Extensions of Two Constructions of Ahmad ${ }^{1}$

Jun Le Goh
Department of Mathematics, University of Wisconsin, Madison, WI, USA
junle.goh@wisc.edu
Steffen Lempp
Department of Mathematics, University of Wisconsin, Madison, WI, USA
lempp@math.wisc.edu

Keng Meng Ng
Division of Mathematical Sciences, School of Physical and Mathematical Sciences, College of Science, Nanyang Technological University, Singapore
kmng@ntu.edu.sg
Mariya I. Soskova
Department of Mathematics, University of Wisconsin, Madison, WI, USA
msoskova@math.wisc.edu

Abstract

In her 1990 thesis, Ahmad showed that there is a so-called "Ahmad pair", i.e., there are incomparable Σ_{2}^{0}-enumeration degrees \mathbf{a}_{0} and \mathbf{a}_{1} such that every enumeration degree $\mathbf{x}<\mathbf{a}_{0}$ is $\leqslant \mathbf{a}_{1}$. At the same time, she also showed that there is no "symmetric Ahmad pair", i.e., there are no incomparable Σ_{2}^{0}-enumeration degrees \mathbf{a}_{0} and \mathbf{a}_{1} such that every enumeration degree $\mathbf{x}_{0}<\mathbf{a}_{0}$ is $\leqslant \mathbf{a}_{1}$ and such that every enumeration degree $\mathbf{x}_{1}<\mathbf{a}_{1}$ is $\leqslant \mathbf{a}_{0}$.

In this paper, we first present a direct proof of Ahmad's second result. We then show that her first result cannot be extended to an "Ahmad triple", i.e., there are no Σ_{2}^{0}-enumeration degrees $\mathbf{a}_{0}, \mathbf{a}_{1}$ and \mathbf{a}_{2} such that both $\left(\mathbf{a}_{0}, \mathbf{a}_{1}\right)$ and $\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)$ are an Ahmad pair. On the other hand, there is a "weak Ahmad triple", i.e., there are pairwise incomparable Σ_{2}^{0}-enumeration degrees \mathbf{a}_{0}, \mathbf{a}_{1} and \mathbf{a}_{2} such that every enumeration degree $\mathbf{x}<\mathbf{a}_{0}$ is also $\leqslant \mathbf{a}_{1}$ or $\leqslant \mathbf{a}_{2}$; however neither $\left(\mathbf{a}_{0}, \mathbf{a}_{1}\right)$ nor $\left(\mathbf{a}_{0}, \mathbf{a}_{2}\right)$ is an Ahmad pair.

Keywords: enumeration degrees, Ahmad pairs, Ahmad triples

1. Introduction

Enumeration reducibility is a positive reducibility between sets of natural numbers. It arises naturally as a notion of relative computability for partial functions and has applications in effective mathematics, especially in computable topology, in computable model theory and in group theory.

We associate an algebraic presentation of this reducibility as a degree structure. The structure of the enumeration degrees is a partial order with least upper bound and a jump operator (just like its more famous cousin, the structure of the Turing degrees). In this article we focus on structural properties of its local substructure-the degree structure of the enumeration degrees of the Σ_{2}^{0}-sets, which can be defined also as those enumeration degrees below the degree $\mathbf{0}_{e}^{\prime}$. Here, $\mathbf{0}_{e}^{\prime}$ is the enumeration degree of the complement \bar{K} of the halting problem $K=\left\{e \mid \varphi_{e}(e) \downarrow\right\}$. The Σ_{2}^{0}-enumeration degrees can be viewed as the counterpart in enumeration reducibility of either the c.e. Turing degrees or the Turing degrees $\leqslant \mathbf{0}^{\prime}$, i.e., the Δ_{2}^{0}-Turing degrees. Both analogies are imperfect, but reasonable in certain respects. We refer the reader to [14] for more information on current trends in research on the enumeration degrees.

One of the common questions about a degree structure viewed as a partial order is that of the complexity of its first-order theory. For most degree structures commonly being considered, the theory turns out to be as complicated as possible: global structures like the Turing degrees or the enumeration degrees have theories that are computably isomorphic to the theory of second-order arithmetic, while local structures usually have theories that are equivalent

[^0]to the theory of first-order arithmetic. We then wonder about the fragments of the first-order theory, identified by restricting sentences to a certain quantifier complexity. We find that decidability breaks down at level 3 , i.e., the $\exists \forall \exists$-fragment is not decidable. On the other hand the \exists - and often even the $\forall \exists$-fragment is decidable.

For the Σ_{2}^{0}-enumeration degrees, the first of these questions has been completely settled: The full first-order theory was shown to be undecidable by Slaman and Woodin [13], and equivalent to full first-order arithmetic by Ganchev and Soskova [4].

As for the second question, the \exists-fragment is easily seen to be decidable, whereas Kent [5] showed the $\exists \forall \exists$-fragment to be undecidable. The decidability of the $\forall \exists$-fragment remains open.

The decidability of the $\forall \exists$-fragment can be rephrased algebraically as (uniformly effectively) deciding the following

Question 1.1. For any given finite partial orders \mathcal{P} and $\mathcal{Q}_{i} \supseteq \mathcal{P}$ (for $i \leqslant n$), can any embedding of \mathcal{P} into the Σ_{2}^{0}-enumeration degrees be extended to an embedding of \mathcal{Q}_{i} for some $i \leqslant n$ (where i may depend on the particular embedding of \mathcal{P})? (Without loss of generality, we will from now on assume that any finite partial order is bounded, i.e., has a least element 0 and a greatest element 1.)

Two major subproblems of Question 1.1 have been shown to be decidable:

- Lempp, Slaman and Sorbi [8] showed that the above question is decidable for $n=0$, i.e., given any finite partial orders $\mathcal{P} \subseteq \mathcal{Q}$, it is decidable whether any embedding of \mathcal{P} into the Σ_{2}^{0}-enumeration degrees can be extended to an embedding of \mathcal{Q}.
- Lempp and Sorbi [10] showed that all finite lattices can be embedded, even preserving 0 and 1 . (The lattice embeddings question can be seen as a disjunction of extending embeddings to certain one-point extensions \mathcal{Q}_{i} of a finite lattice \mathcal{P} viewed as a partial order.)

As noted earlier, the Σ_{2}^{0}-enumeration degrees are often compared to the c.e. Turing degrees. Both are dense structures with full first-order theories as complicated as the theory of first-order arithmetic. For the c.e. Turing degrees this was proved by Slaman and Woodin (unpublished, see Nies, Shore and Slaman [11]); for the c.e. Turing degrees we have that in addition the \exists-fragment is decidable, whereas Lempp, Nies and Slaman [7] showed the $\exists \forall \exists$-fragment to be undecidable. However, the lattice embeddings problem for the c.e. Turing degrees remains one of the main open problems dating back to the 1960's (see Lempp, Lerman and Solomon [6] for the most recent update), and thus the decidability of the $\forall \exists$-theory of the c.e. Turing degrees remains wide open as well.

An important algebraic difference between the c.e. Turing degrees and the Σ_{2}^{0}-enumeration degrees was discovered by Ahmad in her Ph.D. thesis [1] (see Ahmad and Lachlan [2, Corollary 3.2]): There are incomparable Σ_{2}^{0}-enumeration degrees \mathbf{a}_{0} and \mathbf{a}_{1} (called an "Ahmad pair") such that any degree $\mathbf{x}<\mathbf{a}_{0}$ is also $<\mathbf{a}_{1}$. (This makes \mathbf{a}_{0} "non-splitting", i.e., join-irreducible, and thus cannot happen in the c.e. Turing degrees by the Sacks Splitting Theorem [12].) More interestingly even, Ahmad also showed (see Ahmad and Lachlan [2, Theorem 3.3]) that this phenomenon is not symmetric: For any two incomparable Σ_{2}^{0}-enumeration degrees \mathbf{a}_{0} and \mathbf{a}_{1}, there is either a degree $\mathbf{x}_{0}<\mathbf{a}_{0}$ which is $\not \subset \mathbf{a}_{1}$, or there is a degree $\mathbf{x}_{1}<\mathbf{a}_{1}$ which is $\not \leq \mathbf{a}_{0}$.

In the language of Question 1.1, Ahmad's results can be rephrased as stating that not every embedding of $\mathcal{P}=\left\{0, a_{0}, a_{1}, 1\right\}$ with incomparable a_{0} and a_{1} can be extended to an embedding of $\mathcal{Q}_{0}=\left\{0, x_{0}, a_{0}, a_{1}, 1\right\}$ where $0<x_{0}<a_{0}$ and $x_{0} \not \leq a_{1}$, but that every embedding of \mathcal{P} can be extended to an embedding of either \mathcal{Q}_{0} or of $\mathcal{Q}_{1}=\left\{0, a_{0}, x_{1}, a_{1}, 1\right\}$ where $0<x_{1}<a_{1}$ and $x_{1} \not \leq a_{0}$.

In this paper, we prove two extensions of Ahmad's results in different directions, thus adding to our toolbox toward our ultimate goal, deciding the $\forall \exists$-theory of the Σ_{2}^{0}-enumeration degrees. Again in the language of Question 1.1, our first result can be rephrased as stating that every embedding of $\mathcal{P}=\left\{0, a_{0}, a_{1}, a_{2}, 1\right\}$ with incomparable a_{0}, a_{1} and a_{2} can be extended to an embedding of $\mathcal{Q}_{0}=\left\{0, x_{0}, a_{0}, a_{1}, a_{2}, 1\right\}$ where $0<x_{0}<a_{0}$ and $x_{0} \not \leq a_{1}$ or an embedding of $\mathcal{Q}_{1}=\left\{0, x_{1}, a_{0}, a_{1}, a_{2}, 1\right\}$ where $0<x_{1}<a_{1}$ and $x_{1} \not \leq a_{2}$ (leaving the relationship between x_{0} and a_{2}, and between x_{1} and a_{0}, unspecified so as to not have too many cases); a similar formulation can be found for our second result.

We first present, in Section 2, a direct proof of Ahmad's result that there is no symmetric Ahmad pair. (Currently, the only published proof in the literature is indirect and hard to modify.) In Section 3, we show that there is no Ahmad triple, i.e., there are no Σ_{2}^{0}-degrees $\mathbf{a}_{0}, \mathbf{a}_{1}$ and \mathbf{a}_{2} such that both $\left(\mathbf{a}_{0}, \mathbf{a}_{1}\right)$ and $\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)$ form an Ahmad pair. On the other hand, in Section 4, we also show that there is a weak Ahmad triple, i.e., there are pairwise incomparable Δ_{2}^{0}-enumeration degrees $\mathbf{a}_{0}, \mathbf{a}_{1}$ and \mathbf{a}_{2} such that every enumeration degree $\mathbf{x}<\mathbf{a}_{0}$ is also $\leqslant \mathbf{a}_{1}$ or $\leqslant \mathbf{a}_{2}$; however, neither $\left(\mathbf{a}_{0}, \mathbf{a}_{1}\right)$ nor $\left(\mathbf{a}_{0}, \mathbf{a}_{2}\right)$ forms an Ahmad pair. We should add here that Kent (personal communication around 2006) identified the existence of an Ahmad triple and of a "cupping Ahmad pair" (i.e., an Ahmad pair whose join is $\mathbf{0}_{e}^{\prime}$) as the two main initial obstacles toward a decision procedure for the $\forall \exists$-theory of the Σ_{2}^{0}-enumeration degrees.

It is worth pointing out that the first two results are specific to the Σ_{2}^{0}-enumeration degrees. Lempp, Slaman, and Soskova [9] have shown that every finite distributive lattice L can be embedded as an interval of Π_{2}^{0}-enumeration degrees $[\mathbf{a}, \mathbf{b}]$ so that for every enumeration degree $\mathbf{x}<\mathbf{b}$ we have that $\mathbf{x} \in[\mathbf{a}, \mathbf{b}]$ or $\mathbf{x}<\mathbf{a}$. Embedding the diamond in such a way shows that symmetric Ahmad pairs are possible in general.

2. A Direct Proof that there is no Symmetric Ahmad Pair

In this section, we will present a direct proof of the following
Theorem 2.1 (Ahmad [1] (see Ahmad and Lachlan [2, Corollary 3.2])). There is no symmetric Ahmad pair in the Σ_{2}^{0}-enumeration degrees, i.e., there are no incomparable Σ_{2}^{0}-degrees \mathbf{a}_{0} and \mathbf{a}_{1} such that every enumeration degree $\mathbf{x}_{0}<\mathbf{a}_{0}$ is $\leqslant \mathbf{a}_{1}$, and every enumeration degree $\mathbf{x}_{1}<\mathbf{a}_{1}$ is $\leqslant \mathbf{a}_{0}$.

To show that the degrees of a pair of sets A_{0} and A_{1} is not an Ahmad pair, we need to build a set $X_{0}<_{e} A_{0}$ such that $X_{0} Z_{e} A_{1}$. Cooper's density proof [3] builds precisely such a set X_{0} assuming that in addition $A_{1}<_{e} A_{0}$. Under this additional assumption, we can build $X_{0}=\Phi_{0}\left(A_{0}\right)$ as follows: We satisfy two types of requirements. The first type ensures that for every e, we have $X_{0} \neq \Gamma_{e}\left(A_{1}\right)$ by threatening to code A_{0} into the e-th column of X_{0}. The second type of requirement ensures that for every i, we have $A_{0} \neq \Gamma_{i}\left(X_{0}\right)$ by threatening to make $\Gamma_{i}\left(X_{0}\right)=\Gamma_{i}\left(X_{0}^{[\leqslant i]} \cup \mathbb{N}^{[>i]}\right)$, which (assuming $X_{0}^{[\leqslant i]}$ is computable) is a c.e. set. Here $X^{[\leqslant n]}=\{\langle m, x\rangle \mid m \leqslant n\}$ and $X^{[>n]}=\{\langle m, x\rangle \mid m>n\}$. To make this idea work, the construction uses a good approximation to the set A_{0}, i.e., a uniformly computable sequence of finite sets $\left\{A_{0, s}\right\}_{s<\omega}$ such that
(1) for every n, there is a stage s such that $A_{0} \upharpoonright n \subseteq A_{0, s} \subseteq A_{0}$; and
(2) for every n, there is a stage s such that for every $t \geqslant s$, if $A_{0, t} \subseteq A_{0}$ then $A_{0} \upharpoonright n \subseteq A_{0, t}$.

Stages at which $A_{0, s} \subseteq A_{0}$ are called good. The sets reducible to A_{0}, namely, $X_{0}, A_{1}, \Gamma_{e}\left(A_{1}\right)$, and $\Gamma_{i}\left(X_{0}\right)$, are approximated with correct approximations-good approximations whose good stages include all good stages for the approximation of A_{0}. If we restrict our attention to good stages for A_{0}, then two sets with correct approximations are the same if and only the length of agreement between them measured at such stages is unbounded. So, if we enumerate elements into $X_{0, s}$ only by enumerating axioms of the form $\left\langle x, A_{0, s}\right\rangle$ into Φ_{0}, then we ensure that X_{0} gains new elements only at good stages for A_{0}, and this allows us to limit the activity of each requirement to a finite set.

If A_{1} is not bounded by A_{0}, then this construction fails: It can be that there are infinitely many good stages for A_{0} that are bad for A_{1}, causing us to falsely assume that a requirement of the first type requires attention again and again and forcing it to contribute an infinite set to X_{0}. This, in turn, is in critical conflict with the second type of requirements, which depend on the assumption that each column in X_{0} is finite. The problem we see should not surprise us, because Ahmad pairs do exist. Ahmad's original proof of Theorem 2.1 uses the Gutteridge operator to show that if A_{0} and A_{1} form an Ahmad pair, then A_{0} and all sets bounded by A_{0} have eventually correct approximations with respect to the approximation to A_{1}, and so we can build $X_{1}<_{e} A_{1}$ with $X_{1} \not Z_{e} A_{0}$ using essentially the same construction as the one described above. The proof is ingenious, though difficult to modify. We give a direct construction, using the priority method and a tree of strategies. The main idea is to build the sets X_{0} and X_{1} in a more entangled way so that our failure to prove that $X_{1}<_{e} A_{0}$ allows us to switch off unwanted axioms enumerated into X_{0} and avoid the problem described above.

Assume that A_{0} and A_{1} are incomparable Σ_{2}^{0}-sets. (If A_{0} and A_{1} are comparable, then their enumeration degrees do not form an Ahmad pair by definition.)

We fix approximations for A_{0} and A_{1} so that $\left\{A_{0, s} \oplus A_{1, s}\right\}_{s<\omega}$ is a good approximation to $A_{0} \oplus A_{1}$. So even though we cannot ensure that good stages for A_{0} are good for A_{1} or vice versa, we may at least ensure that there are infinitely many common good stages.

2.1. Requirements

The construction builds an enumeration operator Φ_{1}, attempting to satisfy the following requirements for each enumeration operator Γ_{1} and each enumeration operator Δ_{1} :

$$
\begin{aligned}
& \mathcal{R}_{\Gamma_{1}}: \Phi_{1}\left(A_{1}\right) \neq \Gamma_{1}\left(A_{0}\right) \\
& \mathcal{S}_{\Delta_{1}}: A_{1} \neq \Delta_{1}\left(\Phi_{1}\left(A_{1}\right)\right) .
\end{aligned}
$$

If some $\mathcal{R}_{\Gamma_{1}}$ requirement fails then we will construct an enumeration operator Φ_{0} satisfying the following subrequirements for each of the enumeration operators Γ_{0} and Δ_{0} :

$$
\begin{aligned}
& \mathcal{R}_{\Gamma_{1}, \Gamma_{0}}: \Phi_{0}\left(A_{0}\right)=\Gamma_{0}\left(A_{1}\right) \Longrightarrow A_{0}=\Psi\left(A_{1}\right) \text { (for a } \Psi \text { built by us) } \\
& \mathcal{S}_{\Gamma_{1}, \Delta_{0}}: A_{0} \neq \Delta_{0}\left(\Phi_{0}\left(A_{0}\right)\right) .
\end{aligned}
$$

Clearly, satisfying either group of requirements, namely, all $\mathcal{R}_{\Gamma_{1}}$ - and all $\mathcal{S}_{\Delta_{1}}$-requirements, or, for some fixed Γ_{1}, all $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$ - and all $\mathcal{S}_{\Gamma_{1}, \Delta_{0}}$-requirements, will suffice since $A_{0} \not \mathbb{K}_{e} A_{1}$.

We will denote $\Phi_{i}\left(A_{i}\right)$ by X_{i} (for $i<2$) whenever the operator Φ_{i} is clear from the context.

2.2. Tree of strategies

Order each of the types of requirements and subrequirements in a priority of order type ω. We have four types of strategies: an $\mathcal{R}_{\Gamma_{1}}$-strategy α, an $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$-strategy β, an $\mathcal{S}_{\Delta_{1}}$-strategy γ, and an $\mathcal{S}_{\Gamma_{1}, \Delta_{0}}$-strategy δ.

The root of the tree of strategies T is \emptyset, an $\mathcal{R}_{\Gamma_{1}}$-strategy working on the highest-priority $\mathcal{R}_{\Gamma_{1}}$-requirement. An $\mathcal{R}_{\Gamma_{1}}$-strategy has only one outcome $\langle 0\rangle$ and is immediately followed by an $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$-strategy, working on the highest-priority $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$-requirement.

An $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$-strategy β has outcomes $\langle 2 k\rangle,\langle 2 k+1$, old $\rangle,\langle 2 k+1$, off \rangle, and $\langle 2 k+1$, new \rangle for all $k \in \omega$, ordered as follows:

$$
\langle 0\rangle<_{L}\langle 1, \text { old }\rangle<_{L}\langle 1, \text { off }\rangle<_{L}\langle 1, \text { new }\rangle<_{L}\langle 2\rangle<_{L} \cdots
$$

For every $k<\omega$, the nodes $\beta^{\wedge}\langle 2 k\rangle$ and $\beta^{\wedge}\langle 2 k+1$, off \rangle are $\mathcal{S}_{\Gamma_{1}, \Delta_{0}}$-strategies working on the highest-priority $\mathcal{S}_{\Gamma_{1}, \Delta_{0}}$-requirement that is not assigned to any of β^{\prime} 's predecessors. The nodes $\beta^{\wedge}\langle 2 k+1$, old \rangle and $\beta^{\wedge}\langle 2 k+1$, new \rangle are

An $S_{\Delta_{1}}$-strategy γ has outcomes $\langle k\rangle$, where $k \in \omega$ is ordered by the standard ordering on ω. Each such immediate successor of this strategy is a main $\mathcal{R}_{\Gamma_{1}}$-strategy, working on the highest-priority $\mathcal{R}_{\Gamma_{1}}$-requirement that is not assigned to any of its predecessors.

Similarly, an $S_{\Gamma_{1}, \Delta_{0}}$-strategy δ has outcomes $\langle k\rangle$, where $k \in \omega$ is ordered by the standard ordering on ω. Each such immediate successor of this strategy is an $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$-strategy, working on the highest-priority $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$-requirement (for the same Γ_{1} as δ) that is not assigned to any of its predecessors.

2.3. Construction

At stage 0, all strategies are in initial state: All operators associated with these strategies are empty, all parameters are undefined. At stage $s>0$, we build a path f_{s} of length $\leqslant s$. The intention is that there will be a true path defined
by

$$
f(n)=\liminf _{f_{s} \succeq f \upharpoonright n} f_{s}(n)
$$

that correctly describes the outcomes of each strategy. The construction consists of substages t for $t<s$, where we act for some strategy $f_{s} \upharpoonright t$ of length t depending on the current outcome of the strategy which acted at the previous substage starting at the root. When a strategy is activated at stage s, it first ensures that it is not missing any good stages by adjusting the approximations to A_{0} and A_{1} : If s^{-}is the previous stage at which this strategy was active, then it replaces $A_{i, s}$ by $\bigcap_{u \in\left[s^{-}, s\right]} A_{i, u}$ for $i<2$. We describe further actions of each strategy depending on its type below.

At the end of stage s, we initialize all strategies of lower priority than f_{s}, i.e., strategies extending or to the right of the strategies which acted at stage s.

