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Abstract. We study the algorithmic content of back-and-forth proofs for graphs and homo-
geneous structures from the perspective of Turing computations in which unbounded search
is forbidden. Quite unexpectedly, we discover subtle differences between the back-nad-forth
proofs for the random graph, the dense linear order of the rationals, and the universal count-
able abelian p-group. We also prove the primitive recursive analog of the Cantor-Bernstein
theorem for graphs which says that if there is a “back” isomorphism and the “forth” isomor-
phism then there is a “back-and-forth” isomorphism. We also show that the fully primitive
recursive degrees (to be defined) of the dense linear order of the rationals are downwards
dense.

1. Introduction

Every two dense countable linear orders with no end-points are isomorphic. The elementary
back-and-forth proof of this fact is a standard example of a “computable” proof in mathe-
matics. Essentially the same algorithmic argument works for the random graph, the atomless
countable Boolean algebra, and many other homogeneous structures. Here by “computable”
we mean “Turing computable”. In particular, we allow our computations to use unbounded
resources such as memory, running time, etc. It is quite natural to see if the classical back-
and-forth method still works, perhaps after some modifications, when we put a resource bound
on our computation. Recall the standard “algorithmic” back-and-forth proof in the case of
(Q, <): We have two (supposedly, algorithmic) presentations of the dense order, say A and B.
Suppose x, y ∈ B, assume ψ(x) and ψ(y) have already been defined, and we see x < z < y.
We wait for a w to appear between ψ(x) and ψ(y) and set ψ(z) = w. How long should we
wait? What if we have to decide “now”? What does “now” mean? To give precise answers to
these questions we need formal definitions.

To investigate the algorithmic nature of algebraic back-and-forth arguments we need to
choose a suitable definition of an algorithmically presented structure. The following rather
general definition of a Turing computable structure goes back to Mal′cev [Mal61] and indepen-
dently Rabin [Rab60]: A countably infinite algebraic structure A is constructive or (Turing)
computable if its universe is the set of natural numbers N, and the operations and relations
on A are (Turing) computable. Note that the definition does not assume any resource bound
on the computations. Although the study of constructive structures has been rather fruit-
ful [EG00, AK00], this approach is inadequate for our purposes. We should put some restric-
tion on computations in the definition. Of course, this idea is not new. In the early 1990s,
Nerode and Remmel [NR90] started a systematic investigation of polynomial-time computable
structures, and Khoussainov and Nerode [KN94] suggested a general definition of algebraic
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structures represented by finite automata. Although automatic algebra is a rather appealing
and deep topic [KNRS07, ECH+92, NT08, BS11, NS07], automatic structures tend to be very
rare; for instance, the additive group of the rationals is not automatic [Tsa11]. The approach
via polynomial-time algorithms seems far less restrictive. Remarkably, in many common al-
gebraic classes every constructive (i.e., Turing computable) structure has a polynomial-time
computable copy [Gri90, CR, CR92, CDRU09, CR91]. For example, every constructive linear
order can be transformed into a polynomial-time computable one [Gri90]. As was noted in
[KMN], many known proofs of this sort (e.g., [CR91, CR92, CDRU09, Gri90]) are essentially
focused on making the operations and relations on the structure merely primitive recursive
and then observing that the operations are polynomial-time. On the other hand, to illustrate
that a structure has no polynomial time copy, it is sometimes easiest to argue that it does
not even have a presentation with primitive recursive operations, see e.g. [CR92]. Such proofs
exploit only that there is some bound on a computation, and it does not really matter what
exactly the bound is. Informally, if an algorithm does not have instructions of the form “wait
until some effective process halts”, then the algorithm will be primitive recursive.

It follows that primitive recursion plays a rather important intermediate role in such proofs.
Primitive recursion here serves as a rather useful abstraction that often allows to successfully
strip the irrelevant combinatorics away. Based on this crucial observation, Kalimullin, Mel-
nikov and Ng [KMN, KMN17, Mel17] have initiated a systematic study of fully primitive
recursive structures: A countable algebraic structure is fully primitive recursive (fpr) if its
domain is N and the operations and predicates of the structure are (uniformly) primitive re-
cursive. (We note that Alaev [Ala16b, Ala16a] has independently started a closely related
research program.)

We adopt the approach via primitive recursion since it emphasises the issues related to the
(un)bounded search. We return to the discussion of the back-and-forth proof for (Q, <). What
does “map a point now” mean? In this paper “now” means “without unbounded delay”; more
formally, “primitively recursively”.

An expert in pure recursion theorist may find our results below counterintuitive, while an
expert in (say) complexity theory will perhaps be surprised by the combinatorial depth of our
arguments. The former is used to taking unbounded search for granted, the latter may suspect
that just removing unbounded search is not enough to get any deep results. Nonetheless, our
proofs tend to be combinatorially relatively involved; we conjecture that this complexity is
unavoidable.

1.1. Results. Note that the inverse of a primitive recursive function does not have to be prim-
itive recursive. This feature makes the situation with fully primitive recursive (fpr) structures
very different from computable structure theory, as it leads to a reduction. Let FPR(A) be the
collection of all fpr presentations of a countably infinite structure A. For A1,A2 ∈ FPR(A),
write A1 ≤pr A2 if there exists a primitive recursive isomorphism from A1 onto A2. Clearly,
≤pr is reflexive and transitive. We write A1 'pr A2 if A1 ≤pr A2 and A2 ≤pr A1. In particular,
we can look at the fpr-degrees of a given countably infinite structure A.

Definition 1.1 ([KMN17]). The fully primitive recursive (fpr) degrees of a countably infinite
algebraic structure A is the quotient structure FPR(A) = (FPR(A),≤pr)/ 'pr.

Intuitively, the fpr-degrees FPR(A) is a highly sensitive computability-theoretic invariant
of A that encodes/reflects the primitive recursive back-and-forth content of the isomorphism
type of A. We shall use fpr-degrees to study subtle properties of back-and-forth proofs for
various structures.
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1.1.1. The first main result. Recall that a structure X is homogeneous if every isomorphism
f : F1 → F2 between any two finitely generated substructures F1, F2 ⊆ X is extendable to an
automorphism of X . See [Mac11] for a survey on homogeneous structures.

Example 1.2. The following structures are homogeneous:

• η, the dense linear order without end-points.
• R, the Random Graph.
• P ∼=

⊕
i∈ω Zp∞ , the universal countable abelian p-group (the infinite direct power of

the Prüfer group Zp∞).

Each structure in Ex. 1.2 is the Fraisse limit of finite structures within the respective
class. Also, they do share essentially the same back-and-forth proof of their uniqueness up to
isomorphism. The back-and-forth proofs for these structures are identical from the general
Turing computability point of view. Remarkably, our first main result below shows that
the back-and-forth proofs for these three structures differ from the perspective of primitive
recursion.

Theorem 1.3. The fpr-degree structures of the dense linear order η, the random graph R,
and the universal divisible abelian p-group P are pairwise non-isomorphic.

Our proof is essentially degree-theoretic in nature. We note that Alaev [Ala16a] has recently
investigated the primitive recursive content of the countable atomless Boolean algebra β. (We
note that the use of a polynomial time presentations of β in [Ala16a] does not really make much
difference.) We conjecture that FPR(β) ∼= FPR(η), but establishing such an isomorphism
could be quite tricky (if it exists); the most naive attempt via the interval algebra presentation
seems to fail.

1.1.2. The second main result. Recall that A1 'pr A2 stands for A1 ≤pr A2 and A2 ≤pr A1.
In particular, if FPR(A) is a singleton, it means that for every two fpr copies of A, say A1

and A2, there exist surjective primitive recursive isomorphisms g : A1 → A2 and h : A2 → A1.
Informally, this means that we can always run a primitive recursive “forth” argument as well
as a primitive recursive “back” argument, for any pair of presentation of A. Can we always
run a back-and-forth for A1 and A2 without delay? To make the question formal, we need a
definition. Say that a function f : N → N is fully primitive recursive (fpr) if both f and f−1

are primitive recursive.

Definition 1.4 ([KMN]). A structure A is fpr categorical if it has a unique fpr presentation
up to fpr isomorphism.

See [KMN] for a number of results describing fpr categoricity in various common classes of
algebraic structures.

So suppose |FPR(A)| = 1. In this case we say that A is weakly fpr categorical. Does a
weakly fpr categorical A have to be fpr-categorical? The right-to-left implication is trivial.
The second main result resolves the question in the broad class of undirected graphs.

Theorem 1.5. Suppose G is a graph. Then G is weakly fpr categorical iff G is fpr categorical.

The proof is quite technical, for the following reason. One possible approach to proving
that the two notions are equivalent is to prove the uniform version. That is, given two fpr
graphs which are 'pr-equivalent, we could try to construct an fpr isomorphism between them.
This would clearly work if the language has only unary predicate relations, since there are
no dependencies between elements. Unfortunately, already in the language of graphs the
situation is more complicated. It is not hard to see that there exist fpr graphs A and B and
primitive recursive isomorphisms f : A → B and g : B → A, but with no fully primitive
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recursive isomorphism h : A → B. We leave details to the reader. Thus, to show that the two
notions of fpr categoricity are equivalent for graphs, one has to use the fact that A is weakly
fpr categorical, instead of merely using the existence of primitive recursive isomorphisms
f : A → B and g : B → A. Such a proof should involve a construction of some auxiliary copies
of A (other than A and B).

We leave open whether our second main result (Theorem 1.5) can be extended to arbitrary
algebraic structures.

Remark 1.6. We conjecture that there is a counterexample to Theorem 1.5 in a functional language. The
theorem would likely be much easier to prove if we had a convenient description of fpr-categorical graphs.
Obtaining a description of fpr-categorical graphs seems to be a rather challenging task.

1.1.3. The third main result. Recall that (in Theorem 1.3) we discovered that the dense inear
order, the random graph, and the universal abelian p-group have non-isomorphic fpr-degree
structures. The reader may find Theorem 1.3 counterintuitive; the authors definitely did.
In fact, the theorem disproves our initial conjecture that the fpr degrees of these structures
should be isomorphic.

The discovery of Theorem 1.3 led us to the conclusion that we do not know enough about
the fpr-degrees of even the simplest algebraic structures. It makes sense to pick one familiar
and algebraically simple structure and try to understand its fpr-degrees in full depth. The
hope is that some of the ideas and techniques can then be applied to other, perhaps more
algebraically interesting, structures.

Since η is the standard (and perhaps the simplest natural) example when back-and-forth
works, we chose to collect more facts about FPR(η). As the third main result of this paper,
we prove:

Theorem 1.7. Let η be the dense linear order without end-points. Then FPR(η) is down-
wards dense.

The reader should prepare for a non-trivial proof. We leave open whether there is a signifi-
cantly simpler argument proving the theorem above, and we strongly suspect that the answer
is negative. We leave open whether FPR(η) is dense.

2. Homogeneous structures: Proof of Theorem 1.3

Theorem 2.1. The FPR degrees of the random graph, the universal abelian p-group, and the
dense linear order are all pairwise non-isomorphic.

Proof. It is clear that the standard copy of the dense ordering of the rationals has the greatest
degree in FPR(η). To separate the dense linear order from the random graph, it is sufficient
to prove the proposition below.

Proposition 2.2. The structure of the FPR degrees of the random graph does not have the
greatest element.

