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Abstract. We show that if a point in a computable probability space X sat-

isfies the ergodic recurrence property for a computable measure-preserving
T : X → X with respect to effectively closed sets, then it also satisfies

Birkhoff’s ergodic theorem for T with respect to effectively closed sets. As

a corollary, every Martin-Löf random sequence in the Cantor space satisfies
Birkhoff’s ergodic theorem for the shift operator with respect to Π0

1 classes.

This answers a question of Hoyrup and Rojas.

Several theorems in ergodic theory state that almost all points in a probability
space behave in a regular fashion with respect to an ergodic transformation of the
space. For example, if T : X → X is ergodic,1 then almost all points in X recur in
a set of positive measure:

Theorem 1 (See [4]). Let (X,µ) be a probability space, and let T : X → X be
ergodic. For all E ⊆ X of positive measure, for almost all x ∈ X, Tn(x) ∈ E for
infinitely many n.

Recent investigations in the area of algorithmic randomness relate the hierarchy
of notions of randomness to satisfaction of computable instances of ergodic theo-
rems. This has been inspired by Kučera’s classic result characterising Martin-Löf
randomness in the Cantor space. We reformulate Kučera’s result using the general
terminology of [3].

Definition 2. Let (X,µ) be a probability space, and let T : X → X be a function.
Let C be a collection of measurable subsets of X. A point x ∈ X is a Poincaré
point for T with respect to C if for all E ∈ C of positive measure, for infinitely many
n, Tn(x) ∈ E.

The Cantor space 2ω is equipped with the fair-coin product measure λ. The shift
operator σ on the Cantor space is the function σ(a0a1a2 . . . ) = a1a2 . . . . The shift
operator is ergodic on (2ω, λ).

Theorem 3 (Kučera [6]). A sequence R ∈ 2ω is Martin-Löf random if and only if it
is a Poincaré point for the shift operator with respect to the collection of effectively
closed (i.e., Π0

1) subsets of 2ω.
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1Recall that if (X,µ) is a probability space, then a measurable map T : X → X is measure-

preserving if for all measurable A ⊆ X, µ
(
T−1A

)
= µ(A). We say that a measurable set A ⊆ X

is invariant under a map T : X → X if T−1A = A (up to a null set). A measure-preserving map

T : X → X is ergodic if every T -invariant measurable subset of X is either null or co-null

1
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Building on work of Bienvenu, Day, Mezhirov and Shen [1], Bienvenu, Hoyrup
and Shen generalised Kučera’s result to arbitrary computable ergodic transforma-
tions of computable probability spaces.

Theorem 4 (Bienvenu, Hoyrup and Shen [2]). Let (X,µ) be a computable proba-
bility space, and let T : X → X be a computable ergodic transformation. A point
x ∈ X is Martin-Löf random if and only if it is a Poincaré point for T with respect
to the collection of effectively closed subsets of X.2

The seminal regularity theorem is due to Birkhoff (see [4]).

Birkhoff’s Ergodic Theorem. Let (X,µ) be a probability space, and let T : X →
X be ergodic. Let f ∈ L1(X). Then for almost all x ∈ X,

lim
n→∞

1

n

∑
i<n

f
(
T i(x)

)
=

∫
f dµ.

Of particular interest is the case when f is the characteristic function of a mea-
surable subset of a space. Let (X,µ) be a probability space and let T : X → X be
a measurable function. For any f ∈ L1(X) and n < ω we let

f (n) =
1

n

∑
i<n

f
(
T i(x)

)
.

If A ⊆ X is measurable, we let 1A denote A’s characteristic function; so for all
n < ω and x ∈ X,

1
(n)
A (x) =

#
{
i < n : T i(x) ∈ A

}
n

.

Birkhoff’s ergodic theorem implies that if T is ergodic, then for almost all x ∈ X,

lim
n→∞

1
(n)
A (x) = µ(A).

We can therefore make an analogue of Definition 2:

Definition 5. Let (X,µ) be a probability space, and let T : X → X be a function.
Let C be a collection of measurable subsets of X. A point x ∈ X is a Birkhoff point
for T with respect to C if for all E ∈ C,

lim
n→∞

1
(n)
E (x) = µ(E).

Gács, Hoyrup and Rojas [3] characterised the Schnorr random points as the
Birkhoff points for computable ergodic transformations with respect to effectively
closed sets whose measure is computable. They asked [7] what happens if we omit
the requirement that the measure of the sets be computable.

