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Abstract. We show that there is a cuppable c.e. degree, all of whose cupping

partners are high. In particular, not all cuppable degrees are low3-cuppable, or
indeed lown cuppable for any n, refuting a conjecture by Li. On the other hand,

we show that one cannot improve highness to superhighness. We also show

that the low2-cuppable degrees coincide with the array computable-cuppable
degrees, giving a full understanding of the latter class.

1. Introduction

What help must one have in order to fully understand the halting problem? This
is an informal way to state the interaction between cupping and jump classes. A c.e.
degree a is cupped by a c.e. degree b if a∨b = 0′. We think of b as adding enough
information to what a already knows, so that together they know everything a c.e.
degree can know. We also call b a cupping partner for a. A way of measuring the
complexity of a c.e. degree is to ask what kind of degrees can serve as its cupping
partners.

All kinds of behaviour are possible. We call a degree cuppable if it has an
incomplete cupping partner. A corollary of the Sacks splitting theorem [Sac63]
is that there is a low, cuppable degree. On the other hand, Yates and Cooper
(see for example [Mil81]) showed that there are nonzero noncuppable degrees, ones
for which no amount of incomplete information can help reach 0′. Cupping (and
dually, capping) properties of c.e. degrees have been studied extensively (see for
example [FS81]), and played a role in proofs of undecidability of the theory of the
c.e. degrees as a partial ordering [HS82, NSS98].

A natural question to ask is: how much more information does a degree a need
in order to compute 0′? We can use the hierarchy of highn and lown jump classes
in order to give quantitative answers to this question. The most important result
related to this question is the characterisation of the low-cuppable degrees, those
that have a low cupping partner, as precisely those that contain a promptly simple
set (Ambos-Spies, Jockusch, Shore and Soare [ASJSS84]). Thus, two notions of
strength coincide: on the one hand, having enough computational power so that just
a low addition suffices to reach 0′; and containing a set with a quick approximation,
a dynamic property that resembles the halting problem itself. Another important
concept concerning the interaction of joins with jump classes is the almost deep
degree of Cholak, Groszek and Slaman [CGS01].
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There are cuppable degrees which are not low-cuppable (this follows from Har-
rington’s cup and cap theorem, see [FS81]). Li, Wu and Zhang [LWZ00] showed
that there is a low2-cuppable degree which is not low-cuppable. They suggested
investigating a hierarchy of cuppable degrees, namely the lown-cuppable degrees
for n > 1. It is open if the lown-cupping hierarchy collapses at some n:

Question 1.1. Is each level of the lown-cupping hierarchy distinct from the next?

Li [Li] conjectured that every cuppable degree is low3-cuppable. In this paper
we refute Li’s conjecture in a strong way:

Theorem 1.2. There is a cuppable degree, all of whose cupping partners are high.

It follows that the cuppable degrees are not contained in the union of the hier-
archy of the lown-cuppable degrees. Theorem 1.2 is proved in Section 2.

We continue by considering cuppability with refined jump classes. Bickford and
Mills [BM82] suggested a refinement of the high/low hierarchy of jump classes by
considering the truth-table degree of the jump, rather than its Turing degree. In
particular, this gives the notions of superhigh and superlow degrees. In Section 3 we
show that in Theorem 1.2 we cannot replace “high” by “superhigh” (Theorem 3.1).
We note that Diamondstone [Dia09] showed that superlow-cupping does not co-
incide with low-cupping, giving more evidence to the lack of symmetry between
superlowness and superhighness.

The next class close to lowness other than the low2 degrees and the superlow
degrees are the array computable (AC) degrees. In the c.e. degrees, array com-
putability (introduced by Downey, Jockusch and Stob [DJS90, DJS96]) is stronger
than being low2, incomparable with lowness, and weaker than superlowness. One
could expect, in light of the distinction between superlow, low and low2-cupping,
that AC-cupping would be distinct still and incomprable with low-cupping. How-
ever, Downey, Greenberg, Miller and Weber [DGMW08] showed that in fact low
cuppability implies AC-cuppability. They did show that low-cuppability and AC-
cuppability do not coincide. In Section 5 we improve their result by giving a
complete characterisation of AC-cuppability:

Theorem 5.1. AC-cuppability coincides with low2-cuppability.

A fundamental result about cupping is the continuity of cupping by Ambos-
Spies, Lachlan and Soare [ASLS93]: no cuppable degree has a minimal cupping
partner. That is, if c cups a to 0′ then there is some b < c which also cups a to 0′.
(The analogous result for capping was established by Harrington and Soare [HS92]).
In Section 4 we complement this result for low-cuppable degrees, by showing that
low-cuppability is witnessed below any cupping partner:

Theorem 4.1. If a is low-cuppable then below any cupping partner of a there is
a low cupping partner of a.

That is, if a ∨ c = 0′ and also, a is low-cuppable, then there is some low b 6 c
such that a ∨ b = 0′. This result answers a question left open in [DGMW08]: it
implies that every low-cuppable degree has a cupping partner which is both low
and array computable (Corollary 4.2).