Proof. Given any fpr copy B of the random graph, we build an fpr copy A such that A 6≤pr B.
We build A satisfying the requirements:

Re : pe does not witness A → B,

as well as the global requirements

QF,G : ∃x ∈ A such that x is connected to F and disconnected to G.

Here F,G ranges over pairs of disjoint finite subsets of natural numbers.
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Informal discussion. We first describe how to satisfy a single R in isolation together with all
the global Q-requirements. Suppose R starts action at some stage s, and we begin by picking
any a0 ∈ A[s]. We wait for p(x) ↓ for every x ∈ A[s], and wait for some z∗ ∈ B such that
(z∗, p(a0)) 6∈ B. While waiting for z∗, we make sure that every new element x we put into A
is such that (x, a0) ∈ A. This will be our only restriction on the new elements, other than
ensuring that (x, a0) ∈ A, we do not care if x is connected to other elements of A. Notice that
this wait will be finite as B is guaranteed to be a copy of the random graph.

Now suppose that z∗ is found in B. Note that nothing currently in A can possibly be
mapped to z∗ under p. Our aim is to force z∗ 6∈ Rng(p). Pick a1 to be any new element
of A such that p(a1) ↓. Now continue enumerating elements into A, but this time, the new
elements x enumerated into A are now required to satisfy A(x, a1) 6= B(z∗, p(a1)). Do this
for as long as we like, and eventually pick some new a2 such that p(a2) ↓. Now continue to
enumerate more of A, except this time, our restriction on the new elements x of A are now
A(x, a2) 6= B(z∗, p(a2)). Keep going, and it is clear that at the end of the construction, no
element of A can possibly map to z∗ under p. Also, since our requirements on new elements are
of the form A(x, ai) 6= B(z∗, p(ai)) for different ai, it is clear that all the global requirements
can be met together with R.

Now with two requirements, the restraints on new elements to be enumerated into A are
of the form A(x, ai) 6= B(z∗, p0(ai)) ∧ A(x, a′j) 6= B(z∗∗, p1(a

′
j)), but again, since ai and a′j

increases, all Q requirements can be met together with two R-requirements. As long as ai and
a′j are picked to be different (in fact a′j belonging to the lower priority R-requirement will be

much smaller than ai), then there are no conflicts between the wishes of two R-requirements.

Formal construction. Assume B is an fpr copy of the random graph. We build an fpr copy of
the random graph A an satisfy the requirements Re and QF,G for all e, F,G. At stage s = 0
do nothing. Assume we are at stage s = 〈e, k〉 > 0. We will attend to Re at this stage, by
taking the appropriate action below, according to the first item that applies, and then perform
action (E) below:

(i) If ae ↑, we pick it to be a fresh number in A[s].
(ii) If ae ↓ but a∗e ↑ (and hence z∗e ↑), we check to see if pe(x) ↓ for every x ∈ A[s−] where

s− < s is the stage where ae received definition under (i), and where there is an element
z ∈ B[s] such that z 6= pe(x) for every x ∈ A[s−] and (z, pe(ae)) 6∈ B. If so, set a∗e to be
any fresh element of A[s] and set z∗e = z.

(iii) If ae, a
∗
e ↓, we check to see if pe (a∗e) ↓. If so, redefine ae to be the current value of a∗e,

and redefine a∗e to be any fresh number in A[s].

Now we perform action (E): We consider the next element s of A[s] and for every i such
that ai, a

∗
i ↓, declare A (s, ai) = 1 − B (z∗i , pi(ai)). For every i such that ai ↓ but a∗i ↑, we

set A (s, ai) = 1. Let QF,G be the first Q-requirement not yet satisfied, and check to see if
F and G are already present in A[s], and that F ∪ G does not contain any ai[s] (which are
defined). If this is the case, we set A (s, x) = 1 for every x ∈ F and A (s, x) = 0 for every
x ∈ G (note that this action does not conflict with the previous conditions). Finally, for all
remaining x < s, we set A (s, x) = 0. This ends stage s of the construction.

2.0.1. Verification. First note that a∗e ↓ iff z∗e ↓, and z∗e is never redefined. Also note that a∗e ↓
implies that pe(ae) ↓, and that ae, a

∗
e for different e are always different, since a∗e is always

redefined fresh. Hence all the instructions in the construction make sense.
Next, we argue that for each e, the requirement Re will never get stuck waiting at (i), (ii)

or (iii) forever. We obviously will not get stuck at (i), and also not at (ii) because pe is total
and B is a copy of the random graph. (Notice we do not require that z∗e 6= z∗k for e 6= k). We
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also do not get stuck at (iii) because pe is total. Therefore, for each e, ae, a
∗
e → ∞. Since

ae, a
∗
e > e, this means that QF,G is satisfied for every F,G.

Now fix e, and we want to argue that Re is satisfied. Suppose that pe is an isomorphism
from A → B. Let s0 be the stage where ae is first defined under (i), s1 be the stage where a∗e
and z∗e are defined under (ii), and sj be the stages where ae is redefined for j > 1. It follows
by a simple induction that at every stage sj for j > 0, pe(x) 6= z∗e for every x ∈ A[sj ]. Since
sj →∞, it follows that pe is not onto, a contradiction.

Notice that between s0 and s1, all new elements x of A are defined to have A (x, ae) = 1.
At stage s1 when z∗e was picked, we have z∗e 6= pe(x) for any x ∈ A[s0] and (z∗e , pe(ae)) 6∈ B.
Therefore, pe(x) 6= z∗e for any x ∈ A[s1]. Now for j > 1, observe that every element x
introduced into A between sj−1 and sj must have A (x, ae) = 1 − B (z∗e , pe(ae)). Therefore,
pe(x) 6= z∗e for any such x. �

To separate the dense linear order from the universal abelian p-group, we establish that
above any FPR degree of the latter there is always a greater one.

Proposition 2.3. The FPR degrees of the universal abelian p-group are upwards dense.

Proof. Given any fpr copy A we produce an fpr copy B and a primitive recursive h : A→onto B
and satisfy pe : B 6→ A.

Diagonalisation. To diagonalise against pe, choose a fresh witness xe in B. At stage s set
Bs equal to h(A)[s] ⊕ 〈xe〉[s] (where 〈xe〉[s] denotes the approximation to the cyclic group
generated by xe at stage s) such that currently the order of xe looks infinite. Wait for
pe(xe) ↓= a ∈ A. (We wait by copying A into B via h naturally.) Wait for the order of a to
be calculated in A. As soon as O(a) = pn is decided (at stage t), make sure that O(xe) > pn

by declaring pmxe = 0, for a large enough m, but keeping pm−1xe /∈ h(A).

The diagonalisation above is trivial, but making h both onto and primitive recursive need
care. We give some intuition, and then we describe the construction.

Intuition. Suppose we have diagonalised against pe and now our goal is to put xe into the
range of h : B → A. The tension is that we need to find the h-image of each y ∈ A “very
soon”. In particular, we cannot wait until we see the order of y or whether y satisfies a non-
trivial relation with the current domain of h. Although we know there is some element of A
that will be good enough as a pre-image for xe, the danger is that we will not be able to see
it soon enough and will be forced to map it elsewhere.

Suppose the order of xe is pk. We will consequently put elements pk−1xe, . . . , pxe, xe into
the range of h. In fact, it is sufficient to describe how we put pk−1xe into the domain of h. For
that, search for the first found element y ≤ s in A outside the current dom(h)[s] such that py
is equal to h−1(pl−1xe), assuming that the latter pre-image has already been found. If no such
y exists, copy A to B avoiding plxe. If y is found, set h(y) = plxe and proceed to l + 1. We
will see that, remarkably, this naive idea will work, but it will require a minor modification.

Construction. The diagonalisation requirements will be listed in the natural order and will
be met one-by-one, as described above. While some diagonalisation requirement is active
(meaning that it follows its instructions), we will be defining h naturally by copying A to
B, and we will keep 〈xe〉 disjoint with range(h) everywhere except for 0. When the eth
requirement is met, we will have constructed partial abelian p-groups 〈xe〉 ⊕ B[s] and A[s].
As soon as this happens the construction will enter the h-extension phase, which is described
below.
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Suppose the order of xe is pk. At the beginning of the h-extension phase, set the parameter
l equal to 0. The intended meaning is that we wish to extend h to cover pk−l−1xe assuming
that pk−lxe is in the range, and our first goal is pk−1xe which has order p. Go through the
sequence of substages until l = k + 1:

(1) Assuming the current stage is s ≥ k, for each element y ≤ s in A currently not in the
domain of h and check if py = h−1(pk−lxe).

(2) If no such y is found, then extend h naturally to all elements a ≤ s, by copying A to
B and keeping the h-image disjoint with pk−rxe, r > l.

(3) If such a y is found, then pick least such and define h(y) = pk−l−1xe, and then extend
h accordingly to the rest of a ≤ s and to all linear Zp-combinations of such elements.
Increase l by 1 and goto (1) unless l = k. If l = k then stop.

As soon as the h-extension phase is finished, let the next diagonalisation requirement act
according to its instructions, meanwhile extending h naturally (avoiding 〈xe+1〉).

Verification. It is clear that every diagonalisation requirement is met in finite time if it is ever
attended in the construction. we need to check that each h-extension phase eventually finishes
its work.

The divisibility of H and the fact that its rank is infinite imply that eventually we will find
a y with the desired property. Indeed, every element in A, including h−1(pk−lxe), must be
divisible, and furthermore the space {x − y : px = h−1(pk−lxe)} has infinite Zp-dimension.

The first found element y outside of dom(h) such that py = h−1(pk−l) will be Zp-independent

of the previously seen elements in A that already have the property pz = h−1(pk−l), by (1)
and (3). In particular, y cannot already be in the domain of h thus allowing for a consistent
extension. The mentioned Zp-independence implies that any pair of elements of order p in

A/〈h−1(pk−lxe)〉 are in fact automorphic in A. In other words, instead of introducing a fresh
z such that pz = pk−lxe and setting h(y) = z we can safely use the already existing pk−l−1xe.
There are no further relations between pk−lxe and h(y) that should be imposed on this stage.

It follows that eventually l will be set equal to k + 1 and xe and the subgroup generated
by it will be put into the domain of h. As we have argued, the definition of h differs from
the natural copying strategy only by the order in which elements are listed in the image (i.e.,
instead of using a fresh z we use the already existing power of xe). Otherwise, the definition
is simply the brute-force copying procedure which is clearly an isomorphism of A onto B. It
is also clear that B is fully primitive recursive and that h is surjective primitive recursive. �

In particular, it follows that there no maximal elements among the FPR degrees of the
universal abelian p-group.

Proposition 2.4. There is a copy A of the random graph which is maximal in FPR(G).

Proof. We shall follow the proof of Proposition 2.2. The global requirements QF,G are still
the same:

QF,G : ∃x ∈ A such that x is connected to F and disconnected to G,

where F,G ranges over pairs of disjoint finite subsets of natural numbers. We now have to
satisfy the requirements

Re : If pe : A → Be then p−1e is primitive recursive.