Each $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$-strategy β and each $\mathcal{S}_{\Gamma_{1}, \Delta_{0}}$-strategy δ works with the version of Φ_{0} and X_{0} determined by the longest $\mathcal{R}_{\Gamma_{1}}$-strategy $\alpha \prec \beta, \delta$ (we say that β and δ work for α); this version of Φ_{0} is the set of Φ_{0}-axioms enumerated by all the $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$ - and $\mathcal{S}_{\Gamma_{1}, \Delta_{0}}$-strategies working for the same $\mathcal{R}_{\Gamma_{1}}$-strategy α.

2.3.1. $\mathcal{S}_{\Delta_{1}}$

We begin with the \mathcal{S}-strategies, as they are directly lifted from the density construction. So, let γ be an $\mathcal{S}_{\Delta_{1}}$-strategy. The first time a strategy is visited after initialization, the strategy receives a unique number s_{γ}, the stage of first visit after initialization. To keep this assignment of stages injective, we interrupt the stage s construction if s is the first stage when γ is visited: We set $f_{s}=\gamma, s_{\gamma}=s$, and move on to stage $s+1$. If $s_{\gamma}<s$ is already defined, then we consider the length $l_{\gamma, s}<s$ of the common initial segment of $A_{1, s}$ and $\Delta_{1, s}\left(X_{1, s}\right)$ up to s. For every number $n \leqslant l_{\gamma, s}$, if $n \in \Delta_{1, s}\left(X_{1, s}^{\left[<s_{\gamma}\right]} \cup \mathbb{N}^{\left[\geqslant s_{\gamma}\right]}\right)$, we search for the axiom $\langle n, F\rangle \in \Delta_{1}$ that has been valid the longest and enumerate each element of the form $\langle r, x\rangle \in F$, where $r \geqslant s_{\gamma}$ into the set $X_{1, s}$ via the axiom $\left\langle\langle r, x\rangle, A_{1, s}\right\rangle$. The outcome of the strategy is $\langle k\rangle$, where k is the standard code of the finite set D_{k} of all numbers for which γ has enumerated an axiom that looks valid at stage s. The only thing we assume about the coding of finite sets, in addition to its effective properties, is that $D_{k_{1}} \subseteq D_{k_{2}}$ implies $k_{1} \leqslant k_{2}$.

We will be able to argue that if γ is on the true path, then γ enumerates only a finite set D into X_{1}, as the sequence $\left\{l_{\gamma, s}\right\}_{s \text { is good }}$ must be bounded. At sufficiently large stages in the approximation to A_{1}, the outcome we select will always correspond to a superset of D. At stages that are also good (i.e., stages s such that $A_{1, s} \subseteq A_{1}$), we will be able to correctly identify the code of D as the correct outcome. In other words, the code of the set D will be γ 's true outcome.

2.3.2. $\mathcal{S}_{\Gamma_{1}, \Delta_{0}}$

An $\mathcal{S}_{\Gamma_{1}, \Delta_{0}}$-strategy δ works similarly to the $\mathcal{S}_{\Delta_{1}}$-strategy. It also receives a unique number s_{δ}, the stage of first visit after initialization, and interrupts the stage s construction if s is the first stage when δ is visited. Otherwise, we consider the length $l_{\delta, s}<s$ of the common initial segment of $A_{0, s}$ and $\Delta_{0, s}\left(X_{0, s}\right)$ up to s. For every number $n \leqslant l_{\delta, s}$, if $n \in \Delta_{0, s}\left(X_{0, s}^{\left[<s_{s}\right]} \cup \mathbb{N}^{\left[\geqslant s_{\delta}\right]}\right)$, we search for the axiom $\langle n, F\rangle \in \Delta_{0}$ that has been valid the longest and enumerate each element of the form $\langle r, x\rangle \in F$, where $r \geqslant s_{\delta}$ is in the set $X_{0, s}$ via the axiom $\left\langle\langle r, x\rangle, A_{0, s}\right\rangle$. The outcome of the strategy is $\langle k\rangle$, where k is the standard code of the finite set D_{k} of all numbers for which δ has enumerated an axiom that looks valid at stage s.
2.3.3. $\mathcal{R}_{\Gamma_{1}}$

The $\mathcal{R}_{\Gamma_{1}}$-strategy does nothing, has only one outcome $\langle 0\rangle$, and determines the version of Φ_{0} and X_{0} that all the $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$ - and $\mathcal{S}_{\Gamma_{1}, \Delta_{0}}$-strategies working for the $\mathcal{R}_{\Gamma_{1}}$-strategy use.
2.3.4. $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$

The $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$-strategy β attempts to construct an enumeration operator Ψ such that $A_{0}=\Psi\left(A_{1}\right)$ by enumerating axioms into Φ_{1} and its version of Φ_{0}.

At the first stage after initialization, the $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$-strategy β is assigned the parameter s_{β}. Note that we can assume that s_{β} is larger than $\max \left(D_{k}\right)$ for any k such that a higher-priority \mathcal{S}-strategy λ (which can be either an $\mathcal{S}_{\Delta_{1}}$ - or an $\mathcal{S}_{\Gamma_{1}, \Delta_{0}}$-strategy) has $\lambda^{\wedge} k \preceq \beta$. Until its next initialization, β will only contribute numbers to the s_{β}-th columns of X_{0} and X_{1}. To every element a, we assign the coding location $x_{a}=\left\langle s_{\beta}, a\right\rangle$ targeted for X_{0}. The coding locations m_{a} that we associate with a given number a but are targeted for X_{1} will change more dynamically during the construction. Initially, we assign $m_{a}=\left\langle s_{\beta}, a\right\rangle$ as well.

At a stage $s>s_{\beta}, \beta$ does the following. It orders the elements of $A_{0, s} \cup \Psi_{s}\left(A_{1, s}\right)$ by age: For each $a \in A_{0, s} \cup$ $\Psi_{s}\left(A_{1, s}\right)$, we define its age (at stage s) as follows.

$$
\begin{aligned}
& \operatorname{age}_{0}^{s}(a)=2 k+1 \text { for } k=\min \left(s+1, \mu t \forall u \in[t, s]\left(a \in A_{0, u}\right)\right) \\
& \operatorname{age}_{1}^{s}(a)=2 k \text { for } k=\min \left(s+1, \mu t \forall u \in[t, s]\left(a \in \Psi\left(A_{1, u}\right)[u] \text { via the same axiom }\right)\right) \\
& \operatorname{age}^{s}(a)=\min \left\{\operatorname{age}_{0}^{s}(a), \operatorname{age}_{1}^{s}(a)\right\} .
\end{aligned}
$$

Without loss of generality, we will assume that at most one element enters the approximation to A_{0} or $\Psi\left(A_{1}\right)$ at a fixed stage s. (We can ensure this by artificially delaying the approximations if necessary.) And so, for every stage $t \leqslant s$, there may be at most one element with age ${ }^{s}(a)=t$. Furthermore, if $a \in A_{0, s} \backslash \Psi_{s}\left(A_{1, s}\right)$, then age ${ }^{s}(a)$ is odd, and if $a \in \Psi_{s}\left(A_{1, s}\right) \backslash A_{0, s}$, then age ${ }^{s}(a)$ is even. At stage s, we will say that b is older than a if age ${ }^{s}(b)<\operatorname{age}^{s}(a)$.

If $A_{0, s}=\Psi_{s}\left(A_{1, s}\right)$, then we exit this strategy with outcome $\langle 2(s+1)\rangle$ (this is an outcome that has not been visited so far). Since A_{0} is infinite, this will only be a temporary situation. Otherwise, we pick the oldest number a such that $A_{0, s}(a) \neq \Psi_{s}\left(A_{1, s}\right)(a)$. Let $k=\operatorname{age}^{s}(a)$. We must ensure that β 's effect on X_{1} is computable, and so the strategy will dump into X_{1} all elements of the form $\left\langle s_{\beta}, n\right\rangle \in\left(m_{a}, s\right]$ and assign new markers $m_{a^{\prime}}=\left\langle s_{\beta}, n\right\rangle>s$ to all elements a^{\prime} with $\operatorname{age}^{s}\left(a^{\prime}\right)>k$. (Here, to dump an element m into X_{1} means to enumerate the axiom $\langle m, \emptyset\rangle$ into Φ_{1}.) We have two cases depending on the parity of k.

Case 1: If k is even, i.e., if $a \in \Psi_{s}\left(A_{1, s}\right) \backslash A_{0, s}$, then we will be able to argue that $x_{a}=\left\langle s_{\beta}, a\right\rangle \in \Gamma_{0}\left(A_{1}\right) \backslash X_{0}$. The strategy selects outcome $\langle k\rangle$. While a maintains its age, we will design axioms for younger elements enumerated into X_{0} by β so that their use includes a. Thus, if this is β 's true outcome, they will be invalid and hence β contributes finitely much to X_{0}.

Case 2: If k is odd, i.e., if $a \in A_{0, s} \backslash \Psi_{s}\left(A_{1, s}\right)$, then we would like to add an axiom for a into Ψ, but to do this we need some preparation. We will identify an axiom $\left\langle x_{a}, F_{a}\right\rangle$ in $\Gamma_{0}\left(A_{1}\right)$ and use it. Let s_{k} be the previous stage when β considered k :
(1) If some b with age ${ }^{s}(b)<k$ has $m_{b} \notin \Gamma_{1}\left(A_{0, t}\right)$ at some stage $t \in\left[s_{k}, s\right]$, then, since b is older than a, we may assume that we have identified F_{b} for b and that $F_{b} \subseteq A_{1, s}$. (Otherwise, b would be our choice for the oldest disagreement.) We can therefore enumerate the axiom $\left\langle m_{b}, F_{b}\right\rangle \in \Phi_{1}$ so that $m_{b} \in X_{1, s} \backslash \Gamma_{1}\left(A_{0, s}\right)$. The outcome is $\langle k$, old \rangle. If this is the true outcome, then we do not care what happens to X_{0} as strategies below this outcome will be working with new versions of this set.
(2) Otherwise, for every b with age ${ }^{s}(b)<k$, we can associate a set G_{b}, the use of the oldest valid axiom for m_{b} in the set Γ_{1}. We enumerate into $\Phi_{0, s}$ the axiom

$$
\left\langle x_{a}, \bigcup_{\operatorname{ages}^{s}(b)<k} G_{b} \cup\left\{b \mid \operatorname{age}^{s}(b) \leqslant k\right\}\right\rangle .
$$

Next, we check whether $x_{a} \in \Gamma_{0}\left(A_{1}\right)$. If $x_{a} \notin \Gamma_{0}\left(A_{1, s}\right)$, then we have evidence that this requirement may be satisfied by $x_{a} \in X_{0} \backslash \Gamma_{0}\left(A_{1}\right)$. Unfortunately, we have no evidence that the effect of β on X_{0} is finite, so we use the marker m_{a}. We will always only enumerate axioms of the form $\left\langle m_{a}, F_{a}\right\rangle$ into Φ_{1}, where F_{a} is the use of a Γ_{0}-axiom for x_{a}. The case we are in suggests that $m_{a} \notin X_{1}$.
(a) If $m_{a} \notin \Gamma_{1}\left(A_{0, t}\right)$ at some stage $t \in\left[s_{k}, s\right]$, then we can guarantee that under this outcome, β 's effect on X_{0} is finite. This is because we include the use of a Γ_{1}-axiom for m_{a} in the use of every axiom we enumerate into Φ_{0} for numbers a^{\prime} with age larger than k. (This is true as long as a maintains its age.) We set the outcome to be $\langle k$, off \rangle.
(b) Otherwise, $m_{a} \in \Gamma_{1}\left(A_{0, t}\right)$ at all stages $t \in\left[s_{k}, s\right]$, so we have evidence that $m_{a} \in \Gamma_{1}\left(A_{0}\right) \backslash X_{1}$. We end with outcome $\langle k$, new \rangle and let strategies below forget about this version of X_{0}.
(3) Finally, if $x_{a} \in \Gamma_{0}\left(A_{1, t}\right)$ at all stages $t \in\left[s_{k}, s\right]$ (by the same axiom at all stages since the last visit), then let $\left\langle x_{a}, F_{a}\right\rangle \in \Gamma_{0}$ be the axiom that has been valid the longest. Enumerate $\left\langle a, F_{a}\right\rangle$ into Ψ_{s}. We have eliminated a as a difference, and so we may proceed to pick the oldest difference once again.

2.4. Verification

We define the true path f in the tree of strategies as the leftmost path of strategies visited infinitely often. If $\hat{\lambda} o \prec f$, then we will say that λ has true outcome o. If s is a stage at which λ is visited, then we say that s is λ-true. We need to prove that f is well defined and strategies along it satisfy their requirements. We do so by showing the following properties of the construction by simultaneous induction.

Lemma 2.2. The true path f is infinite, furthermore:
A. If β is an $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$-strategy and $\beta \preceq f$, then:
(1) There is a leftmost outcome o that β visits at infinitely many stages.
(2) There are finitely many values of the parameter s_{β}, and for each such value, $X_{1}^{\left[s_{\beta}\right]}$ is a computable set.
(3) If $o \in\{\langle 2 k\rangle,\langle 2 k+1$, off $\rangle \mid k \in \omega\}$, then $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$ is satisfied, and for every value of s_{β}, the set $X_{0}^{\left[s_{\beta}\right]}$ is finite.
(4) If $o \in\{\langle 2 k+1$, old $\rangle,\langle 2 k+1$, new $\rangle \mid k \in \omega\}$, then $\mathcal{R}_{\Gamma_{1}}$ is satisfied.
B. If γ is an $\mathcal{S}_{\Delta_{1}}$-strategy and $\gamma \preceq f$, then:
(1) There is a leftmost outcome o that γ visits at infinitely many stages.
(2) The set D_{o} consists of all numbers that γ contributes to X_{1}.
(3) The requirement $\mathcal{S}_{\Delta_{1}}$ is satisfied.
C. If δ is an $\mathcal{S}_{\Gamma_{1}, \Delta_{0}}$-strategy and $\delta \preceq f$, then:
(1) There is a leftmost outcome o that δ visits at infinitely many stages.
(2) The set D_{o} consists of all numbers that γ contributes to X_{0}.
(3) The requirement $\mathcal{S}_{\Gamma_{1}, \Delta_{0}}$ is satisfied.

Proof. We will prove the statements above in turn, assuming that all statements are true for higher-priority strategies along the true path. We first note that $\mathcal{R}_{\Gamma_{1}}$-strategies along the true path have only one possible outcome, visited at every true stage, hence cannot cause f to be finite.
A. Let $\beta \preceq f$ be an $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$-strategy. It follows from the definition of the true path that β is visited at infinitely many stages and initialized finitely often. There is a stage at which β is first visited after its last initialization. At this stage, s_{β} receives its final value, and by construction, we interrupt this stage so that no other strategy has the same parameter at any point during the construction. By construction, no strategy has so far enumerated any element into the s_{β}-th column of X_{0} or X_{1} : Lower-priority strategies σ are initialized at stage s_{β}, so their parameter s_{σ} (if defined) will have higher value than s_{β}. Higher-priority strategies λ will not add elements to the s_{β}-th column of X_{0} or X_{1}, either. To see this, note that they are either not visited at further stages, hence do not act any longer; they are $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$-strategies with $s_{\lambda}<s_{\beta}$ and hence enumerate elements into smaller columns of X_{0} or X_{1}; or they are \mathcal{S}-strategies whose true outcome is extended by β and hence by $\mathrm{B}(2)$ and $\mathrm{C}(2)$, they will not enumerate any more valid axioms into either operator Φ_{0} or Φ_{1}. Thus β is the unique strategy that adds elements into the s_{β}-th column
of X_{0} or X_{1}. If $t<s_{\beta}$ is a previous value of the parameter s_{β}, then our analysis shows that no strategy can add valid axioms for numbers in the t-th columns of X_{0} and X_{1} after stage s_{β}.

Let $\Psi=\bigcup \Psi_{s}$ be the enumeration operator constructed by β. By assumption, $A_{0} \not \leq_{e} A_{1}$, hence $\Psi\left(A_{1}\right) \neq A_{0}$. Let a be the oldest disagreement, where the age of the disagreement is defined as in the construction. This means that there is some stage s_{a} such that at all stages $t>s_{a}$, we have that if $\operatorname{age}^{t}(b)<\operatorname{age}^{t}(a)$, then $b \in A_{0, t} \cap \Psi\left(A_{1, t}\right)$ with a fixed marker m_{b}. The age c of a remains constant, and at stages $t>s_{a}$, the strategy β will not visit any outcome left of the c-outcomes (which depend on the parity of c), so the marker m_{a} will remain fixed. Furthermore, the way β adjusts the approximation to A_{0} and A_{1} when visited ensures that there are infinitely many stages $t>s_{a}$ at which we visit β, and a is the oldest disagreement at stage t. At such stages, β will visit a c-outcome, and since there are finitely many c-outcomes (only one c-outcome $\langle c\rangle$ if c is even, and three c-outcomes $\langle c$, old $\rangle,\langle c$, off \rangle, and $\langle c$, new \rangle if c is odd), there is a leftmost outcome visited at infinitely many stages, proving (1). Note that if β reaches Case 2.3 infinitely often, then β also ends in Case 2.2 infinitely often because if t is such that $a \notin \Psi\left(A_{1, t}\right)$, but $a \in \Psi\left(A_{1, t^{-}}\right)$, where t^{-}is the previous β-true stage, then our convention ensures that $x_{a} \notin \Gamma_{0}\left(A_{1, t}\right)$. All numbers greater than m_{a} in the s_{β}-th column of X_{1} will be dumped into X_{1}, hence the s_{β}-th column of X_{1} is cofinite, proving (2).

If $a \notin A_{0}$, then the age of a after stage s_{a} is $c=2 k$, where k is the stage such that at all $t \geqslant k$, we have that $a \in \Psi\left(A_{1, t}\right)$ via the same axiom $\left\langle a, F_{a}\right\rangle$, say. As we argued above, $\langle 2 k\rangle$ is β 's true outcome. We prove that $x_{a} \in \Gamma_{0}\left(A_{1}\right) \backslash X_{0}$: That $x_{a} \notin X_{0}$ is clear, as by construction, any axiom that β enumerates into Φ_{0} for x_{a} contains a in its use, and as we already argued, no other strategy enumerates valid axioms for $x_{a}=\left\langle s_{\beta}, a\right\rangle$. On the other hand, β enumerated the valid axiom $\left\langle a, F_{a}\right\rangle$ into Ψ because it saw that $\left\langle x_{a}, F_{a}\right\rangle \in \Gamma_{0}$, and since $F_{a} \subseteq A_{1}$, it follows that $x_{a} \in \Gamma_{0}\left(A_{1}\right)$. Up until stage s_{a}, there are only finitely many axioms enumerated into Φ_{0} by β. After stage s_{a}, any axiom enumerated by β into Φ_{0} will include a in its use because the age of a remains constant. It follows that all such axioms are invalid, and so β contributes a finite set to $X_{0}^{\left[s_{\beta}\right]}$.

Suppose $a \in A_{0}$. Then $c=2 k+1$, and we have several cases, depending on the leftmost outcome visited infinitely often. If this is $\langle 2 k+1$, old \rangle, then infinitely often after stage s_{a}, we visit β, and it stops at Case 2.1 of the construction, because some b with age ${ }^{s}(b)<k$ has $m_{b} \notin \Gamma_{1}\left(A_{0, t}\right)$ at some stage t since we last considered a. There are finitely many such b, and hence the described scenario happens infinitely often with some fixed such b. As pointed out in the construction, since b is older than a, we know that $b \in \Psi\left(A_{1, t}\right)$ at such stages via the same axiom $\left\langle b, F_{b}\right\rangle$, and so the construction ensures that $m_{b} \in X_{1}$ using this axiom. It follows that $m_{b} \in X_{1} \backslash \Gamma_{1}\left(A_{0}\right)$.

Otherwise, there is a stage $s_{b}>s_{a}$ such that at all β-true stages $t>s_{b}$ at which a is the oldest disagreement, Case 2.1 does not apply. This means that for every older b, there is a fixed valid axiom $\left\langle m_{b}, G_{b}\right\rangle \in \Gamma_{1}$. This means that the axiom that we enumerate into Φ_{0} for x_{a} is valid, and so $x_{a} \in X_{0}$. On the other hand, since infinitely often we are in Case 2.2, $x_{a} \notin \Gamma_{0}\left(A_{1}\right)$, and so $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$ is satisfied.

If β 's true outcome is $\langle 2 k+1$, off \rangle, then $m_{a} \notin \Gamma_{1}\left(A_{0}\right)$. In this case, we already know that $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$ is satisfied. After stage s_{b}, any axiom enumerated by β into Φ_{0} will include some G_{a} in its use, where $\left\langle m_{a}, G_{a}\right\rangle \in \Gamma_{1}$. It follows that all such axioms are invalid, and so β contributes a finite set to $X_{0}^{\left[s_{\beta}\right]}$. This ensures that (3) is true.

Otherwise, there is a stage $s_{c}>s_{b}$ after which Case 2.2.a does not apply. The true outcome is $\langle 2 k+1$, new \rangle, and $m_{a} \in \Gamma_{1}\left(A_{0, t}\right)$ at all stages $t>s_{c}$ by the same axiom. It follows that $m_{a} \in \Gamma_{1}\left(A_{0}\right)$. To complete the proof, we will show that $m_{a} \notin X_{1}$. Any Φ_{1}-axiom enumerated for m_{a} has the form $\left\langle m_{a}, F_{a}\right\rangle$. Such an axiom can only be enumerated after the axiom $\left\langle a, F_{a}\right\rangle$ is enumerated into Ψ. Since $a \notin \Psi\left(A_{1}\right)$, it follows that $m_{a} \notin X_{1}$. We conclude that $\mathcal{R}_{\Gamma_{1}}$ is satisfied, proving (4).
B. Let $\gamma \preceq f$ be an $\mathcal{S}_{\Delta_{1}}$-strategy. It follows from the definition of the true path that γ is visited at infinitely many stages and initialized finitely often. There is a first stage at which γ is visited after its last initialization. This is the stage at which s_{γ} receives its final value, and by construction, we interrupt this stage so that no other strategy has the same parameter at any point during the construction. Lower-priority strategies σ have $s_{\sigma}>s_{\gamma}$. Higher-priority strategies are the only ones that can enumerate elements into $X_{1}^{\left[<s_{\gamma}\right]}$, so by induction, $X_{1}^{\left[<s_{\gamma}\right]}$ is a computable set. If s is a good stage in the approximation to A_{1}, then $A_{1, s} \subseteq A_{1}$ and $\Delta_{1}\left(X_{1, s}\right) \subseteq \Delta_{1}\left(X_{1}\right)$. Suppose that $\left\{l_{\gamma, s}\right\}_{A_{1, s} \subseteq A_{1}}$ is unbounded. Then we can argue that $A_{1}=\Delta_{1}\left(X_{1}\right)$: If $a \in A_{1}$, then pick a good stage s at which $a \in A_{1, s}$ and $l_{\gamma, s}>a$. It follows that $a \in \Delta_{1}\left(X_{1, s}\right) \subseteq \Delta_{1}\left(X_{1}\right)$. Similarly, if $a \in \Delta_{1}\left(X_{1}\right)$, then we can pick a good stage s at which $a \in \Delta_{1}\left(X_{1, s}\right)$ and $l_{\gamma, s}>a$. It follows that $a \in A_{1, s} \subseteq A_{1}$.