We remark that in Theorem 3.1 we observe a similar phenomenon: we showed,
in fact, that for any cuppable A, for any cupping partner C of A, there is a non-
superhigh cupping partner X 6T C of A.
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2. Cupping with only high degrees

This section is devoted to the proof of Theorem 1.2.

The requirements. We will enumerate a c.e. set A, whose degree will be as promised
by the theorem. To make A cuppable, we enumerate a c.e. set C, to serve as a
cupping partner of A. So a global requirement is that ∅′ 6T A ⊕ C. To ensure
that C is incomplete, we enumerate an auxiliary c.e. set E (a “private copy” of ∅′),
and for every functional Ψ, we meet the requirement

PΨ: E 6= Ψ(C).

We need to ensure that every cupping partner of A is high. For this too we
enumerate an auxiliary c.e. set P – another private copy of ∅′ – and for each c.e.
set W and each functional Φ, we meet the requirement

RW,Φ: P = Φ(A,W ) =⇒ W is high.

2.1. Discussion. Let us give an informal description of our strategies for meeting
the requirements, and the tensions caused by their interaction.

Cupping. We build a reduction of ∅′ to A⊕C. The uses of this reduction are called
moving markers: to code the entrance of k into ∅′ we enumerate the marker γs(k)
into either A or C. Otherwise, markers are allowed to move if they, or smaller
markers, are enumerated into either A or C.

Incompleteness requirements. Naively, an incompleteness requirement PΨ will ap-
point a follower y, wait for Ψ(C, y) = 0, enumerate y into E, and freeze C below
the use ψ(y). To freeze C, we need to promise that any marker γs(k) smaller than
the use will be enumerated, if necessary, into A rather than C.

Highness requirements. We will give below the formal details of how to ensure that
a c.e. set W is high, using oracle traces. We now describe it less precisely. We fix
a universal partial Σ0

2 function g. It has a computable approximation 〈gs〉 in the
sense that 〈gs(n)〉 converges if and only if n ∈ dom g. To show that W is high, for
each n, we declare a W -use us(n) for “tracking” (or tracing) gs(n).

• If n ∈ dom g, then we need the uses us(n) to stabilise.
• If we see a change in g(n) (that is, gt(n) 6= gs(n)), then we want W to

change below us(n). We are allowed to fail, but only finitely many times
for each n.1

How do we effect a change in W? Recall that we are working for requirement
RW,Φ, so let us assume that Φ(A,W ) = P . To induce W -changes we appoint an
“agitator” q targeted for P . We let u = us(n) be the use ϕs(q) of the computation
Φ(A,W, q) = 0. When we want the change, we enumerate q into P , and freeze A
below u. Once we see a recovery of agreement between Φ(A,W ) and P , it must be
the case that we got the W -change we were after. Note, however, that freezing A � u
until we saw thatW -change is absolutely crucial. Moreover, in fact we need to freeze
A below u even before we want to effect a W -change, that is, even before we see a

1The reason this makes W high is the following: since g is universal, its domain has degree ∅′′;
we need to show that W ′ computes dom g, i.e., that W can computably approximate dom g. We

guess that n ∈ dom g if Ws � us(n) is W -correct. If n /∈ dom g, then except for finitely many
errors, we will never see Ws � us(n) to be correct: the value of us(n) will approach ∞ faster than

the settling time of W .
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change in g(n). This is because we have to keep ϕ(q) 6 u; an A-change allows ϕ(q)
to rise, and once it does, q is useless for effecting a change in W below u.

Timing A-enumerations and protecting markers. The main tension in the construc-
tion is now clear: R requirements need to restrain A, whereas P requirements make
promises about markers going into A. The restraint imposed by an R requirement
is not permanent: say that u = ϕ(q) and we want a W � u-change. We enumerate q
into P and wait until we get that change. Once we see this change, the W -tracking
of the old value of g(n) is released. Eventually we will want to track the new value
with potentially larger use; but we can wait a bit, and for now, drop the restraint
and allow small numbers to go into A.

We see that as is often the case, timing is everything. However the naive plan
for P was to promise that some markers γ(k) will be enumerated into A rather
than C; this enumeration happens when k enters ∅′, and we have no control over
the timing of this event. What we do is anticipate this event, and when R drops
its restraint, immediately enumerate the marker into A. This allows us to clear
the markers below the use ψ(y) and appoint new ones, larger than this use. Thus
when k does enter ∅′, we can always enumerate the marker γ(k) into C.

This has to be done with certain priority; for coding to work, we need to ensure
that each marker is moved only finitely many times. Thus each P requirement will
be allowed to move markers γ(m) for m greater than some k, and k increases as
the priority of the requirement decreases. What about smaller markers? We have
to allow them to injure the realising computation Ψ(C, y). This happens at most k
times.