2.0.2. Informal description. To meet R in isolation is simple. Suppose that x < s is a number
such that we have already looked at pe(0), pe(1), · · · , pe(x), and that these have all converged.
Now suppose z∗ ∈ B such that p−1e (z∗) ↑ currently. We shall need to force p−1e (z∗) to be defined.
Call this stage s. Now pick any a0 ∈ A[s], such that a0 < x; in particular, pe(a0) ↓ currently.
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From now on, all new elements y introduced into A are such that A(y, a0) 6= B(z∗, pe(a0)). We
keep doing this until pe(y

′) ↓ for every y′ ∈ A[s]. (Notice that this is a primitive recursive delay
from stage s). If by this time we find p−1e (z∗) ↓, then we can repeat with a new z∗. Otherwise,
if by this time, we still find that p−1e (z∗) ↑, then we obviously can no longer ensure that p−1e
is primitive recursive. However if this is the case, notice that no element in the current A can
map to z∗. What we then do for the rest of the construction is to follow Proposition 2.2 to
show that p−1e (z∗) cannot exist, and thus we win the requirement R by showing that pe is not
onto.

Construction. At step s = 0 of the construction, do nothing. At step s = 〈e, k〉 we attend to
requirement Re, where it is either in the copying phase (representing that we are still thinking
that p−1e is primitive recursive) or the diagonalization phase (where we have switched to killing
the isomorphism pe).

Suppose at step s, Re is in the copying phase. If k = 0 (i.e. this is the first time we are
attending to Re) then set ẑe = 0 and pick âe to be any fresh element of A[s]. Otherwise, ẑe
and âe are already defined. If ẑe is currently in Rng(pe) then we increment ẑe by 1, and set âe
to be any fresh element of A[s]. Otherwise, if pe (âe) ↓ at some least stage s− ≤ s (we assume
that the current value of âe is picked before s−) and pe(x) ↓ for every x ∈ A[s−], we will enter
the diagonalization phase by setting z∗e = ẑe and ae = âe, and a∗e to be any fresh element of
A[s].

Suppose at step s, Re is in the diagonalization phase. In particular, ae, a
∗
e and z∗e are all

defined. Check to see if pe (a∗e) ↓. If so, redefine ae to be the current value of a∗e, and redefine
a∗e to be any fresh number in A[s].

In any case we will now enumerate the next element s of A[s]. For every i such that Ri
is in the copying phase and where pi (âi) ↓ we set A (s, âi) = 1 − B (ẑi, pi(âi)). For every i
such that Ri is in the diagonalization phase, we set A (s, ai) = 1−B (z∗i , pi(ai)). Let QF,G be
the first Q-requirement not yet satisfied, and check to see if F and G are already present in
A[s], and that F ∪G does not contain any ai or âi. If this is the case, we set A (s, x) = 1 for
every x ∈ F and A (s, x) = 0 for every x ∈ G (note that this action does not conflict with the
previous conditions). Finally, for all remaining x < s, we set A (s, x) = 0. This ends stage s
of the construction.

Verification. First note that it is easy to check that all instructions in the construction make
sense, for example the ae, âk are never the same for different indices.

Next, it is clear that as pe is total, the requirement Re will never get stuck waiting and
hence âe → ∞ if it is forever in the copying phase, and ae, a

∗
e → ∞ if it ever enters the

diagonalization phase. This is sufficient to show that QF,G is satisfied for every F,G. This
implies that A is a copy of the random graph. Notice that we do not assume (and in fact we
cannot assume) that Be is a copy of the random graph. We only know that it is an fpr graph.

Next we show that Re is satisfied. Suppose that pe is an isomorphism from A onto Be. We
claim that Re never enters the diagonalization phase. Suppose this happens at some stage s1.
At stage s1 we set ae = âe and z∗e = ẑe and also picked a new value for a∗e. At s1 we have
pe(âe) ↓, so suppose that this is first defined at some s0 ≤ s1. Now all elements x put into
the structure A between s0 and s1 must have A (x, âe) = 1−B (ẑe, pe(âe)). Since at stage s1,
ẑe is not yet in the range of pe, it follows that pe(x) 6= ẑe for every x ∈ A[s1]. Now it just
follows by an obvious induction that at stage sj for all j ≥ 1, pe(x) 6= ẑe for every x ∈ A[sj ].
Since sj → ∞ (here sj ranges over all the stages where ae is redefined), it follows that pe is
not onto, a contradiction.

Therefore, Re is forever in the copying phase. Hence ẑe will eventually range over all of ω.
Suppose y is first processed as ẑe at stage s. Let t > s be the stage where pe(âe) converges.
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By the time pe converges on all elements of A[t], we must have seen y = ẑe in the range of
pe, otherwise we would enter the diagonalization phase for Re. We will then consider y + 1
next. Since Re is attended to at every stage of the form 〈e, k〉, this means that p−1e is primitive
recursive. �

Thus, we have separated the random graph from the universal abelian p-group. �

3. Back and forth imply back-and-forth: Proof of Theorem 1.5

We prove a bit more than is stated in Theorem 1.5. In order to state the more general
technical result we need some definitions.

Definition 3.1. Let A and B be fpr graphs and let f : A → B and g : B → A be primitive
recursive isomorphisms. For a ∈ A we call the (forward) locus of a the set

LOC(a) = {(gf)n(a) | n ∈ N}.

We let LOC(a, k) = {(gf)n(a) | 0 ≤ n ≤ k}. We say that LOC(a) (or LOC(a, k)) is closed if
there exists some n (or n ≤ k) such that (gf)n(a) = a. Say that a ∼LOC b iff a ∈ LOC(b) or
b ∈ LOC(a); clearly ∼LOC is a c.e. equivalence relation on A. Given x, y ∈ LOC(a) we say that
x ≺LOC(a) y iff n < m where n ∈ ω is the least such that x = (gf)n(a) and m ∈ ω is the least
such that y = (gf)m(a). Note that ≺LOC(a) is well-defined even if LOC(a) is closed. We abuse
notation and say that (a, b) ∈ A if a and b are connected (by an edge) in A.

Finally, given any two subgraphs G0 and G1 of a graph G, we say that G0 and G1 are
synchronized if either (x, y) ∈ G for every x ∈ G0 and every y ∈ G1 where x 6= y, or (x, y) 6∈ G
for every x ∈ G0 and every y ∈ G1 where x 6= y. Notice that if LOC(a) has size 1, then LOC(a)
is synchronized with every LOC(b). If LOC(a) and LOC(b) are both finite and have relatively
prime cardinalities, then LOC(a) and LOC(b) are synchronized.

We prove that the following are equivalent:

(1) G is weakly fpr categorical.
(2) G is fpr categorical.
(3) Given any two fpr copies A ∼= B of G, there exist primitive recursive isomorphisms

f : A → B and g : B → A, and a primitive recursive function t : N→ N such that given
any locus LOC(a) for a ∈ A, either LOC(a, t(a)) is closed, or LOC(a) is synchronized with
LOC(b) for every b ∈ A (including b = a).

Clearly, (2) → (1). We first prove the easy direction (3) → (2). Fix A ∼= B and f, g, t
with the abovementioned properties. We wish to define an fpr isomorphism h : A → B. First
take a ∈ A and assume that h(a) has not yet been defined. First evaluate t(a) and check if
LOC(a, t(a)) is closed and that h(x) and h−1(f(x)) are not yet defined for every x ∈ LOC(a, t(a)).
If this holds then we define h(x) = f(x) for every x ∈ LOC(a, t(a)). Otherwise, we pick the first
n ≤ 2a such that h−1 (fg)n (f(a)) has not yet been defined, and we set h(a) = (fg)n (f(a)).

Next, take a ∈ B and assume that h−1(a) is not yet defined. First evaluate t(g(a)) and
check if LOC(g(a), t(g(a))) is closed and that h(x) and h−1(f(x)) are not yet defined for every
x ∈ LOC (g(a), t(g(a))). If this holds then we define h(x) = f(x) for every x ∈ LOC(g(a), t(g(a)))
(notice that h−1(a) is defined by this action). Otherwise, we pick the first n ≤ 2a such that
h (gf)n (g(a)) has not yet been defined, and we set h−1(a) = (gf)n (g(a)).

Now we check that h : A → B is an fpr isomorphism. First of all, notice that for any
x ∈ A, h(x) ∼LOC f(x). Similarly, for any y ∈ B, h−1(y) ∼LOC g(y). Thus it follows that
dom(h) = A, since the first n ≤ 2a such that h−1 (fg)n (f(a)) has not yet been defined will
exist: If LOC(a, 2a) is not yet closed then n exists as there are fewer than 2a many elements so
far in dom(h) ∪ Rng(h). On the other hand if LOC(a, 2a) is closed then n also exists because
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a 6∈ dom(h) but every element of LOC(f(a)) ∩ Rng(h) must correspond to some element of
LOC(a). A symmetric argument applies to show that Rng(h) = B. h is clearly injective since
f is injective, and by the construction. Thus h and h−1 are primitive recursive bijections.

It remains to verify that h is an isomorphism. Observe that if LOC(a) and LOC(b) are
synchronized, and a′ ∼LOC a and b′ ∼LOC b then LOC(a′) and LOC(b′) are also synchronized.
Now fix a 6= b ∈ A. If LOC(a) and LOC(b) are synchronized, then LOC(f(a)) and LOC(f(b)) are
also synchronized, and thus (a, b) ∈ A iff (f(a), f(b)) ∈ B iff (h(a), h(b)) ∈ B.

Now take the first element x looked at by the construction in the same locus as either a
or f(a). Then LOC(x, t(x)) (or LOC (g(x), t(g(x))) if x ∈ B) must be closed, because otherwise
LOC(a) and LOC(b) are synchronized and we are in the above case. This means that when acting
for x we would have defined h(a) = f(a). A similar argument for b shows that h(b) = f(b).
In that case we still have (a, b) ∈ A iff (f(a), f(b)) ∈ B iff (h(a), h(b)) ∈ B.

Now we devote the rest of this proof to showing (1) → (3). Fix A ∼= A0 and primitive
recursive isomorphisms f : A → A0 and g : A0 → A. We will construct a subgraph B
of A and infinitely many (attempts at a) primitive recursive function t where LOC(a, t(a))
is not closed implies that LOC(a) is synchronized with every A-locus. Fix effective listings
of all primitive recursive functions {pe}e∈ω, {qe}e∈ω. It is convenient to view each primitive
recursive function as a partial computable function ϕ where ϕ(x) ↓ in p(x) many steps for
some primitive recursive p. We construct the sequence {te} and ensure that

If pe : A → B and qe : B → A are isomorphisms, then te works.

3.0.1. Intuitive discussion of the strategies. We discuss informally the strategy for one pair,
that is, fix a pair (p, q) and we discuss how to enumerate a fpr B ∼= A such that either we
diagonalize against the pair (p, q) or successfully build the function t. First pick any element
αs of A. We want to observe LOC(αs) by computing more and more of the locus. Notice that
the definition of t can depend on p, q, but not the definition of B, which has to be independent
of the pair (p, q). Hence at every stage of the construction, while we wait for p, q to converge
on various elements of LOC(αs), we must continue to enumerate new elements into B.

The fpr graph B is going to be a primitive recursive subgraph of A. We should note that
the domain of every infinite fpr structure is ω, and B will not be an exception. Thus, by a
primitive recursive subgraph we mean a fpr structure algebraically isomorphic to a subgraph
of A. The isomorphism between A and B will not be explicitly built as a fully primitive
recursive one, or at least not obviously so. In fact, we will not make the two even obviously
fpr-equivalent.

We begin by enumerating elements of LOC(αs) into B while waiting for elements y0 ∈ LOC(αs)
and y1 = gf(y0) such that p(y0), p(y1) have both converged to elements in B which are in
LOC(αs). Notice that p(x) may take a very long time to converge, and may in general converge
to elements of B which were enumerated for a previous locus LOC(αt) for t < s. Since p is
injective, and our strategy will keep growing B by adding elements of LOC(αs), we must find
y0, y1 at some stage. We now give more details on why y0 and y1 must exist.