Furthermore, if $\left\{l_{\gamma, s}\right\}_{A_{1, s} \subseteq A_{1}}$ is unbounded then we can also argue that $\Delta_{1}\left(X_{1}\right)=\Delta_{1}\left(X_{1}^{\left[<s_{\gamma}\right]} \cup \mathbb{N}\left[\geqslant s_{\gamma}\right]\right)$. One inclusion follows from the fact that $X_{1} \subseteq X_{1}^{\left[<s_{\gamma}\right]} \cup \mathbb{N}^{\left[\geqslant s_{\gamma}\right]}$. For the reverse inclusion, fix $n \in \Delta_{1}\left(X_{1}^{\left[<s_{y}\right]} \cup \mathbb{N}^{\left[\geqslant s_{\gamma}\right]}\right)$. Let $\langle n, F\rangle$ be the oldest valid axiom. (Note that the age of this axiom depends only on $X_{1}^{\left[\left\langle s_{\gamma}\right]\right.}$.) Pick a good stage $s>s_{\gamma}$ that is greater than the age of this axiom and at which $l_{\gamma, s}>n$. At this stage, we enumerate all $\langle r, x\rangle \in F$, where $r \geqslant s_{\gamma}$, into the set $X_{1, s}$ via the axiom $\left\langle\langle r, x\rangle, A_{1, s}\right\rangle$. Since s is good, these are valid axioms, and hence $n \in \Delta_{1}\left(X_{1}\right)$. It follows that $A_{1}=\Delta_{1}\left(X_{1}^{\left[\left\langle s_{\gamma}\right]\right.} \cup \mathbb{N}\left[\geqslant s_{y}\right]\right)$, contradicting the fact that A_{1} is not c.e. (otherwise it would be comparable with A_{0}).

Thus $l_{\gamma, s}$ is bounded by some number l_{γ}, say, at all good stages in the construction. At good stages, the strategy γ enumerates axioms only in response to finitely many n. For each such n, we know by the fact that we are looking at a good stage that $n \in \Delta_{1}\left(A_{1}\right)$. Eventually, the oldest valid axiom will emerge, and so γ will keep selecting the same axiom $\langle n, F\rangle$ for this element, and thus ultimately γ will enumerate only finitely many elements into X_{1}, and all these elements will be enumerated at good stages. Let $D=D_{k}$ be the set of these elements. Let s_{k} be a stage such that at all $t \geqslant s_{k}$, we have that $D \subseteq X_{1}$. At all γ-true stages $t \geqslant s_{k}$, the strategy γ will have outcome $\langle m\rangle$, where $D_{k} \subseteq D_{m}$. By our choice of coding, we have that $\langle k\rangle \leqslant\langle m\rangle$. By the adjustment that γ makes to the approximation of A_{1}, we know that γ is visited at infinitely many good stages for the approximation to A_{1}. At such stages, γ will have outcome $\langle k\rangle$. This proves (1) and (2).

To see that the requirement is satisfied, we prove that there is some element $n \leqslant l_{\gamma}$ such that $A_{1}(n) \neq \Delta_{1}\left(X_{1}\right)(n)$. Assume that this is not the case. Pick a stage s such that all elements $n \leqslant l_{\gamma}$ that are in A_{1} are in $A_{1, s}$ and s is good. There are infinitely many such stages, and we visit γ at such stages. At such a γ-true stage t, we have that $l_{\gamma, t}>l_{\gamma}$, contradicting our choice of l_{γ}.
C. The case where $\delta \preceq f$ is an $\mathcal{S}_{\Gamma_{1}, \Delta_{0}}$-strategy is proved similarly to Case B.

Lemma 2.3. Either all requirements $\mathcal{R}_{\Gamma_{1}}$ and $\mathcal{S}_{\Delta_{1}}$ are satisfied, or there is some requirement $\mathcal{R}_{\Gamma_{1}}$ such that all requirements $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$ and $\mathcal{S}_{\Gamma_{1}, \Delta_{0}}$ are satisfied.

Proof. If there are infinitely many $\mathcal{R}_{\Gamma_{1}}$-strategies along the true path f, then by the construction of the tree, it follows that there are infinitely many $\mathcal{S}_{\Delta_{1}}$-requirements assigned to nodes on the true path, as only such strategies have immediate successors that are $\mathcal{R}_{\Gamma_{1}}$-strategies. Thus all $\mathcal{S}_{\Delta_{1}}$-requirements are assigned to nodes on the true path and hence by Lemma 2.2 are satisfied. Consider any $\mathcal{R}_{\Gamma_{1}}$-strategy $\alpha \prec f$. Let $\gamma \prec f$ be the next $\mathcal{S}_{\Delta_{1}}$-strategy along the true path. By the construction of the tree, γ 's immediate predecessor is an $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$-strategy β with true outcome $\langle 2 k+1$, old \rangle or $\langle 2 k+1$, new \rangle for some k. It follows from Lemma 2.2 that $\mathcal{R}_{\Gamma_{1}}$ is satisfied, thus all requirements $\mathcal{R}_{\Gamma_{1}}$ are satisfied.

If there are finitely many $\mathcal{R}_{\Gamma_{1}}$-strategies along f, then fix the longest such α. Every immediate successor of α along the true path is either an $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$-strategy with true outcome $\langle 2 k\rangle$ or $\langle 2 k+1$, off \rangle or an $\mathcal{S}_{\Gamma_{1}, \Delta_{0}}$-strategy. Hence there are infinitely many of each, and by Lemma 2.2, they are all successful. By the design of the tree, it follows that all requirements $\mathcal{R}_{\Gamma_{1}, \Gamma_{0}}$ and $\mathcal{S}_{\Gamma_{1}, \Delta_{0}}$ are satisfied.

3. No Ahmad triple

In this section, we extend the ideas introduced in the previous section to prove our main result:
Theorem 3.1. There is no Ahmad triple in the Σ_{2}^{0}-enumeration degrees, i.e., there are no Σ_{2}^{0}-degrees $\mathbf{a}_{0}, \mathbf{a}_{1}$, and \mathbf{a}_{2} such that $\mathbf{a}_{0} \not \leq \mathbf{a}_{1}$ but every enumeration degree $\mathbf{x}_{0}<\mathbf{a}_{0}$ is $\leqslant \mathbf{a}_{1}$, and such that $\mathbf{a}_{1} \not \leq \mathbf{a}_{2}$ but every enumeration degree $\mathbf{x}_{1}<\mathbf{a}_{1}$ is $\leqslant \mathbf{a}_{2}$.

3.1. Requirements

Suppose A_{0}, A_{1} and A_{2} are Σ_{2}^{0}-sets. The construction builds an enumeration operator Φ_{0}, attempting to satisfy the following requirements for each of the enumeration operators Γ_{0} and Δ_{0} :

$$
\mathcal{R}_{\Gamma_{0}}: \Phi_{0}\left(A_{0}\right) \neq \Gamma_{0}\left(A_{1}\right),
$$

$$
\mathcal{S}_{\Delta_{0}}: A_{0} \neq \Delta_{0}\left(\Phi_{0}\left(A_{0}\right)\right) .
$$

If some $\mathcal{R}_{\Gamma_{0}}$-requirement fails, then we will construct an enumeration operator Φ_{1} satisfying the following subrequirements for each of the enumeration operators Γ_{1} and Δ_{1} :

$$
\begin{aligned}
& \mathcal{R}_{\Gamma_{0}, \Gamma_{1}}: \Phi_{1}\left(A_{1}\right) \neq \Gamma_{1}\left(A_{2}\right) \\
& \mathcal{S}_{\Gamma_{0}, \Delta_{1}}: A_{1} \neq \Delta_{1}\left(\Phi_{1}\left(A_{1}\right)\right) .
\end{aligned}
$$

If some $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$-requirement fails, then we will construct an enumeration operator Φ_{2} satisfying the following subsubrequirements for each of the enumeration operators Γ_{2} and Δ_{2} :

$$
\begin{aligned}
\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}: & \Phi_{2}\left(A_{0}\right)=\Gamma_{2}\left(A_{1}\right) \Longrightarrow A_{0}=\Psi_{0}\left(A_{1}\right) \text { or } A_{1}=\Psi_{1}\left(A_{2}\right) \\
& \text { (for } \Psi_{0} \text { and } \Psi_{1} \text { built by us) } \\
\mathcal{S}_{\Gamma_{0}, \Gamma_{1}, \Delta_{2}}: & A_{0} \neq \Delta_{2}\left(\Phi_{2}\left(A_{0}\right)\right) .
\end{aligned}
$$

We will denote $\Phi_{0}\left(A_{0}\right)$ by $X_{0}, \Phi_{1}\left(A_{1}\right)$ by X_{1}, and $\Phi_{2}\left(A_{0}\right)$ by X_{2} whenever the operator Φ_{i} is clear from the context.

3.2. Overview

We first give a high-level overview of how the overall construction works, without going into the specifics of the priority tree layout and the arrangement of different outcomes. At each node α of the priority tree, there will be an active version of X_{1} and X_{2} (where X_{0} is, of course, maintained globally). Each version of X_{1} and X_{2} is built in some cone; X_{1} is built in a cone with an $\mathcal{R}_{\Gamma_{0}}$-requirement at the top of the cone, while X_{2} is built in a cone with an $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$-requirement at the top. These cones are nested in the sense that each node where a particular set X_{2} is active is also a node where a set X_{1} is active; but a cone for X_{1} can contain many different X_{2}-cones. The setup here is typical of a non-uniform argument; the situation in our construction is perhaps slightly more complicated than a typical non-uniform argument due to having to keep track of three levels of non-uniformity. However, the overall spirit is the same: The set X_{0} is maintained globally, and there will only be one version of it, i.e., every node in the tree is in the one X_{0}-cone. Inside each X_{2}-cone, we will have the active sets X_{0} and X_{1}. Inside this X_{2}-cone, we actively try and satisfy the $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$ - and the $\mathcal{S}_{\Gamma_{0}, \Gamma_{1}, \Delta_{2}}$-strategies, while leveraging on the assumption that the $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$ - and $\mathcal{R}_{\Gamma_{0}}$-strategies at the top of the X_{2} - and X_{1}-cones are unsuccessful. While this assumption is not violated, we stay in the X_{2}-cone and only consider the $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}-}$ and the $\mathcal{S}_{\Gamma_{0}, \Gamma_{1}, \Delta_{2}}$-strategies.

If we ever detect that the $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$-strategy is successful, we will exit the X_{2}-cone and immediately place the next $\mathcal{S}_{\Gamma_{0}, \Delta_{1}}$-strategy before starting a new X_{2}-cone below it. Similarly, if we ever detect that the $\mathcal{R}_{\Gamma_{0}}$-strategy is successful, we will end the current X_{1} - and X_{2}-cones and immediately place the next $\mathcal{S}_{\Delta_{0}}$-strategy before starting a new X_{1} - and a new X_{2}-cone below. In this way, depending on how many different X_{1} - and X_{2}-cones the true path of the construction crosses, we will be able to argue that along the true path, either all $\mathcal{R}_{\Gamma_{0}}$ - and $\mathcal{S}_{\Delta_{0}}$-requirements are satisfied, or all $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}-}$ and $\mathcal{S}_{\Gamma_{0}, \Gamma_{1}}$-requirements are satisfied in some final X_{1}-cone, or all $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}-}$ and $\mathcal{S}_{\Gamma_{0}, \Gamma_{1}, \Delta_{2}}$-requirements are satisfied in some final X_{2}-cone.

It remains to describe how a node α assigned to a requirement $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$ is able to either detect the success of its parent $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$-strategy, or the success of its grandparent $\mathcal{R}_{\Gamma_{0}}$-strategy, or be able to leverage on the failure of both to ensure the success of its own requirement. By our experience with the \mathcal{S}-strategies thus far, it is important to note that α must not be too liberal with enumerating true axioms into Φ_{0}, Φ_{1} and Φ_{2}; if we do not exit the current X_{2}-cone, we must make sure that α 's contribution to X_{2} is finite or at least computable. If we do not exit the current X_{1}-cone, then α 's contribution to X_{1} must be finite, while α 's contribution to X_{0} must be finite regardless of the true outcome. (If we do not ensure this, then along the true path, when we have the next $\mathcal{S}_{\Delta_{0}}, \mathcal{S}_{\Gamma_{0}, \Delta_{1}}$ - or $\mathcal{S}_{\Gamma_{0}, \Gamma_{1}, \Delta_{2}}$-node, we will not be able to run the respective basic \mathcal{S}-strategy.)

With the foregoing comment in mind, consider a node α assigned to a requirement $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$. The obvious strategy is to associate each number a (targeted for A_{1}) with a number x_{a} (targeted for $X_{1}=\Phi_{1}\left(A_{1}\right)$) and try to maintain that $a \in A_{1}$ iff $x_{a} \in X_{1}$. We build a reduction Ψ_{1} which will emulate Γ_{1}. Since $A_{1}=\Psi_{1}\left(A_{2}\right)$ cannot possibly hold, we must be able to find some x_{a} where $X_{1}\left(x_{a}\right) \neq \Gamma_{1}\left(A_{2}\right)\left(x_{a}\right)$, and hence $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$ will be satisfied. This naive strategy will work to satisfy $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$ in isolation; unfortunately, we may not be able to guarantee that the effect on X_{1} is finite; as discussed above, if we satisfy $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$, we stay in the X_{1}-cone, and we will need the strategy to enumerate only finitely many true axioms for $\Phi_{1}\left(A_{1}\right)$. Notice that if there is some $x_{a} \in \Gamma_{1}\left(A_{2}\right) \backslash X_{1}$, then this condition can be ensured, since the strategy for α will only need to enumerate further axioms putting some $x_{a^{\prime}}$ into $\Phi_{1}\left(A_{2}\right)$ if the length of agreement goes up; hence all newer axioms in Φ_{1} will include the number a. However, if the disagreement is witnessed by some $x_{a} \in X_{1} \backslash \Gamma_{1}\left(A_{2}\right)$, then there is no way to prevent infinitely many elements $x_{a^{\prime}}$ from being put into X_{1} by the strategy. Note that the same problem applies even if we try and diagonalize X_{0} and $\Gamma_{0}\left(A_{1}\right)$, or X_{2} and $\Gamma_{2}\left(A_{1}\right)$. The solution to this problem is to ensure that under the problematic outcome where $x_{a} \in X_{1} \backslash \Gamma_{1}\left(A_{2}\right)$, all future axioms enumerated by α putting some $x_{a^{\prime}}$ into $X_{1}=\Phi_{1}\left(A_{1}\right)$ must also include the use of certain elements in $\Gamma_{0}\left(A_{1}\right)$ and $\Gamma_{2}\left(A_{1}\right)$. If we entangle the axioms for newer $x_{a^{\prime}}$ in this way correctly, then we will be able to argue that in the end, either we will be able to diagonalize X_{0} and $\Gamma_{0}\left(A_{1}\right)$, or we can diagonalize X_{2} and $\Gamma_{2}\left(A_{1}\right)$, or else we can force all newer $x_{a^{\prime}}$-axioms enumerated by α to become invalid.

To arrange for this entangling to work properly, we will need another setup. Under the assumption that $a \in$ $A_{1} \backslash \Psi_{1}\left(A_{2}\right)$ and $x_{a} \in X_{1} \backslash \Gamma_{1}\left(A_{2}\right)$ hold, we will need to start a backup $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-strategy, which we will name β. Each time β sees further proof that $a \in A_{1} \backslash \Psi_{1}\left(A_{2}\right)$ and $x_{a} \in X_{1} \backslash \Gamma_{1}\left(A_{2}\right)$ hold, it will extend the reduction $A_{0}=\Psi_{0}\left(A_{1}\right)$ that it builds. The basic working of β is that it associates each number b targeted for A_{0} with a number y_{b} targeted for $X_{2}=\Phi_{2}\left(A_{0}\right)$ and a number m_{b} targeted for $X_{0}=\Phi_{0}\left(A_{0}\right)$. (For technical reasons, in the construction, the association $b \mapsto y_{b}$ will be fixed while the association $b \mapsto m_{b}$ will be dynamic, but we do not encumber ourselves with these details at this time.) The plan will be to let Ψ_{0} emulate Γ_{2}, so that the necessary disagreement between A_{0} and $\Psi_{0}\left(A_{1}\right)$ must produce a corresponding disagreement between X_{2} and $\Gamma_{2}\left(A_{1}\right)$. Fix the element b so that we have either
(i) $b \in A_{0} \backslash \Psi_{0}\left(A_{1}\right)$ and $y_{b} \in X_{2} \backslash \Gamma_{2}\left(A_{1}\right)$ and $m_{b} \in X_{0}$, or
(ii) $b \in \Psi_{0}\left(A_{1}\right) \backslash A_{0}$ and $y_{b} \in \Gamma_{2}\left(A_{1}\right) \backslash X_{2}$ and $m_{b} \notin X_{0}$.

Since b will eventually be in one of the Σ_{2}^{0}-sets involved above, almost every axiom enumerated by the main strategy α putting some $x_{a^{\prime}}$ into $X_{1}=\Phi_{1}\left(A_{1}\right)$ will be able to observe and use the information provided by this number b.

Consider a future stage s when the strategy α is deciding whether or not to enumerate an axiom putting some $x_{a^{\prime}}$ into $X_{1}=\Phi_{1}\left(A_{1}\right)$. By our assumption on b, we must see either $y_{b} \in X_{2}[s]$ or $y_{b} \in \Gamma_{2}\left(A_{1}\right)[s]$. If the strategy for α sees $y_{b} \in X_{2}[s]$ but $y_{b} \notin \Gamma_{2}\left(A_{1}\right)[s]$, then it does not need to proceed with its strategy and does not enumerate any axiom for $x_{a^{\prime}}$ into X_{1} since it currently looks like $X_{2} \neq \Gamma_{2}\left(A_{1}\right)$. If, however, α sees $y_{b} \in \Gamma_{2}\left(A_{1}\right)[s]$ but $m_{b} \notin \Gamma_{0}\left(A_{1}\right)$, then it also does not need to enumerate an axiom for $x_{a^{\prime}}$ into X_{1}. This is because either $b \in A_{0}$, in which case both $y_{b} \in X_{2}$ and $m_{b} \in X_{0}$, or they are all three out of the respective sets, and so we must currently see $X_{2} \neq \Gamma_{2}\left(A_{1}\right)$ or $X_{0} \neq \Gamma_{0}\left(A_{1}\right)$. Therefore, the only time when α enumerates $x_{a^{\prime}}$ into X_{1} is when it sees both $y_{b} \in \Gamma_{2}\left(A_{1}\right)[s]$ and $m_{b} \in \Gamma_{0}\left(A_{1}\right)[s]$, in which case it will include the use of the latter two in the axiom for $x_{a^{\prime}}$ in X_{1}.

Now finally assume that β is along the true path of the construction. If the first case (i) above applies to b, then almost every axiom $x_{a^{\prime}}$ enumerated by the strategy for α will be invalid, since they will include the use of $y_{b} \in \Gamma_{2}\left(A_{1}\right)$, which was exactly what we wanted to achieve. If the second case (ii) applies and m_{b} is not eventually in $\Gamma_{0}\left(A_{1}\right)$, then again almost every axiom $x_{a^{\prime}}$ enumerated by the strategy for α will be invalid, since they will include the use of $m_{b} \in \Gamma_{0}\left(A_{1}\right)$. Finally, assume that the second case (ii) applies and $m_{b} \in \Gamma_{0}\left(A_{1}\right)$. Then in this case, it may be possible that the strategy for α enumerates infinitely many elements into X_{1}, but then we would have $m_{b} \in \Gamma_{0}\left(A_{1}\right) \backslash X_{0}$, and we will exit the current X_{1}-cone. In this case, the current set X_{1} will be irrelevant anyway.

3.3. Tree of strategies

Order each of the types of requirements, subrequirements and subsubrequirements in a priority of order type ω such that each $\mathcal{R}_{\Gamma_{0}}$-requirement precedes all the $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$-subrequirements, and each $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$-subrequirement precedes all the $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-subsubrequirements.

The root of the tree of strategies T is \emptyset, an $\mathcal{R}_{\Gamma_{0}}$-strategy working on the highest-priority $\mathcal{R}_{\Gamma_{0}}$-requirement. An $\mathcal{R}_{\Gamma_{0}}$-strategy has only one outcome $\langle 0\rangle$ and is immediately followed by an $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$-strategy, working on the highest-priority $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$-requirement. An $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$-strategy has only one outcome $\langle 0\rangle$ and is immediately followed by an $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-strategy, working on the highest priority $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-requirement.