2Here we use the notion of a computable probability space of Gács, Hoyrup and Rojas [3],

although all reasonable definitions of this concept are equivalent. For completeness, we recall the
definition here. A computable metric space is a complete metric space (X, d) that is equipped with

an enumeration 〈si〉 of a countable dense subset of X such that (i, j) 7→ d(si, sj) is a computable

function. This enumeration gives rise to an enumeration 〈Bi〉 of basic open balls of X that forms
a basis for its topology. A c.e. open subset of X is a set of the form

⋃
i∈S Bi where S ⊆ ω is

c.e. A function f : X → Y between two computable metric spaces is computable if uniformly,

the inverse of a c.e. open set is c.e. open. An effectively closed set is the complement of a c.e.
open set. A Borel probability measure µ on X is computable if uniformly, the measure of a finite

union of basic open balls is a left-c.e. real; equivalently, if it is a computable point in the space of

Borel probability measures on X equipped with the topology of weak convergence. A computable
probability space is a computable metric space equipped with a computable measure.
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Theorem 6. Let X be a computable probability space, and let T : X → X be a
computable ergodic map. Then a point x ∈ X is Martin-Löf random if and only if
it is a Birkhoff point for T with respect to the collection of effectively closed subsets
of X.

Of course if x ∈ X is a Birkhoff point for T with respect to C then it is a Poincaré
point for T with respect to C. Our main result is an instance of the converse.

Theorem 7. Let (X,µ) be a computable probability space, and let T : X → X be a
computable, measure-preserving transformation. Let x ∈ X be a Poincaré point for
T with respect to the collection of effectively closed subsets of X. Then x is also a
Birkhoff point for T with respect to the collection of effectively closed subsets of X.

Theorem 6 follows immediately from the combination of Theorems 7 and 4,
together with the fact that Birkhoff-ness implies Poincaré-ness. We should note
that as the present paper was in preparation, Hoyrup independently announced a
proof of Theorem 6.

We set about to prove Theorem 7. To prove a limit exists and has the required
value, we discuss the partial limits, the inferior and superior, separately.

Proposition 8. Let (X,µ) be a computable probability space, and let T : X → X be
a computable, measure-preserving transformation. Let x ∈ X be a Poincaré point
for T with respect to the collection of effectively closed subsets of X. Then for any
effectively closed subset P of X,

lim inf
n

1
(n)
P (x) > µ(P ).

We first prove Proposition 8 and then show that it implies the full Theorem 7.
We need the concept of left-c.e. functions on a computable metric space. These are
the effectively lower semi-continuous functions.

Definition 9. Let X be a computable metric space. A function f : X → R is
left-c.e. if uniformly in q ∈ Q, f−1(−∞, q) is c.e. open in X.

Thus every computable function f : X → R is left-c.e., but not every left-c.e.
function is computable:

Example 10. Let P ⊆ X be effectively closed. Then 1P is left-c.e.: for q 6 0,
1−1
P (−∞, q) = ∅; for q ∈ (0, 1], 1−1

P (−∞, q) = X\P ; and for q > 1, 1−1
P (−∞, q) = X.

If P is not c.e. open, then 1P is not computable, since 1−1
P (−1/2,∞) = P . Indeed,

if P is not clopen, then 1P is not continuous, whereas every computable function
is continuous.

Lemma 11. Let X be a computable metric space.

(1) A finite sum of left-c.e. functions on X is left-c.e.
(2) If f : X → R is left-c.e. and q ∈ Q, then qf is left-c.e.
(3) If T : X → X is computable and f : X → R is left c.e., then f ◦T is left-c.e.

Furthermore, all these closure operations are uniform: a left-c.e. index for f+g can
be effectively obtained from left-c.e. indices for f and g; for f ◦ T , from a left-c.e.
index for f and a computable index for T ; etc.
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Proof. For (1), (f +g)(x) < q if and only if there are rational numbers s and r such
that f(x) < s, g(x) < r and r+s 6 q. (2) is immediate. For (3), (f ◦T )−1(−∞, q) =
T−1[f−1(−∞, q)], and since T is computable, T−1 preserves c.e. open sets. �

Corollary 12. Let X be a computable metric space, let T : X → X be computable,
and let f : X → R be left-c.e. Then the sequence

〈
f (n)

〉
is uniformly left-c.e.

We are ready to prove Proposition 8. Let (X,µ) be a computable probability
space. Let P be an effectively closed subset of X, and let x ∈ X be a Poincaré
point for T with respect to the collection of effectively closed subsets of X. We

need to show that lim infn 1
(n)
P (x) > µ(P ).

In our proof we make use of another classical result (see [4]):

Maximal Ergodic Theorem. Let (X,µ) be a probability space, let T : X → X be
measure preserving, and let f ∈ L1(X). Let

E =
{
y ∈ X : f (n)(y) > 0 for some n < ω

}
.

Then ∫
E

f dµ > 0.