The tree. As expected, we do everything on a tree of strategies. Incompleteness
requirements P need to guess and coordinate the restraint and its simultaneous
dropping imposed by stronger R requirements. Most obviosuly, we cannot be sure
that the R hypothesis Φ(A,W ) = P is correct; for example, we may enumerate an
agitator q and wait for a resulting W � u-change, but this never happens, because
we never get a recovery of Φ(A,W, q) = P (q). The corresponding A-restraint is
then never dropped.

Let τ be a node working for RW,Φ. It is possible that we get infinitely many
τ -expansionary stages – stages at which we see more and more convergence and
agreement between Φ(A,W ) and P . However it is still possible that, fixing an
input n, the use us(n) goes to infinity. This has two possible reasons:

• gs(n) does not stabilise. As described, each time it changes, we enumerate
an agitator q for the sake of tracking g(n) and get the desired W -change.
We then need to appoint a new agitator q′, for the new observed value of
g(n), with possibly larger use u′ = ϕ(q′). This can happen infinitely often.
• gs(n) stabilises to g(n), so we have a last agitator q appointed for this n;

but the use ϕs(q) is unbounded, as Φ(A,W, q)↑.
We remark that in either case, the requirement RW,Φ is happy: in the first,

because there is no real value g(n) that we need to track, so from its point of view,
it is not a problem that the use us(n) is unbounded; in the second, because the
hypothesis Φ(A,W ) = P does not hold.

However, weaker P nodes (those who live below τˆ∞) need to guess, for each n,
whether the restraint imposed on behalf of us(n) is bounded or not, and if not,
coordinate stages at which it drops (between various inputs n). Therefore, τ will
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have children ρ scattered below τˆ∞, each looking at one particular input n = n(ρ);
nodes below such a child guess the behaviour of us(n).

The noncupping construction and delayed enumeration. Using our set-up we can
give a very similar description of the construction of a non-cuppable degree (see
[Mil81]). In this construction, there is no C (or E); we replace the incompleteness
requirements PΨ with non-computability requirements: A 6= Ψ; and the conclusion
of R is that W is complete, rather than merely high.

The basic strategy for the non-cuppability requirements R, instead of following
gs(n) and allowing finitely many failures in tracking, is to wait for n to enter ∅′
and then require a W -change below us(n) = ϕ(q), again by enumerating q = qs(n)
into P . We need to do this only once, but we are not allowed to fail.

What has not been explained above yet, and which pertains to the non-cuppability
construction as well, is what to do with bigger n. That is: let σ, extending τˆ∞,
be a P-node. In the non-cuppability construction, it appoints a follower k, waits
for Ψ(k)↓= 0, and then wants to enumerate k into A. The node σ can guess the
behaviour of us(n) for only finitely many n, say up to n(σ). For those n for which
it guesses a bound on us(n), it can appoint k to be larger than these bounds; for
the other n, it waits until the resraint is dropped. But what do we do for n > n(σ)?
Here, since we are not allowed any mistakes, what we need to do is voluntarily
enumerate qs(n) into P and wait for a W � us(n)-change. The node τ can live with
that, since each σ will act at most once, and only finitely many will have n(σ) < n;
so each qs(n) is “injured” only finitely often.

What this does entail, though, is a delay in enumerating k into A. Recall that
after we enumerate qs(n) into P , we need to wait until the next τ -expansionary
stage to see the recovery of Φ(A,W, q), which guarantees the required W -change —
and we need to keep A frozen below us(n) until that next τ -expansionary stage. So
what will happen is, first, σ announces that it wants to enumerate k into A; it will
enumerate qs(n) into P . Then, we wait for the next τ -expansionary stage; at that
stage, τ remembers σ’s request and enumrates k into A, without waiting for σ to be
accessible again. This last bit is necessary because if we wait for another σ-stage,
then as τ cannot wait in the meantime, it will set up a new value qt(n), and then
we will need to enumerate it into P and wait before we put k into A; this process
may never terminate.

Now consider what happens when we have two R-nodes τ0 ≺ τ1 ≺ σ. Then the
process of delayed enumeration will have one more step: (1) At stage s2, σ declares
it wants k in A; it enumerates qs2(τ1, n1) into P . (2) At the next τ1-expansionary
stage s1 > s2, we enumerate qs1(τ0, n0) into P , and not let any nodes extending τ1
be accessible yet. (3) At the next τ0-expansionary stage s0 > s1, we enumerate k
into A. The point is that between stages s2 and s1, τ0 will have been accessible
many times and made many Wτ0 -definitions; so even if we enumerate qs2(τ0, n0)
into P at stage s2, this would not have helped us and we would need to do it again
at stage s1.

