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Abstract. Working in the Turing degree structure, we show that those de-
grees which contain computably enumerable sets all satisfy the meet property,
i.e. if a is c.e. and b < a, then there exists non-zero m < a with b∧m = 0. In
fact, more than this is true: m may always be chosen to be a minimal degree.
This settles a conjecture of Cooper and Epstein from the 1980s.

1. Introduction

The Turing degrees, introduced in [9] and implicit in [16], provide a way of
comparing the computational difficulty of decision problems. Of particular interest
are those degrees containing the characteristic functions of computably enumerable
(c.e.) sets, i.e. those sets of natural numbers for which there exists an algorithm
enumerating precisely the elements of the set. Another natural class of interest are
those degrees containing Δ0

2 sets, i.e. those sets whose characteristic functions are
computable relative to Turing’s halting problem. Although these structures have
been very extensively studied (for a good introduction see, for example, [1, 15])
many of even the most basic structural questions seem to require sophisticated
techniques and often remain unanswered. In this paper we establish the following
simple fact: given any non-zero c.e. degree a and any (necessarily Δ0

2) degree b < a,
there is a minimal degree m < a such that m � b. This settles a conjecture from
[5] and also refutes the conjecture made in [2, 3] (and dating back to 1986) that
there exist c.e. degrees which fail to satisfy the meet property.

Our result can be seen as belonging to a long line of research concerning the
complementation, meet, and join properties:

(1) A degree a satisfies the complementation property, if for all non-zero b < a,
there exists c < a with b ∨ c = a and b ∧ c = 0.

(2) A degree a satisfies the join property, if for all non-zero b < a, there exists
c < a with b ∨ c = a.

(3) A degree a satisfies the meet property, if for all b < a, there exists non-zero
c < a with b ∧ c = 0.

For a full description of known results relating to these properties, we refer the
reader to [10], or for a slightly shorter version we refer to [11]. We mention here only
a few of those results which are pertinent. Lewis-Pye, Slaman, and Seetapun [12]
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established that 0′ satisfies complementation in a very strong way, namely that the
complementing degree c can always be chosen to be minimal (i.e. c > 0 and there
does not exist d with 0 < d < c). On the other hand, Cooper [4] and independently
Slaman and Steel [14] had already shown that there are c.e. degrees which do not
satisfy the join property. In 1979 Epstein [6] conjectured that in the lower cone
below any c.e. degree a, any non-zero c.e. degree b < a has a minimal complement,
and proved this for the case that a is high [7]. The full conjecture was refuted by
Cooper and Epstein in [5]. In that same paper, however, it was shown that in the
case that a is low, one can always find a minimal degreem < a for which b∧m = 0,
thereby establishing a weak form of the meet property for a which applies only to
c.e. predecessors b. It was conjectured in that paper that one cannot drop either
of the assumptions that a is low or that b is c.e. Contradicting an earlier claim
by Li and Yang [13], Ishmukhametov [8] was able to refute part of this conjecture,
showing that one can drop the assumption of lowness. The result of this paper
establishes that the assumption that b be c.e. is also unnecessary.

2. Every c.e. degree has the meet property

Theorem 2.1. Given any non-zero c.e. degree a and any degree b < a, there is a
minimal degree m < a such that m � b.

Corollary 2.2. Every c.e. degree has the meet property.

2.1. Requirements and notation. We let pi be the ith prime number. We let
Φe denote the eth Turing functional according to some fixed effective listing. Then
for any C ⊆ N and any e, n ∈ N, ΦC

e (n) denotes the output of the eth Turing
functional with oracle input C on argument n (which may or may not be defined).
For a finite binary string σ we adopt the convention that Φσ

e (n) ↓ (i.e. is defined)
only if the corresponding computation converges in at most |σ| many steps, |σ| > n
and Φσ

e (n
′) ↓ for all n′ ∈ N with n′ < n. For C ⊆ N and n ∈ N, C � n denotes the

initial segment of (the characteristic function of) C of length n. We suppose that
we are given the c.e. set A with computable enumeration {As}s∈N. We also suppose
we are given B <T A and a Turing functional Γ such that B = ΓA. Speeding up
the enumeration of A as necessary, we let {Bs}s∈N be a computable approximation
of B, with Bs a finite binary string of length s such that Bs ⊆ ΓAs . Although Bs is
a finite binary string, we consider As to be an infinite string (which is nevertheless
the characteristic function of a finite set).