Suppose at stage s0 we begin considering αs0 and LOC(αs0). At this point in time in our
structure B, we have already enumerated at most s0 many elements. These elements of B[s0]
will correspond to LOC(αt) for previous values of αt. Let’s call this set C, which consists of
elements of A which are currently in a different locus from αs0 . Now we wait for pe to converge
on a suitable element of LOC(αs0), say z. This may take a long time to converge, after all, pe
is the e-th primitive recursive function. While waiting for pe(z) to converge, we must continue
putting elements into B. We will compute LOC(αs0), and we can assume that LOC(αs0) is
generated immediately at the rate of one new element per stage. We copy these elements into
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B. Suppose pe finally converges on z after a very long wait. If pe(z) ∈ B − C, then we can
take y0 = z, and y1 can then be computed after a further finite delay. If pe(z) ∈ C, then we
pick a different element, say g(f(z)) of LOC(αs) and wait for pe to converge on this. As pe
is injective, and because all we do in the meantime is to force B to copy LOC(αs0), therefore
C does not increase and eventually we will be able to find y0. Here we point out that if pe
happens to be not injective, then we will see this at some point in the strategy and we can
halt this particular procedure (and win the requirement, of course). On the other hand, if pe
is not surjective, then it will also not matter since we will always force B to copy LOC(αs0)
while waiting. The function qe will not be directly involved in the diagonalization.

Note that of course, before we do find y0, it might be that LOC(αs0) closes and we are
unable to use this to generate new elements for B to copy. However, if this happens, we can
define te(αs0) to be the stage where this happens. This is bounded by the number of stages it
takes for pe to converge on at most s0 many elements of LOC(αs0), which is of course primitive
recursive relative to pe. As noted before, the definition of te can depend on pe (and of course,
f and g).

Now suppose that y0, y1 are found, and suppose that LOC(αs) has not yet closed. If LOC(αs)
is currently synchronized with LOC(a) for every a ∈ A (of course, restricted to the part of
A we have enumerated so far), then we have no choice but to define t(αs) at this point and
move on to process the next locus αs+1. Since LOC(αs, t(αs)) is not closed, we must ensure
that LOC(αs) continues to be synchronized with every locus for the rest of the construction.
To record the fact that we are continually monitoring this, we declare αs as pending. At any
point later when we discover that αs or any other pending element is not synchronized with
some locus, we will enter the diagonalization phase and take a series of actions which will
ultimately allow us to diagonalize against (p, q). We discuss the diagonalization phase below.

For now, let us assume that y0, y1 are found, LOC(αs) has not yet closed, and LOC(αs) is not
synchronized with some LOC(a). In this case, we do not yet define t(α), and must continue to
do further tests on LOC(αs). There are two cases: Either LOC(αs) is synchronized with itself
(we call this self-synchronized) but unsynchronized with some a 6∼LOC αs, or LOC(αs) is not
self-synchronized. The second case is the good case and we will be able to proceed further
with our strategy. If the first case holds, we must take further steps to force either LOC(αs) to
close or for LOC(αs) to become not self-synchronized.

Let’s assume for now that the first case holds, i.e. LOC(αs) is synchronized with itself
but unsynchronized with some a 6∼LOC αs. Suppose that LOC(a) is currently open. Since
LOC(αs) is currently not synchronized with LOC(a), it is not hard to see that there exist
elements e′ ∈ LOC(αs) and d′ ∈ LOC(a) such that A(e′, d′) 6= A(gf(e′), d′). We continue
enumerating elements of LOC(αs) into B, and watch LOC(αs) and LOC(a). If these two loci
remain open, and since A(e′, d′) 6= A(gf(e′), d′), we will be able to get distinct elements
e′, e′′, e′′′, · · · ∈ LOC(αs) and d′, d′′, d′′′, · · · ∈ LOC(a) such that A(e′′, d′′) 6= A(gf(e′′), d′′) and
A(e′′′, d′′′) 6= A(gf(e′′′), d′′′) and so on. Now since p is injective, eventually p must map some
triple p(e), p(gf(e)) and p(d) to elements of LOC(αs). Since A(e, d) 6= A(gf(e), d), either p is
not an isomorphism, or we get A(p(e), p(d)) 6= A(p(gf(e)), p(d)) which implies that LOC(αs)
is not self-synchronized, and we are in the good case, the second case, as desired.

Therefore, in the first case, we may assume that the locus LOC(a) must eventually close.
We next wait for p(a) to converge. Unfortunately we have no control over which locus p(a)
may land in, it may be the case that p(a) ∼LOC a or p(a) ∼LOC αs or even neither. However, we
can conclude that LOC(p(a)) is closed: If LOC(p(a)) isn’t closed, then as p(a) is an element of
B we previously enumerated, it must be the case that either p(a) ∈ LOC(αs), or p(a) ∈ LOC(π)
for some pending element π. (The locus of every other element of B must be closed). If
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p(a) ∈ LOC(αs) then we see that LOC(αs) is not self-synchronized, putting us in the good
second case.

If p(a) ∈ LOC(π) for some pending element π, then π isn’t synchronized with αs, which
means that we can enter the diagonalization phase with π. Therefore we may assume that
LOC(p(a)) is also closed.

At this point, we have that LOC(αs) and LOC(a) are not synchronized, and both LOC(a) and
LOC(p(a)) are closed, though LOC(αs) remains open. Now our strategy for enumerating ele-
ments in B will switch to the following. Let m be the size of LOC(p(a)). We will now enumerate
into B elements z, (gf)m(z), (gf)2m(z), (gf)3m(z) · · · for some starting element z ∈ LOC(αs).
Since LOC(αs) and LOC(a) are not synchronized, and that LOC(a) is closed, we can deduce the ex-
istence of elements e0, e1, · · · ∈ LOC(αs) such that A(eu, a) 6= A((gf)(eu), a) for every u. On the
other hand, for the elements we are enumerating into B of the form (gf)jm(z), we see that for

any two such elements, A
(
(gf)jm(z), p(a)

)
= A

(
(gf)j

′m(z), p(a)
)

, since the size of LOC(p(a))

is m. Eventually there must be some u such that p(eu) and p((gf)(eu)) are both mapped
to elements of the form (gf)jm(z). This means that A (p(eu), p(a)) = A (p((gf)(eu)), p(a)),
which means that if p is an isomorphism, we have A (eu, a) = A ((gf)(eu), a), contradicting
the choice of eu.

Now we may assume that we are in the good case, the second case, where LOC(αs) is not
self-synchronized. We have the existence of elements y0 ∈ LOC(αs) and y1 = gf(y0) such
that p(y0) and p(y1) are both in LOC(αs). Let m be such that p(y1) = (gf)m (p(y0)) (or vice
versa). As LOC(αs) is not self-synchronized there will exist an element z0 ∈ LOC(αs) such
that A(y0, z0) 6= A(y0, (gf)(z0)). Without loss of generality, assume for this discussion that
(y0, z0) ∈ A and (y0, (gf)(z0)) 6∈ A.

Now our strategy for enumerating elements in B could be the following. We test each new
element x of LOC(αs) to see if

(
(gf)i(x), p(y0)

)
∈ A for some i ≤ 3m. If this holds for some i,

then we enumerate (gf)i(x) as our new element of B. If
(
(gf)i(x), p(y0)

)
6∈ A for every i ≤ 3m

then we enumerate (gf)2m(x) as our new element of B. Now we claim that p ((gf)(z0)) cannot
be equal to any element of this form: If p ((gf)(z0)) = (gf)i(x) where

(
(gf)i(x), p(y0)

)
∈ A,

then ((gf)(z0), y0) ∈ A (unless p is not an isomorphism) contradicting the choice of z0 above.
On the other hand if p ((gf)(z0)) = (gf)2m(x), then as

(
(gf)i(x), p(y0)

)
6∈ A for every i ≤ 3m,

it follows that ((gf)±m (p ((gf)(z0))) , p(y0)) 6∈ A, and hence (p ((gf)(z0)) , (gf)±m (p(y0))) 6∈
A. But since p(y1) = (gf)m (p(y0)) or (gf)−m (p(y0)) we see that (p ((gf)(z0)) , p(y1)) 6∈ A,
which means (unless p is not an isomorphism) that ((gf)(z0), y1) 6∈ A. But since y1 = gf(y0)
we have that (z0, y0) 6∈ A, again contradicting our choice of z0 above. Thus we conclude that
p((gf)(z0)) cannot be equal to any new element we enumerate into B.

However it could still be possible that p((gf)(z0)) is equal to an element of B we enumerated
previously. If this is the case then we will be unable to force LOC(αs) to close quickly using
this strategy. We need to guarantee that LOC(αs) contains many different elements z0 ≺LOC(αs)

z1 ≺LOC(αs) z2 ≺LOC(αs) · · · all of which behave like z0, i.e. (y0, zu) ∈ A and (y0, (gf)(zu)) 6∈ A
for every u. If we can guarantee that these elements exist (and that they can be found quickly),
then we can get a contradiction by waiting for p((gf)(zu)) to converge on enough u.

How can we force this sequence? If this sequence does not exist, it means that there is
some index i0 such that (αs, (gf)i(αs)) ∈ A for every i > i0 (or the symmetric case that
(αs, (gf)i(αs)) 6∈ A for every i > i0). Now if this were the case, our choice for new elements
of B could exploit this by enumerating the elements (gf)i0(αs), (gf)2i0(αs), (gf)3i0(αs), · · ·
in B. In that case, note that given any j < j′ we have A

(
(gf)ji0(αs), (gf)j

′i0(αs)
)

=

A
(
αs, (gf)(j

′−j)i0(αs)
)

, but as (j′ − j)i0 > i0 we see that
(
αs, (gf)(j

′−j)i0(αs)
)
∈ A. This
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means that the elements we enumerate in B of this form (gf)i0(αs), (gf)2i0(αs), (gf)3i0(αs), · · ·
forms a complete subgraph of B. (In the symmetric case that (αs, (gf)i(αs)) 6∈ A for every
i > i0 we will be able to enumerate a subgraph of B with all vertices isolated). Now recall that
as (y0, (gf)(z0)) 6∈ A we have that

(
(gf)i(y0), (gf)i+1(z0)

)
6∈ A for every i, and so eventually

for a large enough i, p
(
(gf)i(y0)

)
and p

(
(gf)i+1(z0)

)
must both end up in this complete

subgraph of B, which means that p is not an isomorphism. (For the symmetric case where the
subgraph is completely isolated, use (y0, z0) instead of (y0, (gf)(z0))). The only way to avoid
this contradiction is for LOC(αs) to close before all these events described above, and we will
be able to define t(αs).