Let q < µ(P ) be a rational number; we show that lim infn 1
(n)
P (x) > q. Define

g : X → R by letting g(y) = q − 1P (y). Note that for all n < ω and y ∈ X,

g(n)(y) = q − 1
(n)
P (y). Let

E =
{
y ∈ X : 1

(n)
P (y) 6 q for some n < ω

}
.

By the maximal ergodic theorem, ∫
E

g dµ > 0.

Lemma 13. µ(E) < 1.

Proof. Suppose, for a contradiction, that µ(E) = 1. Then∫
E

1P dµ = µ(P ),

and ∫
E

q dµ = q.

Then

0 6
∫
E

g dµ = q − µ(P ) < 0

by the choice of q, for a contradiction. �

In fact, calculations show that µ(E) 6 (1−µ(P ))/(1− q), assuming q > 0. Now
E may not be c.e. open, but a close associate of E is. Let

F =
{
y ∈ X : 1

(n)
P (y) < q for some n < ω

}
.

Lemma 14. F is a c.e. open subset of X.

Proof. Since P is effectively closed, by Example 10, 1P is a left-c.e. function. By

Corollary 12, the sequence
〈

1
(n)
P

〉
is uniformly left-c.e.; the result follows. �
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It follows that X − F is an effectively closed subset of X. Since F ⊆ E, by
Lemma 13, µ(F ) < 1, so X − F has positive measure. Since x is a Poincaré point
for T with respect to all effectively closed subsets of X, there is an n < ω such that

Tn(x) /∈ F . That is, 1
(m)
P (Tn(x)) > q for all m < ω. Now for all m < ω,

1
(n+m)
P (x) > 1

(m)
P (Tn(x))

m

m+ n

and so for all m < ω,

1
(n+m)
P (x) > q

m

m+ n
.

As m/(m+n)→ 1, we see that lim inf 1
(m)
P (x) > q as required. This concludes the

proof of Proposition 8.

Now we prove Theorem 7. We use the fact that the measure µ is effectively outer
regular.

Lemma 15. Let (X,µ) be a computable probability space. Then for all ε > 0, for
any effectively closed P ⊆ X there is a c.e. open A ⊇ P such that µ(A− P ) < ε.

Proof. This follows from the fact that the measure µ on X is σ-additive and the
fact that the topology on X originates from a metric.

Let 〈si〉 be the sequence of “ideal” (or “rational”) points of X. If B = B(si, q)
is a basic open ball, then its closure

B̄ = B̄(si, q) = {z ∈ X : d(z, si) 6 q}
is, uniformly in i and q, effectively closed, as its complement is the union of all basic
open balls B(sj , r) where r < d(si, sj)− q; the collection of such sj and rational r
is c.e. because r and q are rational numbers and d(si, sj) is computable.

Let P ⊆ X be effectively closed; there is a c.e. set S ⊆ ω such that

X − P =
⋃

(j,q)∈S

B(sj , q).

Let 〈Ss〉 be an effective enumeration of S. We let

Fs =
⋃

(j,q)∈Ss

B̄(sj , q − 2−s).

By [5], the intersection of finitely many c.e. open subsets of X is a c.e. open set,
so the union of finitely many effectively closed sets is effectively closed. It follows
that every Fs is effectively closed. We have X − P =

⋃
s Fs. Since µ is σ-additive,

for all ε > 0 there is an s such that µ(Fs) > µ(X − P ) − ε. Then X − Fs is c.e.
open, contains P , and µ(X − Fs)− µ(P ) < ε. �

For the proof of Theorem 7, let (X,µ) be a computable probability space, let
T : X → X be computable and measure-preserving, and let P ⊆ X be effectively
closed. Let x ∈ X be a Poincaré point for T with respect to effectively closed sets.

We want to show that limn 1
(n)
P (x) = µ(P ). By Proposition 8, lim inf 1

(n)
P (x) >

µ(P ), so it only remains to be shown that lim supn 1
(n)
P (x) 6 µ(P ).

Let ε > 0; by Lemma 15, let A ⊇ P be c.e. open such that µ(A − P ) < ε. By
Proposition 8,

lim inf
n

1
(n)
X−A(x) > µ(X −A) = 1− µ(A).
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Since for all n, 1
(n)
A (x) + 1

(n)
X−A(x) = 1, we get that

lim sup
n

1
(n)
A (x) = 1− lim inf

n
1

(n)
X−A(x) 6 µ(A).

Since P ⊆ A, for all n, 1
(n)
P (x) 6 1

(n)
A (x). It follows that

lim sup
n

1
(n)
P (x) 6 lim sup

n
1

(n)
A (x) 6 µ(A) 6 µ(P ) + ε.

Since this inequality holds for all ε > 0, we are done. This completes the proof of
Theorem 7.
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