So we are given A ∈ a and B ∈ b such that b < a, and we must construct
M of minimal degree m < a which is not below b. We build M by specifying a
computable approximation {μs}s∈N, where each μs is a finite binary string, and
then we let M = lims μs. We need to meet the requirements P0,P1, · · · , where
Pe ensures that if ΦB

e is total then ΦB
e �= M . To ensure the minimality of m, we

satisfy requirements M0,M1, · · · . So Me is the eth minimality requirement, and
ensures that if ΦM

e is total then either it is computable or else it computes M .

2.1.1. The construction tree. In standard fashion, the construction is organised
with the help of a construction tree T . This tree is labelled as follows. Each
node of length 2e (for e ∈ N) is assigned the requirement Me, with two outcomes
∞ <L f . The outcome ∞ indicates that ‘splits’ (as defined later) are found above
infinitely many initial segments of M , while the outcome f indicates that the latter
condition does not hold. A node of length 2e + 1 is assigned the requirement Pe,
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with infinitely many outcomes labelled 0 <L 1 <L 2 <L · · · <L f . Hence the set of
outcomes for Pe has order type ω+1 with a single distinguished rightmost outcome
f . Outcome f indicates either that there is some argument m for which ΦBs

e (m) ↓
for only finitely many s, or else that the requirement is satisfied directly through
diagonalisation (and so requires only finite action). Each of the other outcomes can
be thought of as a guess as to the least m for which there are infinitely many stages
at which ΦBs

e (m) ↓ with different uses (and thus the observed uses are unbounded).
For nodes of the construction tree α and β we write α <L β to denote that α is

strictly to the left of β. Then we consider the nodes to be ordered lexicographically,
so that α has higher priority than β if either α <L β, or α ⊂ β. At each stage s
we define TPs of length s, which indicates the nodes on T which are visited by the
construction at stage s.

Typically we use letters α, β, and γ to refer to nodes of the construction tree
T . We use σ and τ for potential initial segments of A and B respectively. We use
η and μ for potential initial segments of M . The variable ρ we use to range over
binary strings more generally. If ρ �= ∅ then we let ρ† be the binary string of the
same length as ρ which differs only on the last bit, and we let ρ− = ρ ∩ ρ†, i.e. the
initial segment of ρ of length |ρ| − 1. If α on T is assigned the requirement Me or
Pe, then we shall often write Φα to denote Φe.

2.2. Outline of the proof.

2.2.1. Ensuring M ≤T A. We shall enumerate axioms for a functional Ψ such
that ΨA = M . These axioms will be enumerated at the end of each stage s, for
arguments n < s. The use for argument n < s at stage s is chosen as follows. Let
s0 be the maximum of n and s1 − 1 for any stage s1 ≤ s at which a number ≤ n
has been enumerated into A. Let σ be the shortest initial segment of As such that
Bs � (s0 + 1) ⊆ Γσ (such a σ exists according to our conventions regarding Bs).
Then at the end of stage s, we define Ψσ(n) = μs(n).

At any point during stage s we say that η is permissible if it is compatible with
ΨAs .

2.2.2. Satisfying Me. The approach taken in order to satisfy each requirement Me

is entirely standard. For a good exposition of how to build a minimal degree below
an arbitrary non-zero c.e. degree, see [6]. We shall henceforth assume that the reader
has an understanding of these techniques, which rely heavily on the use of various
kinds of trees. A tree is a partial computable function S : 2<N → 2<N satisfying
the usual properties: (i) dom(S) is downwards closed under initial segment, (ii)
S(ρ ∗ 0) ↓ iff S(ρ ∗ 1) ↓, (iii) S preserves ⊂, i.e. ρ ⊂ ρ′ iff S(ρ) ⊂ S(ρ′). We say that
η ∈ S, or η is on S, if there is some ρ such that S(ρ) = η, and that η is of level k
on S if |ρ| = k. If |ρ| > 0, we say that S(ρ) is a successor of S(ρ−) on S. A string
η is an S-leaf if η is a maximal string on S (i.e. is on S and has no successors on
S). S is a subtree of T , denoted S ⊆ T , if every string on S is on T .