Finitely many errors, and different versions of q(n). Back to our construction, we
observe what goes wrong if we would try to make A non-cuppable rather than only
high-cuppable, while still making it cuppable. The key here is the fact that in the
non-cuppable construction, each qs(n) is injured only finitely many times, because
each positive requirement P acts at most once.
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In our only-high-cuppable construction, this is no longer the case. Consider the
following sequence of events: (1) σ sees a realising computation Ψ(C, y) = 0, and
declares that it wants to enumerate y into E and a tracker γs(k(σ)) into A. It
notifies τ such that τˆ∞ 4 σ, and enumerates q = qs(τ, n(σ)) into P . (2) At the
next τ -expansionary stage, we see that due to coding ∅′, the realised computation
Ψ(C, y) is no longer valid. The node σ no longer wants y in E. This sequence could
happen infinitely often; it would be very bad to keep enumerating and redefining
q(τ, n).

So we cannot prove a contradiction, but we see that there is still a problem with
our original construction: it is possible that n ∈ dom g, so we do not want qs(n) to
change infinitely often. What we do is distribute the agitators and responsibilities
among the children ρ of τ . A child ρ not only provides (via its outcomes) guesses
to nodes below it, about a particular restraint; it is also responsible for tracing
gs(n) for some n = n(ρ), has an agitator qs(ρ), and acts relatively independently.
If σ ≺ ρ, then ρ will guess whether σ will actually ever enumerate numbers into E
or A or not. If it guesses that it will not, then it does its thing, ignoring σ. If it was
wrong about this guess, then it will end up to the left of the true path (assuming
σ lies on the true path). It is true then that σ’s action decouples u(ρ) and ϕ(q(ρ)),
and so we cannot get rid of the value that ρ traced, even if it is wrong; but we are
allowed finitely many mistakes, so this is ok.

The problem of the right. While we do not mind mistakes made by the left, we are
worried about the right, since to the right of the true path there are infinitely many
children ρ of τ which all work on the same input n. In the scenario above, if σ lies
to the right of the true path, we still need to find a way to force a W -change below
u(ρ), even though σ’s action made the agitator q(ρ) useless for this task.

Well, σ itself has branched off the true path at some node α; but note that as
ρ extends σ, it must be that α < τˆ∞. What we do is give every finite outcome ζ
of α its own agitator p(ζ), which will be activated when ζ lies to the right of an
accessible node. Any extension of ζ, such as σ, will guess the restraint imposed for
keeping the agitator p(ζ) useful, and ρ will ensure that u(ρ) > ϕ(p(ζ)); so p(ζ),
rather than the relatively bigger q(ρ), can be used to correct mistakes made by ρ.

The last thing to note is what happens when we have more than one node τ .
Again say τ0ˆ∞ ≺ τ1ˆ∞ 4 α. Below the finite outcomes of α, we need to put
nodes ζ for both τ0 and τ1. There is only one correct way to do this: longer τ first;
see Fig. 1.

Suppose we did it the other way round. So the finite outcome descendant of α
is ζ0, measuring ϕτ0(p(ζ0)) (with outcomes ∞ and finite r for all r ∈ N); and each
successor of ζ0 is a ζ1 node, similarly measuring ϕτ1(p(ζ1)). For this discussion, let
us group all the finite outcomes together into an outcome f, so we imagine that ζ0
and each ζ1 have two outcomes, f and ∞, measuring whether ϕτi(p(ζi)) stabilizes
or not. Now consider the two nodes α f̂̂ ∞ and α f̂̂ f. Below each of these two nodes
will be ρ0 nodes, children of τ0, and sometimes the ones on the left will need to
undo the work of the ones on the right. So below α f̂̂ f we need yet another ζ0-node
for τ0. So we are forced to put a ζ0-node below the finite outcome of a ζ1-node.

Why does our way work? And what about the infinite outcomes? Well, the
point here is that the infinite outcome of a ζ-node indicates that Φτ (A,W, p(ζ))↑.
But this means that the hypothesis of the requirement RWτ ,Φτ is false. Below that
outcome, we do not need to work for this requirement. That is, below ζˆ∞, there
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are no children of τ . So if we guess for τ1 first, then τ0, the only possibly problematic
pair of outcomes is α f̂̂ ∞ and α f̂̂ f; below both of those we still need to work for τ1.
But below α f̂̂ ∞ we have won τ0. This allows us to restart a new version of τ1
below α f̂̂ ∞. Child nodes of this new version do not interact with children of the
old τ1, in particular, they do not need to undo mistakes by τ1-children extending
α f̂̂ f. Note that when τ f̂̂ ∞ is accessible, the restraint u(ζ0) is dropped (we have
just seen a voluntary change in Wτ0 , so no nodes extending this outcome could do
anything which is injurious to ζ0, or indeed to any τ0-children extending α f̂̂ f. So
we do not need yet another ζ1-node at α f̂̂ f. Overall we see that we get a mild
∅(3)-construction (one with no links).

α

ζ1

ζ0

No
chil-
dren

Only
τ0
chil-
dren

ζ0

τ1
re-
started

τ0
and
τ1
chil-
dren

Figure 1. Two levels of ζ-nodes. Left is the infinite outcome.