An $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-strategy α has outcomes $\langle 2 k\rangle,\langle 2 k+1$, old $\rangle,\langle 2 k+1$, off $\rangle,\langle 2 k+1$, new \rangle, and $\langle 2 k+1$, backup \rangle for all $k \in \omega$, ordered as follows:

$$
\langle 0\rangle<_{L}\langle 1, \text { old }\rangle<_{L}\langle 1, \text { off }\rangle<_{L}\langle 1, \text { new }\rangle<_{L}\langle 1, \text { backup }\rangle<_{L}\langle 2\rangle<_{L} \cdots
$$

For every $k<\omega$, the nodes $\alpha^{\wedge}\langle 2 k\rangle$ are $\mathcal{S}_{\Gamma_{0}, \Delta_{1}}$-strategies working on the highest-priority $\mathcal{S}_{\Gamma_{0}, \Delta_{1}}$-requirement that is not assigned to any of α 's predecessors. The nodes $\alpha^{\wedge}\langle 2 k+1$, old \rangle and $\alpha^{\wedge}\langle 2 k+1$, off \rangle are $\mathcal{S}_{\Gamma_{0}, \Gamma_{1}, \Delta_{2}}$-strategies working on the highest priority $\mathcal{S}_{\Gamma_{0}, \Gamma_{1}, \Delta_{2}}$-requirement that is not assigned to any of α 's predecessors. The nodes $\alpha^{\wedge}\langle 2 k+1$, new \rangle are $\mathcal{S}_{\Delta_{0}}$-strategies working on the highest-priority $\mathcal{S}_{\Delta_{0}}$-requirement that is not assigned to any of α 's predecessors. Finally, the nodes $\alpha^{\wedge}\langle 2 k+1$, backup \rangle are backup $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-strategies with their own outcomes (defined below)

An $S_{\Delta_{0}}$-strategy γ has outcomes $\langle k\rangle$, where $k \in \omega$ ordered by the standard ordering on ω. Each such immediate successor of this strategy is a main $\mathcal{R}_{\Gamma_{0}}$-strategy, working on the highest-priority $\mathcal{R}_{\Gamma_{0}}$-requirement that is not assigned to any of its predecessors. The outcomes and immediate successors of the $\mathcal{S}_{\Gamma_{0}, \Delta_{1}}$ - and $\mathcal{S}_{\Gamma_{0}, \Gamma_{1}, \Delta_{2}}$-strategies are defined analogously ($\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$ and $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$, respectively).

Finally, a backup $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-strategy β has outcomes $\langle 2 l$, off $\rangle,\langle 2 l$, new \rangle and $\langle 2 l+1\rangle$ for all $l \in \omega$, ordered as follows:

$$
\langle 0, \text { off }\rangle<_{L}\langle 0, \text { new }\rangle<_{L}\langle 1\rangle<_{L}\langle 2, \text { off }\rangle<_{L} \cdots
$$

For every $l<\omega$, the nodes $\beta^{\wedge}\langle 2 l$, off \rangle and $\beta^{\wedge}\langle 2 l+1\rangle$ are $\mathcal{S}_{\Gamma_{0}, \Delta_{1}}$-strategies working on the highest-priority $\mathcal{S}_{\Gamma_{0}, \Delta_{1}}$-requirement that is not assigned to any of β 's predecessors. The nodes $\beta^{\wedge}\langle 2 l$, new \rangle are $\mathcal{S}_{\Delta_{0}}$-strategies working on the highest-priority $\mathcal{S}_{\Delta_{0}}$-requirement that is not assigned to any of β 's predecessors.

3.4. Construction

This construction has many properties that are similar to the one in Section 2. At stage 0 , all strategies are in initial state: All operators associated with these strategies are empty, and all parameters are undefined. At stage $s>0$, we build a path f_{s} of length $\leqslant s$ with the intention of building a true path defined by

$$
f(n)=\liminf _{f_{s} \succeq f \backslash n} f_{s}(n) .
$$

When a strategy is activated at stage s, it first adjusts the approximations to A_{0}, A_{1}, and A_{2} : If s^{-}is the previous stage at which this strategy was active, then it replaces $A_{i, s}$ by $\bigcap_{u \in\left[s^{-}, s\right]} A_{i, u}$ for $i \leqslant 2$. At the end of stage s, we initialize all strategies of lower priority than f_{s}, i.e., strategies extending or to the right of the strategies which acted at stage s.

Each strategy β works with the version of Φ_{1} and X_{1} determined by the longest $\mathcal{R}_{\Gamma_{0}}$-strategy $\alpha \prec \beta$ (we say that β works for α); this version of Φ_{1} is the set of Φ_{1}-axioms enumerated by all the $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-strategies and $\mathcal{S}_{\Gamma_{0}, \Delta_{1}}$-strategies working for the same $\mathcal{R}_{\Gamma_{0}}$-strategy. Similarly, each strategy β works with the version of Φ_{2} and X_{2} determined by the longest $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$-strategy $\alpha \prec \beta$; this version of Φ_{2} is the set of Φ_{2}-axioms enumerated by all the backup $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-strategies and $\mathcal{S}_{\Gamma_{0}, \Gamma_{1}, \Delta_{2}}$-strategies working for the same $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$-strategy.

3.4.1. $\mathcal{S}_{\Delta_{0}}, \mathcal{S}_{\Gamma_{0}, \Delta_{1}}, \mathcal{S}_{\Gamma_{0}, \Gamma_{1}, \Delta_{2}}$

The \mathcal{S}-strategies work precisely as in the previous construction. Let γ be such a strategy. The first time γ is visited after initialization, it receives a unique number s_{γ}, the stage of first visit after initialization, and stops the construction of $f_{s}=\gamma$ for this stage. If $s_{\gamma}<s$ is already defined, then we consider the length $l_{\gamma, s}<s$ of the common initial segment up to s of the sets $A_{j, s}$ and $\Delta_{i, s}\left(X_{i}\right)$ that are named in the corresponding requirement: For $\mathcal{S}_{\Delta_{0}}$, these are $A_{0, s}$ and $\Delta_{0, s}\left(X_{0, s}\right)$; for $\mathcal{S}_{\Gamma_{0}, \Delta_{1}}$, these are $A_{1, s}$ and $\Delta_{1, s}\left(X_{1, s}\right)$; and for $\mathcal{S}_{\Gamma_{0}, \Gamma_{1}, \Delta_{2}}$, these are $A_{0, s}$ and $\Delta_{2, s}\left(X_{2, s}\right)$. For every number $n \leqslant l_{\gamma, s}$, if $n \in \Delta_{i, s}\left(X_{i, s}^{\left[<s_{\gamma}\right]} \cup \mathbb{N}\left[\geqslant s_{\gamma}\right]\right)$, then we search for the axiom $\langle n, F\rangle \in \Delta_{i}$ that has been valid the longest, and we enumerate each element of the form $\langle r, x\rangle \in F$, where $r \geqslant s_{\gamma}$, into the set $X_{i, s}$ via the axiom $\left\langle\langle r, x\rangle, A_{j, s}\right\rangle$. Note that this action might enumerate some number $\langle r, x\rangle$ into $X_{i, s}$ where $\langle r, x\rangle$ is already in $X_{i, s}$ via an axiom enumerated by a different node.

The outcome of the strategy is $\langle k\rangle$, where k is the standard code of the finite set D_{k} of all numbers for which γ has enumerated an axiom that looks valid at stage s. As before, we assume that $D_{k_{1}} \subseteq D_{k_{2}}$ implies $k_{1} \leqslant k_{2}$.

3.4.2. $\mathcal{R}_{\Gamma_{0}}, \mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$

The $\mathcal{R}_{\Gamma_{0}}$-strategy and the $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$-strategy do nothing, have only one outcome $\langle 0\rangle$, and determine the version of Φ_{1} and X_{1}, or Φ_{2} and X_{2}, respectively, that substrategies work with.

3.4.3. $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$

The $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-strategy α attempts to construct an enumeration operator Ψ_{1} such that $A_{1}=\Psi_{1}\left(A_{2}\right)$ by enumerating axioms into Φ_{1}. (It will not enumerate axioms into either Φ_{0} or Φ_{2}, only its backup strategies will.)

At the first stage after initialization, the $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-strategy α is assigned the parameter s_{α}. We can assume that s_{α} is larger than $\max \left(D_{k}\right)$ for any k such that a higher-priority \mathcal{S}-strategy λ has $\lambda^{\wedge} k \preceq \alpha$. Until its next initialization, α will only contribute numbers to the s_{α}-th columns of X_{1}. To every element a, we assign the coding location $x_{a}=$ $\left\langle s_{\alpha}, a\right\rangle$ targeted for X_{1}.

At stage $s>s_{\alpha}, \alpha$ does the following. It orders the elements of $A_{1, s} \cup \Psi_{1, s}\left(A_{2, s}\right)$ by age:

$$
\begin{aligned}
& \operatorname{age}_{1}^{s}(a)=2 k+1 \text { for } k=\min \left(s+1, \mu t \forall u \in[t, s]\left(a \in A_{1, u}\right)\right) \\
& \operatorname{age}_{2}^{s}(a)=2 k \text { for } k=\min \left(s+1, \mu t \forall u \in[t, s]\left(a \in \Psi_{1}\left(A_{2, u}\right)[u] \text { via the same axiom }\right)\right) \\
& \operatorname{age}^{s}(a)=\min \left\{\operatorname{age}_{1}^{s}(a), \operatorname{age}_{2}^{s}(a)\right\} .
\end{aligned}
$$

Once again, we assume the age is defined injectively, i.e., for every stage $t \leqslant s$, there may be at most one element with $\operatorname{age}^{s}(a)=t$. Also, if $a \in A_{1, s} \backslash \Psi_{1, s}\left(A_{2, s}\right)$, then $\operatorname{age}^{s}(a)$ is odd, and if $a \in \Psi_{1, s}\left(A_{2, s}\right) \backslash A_{1, s}$, then age ${ }^{s}(a)$ is even.

If $A_{1, s}=\Psi_{1, s}\left(A_{2, s}\right)$, then we exit this strategy with outcome $\langle 2(s+1)\rangle$. Otherwise, we pick the oldest number a such that $A_{1, s}(a) \neq \Psi_{1, s}\left(A_{2, s}\right)(a)$. Let $k=\operatorname{age}^{s}(a)$. We have two cases depending on the parity of k.

Case 1: If k is even, i.e., if $a \in \Psi_{1, s}\left(A_{2, s}\right) \backslash A_{1, s}$, then we will be able to argue that $x_{a}=\left\langle s_{\alpha}, a\right\rangle \in \Gamma_{1}\left(A_{2}\right) \backslash X_{1}$. The strategy selects outcome $\langle k\rangle$. While a maintains its age, we will design axioms for younger elements enumerated into X_{1} by α so that their use includes a. Thus if this is α 's true outcome, they will be invalid, and hence α contributes finitely much to X_{1}. Under this outcome, we do not care about X_{2}.

Case 2: If k is odd, i.e., if $a \in A_{1, s} \backslash \Psi_{1, s}\left(A_{2, s}\right)$, then we would like to add an axiom for a into Ψ_{1}. We will follow a similar scheme as in the previous construction: We will add an axiom for x_{a} into Φ_{1}, wait until x_{a} shows up in $\Gamma_{1}\left(A_{2}\right)$, and use the (currently) valid axiom $\left\langle x_{a}, F_{a}\right\rangle$ to define an axiom for a in Ψ_{1}. We entangle the axiom for x_{a} with axioms from both Γ_{0} and Γ_{2}. First, we consider all $z \in X_{2, s}$ such that the age of z in X_{2} (i.e., the least $t \leqslant s$ such that $z \in X_{2, u}$ for all $u \in[t, s]$) is less than k. Let s_{k} be the previous stage when α considered k :
(1) If some such $z \in X_{2, s}$ is not in $\Gamma_{2}\left(A_{1, t}\right)$ via the same axiom for all stages $t \in\left[s_{k}, s\right]$, then we have evidence that $z \in X_{2} \backslash \Gamma_{2}\left(A_{1}\right)$, and so we exit with outcome $\langle k$, old \rangle. If b is younger than a, then α will always include the use of an axiom for z being in $\Gamma_{2}\left(A_{2}\right)$ in the use of the axiom for x_{b} being in $\Phi_{1}\left(A_{1}\right)$, so if this is the true outcome, then $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$ is satisfied and α 's effect on X_{1} is finitary.
(2) Otherwise, for every $z \in X_{2, s}$ that is older than a, we can associate a set G_{z}, the use of the oldest valid axiom for z being in $\Gamma_{2}\left(A_{1}\right)$. Next, we consider every backup strategy β (an immediate successor of α) that is not in initial state, every number $y_{b}^{\beta}=\left\langle s_{\beta}, b\right\rangle \in \Gamma_{2, s}\left(A_{1, s}\right)$ such that the age of y_{b}^{β} (i.e., the least $t \leqslant s$ such that at all $u \in[t, s]$, we have $y_{b}^{\beta} \in \Gamma_{2, u}\left(A_{1, u}\right)$ via the same axiom) is less than k, and for each such y_{b}^{β}, the coding locations $m_{b}^{\beta}<k$ that are associated with b by β. (Note that we do not restrict β to the ones that extend an older outcome than k. There will only be finitely many such backup strategies being considered due to the restriction on the age of y_{b}^{β}.)
If for some such $y_{b}^{\beta} \in \Gamma_{2, s}\left(A_{1, s}\right)$, there is an $m_{b}^{\beta}<k$ such that $m_{b}^{\beta} \notin \Gamma_{0}\left(A_{1, t}\right)$ at some stage $t \in\left[s_{k}, s\right]$, then we have two cases:
(a) If $b \notin A_{0, t}$ at some stage $t \in\left[s_{k}, s\right]$, then we have evidence that $y_{b}^{\beta} \in \Gamma_{2}\left(A_{1}\right) \backslash X_{2}$. We exit with outcome $\langle k$, off \rangle and argue that if this is the true outcome, then $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$ is satisfied and α enumerates finitely many valid axioms into Φ_{1} because they all must include the use of a Γ_{0}-axiom for all such m_{b}^{β}.
(b) If $b \in A_{0, t}$ at all $t \in\left[s_{k}, s\right]$, then the outcome is $\langle k$, new \rangle. We have evidence that $m_{b}^{\beta} \in X_{0}$ as it was either dumped there (i.e., we enumerated the axiom $\left\langle m_{b}^{\beta}, \emptyset\right\rangle$ into Φ_{0}) or its axiom has use $\{b\}$. If this is the true outcome, then we aim to show that $\mathcal{R}_{\Gamma_{0}}$ is satisfied by $m_{b}^{\beta} \in X_{0} \backslash \Gamma_{0}\left(A_{1}\right)$. In this case, we do not care about α 's effect on X_{1} even though that effect will be finitary as we argued in the previous case.
(3) Otherwise, for every older $y_{b}^{\beta} \in \Gamma_{2, s}\left(A_{1, s}\right)$ and each $m_{b}^{\beta}<k$ associated with b, we can associate a set $G_{m_{b}^{\beta}}$, the use of the oldest valid axiom for m_{b}^{β} in the set Γ_{0}. We enumerate into $\Phi_{1, s}$ the axiom for x_{a} whose use consists of

- all b such that age ${ }^{s}(b) \leqslant k$ (note that this includes a),
- all G_{z} for older $z \in X_{2, s}$, and
- all $G_{m_{b}^{\beta}}$ where β is a substrategy of α not in initial state (at the end of this stage) with older $y_{b}^{\beta} \in \Gamma_{2, s}\left(A_{1, s}\right)$, and corresponding $m_{b}^{\beta}<k$.
Next, we check whether $x_{a} \in \Gamma_{1}\left(A_{2}\right)$. If $x_{a} \notin \Gamma_{1, t}\left(A_{2, t}\right)$ at some stage $t \in\left[s_{k}, s\right]$, then we have evidence that $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$ may be satisfied by $x_{a} \in X_{1} \backslash \Gamma_{1}\left(A_{2}\right)$. Unfortunately, we have no evidence that the effect of α on X_{1} is finite. So we activate the backup strategy below outcome $\langle k$, backup \rangle. The backup strategy will either turn off future axioms enumerated by α or ensure that $\mathcal{R}_{\Gamma_{0}}$ is satisfied.
(4) Finally, if $x_{a} \in \Gamma_{1}\left(A_{2, t}\right)$ (by the same axiom at all stages since the last visit), then let $\left\langle x_{a}, F_{a}\right\rangle \in \Gamma_{1}$ be the axiom that has been valid longest. Enumerate $\left\langle a, F_{a}\right\rangle \in \Psi_{1, s}$. We have now eliminated a as a difference, and so we will pick the oldest difference once again, starting over at the current substage. (This can happen at most finitely often at any substage.)

Notice that the set X_{2} is only relevant under the outcomes $\langle k$, old \rangle and $\langle k$, off \rangle of α (corresponding to items (1) and (2a) above, respectively). Since α itself does not add axioms to $\Phi_{2}\left(A_{0}\right)$, but rather, they are only added by the backup strategies, whenever some outcome $\left\langle k^{\prime}\right.$, backup \rangle of α is played, the effect on each column of X_{2} will be finite if α has true outcome $\langle k$, old \rangle or $\langle k$, off \rangle. This is also the reason we have multiple backup strategies for α.

3.4.4. Backup $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$

The backup $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-strategy β works with its immediate predecessor α and attempts to construct an enumeration operator Ψ_{0} such that $A_{0}=\Psi_{0}\left(A_{1}\right)$ by enumerating axioms into Φ_{0} and its version of Φ_{2}.

Just like α, the strategy β is assigned the parameter s_{β} at the first stage after initialization. We can assume that s_{β} is larger than $\max \left(D_{k}\right)$ for any k such that a higher priority \mathcal{S}-strategy λ has $\lambda^{\wedge} k \preceq \beta$. The strategy β associates
to every element b the coding location $y_{b}=\left\langle s_{\beta}, b\right\rangle$ targeted for X_{2}. To certain elements b, it will also dynamically assign a coding location m_{b} targeted for X_{0}.

At a stage $s>s_{\beta}, \beta$ orders the elements of $A_{0, s} \cup \Psi_{0, s}\left(A_{1, s}\right)$ by age so that if $b \in A_{0, s} \backslash \Psi_{0, s}\left(A_{1, s}\right)$, then age ${ }^{s}(b)$ is odd, and if $b \in \Psi_{0, s}\left(A_{1, s}\right) \backslash A_{0, s}$, then age ${ }^{s}(b)$ is even.

If $A_{0, s}=\Psi_{0, s}\left(A_{1, s}\right)$, then we exit this strategy with outcome $\langle 2(s+1)+1\rangle$. Otherwise, we pick the oldest number b such that $A_{0, s}(b) \neq \Psi_{s}\left(A_{1, s}\right)(b)$. If there is no marker m_{b} associated with b, then we choose m_{b} to be the least number of the form $\left\langle s_{\beta}, n\right\rangle$ which has not been chosen as a marker. We also enumerate the axiom $\left\langle m_{b},\{b\}\right\rangle$ into Φ_{0}.

Let $l=\operatorname{age}^{s}(b)$. We must ensure that β 's effect on X_{0} is computable and so the strategy will dump into X_{0} all markers which are currently associated with any number b^{\prime} with $\operatorname{age}^{s}\left(b^{\prime}\right)>l$. Furthermore, to each such b^{\prime}, we associate a new marker $m_{b^{\prime}}$, which is the least number of the form $\left\langle s_{\beta}, n\right\rangle$ which has not been chosen as a marker. We also enumerate the axiom $\left\langle m_{b^{\prime}},\left\{b^{\prime}\right\}\right\rangle$ into Φ_{0}.

We will not ensure that β 's effect on X_{2} is finitary or computable because if β is on the true path, then either $\mathcal{R}_{\Gamma_{0}}$ or $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$ will be satisfied and X_{2} will not be relevant to strategies extending β.

We now have two cases depending on the parity of l.
Case 1: If l is even, i.e., if $b \in \Psi_{0, s}\left(A_{1, s}\right) \backslash A_{0, s}$, then unlike for α, we cannot simply take the easy win $y_{b} \in$ $\Gamma_{2}\left(A_{1}\right) \backslash X_{2}$, because we still have not guaranteed that α 's effect on X_{1} is finitary. For that reason, we will instead consider the marker m_{b}. We will argue that $b \notin A_{0, s}$ is evidence that m_{b} is not an element of X_{0}, and so we check whether $m_{b} \in \Gamma_{0}\left(A_{1}\right)$. Let s_{l} be the previous stage when α considered l :
(1) If m_{b} is not in $\Gamma_{0}\left(A_{1, t}\right)$ for some $t \in\left[s_{l}, s\right]$ (via the same axiom), then we will be able to argue that if this is the true outcome, then α enumerates only finitely many axioms into X_{1} as all but finitely many of them will include an axiom for m_{b} in Γ_{0}. In this case, $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$ is satisfied, and α 's action on X_{1} is finitary. So we take outcome $\langle l$, off \rangle.
(2) Otherwise, we have evidence that $m_{b} \in \Gamma_{0}\left(A_{1}\right) \backslash X_{0}$ and so if this is the true outcome, then $\mathcal{R}_{\Gamma_{0}}$ is satisfied and we take the outcome $\langle l$, new \rangle. Below this outcome, we do not care anymore what happens to X_{1}.

Case 2: If l is odd, i.e., if $b \in A_{0, s} \backslash \Psi_{0, s}\left(A_{1, s}\right)$, then we enumerate the axiom $\left\langle y_{b},\{b\}\right\rangle$ into the operator Φ_{2}.
(1) If $y_{b} \notin \Gamma_{2}\left(A_{1, s}\right)$, then, if this is the true outcome, all but finitely many axioms that α enumerates will contain the use of an axiom for y_{b} being in $\Gamma_{2}\left(A_{1}\right)$ which is invalid. It follows that once again, $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$ is satisfied and α 's action on X_{1} is finitary. We exit with outcome $\langle l\rangle$.
(2) Finally, if $y_{b} \in \Gamma_{2}\left(A_{1, s}\right)$ (by the same axiom at all stages since the last visit), then let $\left\langle y_{b}, F_{b}\right\rangle \in \Gamma_{2}$ be the axiom that has been valid longest. Enumerate $\left\langle b, F_{b}\right\rangle$ into $\Psi_{0, s}$. We have now eliminated b as a difference, and so we will pick the oldest difference once again, starting over at the current substage. (This can happen at most finitely often at any substage.)

3.5. Verification

We define the true path f in the tree of strategies as the leftmost path of strategies visited infinitely often. If $\hat{\lambda} o \preceq f$, then we will say that λ has true outcome o. If s is a stage at which λ is visited, we say that s is λ-true. We need to prove that f is well-defined and strategies along it satisfy their requirements. We do so by showing the following properties of the construction by simultaneous induction.