So to meet requirement Me we employ the usual idea of ‘splitting trees’. Each
node α on the construction tree and of even length, maintains a splitting tree Sα.
We say that η0 and η1 are α-splitting, or that they α-split, if Φη0

α and Φη1
α are

incompatible. Further, we say that they are an α-splitting above η if it also holds
that η0 and η1 extend η. The tree Sα will be α-splitting, which means that whenever
η0 and η1 are on Sα and are incompatible, they α-split. If α = ∅, then we let Sα∗

be the identity tree, and otherwise we define α∗ to be the longest β ⊂ α of even
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length on T such that β ∗ f �⊆ α (although this is not always defined, we assume
that Φ0 is the identity functional and always play outcome ∞ for the node ∅, which
has the consequence that α∗ will be defined for any α which is actually visited).
Then Sα is constructed as a subtree of Sα∗ .

During the construction, when μs extends η, which is an Sα-leaf, we search for
η0 and η1 on Sα∗ which both extend η, and which α-split. All such pairs found
are stored in a list, and as soon as one becomes permissible (i.e. both η0 and η1
are permissible) we enumerate these strings into Sα (so if η = S(ρ), then we define
S(ρ ∗ 0) and S(ρ ∗ 1) to be η0 and η1). Ultimately, if α is on the true path (i.e.
is visited at infinitely many stages and only initialised finitely often), standard
arguments show that if Sα is infinite, then since M lies on Sα (i.e. every finite
initial segment of M is on Sα), M ≤T ΦM

α , and that otherwise ΦM
α is either partial

or else is computable.

2.2.3. Satisfying Pe. Suppose that α is assigned the requirement Pe. To meet Pe

we ensure that if ΦB
e is total, then there exists some m with ΦB

e (m) �= M(m). Very
roughly, the idea works as follows. Suppose that we monitor ΦB

e � n for a fixed n.
If we find at some stage s that ΦB

e � n agrees with μs � n, then we know that a
suitable A-change (i.e. a sufficiently small number being subsequently enumerated
into A) would mean that we could change our approximation to M below n, and
thus successfully diagonalise should it be the case that Bs ⊂ B. While waiting for
such an A-change we can map the initial segment of B involved in this computation
to the initial segment of A we are waiting to change, and begin working for larger
n. Since A �≤T B, ultimately we must either get some A-permission which allows
us to diagonalise, or else there must be some n for which M � n is not an initial
segment of ΦB

e .
Now let us see in more detail the way in which such a strategy is implemented in

the context of a construction in which we must coordinate with minimality require-
ments. The node α will build a Turing functional Ψα. It also maintains infinitely
many modules M0

α,M
1
α, · · · . The module M i

α is responsible for enumerating axioms
for Ψα(i), where we threaten to make ΨB

α (i) = A(i). Letting Sα∗ be defined as in
Section 2.2.2, α will work in the tree Sα∗ . For convenience we build Ψα(i) to be
a c.e. set of strings. We ensure that after i enters A (if ever) no more strings
are enumerated into Ψα(i). Then to compute ΨX

α (i), one runs the enumeration of
Ψα(i) until either τ is found such that τ ⊂ X, or else i enters A. In the former case
we output 0, otherwise we output 1.

While i /∈ A, module M i
α waits until it sees η ⊆ Φτ

e for some τ ⊆ Bs and
η ⊆ μs such that η = Sα∗(ρ) for some ρ which is specific to this module. Then it
enumerates τ into Ψα(i) as well as the demand (τ, i, η0, η1), where η0 = Sα∗(ρ−)
and η1 = Sα∗(ρ†). This demand should be read “if τ ⊂ B and i ∈ A, then
η0 ⊂ M ⇒ η1 ⊂ M”.

When a demand is acted upon and so plays a role in the definition of μs we
shall say that it is implemented at stage s (this will be specified precisely during
the construction).

The reader might wonder why we do not issue demands of a simpler form such
as “if τ ⊂ B and i ∈ A, then η1 ⊂ M”, or “if τ ⊂ B and i ∈ A, then η �⊂ M”. The
answer is that the question of A-permission for issued demands is a slightly delicate
matter, requiring strategies to the left of TPs to have influence at stage s. The
problem with the first of these two alternatives is that if i ∈ A then we shall have
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permission to change our mind as to whether η1 ⊆ M as our information changes as
to whether τ ⊆ B, so long as η0 is an initial segment of our approximations to M .
The second alternative leads to more subtle problems concerning the interactions
between P requirements.

