Keng Meng Ng. On very high degrees. Journal of Symbolic Logic, 73(1) (2008) pp.
309–342.

[12] Keng Meng Ng. Computability and Traceability. PhD thesis, Victoria University of
Wellington.

[13] R.I. Soare. Recursively enumerable sets and degrees. Springer-Verlag, Heidelberg
(1987).

School of Mathematics and Statistics, Victoria University of Wellington,
PO Box 600, Wellington, New Zealand, , Division of Mathematical Sciences,
School of Physical and Mathematical Sciences, Nanyang Technological Uni-
versity, Republic of Singapore