Lemma 3.2. The true path f is infinite, furthermore:
A. If α is an $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-strategy and $\alpha \prec f$, then:
(1) There are finitely many values of the parameter s_{α}.
(2) There is a leftmost outcome o that α visits at infinitely many stages.
(3) If $o \in\{\langle 2 k\rangle \mid k \in \omega\}$, then $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$ is satisfied, and for every value of s_{α}, the set $X_{1}^{\left[s_{\alpha}\right]}$ is finite.
(4) If $o \in\{\langle 2 k+1$, old $\rangle,\langle 2 k+1$, off $\rangle \mid k \in \omega\}$, then $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$ is satisfied, and for every value of s_{α}, the set $X_{1}^{\left[s_{\alpha}\right]}$ is finite.
(5) If $o \in\{\langle 2 k+1$, new $\rangle \mid k \in \omega\}$, then $\mathcal{R}_{\Gamma_{0}}$ is satisfied.
(6) If $o \in\{\langle 2 k+1$, backup $\rangle \mid k \in \omega\}$, then $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$ is satisfied.
B. If β is a backup strategy for an $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-strategy α and $\beta \prec f$, then:
(1) There are finitely many values of the parameter s_{β}.
(2) There is a leftmost outcome o that β visits at infinitely many stages.
(3) For every value of s_{β}, the set $X_{0}^{\left[s_{\beta}\right]}$ is computable.
(4) If $o \in\{\langle 2 l$, off $\rangle,\langle 2 l+1\rangle \mid l \in \omega\}$, then $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$ is satisfied, and for every value of s_{α}, the set $X_{1}^{\left[s_{\alpha}\right]}$ is finite.
(5) If $o \in\{\langle 2 l$, new $\rangle \mid l \in \omega\}$, then $\mathcal{R}_{\Gamma_{0}}$ is satisfied.
C. If $\gamma \prec f$ is an $\mathcal{S}_{\Delta_{0}}$, $\mathcal{S}_{\Gamma_{0}, \Delta_{1}}$, or $\mathcal{S}_{\Gamma_{0}, \Gamma_{1}, \Delta_{2}}$-strategy, respectively, then:
(1) There is a leftmost outcome o that γ visits at infinitely many stages.
(2) The set D_{o} consists of all numbers that γ contributes to X_{0}, X_{1}, or X_{2}, respectively.
(3) The requirement $\mathcal{S}_{\Delta_{0}}, \mathcal{S}_{\Gamma_{0}, \Delta_{1}}$, or $\mathcal{S}_{\Gamma_{0}, \Gamma_{1}, \Delta_{2}}$, respectively, is satisfied.

Proof. A. Since $\alpha \prec f$, there is a least stage at which α is visited after its final initialization. At this stage, s_{α} receives its final value, proving (1). By construction, we interrupt this stage so that no other strategy has the same parameter at any point during the construction. We claim that α is the only strategy that adds elements to $X_{1}^{\left[s_{\alpha}\right]}$. By construction, no strategy has enumerated any element into $X_{1}^{\left[s_{\alpha}\right]}$ so far. Lower-priority strategies σ are initialized at stage s_{α}, so any future values of s_{σ} will be greater than s_{α}. Once that occurs, σ cannot add elements to $X_{1}^{\left[s_{\alpha}\right]}$. Higherpriority strategies will not add elements to $X_{1}^{\left[s_{\alpha}\right]}$, either. To see this, note that any strategy λ of higher priority that potentially adds elements into X_{1} after stage s_{α} is either an $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-strategy with $s_{\lambda}<s_{\alpha}$, or an $\mathcal{S}_{\Gamma_{0}, \Delta_{1}}$-strategy which will not enumerate any valid Φ_{1}-axioms for numbers into $X_{1}^{\left[\geqslant s_{\alpha}\right]}$ by inductive hypothesis and our choice of s_{α}. This proves our claim. Note that if $t<s_{\alpha}$ is a previous value of the parameter s_{α}, then our analysis shows that no strategy can add elements into $X_{1}^{[t]}$ after stage s_{α}. It follows that $X_{1}^{[t]}$ is finite.

Let $\Psi_{1}=\bigcup_{s>s_{\alpha}} \Psi_{1, s}$ be the enumeration operator constructed by α. By assumption, $A_{1} \not \AA_{e} A_{2}$, hence $\Psi_{1}\left(A_{2}\right) \neq$ A_{1}. Let a be the oldest disagreement between $\Psi_{1}\left(A_{2}\right)$ and A_{1}. This means that there is some stage s_{a} such that at all stages $t>s_{a}$, we have that age ${ }^{t}(a)$ stabilizes, and if age ${ }^{t}(b)<\operatorname{age}^{t}(a)$, then $b \in A_{1, t} \cap \Psi_{1, t}\left(A_{2, t}\right)$. Furthermore, the way α adjusts the approximation to A_{1} and A_{2} when visited ensures that there are infinitely many stages $t>s_{a}$ at which we visit α and a is the oldest disagreement at stage t. At such stages, α will visit an $\operatorname{age}^{t}(a)$-outcome, and since there are finitely many $\operatorname{age}^{t}(a)$-outcomes, there is a leftmost outcome o visited at infinitely many stages, proving (2).

To prove (3), suppose that o is $\langle 2 k\rangle$. In order to show that $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$ is satisfied, we will show that $x_{a} \in \Gamma_{1}\left(A_{2}\right) \backslash X_{1}$. Since o is $\langle 2 k\rangle$, we have $a \notin A_{1, t}$ for infinitely many stages t, so $a \notin A_{1}$. We argued above that only α can enumerate Φ_{1}-axioms for x_{a}. By construction, the use of any such axiom contains a. So $x_{a} \notin X_{1}$. As for $\Gamma_{1}\left(A_{2}\right)$, note that $a \notin A_{1}$ implies that $a \in \Psi_{1}\left(A_{2}\right)$. For any Ψ_{1}-axiom for a, there is a corresponding Γ_{1}-axiom for x_{a} with the same use. The latter axiom witnesses that $x_{a} \in \Gamma_{1}\left(A_{2}\right)$ as desired.

To show that $X_{1}^{\left[s_{\alpha}\right]}$ is finite, it suffices (by our reasoning above) to show that there is a stage after which no Φ_{1}-axiom enumerated by α is valid. This holds because any Φ_{1}-axiom enumerated by α when the current outcome is o or to the right of o must contain a in its use, yet $a \notin A_{1}$. This completes the proof of (3).

To prove (4), first suppose that o is $\langle 2 k+1$, old \rangle. In order to show that $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$ is satisfied, we will show that $X_{2} \nsubseteq \Gamma_{2}\left(A_{1}\right)$. Since o is $\langle 2 k+1$, old \rangle, there are infinitely many stages s such that there is some $z \in X_{2, s}$ with age less than $2 k+1$ and $z \notin \Gamma_{2}\left(A_{1, t}\right)$, where $t \in\left[s_{k}, s\right]$. (Recall that s_{k} is the last stage before s at which α considered $2 k+1$.) There are only finitely many z which ever have age less than $2 k+1$, so the scenario described happens infinitely often with some fixed z. It follows that $z \in X_{2} \backslash \Gamma_{2}\left(A_{1}\right)$ as desired.

To show that $X_{1}^{\left[s_{\alpha}\right]}$ is finite, note that for all but finitely many stages at which we visit α, the age of z in X_{2} is smaller than the age of the oldest disagreement between A_{1} and $\Psi_{1}\left(A_{2}\right)$. At such stages, if α enumerates a Φ_{1}-axiom, its use contains the use G_{z} of a Γ_{2}-axiom for z being in $\Gamma_{2}\left(A_{1}\right)$. Since $z \notin \Gamma_{2}\left(A_{1}\right)$, it follows that α only enumerates finitely many valid Φ_{1}-axioms. Therefore, $X_{1}^{\left[s_{\alpha}\right]}$ is finite (as α is the only strategy which adds elements into $X_{1}^{\left[s_{\alpha}\right]}$). This completes the analysis if o is $\langle 2 k+1$, old \rangle.

Next suppose o is $\langle 2 k+1$, off \rangle. In this case, we will show that $\Gamma_{2}\left(A_{1}\right) \nsubseteq X_{2}$. By assumption on o (and the fact that there are only finitely many backup strategies β and numbers b such that the age of y_{b}^{β} in $\Gamma_{2}\left(A_{1}\right)$ is ever less than $2 k+1$), there are a backup strategy β, a number b, and a number $m<2 k+1$ such that at infinitely many stages s at which we visit α, we have that

- the age of y_{b}^{β} in $\Gamma_{2, s}\left(A_{1, s}\right)$ is less than $2 k+1$;
- m is one of the markers m_{b}^{β} that β associates with b; and
- $m \notin \Gamma_{0, t}\left(A_{1, t}\right)$ for some $t \in\left[s_{k}, s\right]$.

It follows that $y_{b}^{\beta} \in \Gamma_{2}\left(A_{1}\right)$ and $m \notin \Gamma_{0}\left(A_{1}\right)$. Since o is $\langle 2 k+1$, off \rangle, we have $b \notin A_{0}$. We will show that $y_{b}^{\beta} \notin X_{2}$. The only Φ_{2}-axiom enumerated by β for y_{b}^{β} has use $\{b\}$, so it is not valid. Furthermore, one can show that β is the only strategy that adds elements into $X_{2}^{\left[s_{\beta}\right]}$. The proof is similar to that for α and $X_{1}^{\left[s_{\alpha}\right]}$: Note that while β may not be along the true path, its immediate predecessor α is along the true path and therefore so are all of its predecessors. We have shown that $y_{b}^{\beta} \in \Gamma_{2}\left(A_{1}\right) \backslash X_{2}$.

To show that $X_{1}^{\left[s_{\alpha}\right]}$ is finite, note that for all but finitely many stages when we visit α, the age of y_{b}^{β} in $\Gamma_{2}\left(A_{1}\right)$ is smaller than the age of the oldest disagreement between A_{1} and $\Psi_{1}\left(A_{2}\right)$. At such stages, if α enumerates a Φ_{1}-axiom, its use contains the use G_{m} of a Γ_{0}-axiom for m. Since $m \notin \Gamma_{0}\left(A_{1}\right)$, it follows that α only enumerates finitely many valid Φ_{1}-axioms. Therefore, $X_{1}^{\left[s_{\alpha}\right]}$ is finite (as α is the only strategy which adds elements into $X_{1}^{\left[s_{\alpha}\right]}$). This completes the proof of (4).

To prove (5), suppose that o is $\langle 2 k+1$, new \rangle. To show that $\mathcal{R}_{\Gamma_{0}}$ is satisfied, we will show that $X_{0} \nsubseteq \Gamma_{0}\left(A_{1}\right)$. Fix β, b and m, following the analysis in the case where o is $\langle 2 k+1$, off \rangle. As before, we have $m \notin \Gamma_{0}\left(A_{1}\right)$. However, since o is $\langle 2 k+1$, new \rangle, we have $b \in A_{0}$. Since we enumerated the Φ_{0}-axiom $\langle m,\{b\}\rangle$ when associating m with b, it follows that $m \in X_{0}$. So $m \in X_{0} \backslash \Gamma_{0}\left(A_{1}\right)$.

To prove (6), suppose o is $\langle 2 k+1$, backup \rangle. We have $x_{a} \notin \Gamma_{1}\left(A_{2}\right)$. To show that $x_{a} \in X_{1}$, consider a stage s^{\prime} large enough such that for all $s>s^{\prime}$,

- if $\operatorname{age}^{s}(b) \leqslant 2 k+1$, then $b \in A_{1}$;
- if the age of z in $X_{2, s}$ is less than $2 k+1$, then $z \in X_{2} \cap \Gamma_{2}\left(A_{1}\right)$, and the use G_{z} of the oldest valid Γ_{2}-axiom for z has stabilized; and
- if β is a backup strategy for α and the age of (the current value of) y_{b}^{β} in $\Gamma_{2, s}\left(A_{1, s}\right)$ is less than $2 k+1$, then
* y_{b}^{β} has stabilized and lies in $\Gamma_{2}\left(A_{1}\right)$;
* each m_{b}^{β} lies in $\Gamma_{0}\left(A_{1}\right)$; and
* the use $G_{m_{b}^{\beta}}$ for the oldest valid Γ_{0}-axiom for each m_{b}^{β} has stabilized.

Such s^{\prime} exists because o is $\langle 2 k+1$, backup \rangle. At any stage $s>s^{\prime}$ at which we visit α, we would enumerate a valid Φ_{1}-axiom for x_{a}. We conclude that $x_{a} \in X_{1} \backslash \Gamma_{1}\left(A_{2}\right)$ as desired.
B. Since $\beta \prec f$, there is a least stage at which β is visited after its final initialization. At this stage, s_{β} receives its final value, proving (1). By construction, we interrupt this stage so that no other strategy has the same parameter at any point during the construction. One can show that β is the only strategy that adds elements into $X_{0}^{\left[s_{\beta}\right]}$, and if t is a previous value of s_{β}, then no strategy adds elements into $X_{0}^{[t]}$ after stage s_{β}. It follows that $X_{0}^{[t]}$ is computable for every previous value t of s_{β}.

Let $\Psi_{0}=\bigcup_{s>s_{\beta}} \Psi_{0, s}$ be the enumeration operator constructed by β. By assumption, $A_{0} \not \AA_{e} A_{1}$, hence $\Psi_{0}\left(A_{1}\right) \neq$ A_{0}. Let b be the oldest disagreement between $\Psi_{0}\left(A_{1}\right)$ and A_{0}. Following similar reasoning as that for α, there is a leftmost outcome o of the form $\langle 2 l$, off $\rangle,\langle 2 l$, new \rangle or $\langle 2 l+1\rangle$ which is visited at infinitely many stages, proving (2).

To prove (3), we begin by showing that m_{b}^{β} stabilizes. Once s_{β} and age ${ }^{s}(b)$ have stabilized, the only way that m_{b}^{β} changes is if some b^{\prime} with age ${ }^{s^{\prime}}\left(b^{\prime}\right)<2 l$ is the oldest disagreement between $A_{0, s^{\prime}}$ and $\Psi_{0, s^{\prime}}\left(A_{1, s^{\prime}}\right)$. At such a stage s^{\prime}, the current outcome of β would be to the left of o. This only occurs finitely often, proving that m_{b}^{β} stabilizes. Then all numbers greater than m_{b}^{β} in the s_{β}-th column of \mathbb{N} will eventually be dumped into X_{0}, implying that $X_{0}^{\left[s_{\beta}\right]}$ is cofinite. As for older values of s_{β}, we mentioned above that the corresponding columns of X_{0} are computable.

To prove (4), first note that by $\mathrm{A}(6), \mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$ is satisfied. It remains to show that for every value of s_{α}, the set $X_{1}^{\left[s_{\alpha}\right]}$ is finite. As reasoned above, it suffices to show that α only enumerates valid Φ_{1}-axioms for finitely many elements in $X_{1}^{\left[s_{\alpha}\right]}$, where s_{α} has stabilized. The proof differs depending on whether o is $\langle 2 l$, off \rangle or $\langle 2 l+1\rangle$.

Suppose o is $\langle 2 l$, off \rangle. We have $b \in \Psi_{0}\left(A_{1}\right) \backslash A_{0}$ and $m_{b}^{\beta} \notin \Gamma_{0}\left(A_{1}\right)$. By β 's construction of Ψ_{0}, we have $y_{b}^{\beta} \in$ $\Gamma_{2}\left(A_{1}\right)$ (via an axiom with the same use as a Ψ_{0}-axiom for b). Let t be the age of y_{b}^{β} in $\Gamma_{2}\left(A_{1}\right)$. Consider any stage s such that s_{α}, s_{β}, the age of y_{b}^{β} in $\Gamma_{2}\left(A_{1}\right)$, and m_{b}^{β} all have stabilized. Suppose α enumerates a Φ_{1}-axiom for some $x_{a^{\prime}}$ at stage s. Then a^{\prime} is the oldest disagreement between $A_{1, s}$ and $\Psi_{1, s}\left(A_{2, s}\right)$. Furthermore, if $t, m_{b}^{\beta}<\operatorname{age}^{s}\left(a^{\prime}\right)$, then the use of the Φ_{1}-axiom enumerated by α contains the use of a Γ_{0}-axiom for m_{b}^{β}, rendering it invalid (because $m_{b}^{\beta} \notin \Gamma_{0}\left(A_{1}\right)$). But there are only finitely many a^{\prime} for which there is some s such that age ${ }^{s}\left(a^{\prime}\right) \leqslant \max \left\{t, m_{b}^{\beta}\right\}$, so α can only enumerate valid Φ_{1}-axioms for finitely many $x_{a^{\prime}}$ as desired.

If o is $\langle 2 l+1\rangle$, the analysis proceeds similarly but with y_{b}^{β} instead of m_{b}^{β}. In this case, we have that $b \in A_{0} \backslash \Psi_{0}\left(A_{1}\right)$ and $y_{b}^{\beta} \notin \Gamma_{2}\left(A_{1}\right)$. By β 's construction of X_{2}, we have $y_{b}^{\beta} \in X_{2}$ via $\left\langle y_{b}^{\beta},\{b\}\right\rangle \in \Phi_{2}$. Let t be the age of y_{b}^{β} in X_{2}. Consider any stage s such that s_{α}, s_{β} and the age of y_{b}^{β} in X_{2} all have stabilized. Suppose α enumerates a Φ_{1}-axiom for some $x_{a^{\prime}}$ at stage s. Then a^{\prime} is the oldest disagreement between $A_{1, s}$ and $\Psi_{1, s}\left(A_{2, s}\right)$. Furthermore, if $t<\operatorname{age}^{s}\left(a^{\prime}\right)$, then the use of the Φ_{1}-axiom enumerated by α contains the use of a Γ_{2}-axiom for y_{b}^{β}, rendering it invalid (because $y_{b}^{\beta} \notin \Gamma_{2}\left(A_{1}\right)$). But there are only finitely many a^{\prime} for which there is some s such that age ${ }^{s}\left(a^{\prime}\right) \leqslant t$, so α can only enumerate valid Φ_{1}-axioms for finitely many $x_{a^{\prime}}$ as desired. This completes the proof of (4).

To prove (5), suppose o is $\langle 2 l$, new \rangle. We will show that $m_{b}^{\beta} \in \Gamma_{0}\left(A_{1}\right) \backslash X_{0}$. Since o is $\langle 2 l$, new \rangle, we have $m_{b}^{\beta} \in$ $\Gamma_{0}\left(A_{1}\right)$. To show that $m_{b}^{\beta} \notin X_{0}$, note first that the only Φ_{0}-axiom enumerated by β for m_{b}^{β} has use $\{b\}$, so it is not valid. Furthermore, as mentioned above, β is the only strategy that adds elements into $X_{0}^{\left[s_{\beta}\right]}$, so $m_{b}^{\beta} \notin X_{0}$. This completes the proof of (5).
C. We will prove (1)-(3) in the case where γ is an $\mathcal{S}_{\Delta_{0}}$-strategy. Then we will sketch how to modify the proof to address the $\mathcal{S}_{\Gamma_{0}, \Delta_{1}}$ - and $\mathcal{S}_{\Gamma_{0}, \Gamma_{1}, \Delta_{2}}$-strategies.

Since $\gamma \prec f$, there is a least stage at which γ is visited after its final initialization. At this stage, s_{γ} receives its final value, proving (1). By construction, we interrupt this stage so that no other strategy has the same parameter at any point during the construction.

Consider the sequence of good stages s, i.e., stages at which $A_{0, s} \subseteq A_{0}$. This sequence is infinite because $\left\{A_{0, s}\right\}_{s \in \omega}$ is a good approximation to A_{0}. We claim that the length of agreement $l_{\gamma, s}$ between $A_{0, s}$ and $\Delta_{0}\left(X_{0, s}\right)$ is bounded on this sequence. Towards a contradiction, suppose not. We begin by showing that $\Delta_{0}\left(X_{0}\right)=A_{0}$: First, if $a \in A_{0}$, then pick a good stage s such that $a \in A_{0, s}$ and $l_{\gamma, s}>a$. Then $a \in \Delta_{0}\left(X_{0, s}\right) \subseteq \Delta_{0}\left(X_{0}\right)$. Conversely, if $a \in \Delta_{0}\left(X_{0}\right)$, then pick a good stage s such that $a \in \Delta_{0}\left(X_{0, s}\right)$ and $l_{\gamma, s}>a$. Then $a \in A_{0, s} \subseteq A_{0}$ as desired.

Next, we shall show that $\Delta_{0}\left(X_{0}\right)=\Delta_{0}\left(X_{0}^{\left[<s_{\gamma}\right]} \cup \mathbb{N}^{\left[\geqslant s_{\gamma}\right]}\right)$. The forward inclusion is trivial. To prove the backwards inclusion, consider $n \in \Delta_{0}\left(X_{0}^{\left[<s_{\gamma}\right]} \cup \mathbb{N}^{\left[\geqslant s_{\gamma}\right]}\right)$. Let $\langle n, F\rangle$ be the oldest Δ_{0}-axiom putting n into $\Delta_{0}\left(X_{0}^{\left[<s_{\gamma}\right]} \cup \mathbb{N}^{\left[\geqslant s_{\gamma}\right]}\right)$. Pick a good stage $s>s_{\gamma}$ such that $F^{\left[<s_{\gamma}\right]}$ is permanently in X_{0} and $l_{\gamma, s}>n$. When we first visit γ at some stage $s^{\prime} \geqslant s$, we enumerate a Φ_{0}-axiom $\left\langle\langle r, x\rangle, A_{0, s^{\prime}}\right\rangle$ for each $\langle r, x\rangle \in F^{\left[\geqslant s_{\gamma}\right]}$. By the way that γ adjusts the approximation to A_{0}, we have $A_{0, s^{\prime}} \subseteq A_{0, s} \subseteq A_{0}$. Therefore, $F \subseteq X_{0}$, implying that $n \in \Delta_{0}\left(X_{0}\right)$. This proves the reverse inclusion.