2.3. Formal construction.

2.3.1. Initialisation. First of all, let us specify precisely what it means for a node
α on the construction tree to be initialised, and when exactly this takes place.

If α is assigned a requirement Me, then α being initialised means that we make
Sα(ρ) ↑ for all ρ. We also discard any splittings found, i.e. α’s list of splittings
becomes empty. If α is assigned a requirement Pe, then α being initialised means
that we discard all axioms enumerated for Ψα, together with all demands issued
by modules maintained by α. We also discard all ‘recorded computations’ for
α – what ‘recorded computations’ are will be specified during the construction.
Whichever type of requirement is assigned to α we also make zα undefined (so zα
is just a number which is chosen to be large every time α is first visited after being
initialised, and which we shall use to make sure that α doesn’t interfere with nodes
of higher priority).

The conditions which cause α to be initialised are independent of the type of
requirement assigned. The node α is initialised at stage s as soon as any of the
following conditions are satisfied:

(a) s = 0.
(b) A node strictly to the left of α is visited.
(c) β enumerates strings into Sβ at stage s, and either β ∗ f ⊆ α or β <L α.

(d) A demand issued by a module M j
β , such that either β <L α or β ∗ i ⊆ α for

j < i, is implemented at stage s but that demand was not implemented at
stage s− 1, or vice versa, the demand was implemented at stage s− 1 but
is not implemented at stage s.

At any point, a module is active if it has been visited subsequent to its last
initialisation. A tree Sα is active if α is.

So if s = 0 then all nodes are initialised. At stages s > 0, the instructions
consist of four phases (the third phase being that at which we visit nodes on the
construction tree).

2.3.2. Phase 1. Tree enumeration. For each α which is assigned a minimality re-
quirement and is active, in order of priority, consider α’s list of splittings. If there
exists a first which is permissible, then enumerate this splitting into Sα and empty
α’s list of splittings.

2.3.3. Phase 2. Defining μs. We perform the following iteration, which terminates
after a finite number of steps. At each step we redefine the value μ∗

s , which is
initially the empty string, and then ultimately μs takes the final value μ∗

s . The
iteration simply defines a path through the nested splitting trees, taking account of
issued demands when they exist, and taking the left path otherwise. As we proceed,
we also enumerate pairs of the form (μ, β) in order to keep track of the priority
with which we have implemented demands.
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Step 0. Define μ∗
s = ∅.

Step k > 0. Check to see whether there exists a demand issued by some M i
β of

the form (τ, i, η0, η1) such that τ ⊆ Bs, i ∈ As, η0 ⊆ μ∗
s, and such that we have

not already enumerated any pair (μ, γ) during the iteration at stage s with μ ⊃ η0
and γ of higher priority than β. If so, choose that for which η0 is shortest, declare
that this demand is implemented at stage s, redefine μ∗

s = η1, enumerate the pair
(η1, β), and go to the next step. Otherwise check to see whether there exists α such
that μ∗

s ∈ Sα but is not an Sα-leaf. If not, then define μs = μ∗
s and terminate the

iteration, and otherwise let α be the lowest priority of all such nodes. Let μ be the
left successor of μ∗

s on Sα, then redefine μ∗
s to be μ and go to the next step.

Note that implemented demands may subsequently be injured by another of
higher priority, i.e. for the implemented demand (τ, i, η0, η1) it may not be the case
that η1 ⊆ μs.

2.3.4. Phase 3. Visiting phase. In this phase we define TPs, the nodes visited at
stage s. Let α = TPs � i be defined. We describe the actions taken by α and decide
the outcome played. If |α| ≥ s then α performs no actions at this stage, and we
terminate phase 3 of stage s. Otherwise we choose zα to be a large odd number if
it is not already defined. For the remaining instructions there are then two cases.

(i) α is assigned Me. If Sα(∅) ↑ we set Sα(∅) = Sα∗(ρ) where |ρ| = zα and
Sα∗(ρ) ⊆ μs, or if no such ρ exists, then we leave Sα(∅) ↑. Otherwise if
η ⊂ μs for some Sα-leaf η, search for Φe-splittings above η of length ≤ s
consisting of strings of odd level on Sα∗ , and enumerate any found into α’s
list of splittings.