A remark on initialisations. The following is not fundamental, but may help with
understanding the formal construction. Rather than outright initialising nodes, we
ensure that nodes that ought to be initialised are simply never accessible in the
future. This is achieved by adding outcomes to nodes; rather than two outcomes
(f and ∞), typically, the outcomes will be ∞ < 0 < 1 < . . . , with a finite outcome
denoting the last stage at which the infinite outcome was accessible. Essentially,
this means that each node guesses the last stage at which it is initialised. Lemma 2.2
is the lemma which says that “initialised” nodes are not visited again.

2.2. Construction. We now turn to the formal details of the construction.

Markers. To ensure that ∅′ 6T A⊕C we use moving markers. At every stage s we
have markers γs(k) for all k < ω. The marker can move, i.e., γs+1(k) 6= γs(k), only
if some number x 6 γs(k) is enumerated into either As+1 or Cs+1. The markers
are increasing in k. If γs+1(k) 6= γs(k) then for all m > k, γs+1(m) is chosen to be
large (as usual, this means larger than numbers used in the construction so far).

We fix an enumeration of ∅′ in which a single number enters ∅′ at odd stages, and
no number enters ∅′ at even stages. Thus, at odd stages we will react to changes
in ∅′ by coding; at even stages we take care of the other requirements.
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Tracing. Recall that a c.e. trace is a function T such that for all n, T (n) is a
finite set, and {(n, x) : x ∈ T (n)} is c.e. A partial function g is traced by T if for
all n ∈ dom g, g(n) ∈ T (n). A c.e. set X is low if and only if every X-partial
computable function has a c.e. trace. It suffices to trace a universal X-partial
computable function. Relativising, we see that a ∆0

2 set W is high if and only there
is a W -c.e. trace for a universal Σ0

2 partial function. We fix such a function g and
let 〈gs〉 be a partial computable approximation for g. That is, the sequence 〈gs〉 is
uniformly computable (and total); for n ∈ dom g, lims gs(n) = g(n); for n /∈ dom g,
lim sups gs(n) =∞.

Types of nodes. There are six kinds of nodes (strategies) that we employ.
The incompleteness requirements PΨ employ mother nodes, that we denote by σ,

and child nodes, which we denote by π. We denote the functional Ψ by Ψσ. The
children of σ are all of the immediate extensions of σ on the tree of strategies.
When visited, a node σ will pick a threshhold marker k(σ). The outcomes of σ are
0 < 1 < 2 < . . . . These outcomes indicate stages by which ∅′ � k(σ) has stabilised.

A P child node π will appoint a follower y(π). For the sake of recording the
steps in the delayed enumeration of y(π), it will issue a request token, which will
be placed on some predecessors of π. A P child node π has two outcomes, w < v.
The outcome w (wait) indicates that no positive action is taken for π; v stands for
victory: y(π) ∈ E.

The highness requirements RW,Φ employ four kinds of nodes, related as in Fig. 2.
Matriarch nodes are denoted by τ . They measure lim sups dom Φ(A,W ) [s] (relative
to the τ -stages) and its agreement with P . There will be one matriarch node for
this requirement on any path. We will write Φτ for Φ and Wτ for W . The outcomes
are ∞ < 0 < 1 < . . . .

Matriarch nodes have two kinds of children, sons and daughters. Sons, denoted ζ,
collectively measure lim infs dom Φτ (A,Wτ ) [s]. A visited son node ζ will appoint
an initialisation agitator p(ζ), and will measure whether Φτ (A,Wτ , p(ζ))↓, and if
so, what is the use of this computation. The outcomes are ∞ < 0 < 1 < . . . . The
outcome∞ guesses that Φτ (A,Wτ , p(ζ))↑, so below this outcome, no further action
is taken for this requirement.

Daughter nodes, denoted η, coordinate the enumeration of a trace TWτ
η . They

represent restarting the requirement after we guessed that a stronger requirement is
no longer active. On the true path there will be finitely many daughter nodes, the
last one is the one which will enumerate the successful trace. A daughter node only
has a single outcome. These nodes don’t do much on their own; they are mostly
present for book-keeping.

Daughter nodes have children of their own (grandchildren of the matriarch),
denoted ρ. Each grandchild ρ is assigned an input n = n(ρ) and is responsible for
enumerating TWτ

η (n). Visited grandchild nodes ρ will appoint an agitator qs(ρ),
targeted for P . The value of this agitator may be redefined during the construction,
possibly infinitely many times (depending on whether n(ρ) ∈ dom g or not). The
purpose of the agitator is to generate Wτ -changes to erase enumerations that ρ
made into TWτ

η (n(ρ)), when we see a change in the value of gs(n(ρ)).
The outcomes of grandchildren nodes ρ are ∞ < 0 < 1 < . . . , with ∞ denoting

that either n /∈ dom g, or that Φτ (A,Wτ , q(ρ))↑.
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τ

η

ρ

ζ

Figure 2. A family tree of R nodes. Nodes reproduce asexually;
only female nodes have children.