By inductive hypotheses $\mathrm{B}(3)$ and $\mathrm{C}(2), X_{0}^{\left[<s_{\gamma}\right]}$ is computable, because the only strategies that contribute elements to $X_{0}^{\left[<s_{\gamma}\right]}$ after stage s_{γ} are backup strategies $\beta \prec \gamma$ or $\mathcal{S}_{\Delta_{0}^{\prime}}$-strategies $\gamma^{\prime} \prec \gamma$. The equality proved in the previous
paragraph then implies that $\Delta_{0}\left(X_{0}\right)$, and hence A_{0}, is c.e., contradicting our assumption on A_{0}. Therefore $l_{\gamma, s}$ is bounded on the sequence of good stages s. Fix a bound l_{γ}. Using this, we will prove (1) and (2). First note that γ can only contribute numbers to X_{0} at good stages, because every Φ_{0}-axiom enumerated by γ at stage s has use $A_{0, s}$. This means that only numbers $n \leqslant l_{\gamma}$ can cause γ to enumerate valid Φ_{0}-axioms. If $n \notin \Delta_{0}\left(X_{0}^{\left[<s_{\gamma}\right]} \cup \mathbb{N}^{\left[\geqslant s_{\gamma}\right]}\right)$, then $n \notin \Delta_{0, s}\left(X_{0, s}^{\left[<s_{\gamma}\right]} \cup \mathbb{N}^{\left[\geqslant s_{\gamma}\right]}\right)$ at good stages, so n will not cause γ to enumerate any valid Φ_{0}-axioms. As for $n \in \Delta_{0}\left(X_{0}^{\left[<s_{\gamma}\right]} \cup \mathbb{N}^{\left[\geqslant s_{\gamma}\right]}\right)$, the oldest valid Δ_{0}-axiom for n will appear to be the oldest valid axiom at all sufficiently large good stages, because we are working with a good approximation to A_{0}. Therefore, at all sufficiently large good stages, γ does not enumerate any valid Φ_{0}-axioms not already in Φ_{0}. This proves that γ enumerates only finitely many elements into X_{0}. Let $D=D_{k}$ be the set of these elements. To prove (1) and (2), it remains to show that $\langle k\rangle$ is the leftmost outcome that γ visits at infinitely many stages. Consider a stage s after which D lies permanently in X_{0}. At any γ-true stage $s^{\prime} \geqslant s, \gamma$'s current outcome $\left\langle k^{\prime}\right\rangle$ satisfies $D_{k} \subseteq D_{k^{\prime}}$. This implies that $\langle k\rangle \leqslant_{L}\left\langle k^{\prime}\right\rangle$. By the adjustment that γ makes to the approximation of A_{0}, we know that γ is visited at infinitely many good stages. At all such stages (after stage s), γ will have outcome $\langle k\rangle$. This proves (1) and (2).

Finally, to prove (3), we show that there is $n \leqslant l_{\gamma}$ such that $A_{0}(n) \neq \Delta_{0}\left(X_{0}\right)(n)$. Assume that this is not the case. Fix a stage s such that for all $s^{\prime} \geqslant s$ and each $n \leqslant l_{\gamma}$ in $A_{0} \cap \Delta_{0}\left(X_{0}\right)$, we have $n \in A_{0, s^{\prime}} \cap \Delta_{0, s^{\prime}}\left(X_{0, s^{\prime}}\right)$. Consider any good stage $s^{\prime} \geqslant s$ at which we visit γ. If $n \notin A_{0} \cap \Delta_{0}\left(X_{0}\right)$, then we must have $n \notin A_{0, s^{\prime}} \cup \Delta_{0, s^{\prime}}\left(X_{0, s^{\prime}}\right)$. So $l_{\gamma, s^{\prime}}>l_{\gamma}$, contradicting our choice of l_{γ}.

This proves (1)-(3) in the case where γ is an $\mathcal{S}_{\Delta_{0}}$-strategy. As for the $\mathcal{S}_{\Gamma_{0}, \Delta_{1}}$ - and $\mathcal{S}_{\Gamma_{0}, \Gamma_{1}, \Delta_{2}}$-strategies, most of the above proof goes through if we simply replace A_{0}, Δ_{0}, and X_{0} by the appropriate sets or operators. The only nontrivial change is in proving that $X_{1}^{\left[\ll s_{\gamma}\right]}$ is computable (for $\mathcal{S}_{\Gamma_{0}, \Delta_{1}}$) or $X_{2}^{\left[<s_{\gamma}\right]}$ is computable (for $\mathcal{S}_{\Gamma_{0}, \Gamma_{1}, \Delta_{2}}$), respectively. To prove the former, apply inductive hypotheses $\mathrm{A}(3), \mathrm{A}(4), \mathrm{B}(4)$, and $\mathrm{C}(2)$. Note that $\mathrm{A}(5)$ and $\mathrm{B}(5)$ are not relevant because any strategy above γ with such a true outcome works with a different version of X_{1}. To prove the latter, apply inductive hypothesis $\mathrm{C}(2)$. Any backup strategy above γ works with a different version of X_{2}, so we are not concerned with it.

Lemma 3.3. One of the following holds:
(1) All requirements $\mathcal{R}_{\Gamma_{0}}$ and $\mathcal{S}_{\Delta_{0}}$ are satisfied.
(2) There is some operator Γ_{0} such that all requirements $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$ and $\mathcal{S}_{\Gamma_{0}, \Delta_{1}}$ are satisfied.
(3) There are operators Γ_{0} and Γ_{1} such that all requirements $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$ and $\mathcal{S}_{\Gamma_{0}, \Gamma_{1}, \Delta_{2}}$ are satisfied.

Proof. First, suppose there are infinitely many $\mathcal{R}_{\Gamma_{0}}$-strategies along the true path f. By construction of the tree of strategies, there must be infinitely many $\mathcal{S}_{\Delta_{0}}$-strategies along f as well. Thus all $\mathcal{S}_{\Delta_{0}}$-strategies are assigned to nodes on the true path and hence are satisfied. To show that $\mathcal{R}_{\Gamma_{0}}$ is satisfied, fix an $\mathcal{R}_{\Gamma_{0}}$-strategy $\alpha \prec f$. Let γ be the next $\mathcal{S}_{\Delta_{0}}$-strategy along f. By construction of the tree of strategies, γ 's immediate predecessor is either an $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-strategy with true outcome of the form $\langle 2 k+1$, new \rangle, or a backup $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-strategy with true outcome of the form $\langle 2 l$, new \rangle. In both cases, the previous lemma shows that $\mathcal{R}_{\Gamma_{0}}$ is satisfied.

Second, if there are only finitely many $\mathcal{R}_{\Gamma_{0}}$-strategies along f, fix $\alpha \prec f$ and Γ_{0} such that α is an $\mathcal{R}_{\Gamma_{0}}$-strategy and no immediate successor of α is an $\mathcal{R}_{\Gamma_{0}^{\prime}}$-strategy. If there are infinitely many $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$-strategies along f, we claim that all requirements $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$ and $\mathcal{S}_{\Gamma_{0}, \Delta_{1}}$ are satisfied. By construction of the tree of strategies, there must be infinitely many $\mathcal{S}_{\Gamma_{0}, \Delta_{1}}$-strategies along f. Thus all $\mathcal{S}_{\Gamma_{0}, \Delta_{1}}$-strategies are assigned to nodes on the true path and hence are satisfied. To show that $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$ is satisfied, fix an $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$-strategy $\beta \prec f$ extending α. Let δ be the next $\mathcal{S}_{\Gamma_{0}, \Delta_{1}}$-strategy along f. By construction of the tree of strategies, δ 's immediate predecessor is either an $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-strategy with true outcome of the form $\langle 2 k\rangle$, or a backup $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-strategy with true outcome of the form $\langle 2 l$, off \rangle or $\langle 2 l+1\rangle$. In each case, the previous lemma shows that $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$ is satisfied. This proves our claim.

Finally, suppose there are only finitely many $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$-strategies along f. Fix $\alpha^{\prime} \prec f$ extending α and Γ_{1} such that α^{\prime} is an $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$-strategy and no immediate successor of α^{\prime} is an $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}^{\prime}}$-strategy. (Such α^{\prime} exists because α 's only immediate successor, which must lie along f, is an $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}}$-strategy.) Then no immediate successor of α along f can be a backup $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-strategy, so every immediate successor of α^{\prime} along f is either an $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$-strategy with true outcome of the form $\langle 2 k+1$, old \rangle or $\langle 2 k+1$, off \rangle, or an $\mathcal{S}_{\Gamma_{0}, \Gamma_{1}, \Delta_{2}}$-strategy. By the previous lemma and the design of the tree, all requirements $\mathcal{R}_{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}}$ and $\mathcal{S}_{\Gamma_{0}, \Gamma_{1}, \Delta_{2}}$ are satisfied.

4. A Weak Ahmad Triple

In the previous section, we saw that an Ahmad triple is not possible in the Σ_{2}^{0}-enumeration degrees. In this section, we show a positive result, the existence of what we call a weak Ahmad triple.

Theorem 4.1. There are pairwise incomparable Δ_{2}^{0}-enumeration degrees $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} such that
(1) there are Δ_{2}^{0}-degrees $\mathbf{a}_{12} \not \subset \mathbf{a}_{3}$ and $\mathbf{a}_{23} \not \subset \mathbf{a}_{1}$ with $\mathbf{a}_{12} \vee \mathbf{a}_{23}=\mathbf{a}_{2}$; and
(2) for every Σ_{2}^{0}-degree $\mathbf{x}<\mathbf{a}_{2}$, we have that either $\mathbf{x} \leqslant \mathbf{a}_{1}$ or $\mathbf{x} \leqslant \mathbf{a}_{3}$.

We call such a triple of degrees $\mathbf{a}_{1}, \mathbf{a}_{2}$, and $\mathbf{a}_{3} a$ weak Ahmad triple.

4.1. Requirements

We will construct Δ_{2}^{0}-sets A_{1}, A_{3}, A_{12}, and A_{23} satisfying the following list of requirements for every natural number e :

$$
\begin{gathered}
\mathcal{N}_{e}^{12}: A_{12} \neq \Theta_{e}\left(A_{3} \oplus A_{23}\right) ; \\
\mathcal{N}_{e}^{23}: A_{23} \neq \Theta_{e}\left(A_{1} \oplus A_{12}\right) ; \\
\mathcal{R}_{e}^{1}: X=\Phi_{e}\left(A_{12} \oplus A_{23}\right) \Rightarrow(\exists \Gamma)\left[X=\Gamma\left(A_{1} \oplus A_{12}\right)\right] \text { or }(\exists \Delta)\left[A_{23}=\Delta(X)\right] ; \\
\mathcal{R}_{e}^{3}: Y=\Psi_{e}\left(A_{12} \oplus A_{23}\right) \Rightarrow(\exists \Gamma)\left[Y=\Gamma\left(A_{3} \oplus A_{23}\right)\right] \text { or }(\exists \Delta)\left[A_{12}=\Delta(Y)\right] .
\end{gathered}
$$

Then $\mathbf{a}_{1}=\operatorname{deg}_{e}\left(A_{1} \oplus A_{12}\right), \mathbf{a}_{2}=\operatorname{deg}_{e}\left(A_{12} \oplus A_{23}\right)$, and $\mathbf{a}_{3}=\operatorname{deg}_{e}\left(A_{3} \oplus A_{23}\right)$ clearly satisfy clauses (1) and (2) of the theorem: Indeed, if $Z \leqslant_{e} A_{12} \oplus A_{23}$, then Z will take the role of X for some requirement \mathcal{R}_{e}^{1} and the role of Y for some requirement $\mathcal{R}_{e^{\prime}}^{3}$. If either requirement is satisfied by the first disjunct, then we know that $Z \leqslant_{e} A_{1} \oplus A_{12}$ or $Z \leqslant_{e} A_{3} \oplus A_{23}$, respectively. Otherwise, we have that both $A_{12} \leqslant_{e} Z$ and $A_{23} \leqslant_{e} Z$, and so $A_{12} \oplus A_{23} \equiv_{e} Z$. Finally, by the definition of the degrees and by density, our requirements imply that $\mathbf{a}_{1}, \mathbf{a}_{2}$ and \mathbf{a}_{3} are pairwise incomparable: Clearly, $\mathbf{a}_{2} \not \leq \mathbf{a}_{j}$ for each $j \in\{1,3\}$ by (1). Similarly, $\mathbf{a}_{j} \leqslant \mathbf{a}_{4-j}$ for some $j \in\{1,3\}$ contradicts (1). If $\mathbf{a}_{j}<\mathbf{a}_{2}$ for some $j \in\{1,3\}$, then fix \mathbf{x} with $\mathbf{a}_{j}<\mathbf{x}<\mathbf{a}_{2}$, so $\mathbf{x} \leqslant \mathbf{a}_{4-j}$ by (2), and in particular $\mathbf{a}_{j}<\mathbf{a}_{4-j}$, contradicting the last sentence.

The reader might recognize the \mathcal{R}-requirements to be very similar to the requirements for making an Ahmad pair. Indeed, we can think of \mathcal{R}_{e}^{1} as being the strategy making $\left(A_{23}, A_{1}\right)$ an Ahmad pair "relative" to A_{12}, while \mathcal{R}_{e}^{3} is the strategy making $\left(A_{12}, A_{3}\right)$ an Ahmad pair "relative" to A_{23}. In fact, as we will see, the addition of A_{12} to the oracle in \mathcal{R}_{e}^{1} will not pose additional difficulties, and a similar Ahmad pair strategy can be used.

4.2. Naive description of the strategies

We start by briefly outlining naive strategies to satisfy each requirement and then discuss how to modify them in order to avoid conflicts between them. The construction shares many similarities with the usual construction of an Ahmad pair on a tree. We will use the usual setup of a tree of strategies ordered by priority.

An \mathcal{N}-requirement \mathcal{N}^{12}, say, is satisfied using a standard Friedberg-Muchnik strategy α : It picks a witness z_{α} and enumerates it into A_{12}. It waits to see if this witness will ever enter the set $\Theta_{\alpha}\left(A_{3} \oplus A_{23}\right)$. It wins if this never happens, provided that z_{α} remains in A_{12}. If $z_{\alpha} \in \Theta_{\alpha}\left(A_{3} \oplus A_{23}\right)$, we say that z_{α} is realized. In that case, α can win by extracting z_{α} from A_{12} and ensuring that z_{α} will remain in $\Theta_{\alpha}\left(A_{3} \oplus A_{23}\right)$ by imposing a finite restraint on the sets A_{3} and A_{23}.

Of course, this puts \mathcal{N}^{12}-strategies and \mathcal{N}^{23}-strategies in conflict, and so already we see the need for a priority ordering between strategies. This is an easy obstacle to deal with. The complexity of our construction will only be revealed once we think about the \mathcal{R}-strategies as well.

Consider an \mathcal{R}-requirement \mathcal{R}^{3}, say, and its strategy β. Its initial goal is to build the operator Γ_{β} so that $\Gamma_{\beta}\left(A_{3} \oplus\right.$ $\left.A_{23}\right)=Y_{\beta}$, where $Y_{\beta}=\Psi_{\beta}\left(A_{12} \oplus A_{23}\right)$. When activated at stage s, for every natural number $n<s$, it checks whether $n \in Y_{\beta} \backslash \Gamma_{\beta}\left(A_{3} \oplus A_{23}\right)$, and if so, it enumerates a new axiom $\langle n, D\rangle$ into Γ_{β}, where D contains a fresh number $a_{3}(n)$ that we enumerate into A_{3}. If, on the other hand, $n \in \Gamma_{\beta}\left(A_{3} \oplus A_{23}\right) \backslash Y_{\beta}$, then the strategy invalidates all valid axioms for n by extracting from A_{3} the corresponding marker $a_{3}(n)$. A new fresh value is then picked for $a_{3}(n)$ to use in the next Γ-axiom. (This allows us to keep our sets Δ_{2}^{0}.)

The \mathcal{R}^{1} - and \mathcal{R}^{3}-strategies do not interfere with each other: They modify the sets A_{1} and A_{3}, respectively; however, \mathcal{R}^{1}-strategies do not involve the set A_{3}, and \mathcal{R}^{3}-strategies do not involve the set $A_{1} . \mathcal{R}$-strategies do not interfere with higher priority \mathcal{N}-strategies, as our priority tree will ensure that whenever an \mathcal{N}-strategy imposes a restraint, all lower-priority strategies are initialized and choose all of their parameters (specifically, numbers or witnesses they might later on like to extract from some set) as fresh numbers, larger than any number seen in the construction so far. An \mathcal{N}^{12}-strategy does not directly interfere with \mathcal{R}^{1}-strategies of higher priority: Its extraction of the witness z from A_{12} may cause some x to leave X. However, our design of the axioms that are enumerated into Γ_{1} will guarantee in that case that x will also leave $\Gamma_{1}\left(A_{1} \oplus A_{12}\right)$, and hence the \mathcal{R}^{1}-strategy will not even have to act in response.

The situation is quite different, unfortunately, when one considers how the extraction of z_{α} from A_{12} by an \mathcal{N}^{12}-strategy α affects a higher-priority \mathcal{R}^{3}-strategy β : In that case as well, some y may be forced out of Y_{β} through this extraction, and so β will react by extracting $a_{3}(y)$ from A_{3}. This action, however, might directly interfere with the restraint that α is trying to impose on A_{3} in order to keep $z_{\alpha} \in \Theta_{\alpha}\left(A_{3} \oplus A_{23}\right)$. In order to deal with this problem, we will need to modify our strategies.

4.3. An \mathcal{N}-strategy working below a single \mathcal{R}-strategy

For simplicity, we describe first the actions and outcomes of an \mathcal{N}^{12}-strategy α with one \mathcal{R}^{3}-strategy β of higher priority working above it. In the formal construction below, we will deal with the more general case.

The \mathcal{N}^{12}-strategy α will start by defining a threshold d_{α} to be larger than any number mentioned so far. This threshold is meant to allow the \mathcal{R}-strategy β enough room to satisfy its requirement. If $\Gamma_{\beta}\left(A_{3} \oplus A_{23}\right)$ changes its value on a number $x \leqslant d_{\alpha}$, then α will be restarted. So α can assume that $\Gamma_{\beta}\left(A_{3} \oplus A_{23}\right)$ does not change below d_{α} and hence A_{3} does not change on any $a_{3}(n)$ for $n \leqslant d_{\alpha}$. From this point on, α (temporarily) takes over control of the operator Γ_{β} : It defines a killing point k_{α} as a fresh number and enumerates it into A_{3}. It will require that the strategy β adds this killing point to the axiom that it enumerates into Γ_{β} for any $x \geqslant d_{\alpha}$. Whenever α is restarted, all parameters that α had at the previous stage will be canceled except for the threshold d_{α} and the killing point k_{α}. The killing point k_{α} is extracted from A_{3} (thereby invalidating all axioms that were enumerated into Γ_{β} for any element $x \geqslant d_{\alpha}$). Finally, a new value for k_{α} will be set - a fresh number, not seen in the construction so far, and this fresh number is added to A_{3}. Note that (assuming $\Gamma_{\beta}\left(A_{3} \oplus A_{23}\right) \upharpoonright d_{\alpha}$ changes finitely often, which is something we will prove in Lemma 4.4), this restart can happen at most finitely often.

The strategy α has three outcomes, stop $<_{L} \infty<_{L}$ wait. Once it has completed its initial setup (defining thresholds and killing points), the strategy picks a witness z_{α} as a fresh number and enumerates it into A_{12} as before. It waits to see if z_{α} becomes realized, and while waiting, the strategy has its rightmost outcome wait. Suppose z_{α} enters $\Theta_{\alpha}\left(A_{3} \oplus A_{23}\right)$ via an axiom $\left\langle z_{\alpha}, E_{z_{\alpha}} \oplus X\right\rangle$. The strategy first checks if it can extract z_{α} without causing Γ_{β}-correction that will extract from A_{3} some number in $E_{z_{\alpha}}$. At this point, the strategy is willing to sacrifice all other setups that it has made so far and enumerate into A_{12} and A_{23} as many numbers as necessary in order to guarantee this, with the exception of a certain pair of finite sets R^{12} and R^{23} consisting of witnesses selected by higher-priority strategies and kept out of their corresponding set. So if it is possible to add to A_{12} and A_{23} some finite set of numbers that make the extraction of z_{α} essentially harmless, then the strategy extracts z_{α} from A_{12} and takes outcome stop, where it will remain forever (unless initialized or restarted).

Suppose that this is not possible. In this case, the strategy α gives up on the witness z_{α} (at least for now) and decides to prove that β 's requirement is satisfied by initiating the construction of Δ so that $\Delta\left(Y_{\beta}\right)=A_{12}$. We say that α switches β from Γ to Δ. The fact that an extraction of z_{α} from A_{12} causes the extraction of a finite set $F_{z_{\alpha}}$ from Y_{β} can now be turned into the first axiom in Δ. We would like to have a stronger relationship: $z_{\alpha} \in A_{12}$ if and
only if $F_{z_{\alpha}} \subseteq Y_{\beta}$. Of course, currently there might be other numbers in A_{12} and A_{23} whose extraction may also cause $F_{z_{\alpha}}$ to leave Y_{β}. In order to remove their influence, we will dump into A_{12} and A_{23}, respectively, all numbers that were ever in A_{12} or A_{23} unless they belong to a higher-priority \mathcal{N}-strategy (i.e., are in R^{12} or R^{23}) or a lower-priority \mathcal{N}-strategy $\gamma \succeq \hat{\alpha} \infty$: We collect those elements in P_{12} and P_{23}. The act of dumping means that we enumerate these numbers into A_{12} or A_{23}, respectively, and never again allow them to leave these sets. (Note that any numbers controlled by strategies to the right of the outcome ∞ of α, or which will be replaced by new versions, can be dumped without harm.) We begin the construction of the operator Δ by enumerating the axiom $\left\langle z_{\alpha}, F_{z_{\alpha}}\right\rangle$, along with $\langle x, \emptyset\rangle$ for every element x that is dumped into A_{12}. At the end of this stage, we will visit the outcome ∞, but before we do so, we set things up for a new round: We extract the killing point k_{α} from A_{3} and redefine it as a fresh number. We record the parameters $\left\langle z_{\alpha}, E_{z_{\alpha}}, F_{z_{\alpha}}\right\rangle$ in a list W that we keep track of and then redefine the value of z_{α} as a new fresh number. At the next visit, the strategy α will start a new attempt at diagonalization with this new witness, but it will keep an eye on the previous witness z and its parameters E_{z} and F_{z}. If it ever sees that by dumping into A_{12} and A_{23} elements outside of $R^{12} \cup R^{23}$, it can restore $E_{z} \subseteq A_{3}$ and extract z from A_{12} (and this extraction will not cause β to extract any element from E_{z} back out of A_{3} to correct Γ_{β}), then the strategy α will do so and take outcome stop forever.