If strings have been enumerated into Sα since the last stage at which α
was visited or if α = ∅, then α has outcome ∞. Otherwise it has outcome
f .

(ii) α is assigned Pe. We determine the least i < s such that M i
α requires

attention. This is true if there exists μ ⊆ μs such that μ = Sα∗(ρ) for ρ
of length pizα , and μ ⊆ Φτ

e for some shortest τ ⊆ Bs, but M i
α has not yet

‘recorded the computation Φτ
e ’ (see the next paragraph).

If no M i
α requires attention, then α performs no action and has outcome

f . Otherwise, let i be the least such that M i
α requires attention, and

proceed as follows. Declare Φτ
e to be a recorded computation. If i /∈ A,

then issue the demand (τ, i, η0, η1), where ρ is as above, η0 = Sα∗(ρ−) and
η1 = Sα∗(ρ†), and also enumerate τ into Ψα(i). At stage s, α then has
outcome i.

2.3.5. Phase 4. Defining Ψ. For each n < s such that μs(n) ↓ proceed as follows.
Let s0 be the maximum of n and s1 − 1 for any stage s1 ≤ s at which a number
≤ n has been enumerated into A. Let σ be the shortest initial segment of As such
that Bs � (s0 + 1) ⊆ Γσ. Define Ψσ(n) = μs(n).

2.4. Verification. First of all we must verify that the instructions are well defined.
The only point of contention is during phase 2 of stage s when the instructions for
step k > 0 require us to select the relevant demand (τ, i, η0, η1) for which η0 is
shortest. We must verify that there exists a unique such demand. Once we have
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done this it will be clear that the instructions for each stage (in particular those
for phase 2) are finite, since:

(a) At stage s, if the demand (τ, i, η0, η1) is implemented at step k (of the
iteration during phase 2) and (τ ′, j, η2, η3) is implemented at step k′ > k,
then η2 properly extends η0.

(b) At each stage only finitely many demands are issued and only finitely many
strings are enumerated into trees.

So we wish to ensure that:

(†) At any point of the construction, if the two demands (τ, i, η0, η1) and
(τ ′, j, η2, η3) have both been issued (and not discarded by initialisation),
then η0 = η2 implies i = j and that both demands were issued by the same
module M i

α.

Now since zα is chosen to be large whenever a node is visited for the first time
subsequent to initialisation, it follows that when μ ∈ Sα ∩ Sα′ for distinct nodes α
and α′, we must have α∗∞ ⊂ α′ or α′ ∗∞ ⊂ α. When a string belongs to two valid
trees, in other words, it must be the case that one of these trees is built purposely
as a subtree of the other. The following three facts then combine to give (†), as
required:

(1) For α of even length, strings in Sα are of odd level in Sα∗ .
(2) If M i

α issues a demand (τ, i, η0, η1), then η0 is of even level in Sα∗ .
(3) If α1 and α2 are of odd length, are both valid and Sα∗

1
= Sα∗

2
, then from

the fact that zα1
�= zα2

it follows that for any two demands (τ, i, η0, η1) and
(τ ′, j, η2, η3) issued by modules M i

α1
and M j

α2
respectively, we have η0 �= η2.

So far, we have concluded that the construction is well defined, and that the
instructions at each stage are finite.

Lemma 2.3. At every stage s, μs is permissible. M is total and ΨA = M .

Proof. Since Φ0 is the identity functional, it follows that S∅ is infinite. For every
length 
 there must therefore exist s with |μs| > 
. Since the use of Ψ on argument
n is clearly bounded, the second statement of the lemma follows from the first.

The proof is by induction on s. Suppose that μs is incompatible with μs−1, and
consider the iteration that takes place during phase 2 of stages s and s − 1. At
each step of the iteration a certain instruction is carried out: either a) a demand
is implemented, or b) we find α of lowest priority such that μ∗

s ∈ Sα but is not an
Sα-leaf and redefine μ∗

s to be the left successor of its previous value on Sα, or c)
we terminate the iteration. There must therefore be a least step k at which the
two iterations at stages s and s − 1 diverge, i.e. at which they carry out different
instructions. There are three possibilities to consider:

(1) Step k at stage s− 1 implements a demand (τ, i, η0, η1) and during step k
at stage s it is not the case that any demand (τ ′, j, η2, η3) is implemented
with η2 ⊂ η0.