Assigning requirements. To build the tree of strategies, we start with an ω-list of the
requirements in which every R requirement appears infinitely often. If we already
assigned an identity (and thus a requirement) for all the predecessors of a node α
then we let prec(α) be the set of R matriarch nodes τ such that τˆ∞ 4 α. We say
that τ ∈ prec(α) is active at α if there is no son ζ of τ such that ζˆ∞ 4 α.

Identities are assigned to nodes as follows.

• If τ is an R matriarch node, then τˆ∞ is a daughter of τ . It will be called the
eldest daughter of τ .

• As mentioned above, all the immediate extensions of a P mother node σ are
children π of σ.

• Let α be an R matriarch or an R grandchild node. If prec(α) is nonempty
and some τ ∈ prec(α) is still active at α, then every finite outcome of α starts
a ζ-block. Let τ0 ≺ τ1 ≺ · · · ≺ τk be the list of those nodes in prec(α) that are
still active at α. Then each finite outcome of α is a son ζk of τk; every immediate
successor of a ζk node (including the ∞ outcome) is a son ζk−1 of τk−1; and so
on, until we assign sons ζ0 of τ0.

Then we restart requirements: following each ζ0-node we add a sequence of
daughter nodes ηi for i such that τi is still active, but that some τj for j < i is no
longer active.

A sketch for k = 2 is given in Fig. 3.

• Otherwise, let α be a node on the tree, suppose that every predecessor of α has
been assigned an identity, but that α has not yet been assigned an identity. Let k
be the number of predecessors of α which are not π, ζ or η nodes. Consider the
requirement appearing on the kth position of our ω-list of requirements mentioned
above. If this is a P requirement then we let α be a σ-node working for that
requirement.

If this requirement is an R requirement, then:

– If no predecessor of α is a matriarch for this requirement, then we let α be
a matriarch for this requirement.

– Otherwise, let τ ≺ α be the (unique) matriarch for this requirement. If
τ ∈ prec(α) and is still active at α, then we let α be a grandchild ρ of τ ,
and let n(ρ) be the number of grandchildren of τ bewteen α and the longest
daughter η of τ which is a predecessor of α. That node η will be ρ’s mother.
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– Otherwise (a matriarch τ ≺ α was assigned but is no longer active at α, or
α extends a finite outcome of τ), we ignore this R requirement and try the
next requirement on our list.

α

ζ2

ζ1

ζ0 ζ0

η1

ζ1

ζ0

η2 η2

ζ0

η1

η2

Figure 3. A ζ-block with three levels. Left is the infinite outcome.

Lemma 2.1. Let f be an infinite path on the tree of strategies. Then:

(1) Every P requirement is assigned to a unique mother node σ and a unique
child node π on f ;

(2) On f , every R requirement is assigned to a unique matriarch τ and finitely
many daughter nodes η. Either τ t̂ ∈ f for some t ∈ N; or there is a son ζ
of τ such that ζˆ∞ is on f ; or for the longest daughter η of τ on f , for
every n < ω there is a unique child ρ of η on f such that n = n(ρ).

Construction. We start with all sets empty, no paramters defined, and γ0(k) = k
for all k < ω. For every node α which is accessible at some stage, we let s∗(α) be
the least stage at which it is accessible.

Recall that we fixed an enumeration of ∅′ which occurs only at odd stages.
Suppose that a number m enters ∅′ at an odd stage s. We enumerate γs(m)
into Cs+1. Recall that this means that γs+1(n) is large for all n > m.

Now let s > 0 be even. We define the path of nodes accessible at stage s. A
convenient terminology is “t is an α-stage” to mean that α is accessible at t. For
each node α which we declare accessible, we describe what α does, whether it ends
the stage or not, and if not, which outcome of α is chosen (i.e., which immediate
successor of α is next accessible). The root node λ is accessible at every even stage.

If a P mother node σ is accessible: If s = s∗(σ) then we define k(σ) to be
large and end the stage.

If s > s∗(σ), let t 6 s be the least σ-stage such that ∅′s � k(σ) = ∅′t � k(σ). Let
π = σ t̂ be next accessible.

Now, if s = s∗(π) then we appoint a new, large follower y(π), and end the stage.
Suppose that s > s∗(π).

• If y = y(π) ∈ Es then we let π v̂ be next accessible.

Suppose that y /∈ Es. Let t < s be the previous π-stage.
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• If at stage t, a π-request token was issued, then we let π ŵ be next accessible.
The same outcome is taken if it is not the case that Ψσ(C, y)[s]↓= 0.

Suppose that no request token was issued by π at stage t, and also suppose that
Ψσ(C, y)[s]↓= 0.

• If prec(π) is nonempty, then we issue a request for π. The π-request token is
placed on the eldest daughter η = τˆ∞ of the longest node τ in prec(π). We end
the stage.