Below the outcome ∞ of α, we will have a duplicate strategy for every requirement of lower priority than β 's requirement, including the one that α failed to satisfy. These strategies will not have to worry about the strategy β any longer as its requirement is satisfied in a different way. Specifically, an \mathcal{N}^{12}-strategy γ will be able to employ the original Friedberg-Muchnik strategy with a couple of modifications: The witnesses that γ can use have to be the witnesses that α formerly used for its definition of Δ; these will be collected in a stream S^{12} that α controls. Every time α has outcome ∞, it adds one more element to the stream S^{12}. The strategy γ will wait for the stream to contain a currently unused witness z before it can carry on. It will then proceed as usual; however, it will only trust A_{3} below the current killing point of α. So z will be realized if $z \in \Theta_{\gamma}\left(A_{3} \upharpoonright k_{\alpha} \oplus A_{23}\right)$ at the current stage. If ∞ is α 's true outcome, i.e., if α visits this outcome infinitely often, then β 's activity is pushed away by the extraction of the infinite unbounded sequence of killing points, thereby destroying Γ_{β} as discussed above, but giving γ enough room to faithfully realize its witness. Note that since $\left\{k_{\alpha, s}\right\}_{s<\omega}$ is unbounded, we will still have that if the witness is never realized then it does not belong to $\Theta_{\gamma}\left(A_{3} \oplus A_{23}\right)$. Finally, if γ succeeds in realizing a witness, then it extracts it from A_{12} and declares victory with outcome stop. This might have an unanticipated effect on the operator Δ that α is constructing. It is possible that an axiom for some number $z^{\prime}>z$ was enumerated into Δ under the assumption that z remains in A_{12}. The extraction of z from A_{12} may cause $F_{z^{\prime}}$ to not be a subset of Y_{β}, even though $z^{\prime} \in A_{12}$. To prevent complications in the operator Δ, we will in this case dump (and thus remove from the stream) all elements in the stream S^{12} that entered the stream after z did.

A similar consideration has to be incorporated when an \mathcal{N}^{23}-strategy δ works below $\alpha^{\wedge} \infty$. For simplicity, we may assume that δ has no \mathcal{R}^{1}-strategy working above it. The strategy δ also operates a simple Friedberg-Muchnik strategy with the additional requirement that whenever it extracts a witness from A_{23}, it must dump into A_{12} (and thus remove from the stream) all witnesses that were put into the stream after δ defined its witness.

4.4. Strategies, parameters and the tree

We will describe the tree of strategies $T \subseteq\left(\{0 \text {, wait, stop }\} \cup\left\{\infty_{i} \mid i<\omega\right\}\right)^{<\omega}$ (which will be a finite-branching tree). We start with a priority ordering of all requirements of order type ω. To define the tree, we will make use of two other sets defined inductively as we move down the tree. We have a set M_{σ} of nodes $\prec \sigma$ that have been killed, and a list Q_{σ} of requirements that need to be assigned (or reassigned) to nodes $\succeq \sigma$. The root of the tree will be assigned the highest-priority requirement, and we set $M_{\emptyset}=\emptyset$ and Q_{\emptyset} to consist of all requirements. Suppose that we have assigned a requirement to a node σ in the tree. If this strategy is an \mathcal{R}_{j}^{i}-strategy, say, then it has only one immediate successor $\sigma^{\wedge} 0$. We set $Q_{\sigma^{\wedge} 0}=Q_{\sigma} \backslash\left\{\mathcal{R}_{j}^{i}\right\}$ and assign to $\sigma^{\wedge} 0$ the highest-priority requirement in the list $Q_{\sigma^{\wedge} 0}$. We set $M_{\sigma^{\wedge} 0}=M_{\sigma}$.

Suppose now that σ is assigned an \mathcal{N}-requirement, say, an \mathcal{N}_{e}^{12}-requirement. (The case \mathcal{N}_{e}^{23} is similar, but now conflicting with \mathcal{R}^{1}.) Let $\delta_{0} \prec \delta_{1} \prec \cdots \prec \delta_{n}$ be all initial segments of σ to which we have assigned an \mathcal{R}^{3}-strategy and which are not in M_{σ}. (We call such δ_{j} alive at σ.) The strategy σ has $n+3$ immediate successors,

$$
\sigma^{\wedge} \text { stop }<_{L} \sigma^{\wedge} \infty_{0}<_{L} \sigma^{\wedge} \infty_{1}<_{L} \cdots<_{L} \sigma^{\wedge} \infty_{n}<_{L} \sigma^{\wedge} \text { wait. }
$$

We set $Q_{\sigma^{\wedge} \text { wait }}=Q_{\sigma^{\wedge} \text { stop }}=Q_{\sigma} \backslash\left\{\mathcal{N}_{e}^{12}\right\}$ and assign to each of the nodes σ^{\wedge} wait and σ^{\wedge} stop the highest-priority requirement in this list. We also set $M_{\sigma^{\wedge} \text { wait }}=M_{\sigma^{\wedge} \text { stop }}=M_{\sigma}$. For $i \leqslant n$, we set $Q_{\sigma^{\wedge} \infty_{i}}$ to be Q_{σ}, along with the requirements associated with $\delta_{i+1}, \ldots, \delta_{n}$, and σ. We assign to $\sigma^{\wedge} \infty_{i}$ the highest-priority requirement in $Q_{\sigma^{\wedge} \infty_{i}}$. We set $M_{\sigma^{\wedge} \infty_{i}}=M_{\sigma} \cup\left\{\delta_{i}, \delta_{i+1}, \ldots, \delta_{n}\right\}$.

Lemma 4.2. Let h be an infinite path in the tree of strategies T. Every requirement \mathcal{Q} in our priority ordering is assigned to some node $\sigma \prec h$ such that for every δ with $\sigma \prec \delta \prec h$, \mathcal{Q} is not in Q_{δ}.

Proof. We prove this statement by induction on the priority ordering of all requirements. Suppose that the statement is true for all requirements of higher priority than the requirement \mathcal{Q}, and let $\sigma^{\prime} \prec h$ be least such that no requirement of higher priority than \mathcal{Q} enters Q_{δ} where $\sigma^{\prime} \preceq \delta \prec h$, or is assigned to any such δ. It follows that \mathcal{Q} is assigned to some longest $\sigma \preceq \sigma^{\prime}$, and we have the following two cases:
Case 1: $\mathcal{Q}=\mathcal{R}_{j}^{i}$. Fix the \mathcal{R}^{i}-strategies $\delta_{0} \prec \delta_{1} \cdots \prec \delta_{n} \prec \sigma$ that are alive at σ. By our inductive hypothesis, if there is a least strategy $\delta \prec h$ extending σ that puts \mathcal{Q} into the list Q_{δ}, then this strategy cannot kill δ_{l} for any $l \leqslant n$ by our inductive assumptions. Thus only σ (and possibly strategies extending σ) are killed by δ, and so δ will be assigned the requirement \mathcal{Q}. Now, since no \mathcal{R}^{i}-requirement of higher priority than \mathcal{Q} will switch from Γ to Δ along h beyond δ, the requirement \mathcal{Q} cannot be added to $Q_{\delta^{\prime}}$ for any δ^{\prime} with $\delta \prec \delta^{\prime} \prec h$; as a consequence, there is also a longest \mathcal{Q}-strategy along h.
Case 2: $\mathcal{Q}=\mathcal{N}_{e}^{i j}$, and by symmetry assume $i j=12$. Fix as usual the \mathcal{R}^{3}-strategies $\delta_{0} \prec \delta_{1} \cdots \prec \delta_{n} \prec \sigma$ alive at σ. The strategy σ cannot put \mathcal{Q} into the set $Q_{\sigma^{\wedge} o}$ unless σ switches the outcome of δ_{n} from Γ to Δ along h (since, by inductive hypothesis, no δ_{l} can be killed along h anymore). But then \mathcal{Q} must be assigned to $\sigma^{\wedge} o$ and cannot be added to $Q_{\delta^{\prime}}$ for any δ^{\prime} with $\delta \prec \delta^{\prime} \prec h$.

An \mathcal{R}-strategy β has only its operator Γ_{β} as a parameter. Initially (and after every initialization), we set $\Gamma_{\beta}=\emptyset$. We will also refer to $\Phi_{\beta}\left(A_{12} \oplus A_{23}\right)$ as X_{β} (in the case of an \mathcal{R}^{1}-strategy, and proceed similarly in the case of an \mathcal{R}^{3}-strategy.)

An \mathcal{N}^{12}-strategy α extending \mathcal{R}^{3}-strategies $\beta_{0} \prec \beta_{1} \prec \cdots \prec \beta_{n}$ still alive at α has a threshold d_{α}, a set of killing points $k_{\alpha}^{0}<\cdots<k_{\alpha}^{n}$, a witness z_{α}, a list of old witnesses W_{α}, each component of which contains a number z, an index $i \leqslant n$, two finite sets E_{z} and F_{z}, and enumeration operators $\Delta_{\beta_{0}}, \ldots, \Delta_{\beta_{n}}$. Initially (and after every initialization), all of these parameters are undefined or empty. An \mathcal{N}^{23}-strategy γ has the same list of parameters with respect to all \mathcal{R}^{1}-strategies that are still alive at γ.

In addition, every strategy has two streams S^{12} and S^{23}. These streams are determined by the predecessor of every strategy. Whenever a strategy is canceled, most of the elements in its stream (except for possibly one element) will be dumped into the corresponding set A_{12} or A_{23}.

4.5. Construction

In our construction, we will build a sequence $\left\{f_{s}\right\}_{s<\omega}$. Each f_{s} is a node of length s on our tree of strategies. Strategies visited at stage $s+1$ will modify the values of their parameters, as well as the approximations to the sets A_{12}, A_{23}, A_{1} and A_{3}. Since our tree is finitely branching, there is a leftmost path of nodes visited at infinitely many stages, the true path. The intention is that for every requirement \mathcal{Q}, there is a strategy along the true path that satisfies \mathcal{Q}.

At stage 0 , we set $A_{12}=A_{23}=A_{1}=A_{3}=\emptyset$, and all parameters of all strategies are in initial state (either undefined or empty). All streams are empty.

At stage $s+1$, we always start by visiting the root of the tree, namely, $f_{s+1} \upharpoonright 0=\emptyset$. We add to the streams S_{\emptyset}^{12} and S_{\emptyset}^{23} of the root the element s. Suppose we have built $f_{s+1} \upharpoonright k$ along with its streams $S_{f_{s+1} \upharpoonright k}^{12}$ and $S_{f_{s+1} \upharpoonright k}^{23}$. If we have added a new number to S^{12}, then we denote it by n^{12}. If we have added a new number to S^{23}, then we denote it by n^{23}. If $k=s+1$, then we are done with the construction of f_{s+1} : We initialize all strategies $\delta>f_{s+1}$, dump their streams into A_{12} and A_{23}, respectively, empty their streams (i.e., set $S_{\delta}^{12}=S_{\delta}^{23}=\emptyset$), and move on to the next stage.

Otherwise, we have four cases depending on the requirement assigned to $f_{s+1} \upharpoonright k$:

Case 1: $f_{s+1} \upharpoonright k$ is an \mathcal{R}_{j}^{3}-strategy β : The strategy scans all $x \leqslant s$.
(a) If $x \in Y_{\beta} \backslash \Gamma_{\beta}\left(A_{3} \oplus A_{23}\right)$, then the strategy picks a fresh marker $a_{3}(x)$ and enumerates it into A_{3}. Then it defines K_{β}^{x} as the finite set of all β-killing points that belong to an \mathcal{N}^{12}-strategy $\alpha \succ \beta$ with current threshold $d_{\alpha} \leqslant x$. (Note that this is a finite set as there are currently only finitely many strategies that are not in initial state.) The strategy then enumerates into Γ_{β} the axiom $\left\langle x,\left(\left\{a_{3}(x)\right\} \cup K_{\beta}^{x}\right) \oplus A_{23} \upharpoonright s\right\rangle$.
(b) If $x \in \Gamma_{\beta}\left(A_{3} \oplus A_{23}\right) \backslash Y_{\beta}$, then the strategy extracts from A_{3} all markers $a_{3}(x)$ that are in some valid axiom for x in Γ_{β}.
Once the scan is over, the strategy defines the stream $S_{\beta^{0} 0}^{12}$ by adding to its previous value the number n^{12} and, similarly, the stream $S_{\beta^{0}}^{23}$ by adding to it the number n^{23} (if they exist). Then the strategy ends the substage with outcome 0 .
Case 2: $f_{s+1} \upharpoonright k$ is an \mathcal{R}_{j}^{1}-strategy. This case is dealt with analogously to the previous case.
Case 3: $f_{s+1} \upharpoonright k$ is an \mathcal{N}_{e}^{12}-strategy α. Fix $\beta_{0} \prec \beta_{1} \prec \cdots \prec \beta_{n} \prec \alpha$ to be the \mathcal{R}^{3}-strategies alive at α. Let K_{α} be the greatest lower bound of the set of all killing points k_{γ}^{i}, where γ is an \mathcal{N}^{12}-strategy and $\alpha \succeq \gamma^{\wedge} \infty_{i}$. Let R^{12} and R^{23} be the sets of witnesses currently used by higher-priority \mathcal{N}^{12} - and \mathcal{N}^{23}-strategies, respectively. Similarly, the sets P_{12}^{i} and P_{23}^{i} consist of the current witnesses of \mathcal{N}^{12} - and \mathcal{N}^{23}-strategies extending outcome ∞_{i}.
If this is the first time that α is visited after initialization, then define the threshold d_{α} to be fresh and large and the killing points $k_{\alpha}^{0}<\cdots<k_{\alpha}^{n}$ as fresh numbers. Enumerate every killing point into A_{3}. Then go to the first case which applies:
(a) If $\Gamma_{\beta_{i}}\left(A_{3} \oplus A_{23}\right) \upharpoonright d_{\alpha}$ has changed since we last visited α, then cancel z_{α}, W_{α} and $\Delta_{\beta_{i}}$ for every $i \leqslant$ n. Extract the killing points k_{α}^{j} where $j \geqslant i$ from A_{3}. Define new values for these killing points and enumerate them into A_{3}. Initialize all strategies of lower priority than α. Dump the streams S_{α}^{12} and S_{α}^{23} into A_{12} and A_{23}, respectively. Set $S_{\alpha^{\prime} o}^{12}=S_{\alpha^{\prime} o}^{23}=\emptyset$ for every possible outcome o of α and end the substage with outcome wait.
(b) If the previous time when we visited α, it had outcome stop, and α has not been initialized since, then let the outcome again be stop. Define $S_{\alpha^{\prime} \text { stop }}^{12}$ and $S_{\alpha^{\prime} \text { stop }}^{23}$ by adding to them the number n^{12} and n^{23}, respectively (if they exist).
(c) Scan the list of old witnesses W_{α}. For each entry $\left\langle z, i_{z}, E_{z}, F_{z}\right\rangle$ such that z has not yet been dumped into A_{12}, check to see whether the number i_{z} can be decreased: Find the least j_{z} such that for every $i \geqslant j_{z}$, if we enumerate back into A_{3} the set E_{z}, into A_{12} every number $x \neq z$ such that $x \leqslant s$ and $x \notin R^{12} \cup \bigcup_{j<j_{z}} P_{12}^{j}$, and into A_{23} every number $x \leqslant s$ that is not in the set $R^{23} \cup \bigcup_{j<j_{z}} P_{23}^{j}$, then β_{i} will not be forced to extract from A_{3} any number in E_{z} during $\Gamma_{\beta_{i}}$-correction. (In this case, we say that z is $\Gamma_{\beta_{i}}$-cleared for $i \geqslant j_{z}$.) If there are no witnesses with $j_{z} \leqslant i_{z}$, then move on to step (d). Otherwise, among all witnesses with $j_{z} \leqslant i_{z}$, pick the one with least j_{z}, and among these the least z. Enumerate E_{z} into A_{3}, dump into A_{12} every number $x \neq z$ such that $x \leqslant s$ and $x \notin R^{12} \cup \bigcup_{j<j_{z}} P_{12}^{j}$, and into A_{23} every number $x \leqslant s$ such that $x \notin R^{23} \cup \bigcup_{j<j_{z}} P_{23}^{j}$. If $j_{z}=0$, then set $z_{\alpha}=z$, extract it from A_{12} and end the substage with outcome stop. Set $S_{\alpha^{\prime} o}^{12}=S_{\alpha^{\prime} o}^{23}=\emptyset$ for every possible outcome o of α and dump the elements that were in each stream into A_{12} and A_{23}, respectively.
Otherwise, if $j_{z}>0$, then set $i_{z}=j_{z}-1$. Let $F_{z} \subseteq Y_{\beta_{i z}}$ be the set such that $z \in A_{12}$ if and only if $F_{z} \subseteq Y_{\beta_{i z}}$. Enumerate into $\Delta_{\beta_{i_{z}}}$ the axiom $\left\langle z, F_{z}\right\rangle$. Update the record in W_{α} to include $\left\langle z, i_{z}, E_{z}, F_{z}\right\rangle$. Extract the killing points k_{α}^{j} where $j \geqslant i_{z}$ from A_{3}, and end the substage with outcome $\infty_{i_{z}}$. We set the streams $S_{\alpha^{\prime} o}^{12}=S_{\alpha^{\prime} o}^{23}=\emptyset$ for every outcome o of α that is to the right of $\infty_{i_{z}}$ and dump all elements that were in those streams except z into A_{12} and A_{23}, respectively. Dump n^{12} into A_{12} (if it exists). We leave $S_{\alpha^{\wedge} o}^{12}$ and $S_{\alpha^{\wedge} o}^{23}$ unchanged for every outcome o of α that is to the left of $\infty_{i_{z}}$. We update $S_{\alpha^{\wedge} \infty_{i_{z}}}^{12}$ by adding the number z to it, and $S_{\alpha^{\prime} \infty_{i_{z}}}^{23}$ by adding the number n^{23} (if it exists) to it.
(d) If no current witness is selected and n^{12} exists and is larger than the current witness of every \mathcal{N}-strategy γ with γ^{\wedge} wait $\preceq \alpha$ or γ ^stop $\preceq \alpha$, then define $z_{\alpha}=n^{12}$ and enumerate it into A_{12}. Otherwise (if n^{12} is defined but too small), dump n^{12} into A_{12}. End the substage with outcome wait, leaving all streams of immediate successors of α unchanged.
(e) If $z_{\alpha} \notin \Theta_{\alpha}\left(A_{3} \oplus A_{23}\right)$ or if $z_{\alpha} \in \Theta_{\alpha}\left(A_{3} \oplus A_{23}\right)$ but for every valid axiom $\left\langle z_{\alpha}, E \oplus D\right\rangle \in \Theta_{\alpha}$, we have that $\max (E) \geqslant K_{\alpha}$, then end the substage with outcome wait. Add n^{12} into S_{α}^{12} wait and n^{23} into S_{α}^{23} wait (if they exist). Leave all other streams of immediate successors of α unchanged.
(f) If $z_{\alpha} \in \Theta_{\alpha}\left(A_{3} \oplus A_{23}\right)$ via an axiom $\left\langle z_{\alpha}, E \oplus D\right\rangle$ with $\max (E)<K_{\alpha}$, then we add $\left\langle z_{\alpha}, n+1, E, \emptyset\right\rangle$ to W_{α} and go back to step (c). (Note that the current outcome will not be wait, since in step (c), we are guaranteed to find some witness $j_{z} \leqslant n+1$.) We also cancel the value of the current witness so that at the next visit, if α passes through steps (a), (b) and (c), then it will go to step (d) and select a new value of the witness.

Case 4: $f_{s+1} \upharpoonright k$ is an \mathcal{N}_{e}^{23}-strategy. This case is dealt with analogously to the previous case.

4.6. Verification

As anticipated, we have an infinite true path f of strategies on the tree consisting of the leftmost nodes visited at infinitely many stages. Our intention is to prove that nodes along this path satisfy their requirements. In order to prove that nodes on this path are initialized only finitely often, we must consider an \mathcal{N}-strategy on the true path and think about how many times it can be restarted, as that is the only reason, other than just visiting a node to the left of a strategy, that causes the initialization of strategies. We will prove, in Lemma 4.4, that for every \mathcal{R}^{3}-strategy $\beta \prec f$, the set $\Gamma_{\beta}\left(A_{3} \oplus A_{23}\right)$ is Δ_{2}^{0}, and similarly, for every \mathcal{R}^{1}-strategy $\beta^{\prime} \prec f$, the set $\Gamma_{\beta^{\prime}}\left(A_{1} \oplus A_{12}\right)$ is Δ_{2}^{0}. Throughout this proof, we will phrase various interactions between strategies for the pairs \mathcal{R}^{3} and \mathcal{N}^{12}. We note that the relationship between \mathcal{R}^{1} and \mathcal{N}^{23} is symmetric.

First, we point out a technical fact about streams that will be useful in the rest of the proof.

Lemma 4.3. If n enters a stream of a strategy δ at stage s and δ was last visited or initialized at stage s^{-}, then $n \geqslant s^{-}$and n is larger than all previous elements of either stream of δ.

Proof. The proof is an easy induction on the construction. The root is never initialized, and at stage $s+1, n_{\emptyset}^{12}=$ $n_{\emptyset}^{23}=s$, which is the last time the root was visited.

Suppose the statement is true about δ. If δ adds n^{12} and n^{23} to the stream of its immediate successor, then the statement clearly follows by induction, as we cannot initialize an immediate successor of δ without either visiting or initializing δ. So suppose that δ is an \mathcal{N}^{12}-strategy, say, and δ adds a witness z to the stream of $\delta^{\wedge} \infty_{i}$, as that is the only other case. In that case, the witness z was defined after $\delta^{\wedge} \infty_{i}$ was last visited or initialized at stage t, as whenever we initialize or visit $\delta^{\wedge} \infty_{i}$, we initialize and empty the stream of all strategies $\delta^{\wedge} \infty_{j}$ where $j>i$. At the stage when z was defined, it was defined as n_{δ}^{12}, which by induction is greater than or equal to the previous stage when δ was visited, and hence greater than or equal to t, and larger than any element in the stream of $\delta^{\wedge} \infty_{i}$.