In this case, i was enumerated into A at a stage > |τ |, and since η0
is of length > i, any σ ⊂ As−1 such that η0 ⊆ Ψσ at the end of stage
s− 1 is sufficiently long that τ ⊆ Γσ. Since the demand (τ, i, η0, η1) is not
implemented at stage s, τ �⊆ Bs, and so any extension of η0 is permissible.
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(2) Step k at stage s implements a demand (τ, i, η0, η1) and during step k at
stage s− 1 it is not the case that any demand (τ ′, j, η2, η3) is implemented
with η2 ⊆ η0.

In this case, the fact that the demand (τ, i, η0, η1) was not implemented
at stage s−1 leaves two possibilities. It could be that i was enumerated into
A at stage s, in which case any extension of η0 is permissible. Otherwise,
it must be that τ �⊆ Bs−1. Now we can argue much as in case (1). We
have that i was enumerated into A at a stage s′ > |τ |, and since η0 is of
length > i, any σ ⊂ As−1 such that η0 ⊆ Ψσ at the end of stage s − 1 is
sufficiently long that τ ′ ⊆ Γσ, where τ ′ is the initial segment of Bs−1 of
length s′. Again, we conclude that any extension of η0 is permissible.

(3) The previous cases do not hold, and at step k of stage s case b) holds, i.e.
we find α of lowest priority such that μ∗

s ∈ Sα but is not an Sα-leaf, and
redefine μ∗

s to be the left successor of its previous value on Sα.
In this case μ := μ∗

s (before its redefinition at step k) was a leaf of Sα

prior to stage s. The two successors of μ in Sα were enumerated into this
tree at stage s and are both permissible. Let μ′ be the longest string which
is an initial segment of both successors of μ in Sα and also of μs−1. There
are now further possibilities to consider. If μ′ ⊂ μs, then μs is permissible.
Otherwise there must be a demand (τ, i, η0, η1) such that η0 ⊂ μ′, and
which is implemented at step k + 1 of stage s. If this demand was also
implemented at step k + 1 of stage s− 1, then the two processes have not
really diverged in a meaningful way. We can say that, in this case, the two
iterations did not strongly diverge at step k (so strong divergence means
divergence and that this subcase of case (3) does not apply), since the same
demand was implemented anyway at the next step, and choose instead the
least step at which the two iterations strongly diverge. Given that a demand
is implemented at step k+1 of stage s, which was not implemented at step
k+1 of stage s− 1, we now have two cases to consider, which are identical
to cases (1) and (2), but with ‘k’ replaced by ‘k + 1’.

�

Lemma 2.4. For all n, there exists a leftmost node of length n which is visited
infinitely often, αn, say. This node satisfies the following:

(1) αn is initialised only finitely many times.
(2) If αn is of length 2e + 1, then it ensures Pe is satisfied. Either αn has

outcome f at all sufficiently large stages at which it is visited, or else there
exists some least m such that αn has outcome m at infinitely many stages.

(3) If αn is of length 2e and has outcome ∞ at infinitely many stages, then
Sα is infinite and M ≤T ΦM

e . Otherwise Sα is finite and ΦM
e is partial or

computable.

Proof. The proof is by induction on n. Our assumptions concerning Φ0 mean that
the result for n = 0 is clear. So suppose n > 0 and that the result holds for all
n′ < n. Then (2) of the induction hypothesis implies that αn exists, i.e. there exists
a leftmost node of length n which is visited at infinitely many stages, and also that
there are only finitely many stages at which nodes strictly to the left of αn are
visited. Also, (3) of the induction hypothesis implies that for β of even length with
β ∗f ⊆ αn, Sβ is finite. Those β <L αn are only visited finitely many times, and so
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can only enumerate finitely many splittings into their lists. We conclude that αn

satisfies any of the conditions for initialisation (a),(b), or (c), at only finitely many

stages. We are left to deal with (d). Those modules M j
β , such that either β <L α

or β ∗ i ⊆ α for j < i, can only enumerate finitely many demands. Consider one
such demand (τ, j, η0, η1), issued by M j