Now we need to describe the actions in the diagonalization phase. Recall that the con-
struction will enter the diagonalization phase immediately when we detect that some pending
element π is not synchronized with LOC(a) for some a. Our actions for the diagonaliza-
tion phase is almost identical with the actions we described above for the good case. In
LOC(π) we have elements y0 and y1 = (gf)(y0) and such that p(y0), p(y1) have already con-
verged to elements in LOC(π). Since this is the first stage where we detect that LOC(π) is
not synchronized with any locus, we shall be able to show that given any element b ∈ B
so far, A(p(y0), b) = A(p(y1), b). Now similar to the good case described above, we have
some z0 ∈ LOC(a) such that A(y0, z0) 6= A (y0, (gf)(z0)). Our strategy for enumerating el-
ements in B in the diagonalization phase will also follow the good case: Enumerate w into
B if (w, p(y0)) ∈ A, otherwise enumerate w if ((gf)±m(w), p(y0)) 6∈ A. When p((gf)(z0))
converges, it cannot be equal to any of these new elements we enumerate in B, for the same
reasons as before. However in this case, p((gf)(z0)) cannot be an element of B when we
started the diagonalization phase, since A(p(y0), b) = A(p(y1), b) for all such b. Hence this
contradiction leads us to conclude that the diagonalization phase must conclude after finitely
many steps. Notice that in the diagonalization phase we no longer care about extending the
definition of t; this phase will always conclude with the diagonalization of (p, q).

3.0.2. The overall plan of the construction. The construction will proceed in stages. At each
stage s we assume that we are given access to the subgraph generated by LOC(a, 2s) for a ≤ 2t,
where t was the largest element considered at the previous construction stage. Denote this
subgraph by A[s]. At stage s we will decide the next element bs to enumerate into B, by
setting bs to be some element of A[s]− {b0, · · · , bs−1}. When we enumerate bs into B we also
connect bs to bj iff they are connected in A. Clearly this makes B a primitive recursive graph.

The construction will then go through each pair (pe, qe) one at a time, and for each e, build
more of the structure B and the function te. Either at some point we discover that (pe, qe)
are not isomorphisms (and we then move to the next pair (pe+1, qe+1)), or we stick it out to
the end and successfully build te to do what we want. Finally we will ensure that every time
we kill off a pair (pe, qe) and move to the next pair, we copy more of A into B so that at the
end, if we manage to kill off every pair, then we succeed in making A ∼= B and thus obtain a
contradiction to the fact that A is weakly fpr categorical.

Suppose that we have killed off (pi, qi) for i < e and this is the first stage we look at (pe, qe).
Suppose we are now at stage s of the construction, and we have defined Bs = {b0, · · · , bs−2}.
Enumerate the least element bs−1 (ordered by index) of A−{b0, · · · , bs−2} into B (this choice
of bs−1 is only at this first stage; at subsequent stages we attend to e we will decide the choice
of b in a more elaborate way). We now describe the construction until (if ever) we succeed
in showing that (pe, qe) is wrong. The construction for the pair (pe, qe) (in short, we refer
to this as the construction for e) will begin in the copying phase. During this phase there
will always be a currently active element which we denote as αs ∈ A. There will also be a
collection of pending elements. Roughly speaking, the pending elements are the previously
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active elements whose loci did not close in time. At each stage during the copying phase,
we will enumerate some element of the locus LOC(αs) into B, until either LOC(αs) closes, or
we are able to diagonalize with a pending element. In the former situation, we will extend
the definition of t(αs) and take αs+1 to be the next available element of A. In the latter
situation we will enter the diagonalization phase and begin a sequence of actions which will
force (pe, qe) to be incorrect, via the locus of the diagonalizing element. If the copying phase
is always active, then we succeed in defining te correctly. If we ever enter the diagonalization
phase, we will be able to kill off (pe, qe) and move on to the next e+ 1.

3.0.3. The formal construction for e - Copying phase. At the first stage where we look at e,
set αs to be the first element of A[s] (elements are always ordered by their indices). Otherwise
assume inductively we have the currently active element αs and a set of pending elements
π < αs with the following properties for each π:

(π.1) There exist elements π0 = (gf)n(π) and π1 = (gf)n+1(π) for some n, such that
pe(π0), pe(π1) have both converged by this stage and pe(π0), pe(π1) ∈ LOC(π). Here we
identify elements of B with the corresponding elements of A.

(π.2) For every b ∈ B[s]− {pe(π0), pe(π1)}, (b, pe(π0)) ∈ B ⇔ (b, pe(π1)) ∈ B.
(π.3) When restricted to the subgraph A[s−1], LOC(π) is synchronized with LOC(a) for every

a ∈ A[s− 1].

Now first of all check if (pe, qe) are partial isomorphisms on A[s],B[s], and if no, conclude the
construction for e. Proceed to the construction for e + 1. Otherwise go through each of the
following item in the list and take the actions corresponding to the first item which applies:

(C.1) First check if (π.3) still holds for every pending element π in the subgraph A[s]. If
this no longer holds, immediately enter the diagonalization phase (described below)
without enumerating anything into B at this stage.

(C.2) Next check if LOC(αs) has closed in A[s], and if so, enumerate the least element of
LOC(αs) − B[s − 1] into B[s], if it exists. Define t(αs) = maxA[s]. Let αs+1 be the
least element of A[s]− {α0, · · · , αs}. Go to stage s+ 1.

(C.3) Check if there exists some n such that the following hold:
– y0 = (gf)n(αs), y1 = (gf)n+1(αs) ∈ A[s].
– pe(y0), pe(y1) have both converged by this stage, and are both in LOC(αs). (Note

that the definition of B cannot be delayed by waiting for pe to converge).
– LOC(αs) is either synchronized with LOC(a) for every a ∈ A[s] (restricted to mem-

bers of A[s]), or is not synchronized with itself.
Suppose this n cannot be found at this time. We take the following actions. Check
if there is some a ∈ A[s] such that LOC(a) is already closed, LOC(αs) and LOC(a) are
not synchronized, and pe(a) has already converged such that LOC(pe(a)) is also closed.
(Note that there is no requirement for pe(a) ∼LOC a). If a does not exist at this time,
enumerate the least element of LOC(αs)− B[s− 1] into B[s]. Go to stage s+ 1.

Otherwise fix a and let m be the size of LOC(pe(a)). Let z be the previous element
from LOC(αs) to be enumerated in B. We enumerate (gf)m(z) as our next element of
B[s]. Go to stage s+ 1.

(C.4) If LOC(αs) is synchronized with LOC(a) for every a ∈ A[s], then we define t(αs), αs+1

as above, and enumerate the least element of LOC(αs)−B[s− 1] into B[s]. Declare αs
as pending, and go to stage s+ 1.

(C.5) If we are here, it means that y0 = (gf)n(αs), y1 = (gf)n+1(αs) ∈ A[s] have been found
such that pe(y0), pe(y1) have converged and are in LOC(αs), and LOC(αs) is not syn-
chronized with itself. Suppose m > 0 is the number such that pe(y1) = (gf)m (pe(y0))
or vice versa.
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Fix k such that (gf)k(αs) is the element enumerated into B at the previous stage,
if the previous stage visited (C.5), and if this is the first visit to (C.5) for αs, we let
k > m to be the largest considered so far by the construction. Take the first subcase
below which applies:

(C.5.1)
(
(gf)2k(αs), pe(y0)

)
∈ A: In this case we enumerate (gf)2k(αs) as our next ele-

ment of B[s].
(C.5.2)

(
(gf)2k(αs), pe(y0)

)
6∈ A but there exists some j such that k < j < 3k such that(

(gf)j(αs), pe(y0)
)
∈ A: In this case enumerate (gf)j(αs) as our next element of

B[s].
(C.5.3)

(
(gf)j(αs), pe(y0)

)
6∈ A for every k < j < 3k: In this case enumerate (gf)2k(αs)

as our next element of B[s].

Note that the element enumerated in B is new since LOC(αs) is not yet closed. Now go to the
next stage s+ 1. This ends the description of the copying phase for e.

3.0.4. The formal construction for e - Diagonalizing phase. The first time we enter this
phase, by Lemma 3.4, we have the existence of elements a, c, y0, y1 such that {c, y0, y1} are
pairwise distinct, y0 = (gf)n(a), y1 = (gf)n+1(a) ∈ A[s] and pe(y0), pe(y1) have both con-
verged by this stage, and are both in LOC(a), and pe(c) has not yet converged. Furthermore
A(y0, c) 6= A(y1, c), and for every b ∈ B[s], if p−1e (b) has not yet been found at this stage then
A(pe(y0), b) = A(pe(y1), b). Without loss of generality assume that (y0, c) 6∈ A and (y1, c) ∈ A.
Also suppose m > 0 is the number such that pe(y1) = (gf)m (pe(y0)) or vice versa.

Now extend the construction by taking the following steps until pe(c) is found (this is
similar to step (C.5) above). Let z ∈ A[s] be any element such that (gf)j(z) 6∈ B[s] for every
0 ≤ j ≤ 3m; note that it’s fine even if LOC(z) closes in fewer than 3m steps. Note that z will
always exist. Now if

(
pe(y0), (gf)j(z)

)
∈ A for some 0 ≤ j ≤ 3m, enumerate (gf)j(z) as the

new element of B. Otherwise, enumerate (gf)2m(z) as the new element of B. Repeat this at
every stage until pe(c) is found. By Lemma 3.5 we will conclude the diagonalization phase
with a successful diagonalization for the pair (pe, qe). Conclude the construction for e, and
proceed to the construction for e+ 1.

3.0.5. Verification. We begin with a remark contrasting construction step (C.5) and the di-
agonalization phase. In both steps the construction wants to enumerate new elements b into
B such that either (pe(y0), b) ∈ A or A (pe(y0), b) = A (pe(y1), b) = 0. In fact, only elements
of this type are enumerated in B under these two steps. This ensures that the element c
cannot have a pe-image equal to a new element b. Under step (C.5), pe(c) is allowed to
converge to an old element b ∈ B belonging to a previous locus, but there are only finitely
many possible choices for pe(c). Hence, we need the locus LOC(αs) to stay open and apply the
non-synchronization of LOC(αs) to produce enough elements of type c. Once LOC(αs) closes we
have to abandon this strategy since we are no longer guaranteed to have any more elements
c with the property A(y0, c) 6= A(y1, c). In contrast, under the diagonalization phase, pe(c)
cannot converge even to an element belonging to a previous locus, because of property (π.2).
Thus we are able to kill pe once pe(c) converges. Therefore the diagonalization phase will
proceed even if the current locus LOC(αs) closes.

We begin the verification by checking some easy properties of the construction. First of all,
notice that any element enumerated into B during the copying phase must be a member of
LOC(αs).

Lemma 3.2. For each e, and at the end of every stage in the copying phase for e, the properties
(π.1), (π.2) and (π.3) hold for every pending element π.
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Proof. Suppose these properties hold for a pending element π at the end of s − 1. (π.1)
obviously holds at the end of s. (π.3) holds unless (C.1) applies at stage s, in which case
we immediately enter the diagonalization phase. For (π.2), simply observe that (C.1) did not
apply at stage s. Now suppose αs is declared as pending at a stage s under (C.4). Then (αs.1)
holds since (C.3) did not apply at s. (αs.3) holds by condition (C.4). Lastly (αs.2) holds since
pe(y0) and pe(y1) are both in LOC(αs). �

Lemma 3.3. B is a primitive recursive subgraph of A.

Proof. At every stage in the diagonalizing phase we always enumerate a new element in B.
In the copying phase we will be able to enumerate a new element into B as long as the
current locus LOC(αs) is still open, so the only item to check is (C.2). It suffices to show that
any consecutive run of stages in which we enumerate nothing into B is primitive recursively
computable. Therefore we may restrict ourselves to the situation where LOC(αs) closes at the
first stage immediately after it is defined. However if this is the case, then αs itself must
have already been enumerated into B previously. Thus any consecutive run of stages in which
we enumerate nothing into B is primitive recursively bounded. Finally observe that each
construction stage speeds up the enumeration of A by a primitive recursive factor. �

Lemma 3.4. Suppose we first enter the diagonalization phase for e. Then (by extending
the construction by finitely many more stages if necessary) we have the existence of elements
a, c, y0, y1 such that {c, y0, y1} are pairwise distinct, y0 = (gf)n(a), y1 = (gf)n+1(a) ∈ A[s]
and pe(y0), pe(y1) have both converged by this stage, and are both in LOC(a), and pe(c) has not
yet converged. Furthermore A(y0, c) 6= A(y1, c), and for every b ∈ B[s], if p−1e (b) has not yet
been found at this stage then A(pe(y0), b) = A(pe(y1), b).