Lemma 4.4. Let $\beta \prec f$ be an \mathcal{R}^{3}-strategy. Suppose that α is an \mathcal{N}^{12}-strategy such that $\beta \prec \alpha \prec f$ and β is alive at α. Let d_{α} be a threshold of α. Then there is a stage s such that after stage s, the strategy β does not modify the set $\Gamma_{\beta}\left(A_{3} \oplus A_{23}\right)$ below the threshold d_{α}. Thus, in particular, if β is never killed along f then the set $\Gamma_{\beta}\left(A_{3} \oplus A_{23}\right)$ is Δ_{2}^{0}.

Proof. We prove this theorem by induction on the priority of β and α. So towards a contradiction, suppose that the statement is false for a pair of strategies $\beta \prec \alpha \prec f$, and take the pair where α has highest priority. It follows from our choice of α that there is a least stage s_{α} such that after stage s_{α}, the strategy α (and hence β as well) is not initialized and never again changes the value of its threshold d_{α}. At stage s_{α}, the strategy α picks its killing points as fresh numbers, and hence they do not interfere with any axiom for any number $n \leqslant s_{\alpha}$ in Γ_{β}. After stage s_{α}, every time $\Gamma_{\beta}\left(A_{3} \oplus A_{23}\right)$ changes on some number $n \leqslant s_{\alpha}$, the strategy α is restarted. It chooses all parameters anew and initializes all lower-priority strategies. This means that if β enumerated a new axiom into Γ_{β} for some $n \leqslant s_{\alpha}$ such that $n \in \Psi_{\beta}\left(A_{12} \oplus A_{23}\right)$, then:
(1) This axiom cannot be invalidated by any strategy γ of equal or lower priority than α, as \mathcal{N}^{12}-strategies are initialized or restarted and hence pick their killing points as fresh numbers larger than $a_{3}(n)$ and have thresholds larger than n (hence none of their killing points will be included by β in this axiom). \mathcal{N}^{23}-strategies have to pick their witnesses anew, from fresh streams, as their streams are emptied at the current stage. Hence these witnesses will be larger than the current stage and will not be included in the A_{23}-portion of the axiom for n.
(2) The axiom that made n enter $\Psi_{\beta}\left(A_{12} \oplus A_{23}\right)$ uses (by our convention) only numbers smaller than the current stage and hence it will not be invalidated by any strategy of equal or lower priority than α, as these strategies are initialized and their streams are emptied. By Lemma 4.3, their streams will contain only numbers larger than the current stage, from which they will pick their witnesses.

No strategy of higher priority than α can invalidate either of these axioms, either: A higher-priority strategy extracts from A_{12} or A_{23} only at stages at which it, for the first time after initialization, has its leftmost outcome stop, which by our choice of s_{α} must happen before stage s_{α}. Similarly, after stage s_{α}, higher-priority strategies extract killing points only associated with \mathcal{R}-strategies that they end up killing, and since β is alive at α, this cannot be β. Of course, all A_{3}-markers are different, so \mathcal{R}^{3}-strategies do not interfere with each other.

It only takes finitely many stages for any number $n \leqslant d_{\alpha}$ that ever enters $\Psi_{\beta}\left(A_{12} \oplus A_{23}\right)$ to enter $\Psi_{\beta}\left(A_{12} \oplus A_{23}\right)$ permanently, and hence after that stage, β will not need to modify $\Gamma_{\beta}\left(A_{3} \oplus A_{23}\right)$ ever again.

The lemma above has two easy but significant corollaries. The first corollary was already anticipated by us.
Corollary 4.5. Every strategy along the true path is initialized at most finitely often.
The second corollary gives us the satisfaction of \mathcal{R}-requirements in one case.
Corollary 4.6. If $\beta \prec f$ is an \mathcal{R}^{3}-strategy that is alive at every successor of β along the true path, then $\Gamma_{\beta}\left(A_{3} \oplus\right.$ $\left.A_{23}\right)=\Psi_{\beta}\left(A_{12} \oplus A_{23}\right)$. The analogous statement for \mathcal{R}^{1}-strategies holds as well.

Proof. Fix an \mathcal{R}^{3}-strategy $\beta \prec f$. Consider the \mathcal{N}^{12}-strategies $\beta \prec \alpha_{0} \prec \alpha_{1} \prec \cdots \prec \alpha_{n} \prec \cdots \prec f$ along the true path. The sequence $\left\{d_{\alpha_{i}}\right\}_{i<\omega}$ of the final values of their thresholds, attained at the first true stage after the corresponding strategy stops being initialized, is an unbounded increasing sequence. By Lemma 4.4, for every i, there is a stage s_{i} such that at all $t \geqslant s_{i}$, the strategy β does not modify $\Gamma_{\beta}\left(A_{3} \oplus A_{23}\right)$ on numbers less than $d_{\alpha_{i}}$, and hence, by β 's design, $\Gamma_{\beta}\left(A_{3} \oplus A_{23}\right) \upharpoonright d_{\alpha_{i}}=\Psi_{\beta}\left(A_{12} \oplus A_{23}\right) \upharpoonright d_{\alpha_{i}}$ at all stages $t \geqslant s_{i}$. Furthermore, the proof of Lemma 4.4 actually gives us more: If $n \leqslant d_{\alpha_{i}}$ is in $\Psi_{\beta}\left(A_{12} \oplus A_{23}\right)$ at any β-true stage after α_{i} selects its last threshold $d_{\alpha_{i}}$, then $n \in \Gamma_{\beta}\left(A_{3} \oplus A_{23}\right) \cap \Psi_{\beta}\left(A_{12} \oplus A_{23}\right)$. This gives us immediately that $\Gamma_{\beta}\left(A_{3} \oplus A_{23}\right) \upharpoonright d_{\alpha_{i}}=$ $\Psi_{\beta}\left(A_{12} \oplus A_{23}\right) \upharpoonright d_{\alpha_{i}}$ and, by the unboundedness of $\left\{d_{\alpha_{i}}\right\}_{i<\omega}$, the fact that $\Gamma_{\beta}\left(A_{3} \oplus A_{23}\right)=\Psi_{\beta}\left(A_{12} \oplus A_{23}\right)$.

We next concentrate on the \mathcal{N}-requirements. To prove that each is eventually satisfied, we will first show that once a number is Γ_{i}-cleared, it will remain Γ_{i}-cleared at all future stages.

Lemma 4.7. Fix an \mathcal{N}^{12}-strategy $\alpha \prec f$ below \mathcal{R}^{3}-strategies $\beta_{0} \prec \cdots \prec \beta_{n}$ alive at α. If α moves a witness z from $S_{\infty j}^{12}$ to $S_{\infty_{i}}^{12}$, where $i<j$, at a stage after α 's last initialization, then at any future stage, if z is extracted from A_{12} and E_{z} is enumerated back into A_{3}, the strategy β_{j} will not change A_{3} to cause z to be extracted from $\Gamma_{\beta_{j}}\left(A_{3} \oplus A_{23}\right)$.

Proof. Suppose that at stage s, the strategy α moves z from $S_{\infty_{j}}^{12}$ to $S_{\infty_{i}}^{12}$, where $i<j$. At this stage, it dumps into A_{12} all numbers $x \leqslant s$ such that $x \notin\{z\} \cup R^{12} \cup \bigcup_{i^{\prime} \leqslant i} P_{12}^{i^{\prime}}$, and into A_{23} all numbers $x \leqslant s$ such that $x \notin R^{23} \cup \bigcup_{i^{\prime} \leqslant i} P_{23}^{i^{\prime}}$. At stage s, we see that under these circumstances, the extraction of z from A_{12} will not cause any number y that is currently in $\Psi_{\beta_{j}}\left(A_{12} \oplus A_{23}\right)$ and that has an A_{3}-marker $a_{3}(y) \in E_{z}$ to leave the set $\Psi_{\beta_{j}}\left(A_{12} \oplus A_{23}\right)$. Assuming that $\left(R^{12} \cup \bigcup_{i^{\prime} \leqslant i} P_{12}^{i^{\prime}}\right) \cap A_{12}$ as seen at the current stage s remains a subset of A_{12}, and that $\left(R^{23} \cup \bigcup_{i^{\prime} \leqslant i} P_{23}^{i^{\prime}}\right) \cap A_{23}$ as seen at stage s remains a subset of A_{23}, this will be true at future stages as well, as every strategy to the right of $\alpha \hat{\alpha} \infty_{i}$ is initialized and will select its future witnesses from its stream that is currently empty and will by Lemma 4.3 in
the future only have elements larger than any number mentioned before stage s ，hence not be included in any axiom in $\Psi_{\beta_{j}}$ valid at stage s ．

The only potential problem is that some strategy γ might，at a stage t ，extract from A_{12} a number y that is in the set $\left(R^{12} \cup \bigcup_{i^{\prime} \leqslant i} P_{12}^{i^{\prime}}\right) \cap A_{12}$ at stage s ，or from A_{23} a number y that is in the set $\left(R^{23} \cup \bigcup_{i^{\prime} \leqslant i} P_{23}^{\prime}\right) \cap A_{23}$ at stage s ．

First note that if $y \in R^{12} \cup R^{23}$ ，then y is the current witness of an \mathcal{N}－strategy $\delta \prec \alpha$ ．Since δ has no witness at stages when it has an infinite outcome，and its current witness is not in A_{12} if it has outcome stop，it follows that δ^{\wedge} wait $\preceq \alpha$ ．This means that y remains the current witness of δ at all future stages and never enters another stream． No other strategy has access to it in order to extract it at stage t ．

Suppose that $y \in P_{12}^{i^{\prime}}$ for $i^{\prime} \leqslant i$ ．Let $\delta \succeq \alpha^{\wedge} \infty_{i^{\prime}}$ be the strategy with witness y at stage s ．Let γ be the strategy that extracts y at stage t ．Once again，γ cannot have higher priority than α ，or else α would be initialized．It follows that $\gamma=\alpha$ ，or else $\gamma \succeq \alpha^{\wedge} \infty_{k}$ ，where $k \leqslant i^{\prime}$ ，as all other strategies of lower priority than α are initialized at the stage when y was assigned to δ as a witness and thus have streams consisting of elements larger than y by Lemma 4．3． If $\gamma=\alpha$ ，then at stage t ，the strategy α dumps all elements less than t that are not in $\{y\} \cup R^{12} \cup R^{23}$ into A_{12} and A_{23} ，respectively，in particular z will be dumped．If $\gamma \succeq \hat{\alpha^{\prime} \infty_{k}}$ and $k \leqslant i$ ，then consider the stage r at which y entered the stream of $\alpha^{\wedge} \infty_{k}$ ．Since at stage s ，the number y is already in the stream of $\alpha^{\wedge} \infty_{i^{\prime}}$ ，and whenever a number switches streams，all streams associated with strategies to the right are dumped，we have that at stage r ，the number z is dumped（ z cannot already be in a stream to the left of or equal to $\alpha^{\wedge} \infty_{k}$ at stage r ，or else y would have been dumped before stage r ）．

Lemma 4．8．Every \mathcal{N}－requirement is satisfied．
Proof．By symmetry，fix an \mathcal{N}_{e}^{12}－requirement，say．By Lemma 4．2，there is a strategy α along the true path that is assigned \mathcal{N}_{e}^{12} and such that no strategy σ extending α along the path f has $\mathcal{N}_{e}^{12} \in Q_{\sigma}$ ．It follows that $\hat{\alpha}$ wait $\prec f$ or $\alpha \hat{\text { 人 }}$ stop $\prec f$ ．

Let s_{α} be the first stage after which α is not initialized．Recall that the number K_{α} is defined as the greatest lower bound of the set of all killing points k_{γ}^{i} ，where γ is an \mathcal{N}^{12}－strategy and $\alpha \succeq \gamma^{\wedge} \infty_{i}$ ．Every time that α is visited，this number has a larger value than at the previous visit．Furthermore，no \mathcal{N}－strategy of higher priority than α modifies A_{3} on numbers $x \leqslant K_{\alpha}$ ．This is because when such an \mathcal{N}－strategy γ such that $\gamma^{\wedge} \infty_{i} \preceq \alpha$ has outcome ∞_{i} ，it extracts from A_{3} all killing points k_{γ}^{j} ，where $j \geqslant i$ ，and then it redefines them as fresh numbers．The strategy γ cannot extract any smaller killing point without initializing α ．

So $A_{3} \upharpoonright K_{\alpha}$ can only be modified by an \mathcal{R}－strategy β above α ．We note that such a strategy is necessarily alive at α ．Indeed，if β is not alive above at α ，then it is killed by a strategy γ such that $\gamma^{\wedge} \infty_{i} \preceq \alpha$ and β is γ＇s j－th \mathcal{R}^{3}－strategy，where $j \geqslant i$ ．Every time that γ has outcome ∞_{i} ，it extracts its j－th killing point from A_{3} ，thereby invalidating all axioms in Γ_{β} for numbers $x \geqslant d_{\gamma}$ ．After stage s_{α} ，the strategy β does not modify $\Gamma_{\beta}\left(A_{3} \oplus A_{23}\right)$ on any number $x \leqslant d_{\gamma}$ ，hence if it sees a valid axiom for some x that needs to be made invalid，then $x>d_{\gamma}$ ．This axiom has marker $a_{3}(x)>k_{\gamma}^{j} \geqslant K_{\alpha}$ ．

If $\hat{\alpha \text { 人 wait }} \prec f$ ，then let $s \geqslant s_{\alpha}$ be such that α has outcome wait at every stage $t \geqslant s$ ．After stage s ，the strategy α will select its final witness z_{α} ．It follows from the construction that z_{α} never enters $\Theta_{\alpha}\left(A_{3} \oplus A_{23}\right)$ with an axiom that does not use any numbers larger than K_{α} ．Since the values of K_{α} at α－true stages form an unbounded sequence，it follows that every axiom we ever see for z_{α} in $\Theta_{\alpha}\left(A_{3} \oplus A_{23}\right)$ is invalid at infinitely many stages．Hence $z_{\alpha} \notin \Theta_{\alpha}\left(A_{3} \oplus A_{23}\right)$ ．As no strategy other than α can extract z_{α} from A_{12} ，and z_{α} is enumerated into A_{12} at the stage when it is defined，it follows that $z_{\alpha} \in A_{12} \backslash \Theta_{\alpha}\left(A_{3} \oplus A_{23}\right)$ ．

If，on the other hand，α 人stop $\prec f$ ，then there is a stage $s \geqslant s_{\alpha}$ such that α has outcome stop for the first time at stage s ．At this stage，α has found a witness z that is cleared by all higher priority \mathcal{R}^{3}－strategies that are alive at α ． Note that $\max \left(E_{z}\right)<K_{\alpha}$ ，and by Lemma 4．7，no strategy β that is alive at α will extract a marker from A_{3} that is in E_{z} ．Every number that was in A_{23} when the axiom for z in Θ_{α} was found is dumped into A_{23} at stage s（only elements that are in R^{23} are preserved；however，they cannot have been in R^{23} when z was realized and not be in R^{23} later unless α is initialized）．It follows that $z \in \Theta_{\alpha}\left(A_{3} \oplus A_{23}\right) \backslash A_{12}$ ．

The final lemma that we present handles the case when an \mathcal{R}－requirement is satisfied by its backup strategy， which completes the proof．

Lemma 4.9. Let α be an \mathcal{N}^{12}-strategy below the \mathcal{R}^{3}-strategies $\beta_{0} \prec \cdots \prec \beta_{n} \prec \alpha$ alive at α. If $\alpha^{\wedge} \infty_{i} \prec f$, then $A_{12} \leqslant_{e} Y_{\beta_{i}}$. (Of course, a symmetric result holds for $\mathcal{N}^{23}{ }_{\text {-strategies below }} \mathcal{R}^{1}$-strategies.)

Proof. Let $s_{\alpha_{i}}$ be a stage such that $\alpha^{\wedge} \infty_{i}$ is not initialized after stage $s_{\alpha_{i}}$. After this stage, the set R_{α}^{12} does not change. We prove that if $x \geqslant s_{\alpha}$ is an element that is never dumped into A_{12}, then either $x \in R_{\alpha}^{12}$ or $x \in A_{12}$ if and only if $x \in \Delta_{\beta_{i}}\left(Y_{\beta_{i}}\right)$.

Fix x and suppose that x is never dumped into A_{12} and that $x \notin R_{\alpha}^{12}$. Fix the least witness z of α such that $z \geqslant x$. Consider the stage at which z is realized and enters one of the streams of α 's immediate successors. If $z>x$, then at that stage, x would be dumped into A_{12}. So suppose that $z=x$. Now consider the next stage at which α has outcome ∞_{i}. At that stage, some element z^{\prime} enters the stream $S_{\alpha^{\wedge} \infty_{i}}$, and by our choice of $s_{\alpha_{i}}$, we know that at this stage, x is in some stream $S_{\alpha^{\wedge} \infty_{j}}$ where $j \geqslant i$. If $x \neq z^{\prime}$, then x would be dumped into A_{12} at this stage, so suppose that $x=z^{\prime}$ and x enters the stream $S_{\alpha^{\wedge} \infty_{i}}$ at stage s. Then at this stage, we add an axiom $\left\langle x, F_{x}\right\rangle$ into $\Delta_{\beta_{i}}$ for x, where F_{x} is such that under the current circumstances at stage s, we have that $x \in A_{12}$ if and only if $F_{x} \subseteq Y_{\beta_{i}}$. As in the proof of Lemma 4.7, if some number that is in the set $\left(R^{12} \cup \bigcup_{j \leqslant i} P_{12}^{j}\right) \cap A_{12}$ at stage s is extracted from A_{12} or a number that is in the set $\left(R^{23} \cup \bigcup_{j \leqslant i} P_{23}^{j}\right) \cap A_{23}$ at stage s is extracted from A_{23}, then x is dumped into A_{12}. So suppose that neither of these ever happens. Then clearly, if $x \in A_{12}$, then $F_{x} \subseteq Y_{\beta_{i}}$, as all strategies of lower priority than $\hat{\alpha} \infty_{i}$ are initialized at stage s. If at any stage $t>s$, we visit α and notice that $F_{x} \subseteq Y_{\beta_{i}}$ even if $x \notin A_{12}$, then the strategy α will move x to a smaller stream and initialize $\hat{\alpha^{\wedge}} \infty_{i}$, contrary to our assumptions.

Putting Corollary 4.6 and Lemma 4.9 together, we conclude the following
Corollary 4.10. Every \mathcal{R}-requirement is satisfied.
Proof. Fix an \mathcal{R}_{e}^{3}-requirement, say. By Lemma 4.2 , let β be the longest \mathcal{R}_{e}^{3}-strategy along f. If β is not switched from Γ to Δ by any strategy extending β along f, then by Corollary 4.6, \mathcal{R}_{e}^{3} is satisfied. If $\beta \prec \alpha^{\wedge} \infty_{i} \prec f$ and α switches β from Γ to Δ, then β is α 's i-th live \mathcal{R}^{3}-strategy. By Lemma 4.9, $A_{12} \leqslant e Y_{\beta}$, and hence \mathcal{R}_{e}^{3} is once again satisfied.

This concludes the proof of Theorem 4.1.

References

[1] Seema Ahmad. Some results on the structure of the Σ_{2}^{0} enumeration degrees. PhD thesis, Simon Fraser University (Canada), 1989.
[2] Seema Ahmad and Alistair H. Lachlan. Some special pairs of Σ_{2} e-degrees. MLQ Math. Log. Q., 44(4):431449, 1998.
[3] S. B. Cooper. Partial degrees and the density problem. II. The enumeration degrees of the Σ_{2} sets are dense. J. Symbolic Logic, 49(2):503-513, 1984.
[4] Hristo Ganchev and Mariya Soskova. Interpreting true arithmetic in the local structure of the enumeration degrees. J. Symbolic Logic, 77(4):1184-1194, 2012.
[5] Thomas F. Kent. The Π_{3}-theory of the Σ_{2}^{0}-enumeration degrees is undecidable. J. Symbolic Logic, 71(4):12841302, 2006.
[6] Steffen Lempp, Manuel Lerman, and Reed Solomon. Embedding finite lattices into the computably enumerable degrees-a status survey. In Logic Colloquium '02, volume 27 of Lect. Notes Log., pages 206-229. Assoc. Symbol. Logic, La Jolla, CA, 2006.
[7] Steffen Lempp, André Nies, and Theodore A. Slaman. The Π_{3}-theory of the computably enumerable Turing degrees is undecidable. Trans. Amer. Math. Soc., 350(7):2719-2736, 1998.
[8] Steffen Lempp, Theodore A. Slaman, and Andrea Sorbi. On extensions of embeddings into the enumeration degrees of the Σ_{2}^{0}-sets. J. Math. Log., 5(2):247-298, 2005.
[9] Steffen Lempp, Theodore A. Slaman, and Mariya I. Soskova. Fragments of the theory of the enumeration degrees. Advances in Mathematics, 383:107686, 2021.
[10] Steffen Lempp and Andrea Sorbi. Embedding finite lattices into the Σ_{2}^{0} enumeration degrees. J. Symbolic Logic, 67(1):69-90, 2002.
[11] André Nies, Richard A. Shore, and Theodore A. Slaman. Interpretability and definability in the recursively enumerable degrees. Proc. London Math. Soc. (3), 77(2):241-291, 1998.
[12] Gerald E. Sacks. On the degrees less than 0'. Ann. of Math. (2), 77:211-231, 1963.
[13] Theodore A. Slaman and W. Hugh Woodin. Definability in the enumeration degrees. Arch. Math. Logic, 36(4-5):255-267, 1997. Sacks Symposium (Cambridge, MA, 1993).
[14] Mariya I. Soskova. The theory of the enumeration degrees, definability, and automorphisms. In Contemporary logic and computing, volume 1 of Landsc. Log, pages 706-730. Coll. Publ., [London], [2020] ©2020.

[^0]: ${ }^{1}$ The second author was partially supported by AMS-Simons Foundation Collaboration Grant 626304. The third author was supported by MOE grant RG23/19. The fourth author was supported by NSF grants DMS-1762648 and DMS-2053848 and by the grant FNI-SU80-10128/16.04.2020. All the authors thank the two referees for their helpful comments.