• If prec(π) is empty, then we enumerate y into Es+1 and γs(k(σ)) into As+1.
We end the stage.

If an R matriarch τ is accessible: If s = s∗(τ) then we let τˆ∞ be next acces-
sible.

Suppose that s > s∗(τ). Let t be the last τˆ∞-stage before stage s. Let #(t)
be the largest number mentioned by the construction at or before stage t. If for all
z < #(t), Φτ (A,Wτ , z)↓= P (z) [s], then we let τˆ∞ be next accessible. Otherwise,
we let τ t̂ be next accessible.

If an R son node ζ is accessible: If s = s∗(ζ) then we appoint an agitator p(ζ)
(with large value) and end the stage. If s is the next ζ-stage after s∗(ζ) then
we let ζˆ∞ be next accessible. Otherwise, let t < s be the last ζˆ∞-stage before
stage s. Since every ζ-stage is a τˆ∞-stage, where τ is ζ’s mother, we know that
Φτ (A,Wτ , p(ζ))↓ [t]. Let u = ϕτ,t(p(ζ)) be the use of that computation. If either
As � u 6= At � u or Wτ,s � u 6= Wτ,t � u then we let ζˆ∞ be next accessible.
Otherwise, we let ζ t̂ be next accessible.

If an R daughter node η is accessible: If η is not the eldest daughter of its
mother τ , then η’s unique successor is next accessible.

Suppose that η = τˆ∞ is τ ’s eldest daughter. If there is no request token
currently residing at η, then we let η’s unique successor be next accessible.

Suppose that there is a π-request token currently residing at η. There will be
exactly one. Let σ be π’s mother.

• We check to see if this request should be cancelled. Let r be the last stage
at which π was accessible (this is the stage at which the request was made). Let
y = y(π). If Cs disagrees with Cr below the use ψσ,r(y) of the computation
Ψσ(C, y) [r] then we cancel the request and remove the token; we let η’s unique
successor be next accessible.

• Suppose that the request is not cancelled. If prec(τ) is nonempty then we
let τ̄ be the longest node in prec(τ). We transfer the π-request token from η
to η̄ = τ̄ˆ∞, and end the stage.

• If the request is not cancelled and prec(τ) is empty then we enumerate y
into Es+1 and γs(k(σ)) into As+1. We end the stage.

If an R grandchild node ρ is accessible: Let τ be ρ’s grandmother and let η
be ρ’s mother (the longest daughter of τ which is extended by ρ). Let n = n(ρ).

If s = s∗(ρ) then we appoint qs+1(ρ) to be large, and end the stage. If s is the
next ρ-stage after stage s∗(ρ) then we let ρ̂ ∞ be next accessible. Otherwise, let t
be the last ρ̂ ∞-stage prior to stage s. Let u = ϕτ,t(qt(ρ)).
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• If qt(ρ) 6= qs(ρ), or if either As � u 6= At � u or Wτ,s � u 6= Wτ,t � u, then we
let ρ̂ ∞ be next accessible.

• If not, but gs(n) 6= gt(n), then we enumerate qs(ρ) into Ps+1, choose qs+1(ρ)
to be large, and let ρ̂ ∞ be next accessible.

• Otherwise, we enumerate gs(n) into T
Wτ,s

η,s+1(n) with use u, and let ρ̂ t be next
accessible.

At the end of the stage, before we move to the next stage, for every node ζ (an
R son node) which lies to the right of the last accessible node and such that p(ζ)
is defined and not already in Ps, we enumerate p(ζ) into Ps+1.

2.3. Verification. Let us first observe that the construction can be carried out as
described. We note that every stage is finite: we will eventually reach a node that
was not visited before and that will halt the stage. We also note that indeed, at
any stage, at most one request token resides at a given eldest daughter η = τˆ∞
of an R matriarch node τ . For a node extending η is accessible only if no token
resides at η; only such nodes put tokens at η; and if a token is placed at η (by some
P child node or by a different matriarch), the stage is immediately stopped, so at
most one token is placed at any stage.

As promised, we observe that “initialised nodes” are not visited again.

Lemma 2.2. Let r < s be stages. Suppose that a node α is accessible at stage r,
and that a node that lies to the left of α is accessible at stage s. Then α is not
accessible after stage s.

Proof. Let β be the longest initial segment of α which is accessible at stage s. So
the outcome of β taken at stage s lies to the left of the outcome taken at stage r
(the outcome extended by α). This only happens if β is an R node (a matriarch, a
son or a grandchild) and the outcome taken at stage s is∞. But then any outcome
of β chosen after stage s is either ∞ or at least s, whereas the outcome taken at
stage r is some β-stage smaller than r. �

We will later need an improvement upon Lemma 2.2.

Lemma 2.3. Let σ be a P mother node. Let r be a stage. Suppose that s∗(σ) < r
but that a node that lies to the left of σ is accessible at stage r. Then at no stage
t > r do we enumerate y(π) into E for any child π of σ.