Proof. Suppose we enter the diagonalization phase via (C.1) at some stage s. Fix a pending
π and d ∈ A[s] such that LOC(π) and LOC(d) are not synchronized. By Lemma 3.2, (π.1)
and (π.2) holds, so we can take a to be π, and y0, y1 appropriately. We certainly have
A(pe(y0), b) = A(pe(y1), b) for every b ∈ B[s] − {pe(y0), pe(y1)} by (π.2). Now it remains to
find c ∈ LOC(d).

Since LOC(π) and LOC(d) are not synchronized, fix n0, n1,m0,m1 such that
A ((gf)n0(π), (gf)m0(d)) 6= A ((gf)n1(π), (gf)m1(d)), where (gf)n0(π) 6= (gf)m0(d) and
(gf)n1(π) 6= (gf)m1(d). Suppose that LOC(π) is closed. Then there exist i0, i1
such that (gf)n0+i0(π) = (gf)n1+i1(π) = y0, and thus A

(
y0, (gf)m0+i0(d)

)
=

A ((gf)n0(π), (gf)m0(d)) 6= A ((gf)n1(π), (gf)m1(d)) = A
(
y0, (gf)m1+i1(d)

)
. Clearly{

y0, (gf)m0+i0(d), (gf)m1+i1(d)
}

are pairwise distinct.

We claim that there exists a number i such that A
(
y0, (gf)i(d)

)
6= A

(
y0, (gf)i+1(d)

)
and

that
{
y0, (gf)i(d), (gf)i+1(d)

}
are pairwise distinct. If d 6∈ LOC(π) then this is obvious, by

taking i to be some number between n0 + i0 and n1 + i1. Otherwise if d ∈ LOC(π), and since
the locus has closed, we can write (gf)m0+i0(d) = (gf)j0(y0) and (gf)m1+i1(d) = (gf)j1(y0) for
some j0 6= j1, both strictly positive, and then taking (gf)i(d) = (gf)j(y0) for some j0 ≤ j < j1.

Now we can take c = (gf)i+1(d) we see that A(y1, c) = A(y0, (gf)i(d)) 6= A(y0, c), where
{c, y0, y1} are pairwise distinct. Note that this holds whether or not LOC(d) is closed. Now
if pe(c) has converged then as c 6= y0, y1 we see that by (π.2) we have A(pe(y0), pe(c)) =
A(pe(y1), pe(c)), which means that pe is not an isomorphism, and we would not have entered
the diagonalization phase.

Now suppose that LOC(π) is not yet closed. We might not be able to obtain the element
c immediately if n0 or n1 is larger than n; since LOC(π) isn’t yet closed, we cannot argue by
moving backwards in the locus, since (gf)m0−n0+n(d) might not currently exist. In this case,
we check if d can be taken to be in LOC(π) (equivalently, if LOC(π) is currently not synchronized
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with itself). Suppose we can take d ∈ LOC(π), then the argument proceeds exactly as above (in
the case LOC(π) is closed) to find c. If d currently cannot be found in LOC(π) (equivalently, if
LOC(π) is currently self-synchronized), then we extend the construction by finitely many more
stages, by waiting for the elements (gf)m0−n0+n(d) and (gf)m1−n1+n(d) to be found. Note
that these elements must exist, but may take a very long time to appear. While waiting and
extending the construction we cannot delay the definition of B (see Lemma 3.3) and so we
must enumerate elements of LOC(π) into B. As LOC(π) is synchronized with itself we still have
(π.2) holds. This continues until either LOC(π) closes, or until the first stage found such that
LOC(π) is no longer self-synchronized, or until we find the elements above. If LOC(π) closes, we
are back in the earlier discussed case; note that (π.2) still holds after this extension. If LOC(π)
is no longer self-synchronized, then we are in the above case where d can be found in LOC(π);
again (π.2) still holds after this extension. Otherwise we successfully find (gf)m0−n0+n(d) and
(gf)m1−n1+n(d), and we may repeat the same argument as above to obtain c, noting that
(π.2) still holds.

Note that extending the construction this way has no effect on Lemma 3.3, since we grow
B at each stage of this extension. However, this may take many more stages (and cannot be
primitive recursively bounded), but we do not care as we are no longer concerned with the
correctness of te if we enter the diagonalization phase (see Lemma 3.5). �

Lemma 3.5. If we enter the diagonalization phase for e, pe : A → B is not an isomorphism.

Proof. When we start the diagonalization phase we have the elements a, c, y0 and y1 given
by Lemma 3.4, assume this starts at stage s0 + 1. The construction then proceeds in the
diagonalization phase for finitely many more stages, until pe(c) is found. If pe(c) ∈ B[s0],
then by the properties of a, c, y0 and y1, we have A(y0, c) 6= A(y1, c) but A(pe(y0), pe(c)) =
A(pe(y1), pe(c)), which means that pe is not an isomorphism. So we may assume that pe(c)
has been enumerated into B after s0.

By the construction, there are two possibilities. First, if (pe(y0), pe(c)) ∈ A, then we have
(y0, c) 6∈ A and (y1, c) ∈ A (this was the assumption in the construction; of course if (y0, c) ∈ A
but (y1, c) 6∈ A then the construction will take the corresponding symmetrical actions). This
means that pe is not an isomorphism. Thus we must have (pe(y0), pe(c)) 6∈ A. But if this
the case, then we in fact have (gf)−m (pe(c)) is defined, and (pe(y0), (gf)−m (pe(c))) 6∈ A and
(pe(y0), (gf)m (pe(c))) 6∈ A. Since pe(y1) = (gf)±m(pe(y0)) this implies that (pe(y1), pe(c)) 6∈
A. Hence pe is not an isomorphism since (y1, c) ∈ A. �

Lemma 3.6. There exists some e such that the construction is forever stuck at e.

Proof. Suppose the construction finishes every e. Then for every e, the construction either
enters the diagonalization phase, or is concluded in the copying phase. By Lemma 3.5 this
means that no (pe, qe) is a pair of isomorphisms between A and B. However every time we
first begin a new e we copy the least element of A (not yet in B) in B. This means that A ∼= B.
By Lemma 3.3 we get a contradiction to the weak fpr categoricity of A. �

Now for the rest of the verification we fix e to be the final e the construction attends to. For
this e the construction will never enter the diagonalization phase. Our task now is to show
that te is a primitive recursive function, and is total; note that te can use the pair (pe, qe).
Assume inductively that we have defined t(αs−1) and a new αs, and we are also given the
stage of the construction s0 where this happens. Our aim is to compute a primitive recursive
bound on the stage where we define t(αs) and assign a new α; in other words, when either
(C.2) or (C.4) applies. The life cycle of αs can be summarized as follows:

• The construction will keep acting under (C.3), until either LOC(αs) closes, or y0, y1 are
found.
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• If LOC(αs) closes before y0, y1 are found, take (C.2) and define t(αs).
• If y0, y1 are found before LOC(αs) closes, and if LOC(αs) is synchronized with every

other locus, then take (C.4) and define t(αs).
• Otherwise we will keep acting under (C.5) until LOC(αs) closes and we define t(αs)

under (C.2).

Therefore, it suffices to show that we can primitive recursively obtain a bound on the number
of stages the construction can act under (C.3), and under (C.5).

First, let’s analyze how many stages the construction can act under (C.3) before y0, y1 are
found. Define LOC(αs,m,m

′) =
{

(gf)j(αs) | m ≤ j ≤ m′
}

. Note that in any interval of length
2s0, that is, given any LOC(αs,m,m+ 2s0), there is always some z ∈ LOC(αs,m,m+ 2s0) such
that pe (z) and pe (gf(z)) are both in LOC(αs). Therefore, in the first interval LOC(αs, 2s0)
we can already find candidates for y0, y1. Wait for pe to converge on these candidates in
LOC(αs, 2s0). Recall that we view each pe as a (partial) recursive function ϕ where there is a
primitive recursive bound on the number of stages it takes for ϕ to converge, so waiting for
pe to converge on some or even all elements of LOC(αs, 2s0) is certainly primitive recursively
bounded. When pe converges, we may assume that LOC(αs) is self-synchronized but not
synchronized with some d which is currently 6∼LOC αs. Pick the least such d currently in A.

Assume that LOC(d) is currently not closed. There is some d′ ∈ LOC(d) and some
e′ ∈ LOC(αs) such that A(e′, d′) 6= A (gf(e′), d′). But this means that A((gf)i(e′), (gf)i(d′)) 6=
A
(
(gf)i+1(e′), (gf)i(d′)

)
for every i. So if LOC(d′, 2s20) is not closed, then its elements are all

distinct and we can find a sub-interval LOC(d′,m′,m′+ 2s0) ⊂ LOC(d′, 2s20) such that for every
z ∈ LOC(d′,m′,m′ + 2s0), pe(z) ∈ LOC(αs). This means that there exists some i0 such that
A((gf)i0(e′), (gf)i0(d′)) 6= A

(
(gf)i0+1(e′), (gf)i0(d′)

)
and pe

(
(gf)i0(e′)

)
, pe
(
(gf)i0+1(e′)

)
and pe((gf)i0(d′)) are all in LOC(αs). But since pe is not diagonalized, this means that LOC(αs)
is not self-synchronized, and so y0, y1 can be found by looking far ahead (at these elements
just mentioned).

Therefore we may assume that LOC(d′, 2s20) is closed. Let i1 be the first such that
pe
(
(gf)i1(e′)

)
, pe
(
(gf)i1+1(e′)

)
∈ LOC(αs). Then we have LOC((gf)i1(d′)) = LOC(d′) is also

closed, and furthermore if LOC
(
pe
(
(gf)i1(d′)

))
isn’t closed then pe

(
(gf)i1(d′)

)
∈ LOC(αs) or

pe
(
(gf)i1(d′)

)
∈ LOC(π) for some pending element π; this is because pe

(
(gf)i1(d′)

)
is an el-

ement we previously enumerated in B. Since we fail to diagonalize pe, if pe
(
(gf)i1(d′)

)
∈

LOC(αs) then LOC(αs) cannot be self-synchronized, and if pe
(
(gf)i1(d′)

)
∈ LOC(π) then (π.3)

must fail for some pending π.
This means that by the time we find these elements afore-mentioned, the construction under

(C.3) would have found and fixed some a such that LOC(a) is already closed, LOC(αs) and LOC(a)
are not synchronized, and pe(a) has converged such that LOC(pe(a)) is already closed. Let m be
the size of LOC(pe(a)). The construction henceforth will repeatedly enumerate into B elements
of the form (gf)jm(z) for j = 1, 2, · · · where z ∈ LOC(αs). Since LOC(αs) and LOC(a) are not
synchronized and LOC(a) is closed, this implies that there exist integers k0 < k1 < · · · such
that for every i,

• A
(
(gf)ki(αs), a

)
6= A

(
(gf)ki+1(αs), a

)
and

• pe
(
(gf)ki(αs)

)
, pe
(
(gf)ki+1(αs)

)
∈ LOC(αs).