β0
, say. If τ �⊂ B, j /∈ A, or η0 �⊂ M , then at

all sufficiently late stages this demand is not implemented (if implemented at stage
s, then η0 ⊂ μs). On the other hand, for any stage s at which τ ⊆ Bs, j ∈ As,
and η0 ⊆ μs, the only way in which the demand could fail to be implemented (we
are not concerned with injury) would be the implementation of a demand of higher
priority (τ ′, k, η2, η3), such that η2 ⊂ η0 and η3 ⊃ η0. When two distinct trees Sα

and Sα′ are not nested (i.e. when it is not the case that α ∗∞ ⊂ α′ or α′ ∗∞ ⊂ α),
initialisation means that all of the strings in one of the trees are of strictly greater
length than all strings in the other. Let β1 be the node which issued the demand
(τ ′, k, η2, η3). Since η2 ⊂ η0 and η3 ⊃ η0, it must be that Sβ∗

0
and Sβ∗

1
are nested.

Since β1 is of higher priority, Sβ∗
0
must either be equal to Sβ∗

1
or else built as a

subtree of it. This contradicts the condition η2 ⊂ η0 and η3 ⊃ η0, given that η3
is a successor η2 in Sβ∗

1
. So for each member of this finite set of demands there is

either a stage after which they are always implemented, or else a stage after which
they are never implemented. Thus αn is initialised only finitely many times.

Now suppose that αn is of length 2e + 1. We wish to show that any demand
(τ, i, η0, η1) issued by αn subsequent to its final initialisation is met, i.e. if τ ⊂ B,
i ∈ A, and η0 ⊂ M , then η1 ⊂ M (under these conditions there is a stage, in
other words, after which the demand is always implemented and not injured). The
argument above, that αn only satisfies (d) of the conditions for initialisation at
finitely many stages, suffices to show that at any stage at which τ ⊆ Bs, i ∈ As,
and η0 ⊂ M , the demand is implemented. In order for the demand to be injured
we would then have to implement another demand (τ ′, j, η2, η3) of higher priority,
at a later step of the iteration for phase 2 of that stage, for which η0 ⊂ η2 ⊂ η1.
Initialisation means that β, which issued this demand, cannot satisfy β <L αn

(since αn chooses zαn
large). In fact, β ∗ k ⊂ αn for some k ∈ N with k ≤ j. The

finite length of η1 also means that there are only finitely many possible values for
j, and in order for any such demand to be implemented, it must be the case that
the demand is issued at a stage prior to one at which j is enumerated into A. Thus
there can only be issued finitely many demands (τ ′, j, η2, η3) of the correct form
to cause injury to the demand (τ, i, η0, η1). The fact that the injuring demand is

issued by M j
β and β ∗ k ⊂ αn for some k ∈ N with k ≤ j, means that there there is

a stage s such that for all s′ ≥ s, τ ′ �⊂ Bs, and the potentially injuring demand is
not implemented.

Now if αn has outcome f at all sufficiently large stages at which it is visited,
or else there exists some least m such that αn has outcome m at infinitely many
stages, then it is clear that Pe is satisfied. So suppose this does not hold. Then
ΦB

e = M . For each i /∈ A, there exists τ ⊂ B enumerated into Ψαn
(i). If i ∈ A,

then for any τ ⊂ B enumerated into Ψαn
(i), there is a demand issued (τ, i, η0, η1)

such that η0 ⊂ Φτ
e and η1 is incomparable with Φτ

e . Since ΦB
e = M , we have

η0 ⊂ M , and there is a stage after which this demand is always implemented and
not injured, giving the required contradiction.

Finally, suppose that αn is assigned the requirement Me. Our task is to show
that, subsequent to the last initialisation of αn, once Sα is non-empty, μs extends
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a leaf of Sα at every stage at which αn is visited. Once we have achieved this,
entirely standard arguments suffice to give (3) for the induction step. Let s0 be the
first stage at which αn is visited subsequent to its last initialisation. Let s1 > s0
be the stage at which we define Sαn

(∅). Then at every subsequent stage s ≥ s1 at
which αn is visited, Sαn

(∅) ⊆ μs and the implemented demands are precisely those
which were implemented at stage s1, together with possibly extra demands issued
by nodes properly extending αn on the construction tree, which are of the form
(τ, ı, η0, η1) for η0 and η1 in Sαn

. �
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