The sequence {ki} can be obtained primitive recursively. However, for every j, we have
A (z, pe(a)) = A

(
(gf)jm(z), pe(a)

)
, since LOC(pe(a)) has size m, so for a large enough i, we

must have both pe
(
(gf)ki(αs)

)
and pe

(
(gf)ki+1(αs)

)
equal to elements of this form. This

implies that A
(
pe
(
(gf)ki(αs)

)
, pe(a)

)
= A

(
pe
(
(gf)ki+1(αs)

)
, pe(a)

)
, but since pe is not di-

agonalized, this implies that A
(
(gf)ki(αs), a

)
= A

(
(gf)ki+1(αs), a

)
, contradicting the choice
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of ki above. Thus, y0 and y1 must be found by the construction (or LOC(αs) closes) before we
find all of these elements.

Now we analyze how many stages the construction can act under (C.5) before LOC(αs) closes.
When the construction first gets to (C.5) we have elements y0, y1 such that pe(y0), pe(y1) ∈
LOC(αs) and such that LOC(αs) is not self-synchronized. We set m to be the locus-distance
between pe(y0) and pe(y1).

Since LOC(αs) is not synchronized with itself, there exists some z, z′ ∈ LOC(αs) such that
A(z, z′) 6= A(gf(z), z′), and these three elements are pairwise distinct. By shifting along
LOC(αs), there exists y2 �LOC(αs) y1 such that A(y0, y2) 6= A(y1, y2). Without loss of generality,
assume that (y0, y2) 6∈ A and (y1, y2) ∈ A.

Now suppose that there exists some i0 such that for every i > i0,
(
(gf)i(αs), y0

)
∈

A. As y0 ∈ LOC(αs), this is equivalent to saying that there exists some i0 such that(
(gf)i(αs), αs

)
∈ A for every i > i0. The construction would, after a while, only enu-

merate elements into B under (C.5.1). In other words, the construction would eventually

enumerate elements of the form (gf)2
jk(αs) for j = 0, 1, 2, · · · and some fixed k. We may

assume k > i0 by choosing the starting term large enough. Now for any j′ > j, we have

A
(

(gf)2
jk(αs), (gf)2

j′k(αs)
)

= A
(
αs, (gf)(2

j′−2j)k(αs)
)

. Since (2j
′ − 2j)k > k > i0 it fol-

lows that
(

(gf)2
jk(αs), (gf)2

j′k(αs)
)
∈ A for every j, j′. But now since (y0, y2) 6∈ A, hence(

(gf)i(y0), (gf)i(y2)
)
6∈ A for all i, and so for large enough i, pe

(
(gf)i(y0)

)
and pe

(
(gf)i(y2)

)
must both be of the form (gf)2

jk(αs). This means that
(
pe
(
(gf)i(y0)

)
, pe
(
(gf)i(y2)

))
∈ A,

but it’s impossible since pe is not diagonalized. An exact symmetric argument works with
(y1, y2) in place of (y0, y2), and (C.5.3) in place of (C.5.1) to show that it is impossible to
have cofinitely many i such that

(
(gf)i(αs), y0

)
6∈ A. The argument above in fact allows us to

compute primitive recursively, given any iu, a bound below which the next element iu+1 > iu
such that

(
(gf)iu+1(αs), y0

)
∈ A and

(
(gf)iu+1+1(αs), y0

)
6∈ A can be found.

Fix such a sequence i0 < i1 < i2, · · · . We claim that for every u, pe
(
(gf)iu+1(αs)

)
cannot be an element enumerated into B under (C.5). Suppose pe

(
(gf)iu+1(αs)

)
is

enumerated into B under (C.5.1) or (C.5.2), then
(
pe
(
(gf)iu+1(αs)

)
, pe(y0)

)
∈ A,

which means that
(
(gf)iu+1(αs), y0

)
∈ A, which is a contradiction to the choice

of iu. Thus we must have that pe
(
(gf)iu+1(αs)

)
is enumerated into B under

(C.5.3). But in this case,
(
(gf)±m

(
pe
(
(gf)iu+1(αs)

))
, pe(y0)

)
6∈ A, which means that(

pe
(
(gf)iu+1(αs)

)
, (gf)±m (pe(y0))

)
6∈ A. Since pe(y1) = (gf)±m (pe(y0)) this means that(

(gf)iu(αs), y0
)

=
(
(gf)iu+1(αs), y1

)
6∈ A. But this also contradicts the choice of iu. Thus

LOC(αs) must close before these elements are found. This allows us to compute primitive
recursively a bound for the stage where t(αs) is defined.

We have shown that te is primitive recursive. If t(αs) is defined under (C.2) then
LOC(αs, t(αs)) is closed. Otherwise if te(αs) is defined under (C.4), then αs is declared to
be pending. Since we never enter the diagonalization phase for e, it follows that (αs.3) holds
at every stage after t(αs) is defined. Hence LOC(αs) is synchronized with LOC(b) for every
b ∈ A. So, te is the function we need.

4. Is the dense linear order dense enough? Proof of Theorem 1.7

We prove that FPR(η) is downwards dense. Fix a copy A of η. We shall build B and
infinitely many Be (each Be uses pe). In fact, we build the pairs (B, q) and (Be, qe) such that
q : B → A and qe : Be → A. We need to meet the requirements

Re,i : Ensure that pe : A → B fails or pi : A → Be fails.
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The proof is obviously a non uniform argument; if for every e there exists an i such that Re,i
is met via the first disjunct, then the structure B <pr A. Otherwise for some e we meet every
Re,i via the second disjunct, then Be <pr A.

Informal description of strategies. We now describe the strategy of a single Re,i. First pick
a0 ∈ A and keep it out of Rng(qe). (Note: this conflicts with making qe total, of course, but
this “restraint” is only for finitely many stages). We wait for pi(a0) ↓. Meanwhile, grow (B, q)
and (Be, qe) appropriately.

Suppose that pi(a0) ↓. Clearly qe(pi(a0)) 6= a0, so WLOG assume that x = qe(pi(a0)) > a0.
We release the restraint on a0 and now restrain a0+x

2 . Wait for pi
(
a0+x
2

)
↓. Now release the

restraint on a0+x
2 . Now let b0 = a0+x

2 we now have (a0, b0)∩ (a1, b1) = ∅ where a1 = qe(pi(a0))
and b1 = qe(pi(b0)).

Now it is easy to see that we can go on further and arrange for (a2, b2) so that (a0, b0), (a1, b1)
and (a2, b2) are pairwise disjoint such that qe(pi(a1)) = a2 and qe(pi(b1)) = b2. (Here we may
not succeed if pi isn’t onto, and we may have to shrink the intervals (a0, b0) and (a1, b1)
further). The picture we are aiming for is in Figure 1.

Figure 1. The setup

Now next we wait for B to set up. By restricting the intervals down, we may assume
that we also have (a1, b1) ∩ (a3, b3) = ∅ where a3 = q(pe(a1)) and b3 = q(pe(b1)) and also
(a1, b1)∩ (a4, b4) = ∅ where a4 = q(pe(a2)) and b4 = q(pe(b2)). Finally when all these intervals
are set up as desired, we enter the diagonalization phase.

Note that during the waiting phase the requirement simply sits around and waits, and
imposes no restrictions on the enumeration of elements into B and Be. (The only restraints
in the waiting phase is restraining elements from being put into the range of q and qe, which
are finitary). We may wait forever in the waiting phase for a certain requirement because pe
or pi isn’t onto, but then we win the entire requirement this way with no other effect on the
rest of the construction. However, once a requirement enters the diagonalization phase, then
control of the construction, as well as the control of the enumeration of B and Be, is handed
over to the requirement Re,i. We will see that diagonalization phase only lasts for finitely
many stages.

We now describe what happens when Re,i is in the diagonalization phase. We monitor
the enumeration of elements into A. If elements enter outside of (a1, b1) or (a2, b2), then we
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enumerate promptly into Be; note that this does not cause us to increase (α0, β0) or (α1, β1).
In the diagonalization phase, we are waiting for a stage s∗ such that either

• #(a0, b0) > #(α0, β0), or
• #(a1, b1) > #(α1, β1).

Claim 4.1. Before stage s∗ we will not enumerate any elements inside (α0, β0).

Proof. We proceed inductively. If elements enter A outside of the interval (a1, b1), then we will
not be forced to increase (α0, β0). Otherwise if an element enters (a1, b1), then we temporarily
delay enumerating anything into Be until #(a1, b1) catches up with #(α1, β1). If this happens
then we have reached stage s∗. Otherwise #(α1, β1) must increase and so we do not need to
enumerate anything else into (α0, β0). In any case, the enumeration of Be is only delayed by
a primitive recursive amount. �

Claim 4.2. s∗ exists.

Proof. Otherwise by the above claim, #(α0, β0) < ∞. However, as s∗ is never found, this
means that #(a0, b0) ≤ #(α0, β0) <∞, but this is impossible as A is a copy of Q. �

Now we assume that we have reached stage s∗ after a primitive recursive delay on Be.
Assume WLOG that #(a0, b0) > #(α0, β0). Now we would like to restrain the interval (α0, β0)
of Be from growing, while waiting for pi to converge on every element of (a0, b0). Once this
happens, we will be able to kill pi. Unfortunately, we cannot do this if the interval (a1, b1)
grows quickly, because we will have to delay enumerating any new element into B until pi
have converged on all elements of (a0, b0). This requires a delay determined by pi, which
unfortunately is too much for the structure Be. The trick is to observe that if all subsequent
elements of A appears in the interval (a1, b1), then we will be able to kill pe.

Delay enumerating the next element of Be and wait for either

(a) enough elements to be enumerated into (a1, b1) consecutively, with nothing else enu-
merated into A outside of (a1, b1), and for pe to converge on all these elements, or

(b) some number to be enumerated in A− (a1, b1) interrupting (a).

Note that this additional wait adds a further primitive recursive delay to the enumeration of
Be by a factor of pe, which the enumeration of Be is allowed access to.

If case (a) happens, then enough elements has entered (a1, b1) consecutively, which means
that #(a1, b1) > #(pe(a1), pe(b1)). Notice that #(pe(a1), pe(b1)) did not increase because
nothing has entered (a3, b3) in the mean time. Furthermore, as pe has converged on all these
elements in (a1, b1), this means that pe : A → B is killed permanently.

If case (b) happens, then we can now finally enumerate the next element of Be, but outside
of the interval (α0, β0), since case (b) says that we have just discovered a new addition to
A− (a1, b1). Then repeat the procedure above, delaying the next element of Be this way until
(a) or (b) applies. If we ever hit case (a) then we satisfy the requirement Re,i via killing off
pe : A → B. Otherwise we keep having case (b) apply. However this means that we will never
increase #(α0, β0) at all. After finitely many stages, as #(a0, b0) > #(α0, β0), when pi has
converged on enough elements of (a0, b0), we will be able to kill off pi : A → Be permanently.

Note that the diagonalization phase will only run for finitely many stages. Also, note that
the enumeration of (B, q) is never delayed, and when some requirement in the diagonalization
phase is delaying the definition of Be, all other structures Bk for k 6= e are still enumerated
quickly.

Formal construction for Theorem 1.7. As described above we fix a copy A of the countable
dense linear order η. We shall build the fpr structure B and infinitely many computable copies
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Be out of which some (possibly all) will be fpr. We shall build primitive recursive isomorphisms
q : B → A and qe : Be → A, and meet the requirements Re,i above.

The requirement Re,i will begin by defining the parameters ae,i0 and be,i0 . Given these two
numbers, we let

• αe,i0 = pi(a
e,i
0 ) and βe,i0 = pi(b

e,i
0 ),

• ae,i1 = qe(α
e,i
0 ) and be,i1 = qe(β

e,i
0 ),

• αe,i1 = pi(a
e,i
1 ) and βe,i1 = pi(b

e,i
1 ),

• ae,i2 = qe(α
e,i
1 ) and be,i2 = qe(β

e,i
1 ),

To simplify notations, we write (x, y) to be the interval of all points strictly between x and y,
even if y < x.

The construction will proceed in the following way. At a certain stage we will pick a
requirement Re,i and give control of the construction to Re,i. We will then keep acting for the
sake of Re,i for finitely many stages, after which Re,i relinquishes control of the construction.
We will then pick another (possibly the same) requirement and give control to the requirement,
and so on. When we say that we extend B with x ∈ A restrained at a stage s, we mean that
we pick an element r ∈ A[s] with the least index such that r 6= x and r 6∈ Rng(q), and we
enumerate the next element y into B in the appropriate location and define q(y) = r such that
q is order-preserving. If r does not yet exist, speed up the enumeration of A by two elements,
where we must have r. The same goes for Be and qe. To extend a structure freely means to
extend it with no element restrained.

At a stage s, we say that Re,i requires attention if it is not yet satisfied, and if we either
have never acted for Re,i before, or the re-computation of the parameters (according to the
basic strategy) are now complete. We say that Re,i is satisfied at a stage if either pe or pi
is not order-preserving. At stage s if no requirement is currently in control, we extend every
structure freely. Pick the highest priority requirement Re,i requiring attention, and hand
control to Re,i. What this means is the following. In the following we drop the superscripts
e, i from all parameters.

(i) If Re,i has never before acted, then all parameters associated with Re,i are undefined.
We perform the following actions.
• First pick a fresh value a0 ∈ A different from all other parameters in the construc-

tion, and such that a0 6∈ Rng(qe).
• Next we wait for α0, α1, a1 and a2 to be computed. These must show up after a finite

delay (note that q and qe are always defined on every element currently present in
B and Be). While waiting we extend Be restraining a0, and extend B and all other
Bk freely. Notice that as we restrained a0, we must have a1 6= a0, and therefore we
have either a0 < a1 < a2 and α0 < α1, or we have a0 > a1 > a2 and α0 > α1.
• Now pick b0 to be any fresh value strictly between a0 and a1. (Of course there may

be currently no choice for b0, in which case we simply wait for finitely many stages,
extending all structures freely during the wait). Once b0 is defined, we wait until
β0, β1, b1 and b2 to be computed. While waiting we extend all structures freely. Now
we must have a0 < b0 < a1 < b1 < a2 < b2 and α0 < β0 < α1 < β1, or the other
way round.
• Now pick a fresh element â2 strictly between a2 and b2 such that â2 6∈ Rng(q). While

waiting we extend all structures freely. Once â2 is found, we compute q(pe(â2)), and
while waiting we extend B with â2 restrained, and all other structures freely. We
must have â2 6= q(pe(â2)).
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• Now pick a fresh element b̂2 strictly between a2 and b2 and also strictly between â2
and q(pe(â2)). Wait for q(pe(b̂2)) to be computed, extending all structures freely.

Therefore we must have
(
â2, b̂2

)
and

(
q(pe(â2)), q(pe(b̂2))

)
non-empty and disjoint.

• Now release control of the construction, and wait for a new pair â0, b̂0 such that
qe(pi(qe(pi(â0)))) = â2 and qe(pi(qe(pi(b̂0)))) = b̂2.

(ii) If Re,i was waiting for â0 and b̂0 to be found and has now found them, we do the
following. Note that as pi is assumed to be order preserving (q and qe certainly are), the
“hat” intervals have to be nested within the “unhatted” intervals. Thus we must have(
â0, b̂0

)
,
(
qe(pi(â0)), qe(pi(b̂0))

)
and

(
â2, b̂2

)
non-empty and mutually disjoint. The

same goes for the Be-intervals
(
pi(â0), pi(b̂0)

)
and

(
pi(qe(pi(â0))), pi(qe(pi(b̂0)))

)
.

• Our next action is to pick a fresh element ã1 strictly between â1 and b̂1 such that
ã1 6∈ Rng(q). While waiting we extend all structures freely. Once ã1 is found, we
compute q(pe(ã1)), and while waiting we extend B with ã1 restrained, and all other
structures freely. We must have ã1 6= q(pe(ã1)).

• Now pick a fresh element b̃1 strictly between â1 and b̂1 and also strictly between ã1
and q(pe(ã1)). Wait for q(pe(b̃1)) to be computed, extending all structures freely.

Therefore we must have
(
ã1, b̃1

)
and

(
q(pe(ã1)), q(pe(b̃1))

)
non-empty and disjoint.

• Now release control of the construction, and wait for a new pair ã0, b̃0 such that
qe(pi(ã0)) = ã1 and qe(pi(b̃0)) = b̃1.

(iii) Suppose Re,i was waiting for ã0 and b̃0 to be found and has now found them. Note that
the “tilde” intervals have to be nested within the “hat” intervals. Thus we must have(
ã0, b̃0

)
,
(
ã1, b̃1

)
and

(
qe(pi(ã1)), qe(pi(b̃1))

)
non-empty and mutually disjoint. The

same goes for the Be-intervals
(
pi(ã0), pi(b̃0)

)
and

(
pi(ã1), pi(b̃1)

)
.

Now we call ã2 = qe(pi(ã1)), b̃2 = qe(pi(b̃1)), α̃0 = pi(ã0), β̃0 = pi(b̃0), α̃1 = pi(ã1), β̃1 =

pi(b̃1). We will also call ã3 = q(pe(ã1)) and b̃3 = q(pe(b̃1)). Do the following.

• Compute ã4 = q(pe(ã2)) and b̃4 = q(pe(b̃2)), and while waiting, extend all structures
freely.
• Suppose now we find ã4 and b̃4. We are now ready to begin diagonalization for
Re,i. Diagonalization will take only finitely many stages, after which control will be
released. To summarise, if we are here, we have successfully computed the following
classes of intervals. Each class contains intervals which are pairwise disjoint:

- (ã0, b̃0), (ã1, b̃1), (ã2, b̃2).

- (ã1, b̃1), (ã3, b̃3).

- (ã2, b̃2), (ã4, b̃4).
Now we begin diagonalization for Re,i. We wait for a stage s∗ such that either

#(ã0, b̃0) > #(α̃0, β̃0), or #(ã1, b̃1) > #(α̃1, β̃1). While we wait for the stage s∗, we
extend all structures freely except for Be. For Be we will extend it restraining every
element in the interval (ã1, b̃1).
Note that we will always find s∗ after a finite delay, because while waiting we extend
Be by restraining every element in the interval (ã1, b̃1), which means that we will

never enumerate any additional element into Be in the interval (α̃0, β̃0), but A is a

copy of η which means that the interval (ã0, b̃0) has to be infinite, and so certainly

we must eventually see #(ã0, b̃0) > #(α̃0, β̃0).
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• Suppose we have now found s∗. Without loss of generality, assume that #(ã0, b̃0) >

#(α̃0, β̃0). If instead #(ã1, b̃1) > #(α̃1, β̃1) holds, we will repeat the steps below

with (ã2, b̃2) instead of (ã1, b̃1).
Now we wait for a stage s∗∗ > s∗ such that either pi or pe is found to be not order
preserving. While waiting for s∗∗ we extend all structures freely except for Be. For
Be we will extend it restraining every element in the interval (ã1, b̃1).
• Again, it is clear that s∗∗ will be found after a finite delay, as we never enumerate

anything into B in the interval (α̃0, β̃0). Once s∗∗ is found, we release control of the
construction and note that Re,i is now satisfied.

This ends the description of the construction.

Verification. It is easy to check the construction to see that every time a requirement is given
control, it will release control after finitely many steps. The only facts we use here are that
A is a copy of η and all functions are total. Therefore, there are infinitely many stages where
all structures are extended freely (namely, at those stages where we give control to a different
requirement). Since the functions q and qe are clearly injective at every stage, this means that
q and qe are onto isomorphisms. These functions will be primitive recursive if the structures
B and Be can be computed with a primitive recursive delay. By examining the construction,
it is clear that B is extended at every stage with at most a single element being restrained.
Therefore, the next element of B is enumerated by looking ahead at the enumeration of A by
at most two stages. Therefore B is an fpr structure and q : B → A is a primitive recursive
isomorphism.

Now suppose that for every e, pe is not order-preserving. This means that B <pr A and we
are done. Therefore we fix some e such that pe is order-preserving. (Note that even if pe is
not onto, we are still in this case). This means that for every i, either Re,i is never satisfied,
or it is satisfied by discovering that pi is not order-preserving. First we argue that Be can
be computed with a primitive delay, using pe as a parameter. The only stages in which this
might be a problem are the stages where we are diagonalizing for some Re,i and waiting for
s∗ or s∗∗.

Fix an i and a point in the construction where we are diagonalizing for Re,i and waiting

for s∗. Before s∗ is found we must extend Be while restraining (ã1, b̃1). At any stage t where
we are doing this, we only have to look ahead at the next t many elements of A. It cannot
be that the next t many elements of A all appear in the interval (ã1, b̃1), because if this were
the case, then Be will have at most t many elements at stage 2t. Since at stage 2t, we have
#(ã1, b̃1) ≥ t > #(α̃1, β̃1), which means that s∗ would be found at or before stage 2t, and we
would have progressed to the next step. Therefore at each stage t, either we find s∗ by stage
2t, or we must find some element enumerated into A outside the interval (ã1, b̃1). Such an
element is not restrained and so we will be able to extend B by stage 2t.

Suppose at stage t we are waiting for s∗∗. We wish to compute a primitive recursive bound
on the delay on the next element enumerated in Be. Suppose we have #(ã0, b̃0) > #(α̃0, β̃0).
Now we claim that at stage u we must either find s∗∗ or discover an element enumerated into
A outside the interval (ã1, b̃1), where u is the number of stages required for pe(x) to converge
on every element in A[2t]. Suppose this is not the case; then every element enumerated into

A between t and u all appear in the interval (ã1, b̃1). As (ã1, b̃1) and (ã3, b̃3) are disjoint, this

means that at stage u, #(ã3, b̃3) < t. Therefore, at stage u, we also have #(pe(ã1), pe(b̃1)) < t.

However, at stage 2t, the size #(ã1, b̃1) ≥ t, and at stage u, pe would have converged on all these
elements. Therefore pe cannot be order preserving, a contradiction to our case assumption.
This means that by stage u we must either find s∗∗ or discover an element enumerated into
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A outside the interval (ã1, b̃1), and in either case, we are able to enumerate the next element
of Be. Hence Be is only delayed by a primitive recursive amount (with parameter pe).

Therefore Be is an fpr structure and qe : Be → A is a primitive recursive isomorphism. Thus
Be ≤pr A. We now show that for every i, either Re,i is satisfied or pi is not onto. Fix i such

that Re,i is never satisfied. This means that we wait forever for â0 and b̂0 or for ã0 and b̃0.
Since qe is onto, this means that pi is not onto. Therefore A �pr Be.
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