Proof. Let π be a child of σ and let y = y(π). By Lemma 2.2, σ is not visited afer
stage r; so any request for enumerating y into E is made at a stage s < r. We of
course assume that y /∈ Er. Then y ∈ E could only happen if a request is made
by π before stage r and at stage r, this request is still uncancelled; at the beginning
of stage r, the π-request token resides at τˆ∞ for some τ ∈ prec(σ).

Let α be a node to the left of σ which is accessible at stage r. Since τˆ∞ ≺ σ,
either τ resides to the right of α, or τ ∈ prec(α). In the first case, by Lemma 2.2,
τ will not be visited at any stage t > r, and so the π-request token will never move
from τ , and then y /∈ E. Suppose that τˆ∞ 4 α; then τˆ∞ ≺ α. The stage r is a
τˆ∞-stage, but τˆ∞ did not end stage r. Hence, the token that resided at τˆ∞ at
the beginning of stage r was cancelled at that stage, so again y /∈ E. �

The true path is the path of nodes which are visited infinitely often, but no node
to their left is visited infinitely often.
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Lemma 2.4. The true path is infinite.

Proof. The root node lies on the true path. Let α be a node on the true path; we
need to show that some successor of α is accessible infinitely often.

Suppose that α is a P mother node σ. Then σ ends the stage only once, at stage
s∗(σ) when it appoints k(σ). If t is the least σ-stage such that ∅′t � k(σ) = ∅′ � k(σ)
then σ t̂ is accessible at all σ-stages s > t.

Suppose that α is a P child node π. Suppose that t is a π-stage and that π ends
stage t. Then a child of π is accessible at the next π-stage. The outcome chosen is
always w, or switches to v once y(π) is enumerated into E.

The usual Σ2/Π2 behaviour holds when α is an matriarch, a son or a grandchild
R node. Such nodes end the stage at most once.

Suppose that α = η is a daughter of an R matriarch τ . If η is not τ ’s eldest
daughter, then η never ends the stage. Suppose that η = τˆ∞ is τ ’s eldest daughter.
Suppose that at stage t, the node η ends the stage. This is because it had some
request token at the beginning of the stage. As explained above, at the next η-
stage, there is no request token residing at η, and so η’s unique successor is accessible
then. �

The global requirement is met.

Lemma 2.5. ∅′ 6T A⊕ C.

Proof. Since we obey the usual rules for markers, it suffices to show that every
marker is changed only finitely many times. Let k ∈ N. Other than a number 6 k
entering ∅′, the only prompt for changing the marker γs(k) is if k > k(σ) for some P
mother node σ, and γs(k(σ)) is enumerated into As+1 because of action for a child π
of σ. As observed above, only finitely many children of σ are ever accessible, and
for each one, we act by enumeration at most once. Since the value k(σ) is chosen
large, there are only finitely many nodes σ with k(σ) 6 k. �

Every positive requirement is met.

Lemma 2.6. ∅′ 
T C.

Proof. Let Ψ be a functional; by Lemma 2.1 there is a PΨ mother node σ on the
true path. Let π be the child of σ that lies on the true path. Let y = y(π). We
need to argue two things:

• If Ψ(C, y)↓= 0 then y ∈ E.
• If y ∈ E then Ψ(C, y)↓= 0.

For the first, let t be a π-stage sufficiently late so that Ψ(C, y)↓= 0 [t] by a C-correct
computation; and suppose that y /∈ Et. If π ŵ is accessible at stage t because at
the previous stage a π-request token was issued and later cancelled, replace t by
the next π-stage. After doing that, we see that a π-request token is issued at
stage t. This request token cannot be cancelled. By reverse induction on the nodes
τ ∈ prec(π), we see that the request token will be passed to τˆ∞, and at the
shortest such τ (or at stage t if prec(π) is empty), y will be enumerated into E.

For the second, suppose that y is enumerated into E at stage t. At that stage,
since the request token is not cancelled, we still have Ψσ(C, y)↓= 0 [t]. We argue
that this computation is C-correct; let u = ψσ,t(y) be its use. At stage t, γt(k(σ))
is enumerated into A, and so all markers γs(m) for s > t and m > k(σ) are greater
than u. Since π lies on the true path and is accessible before stage t, we know that
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∅′t � k(σ) = ∅′ � k(σ). Hence no enumeration into ∅′ will ever cause a marker γs(m)
for m < k(σ) to be enumerated into C at stage s > t. It follows that Ct � u = C � u
as required.

Hence E 
T C; since E is c.e., the lemma follows. �

It remains to show that every cupping partner of A is high – that the R require-
ments are met. Fix a c.e. set W and a functional Φ, and suppose that Φ(A,W ) = P ;
such a functional exists if ∅′ 6T A⊕W . By Lemma 2.1 there is an RW,Φ matriarch
τ on the true path (so W = Wτ and Φ = Φτ ). Since Φ(A,W ) is total and equals P ,
τˆ∞ lies on the true path. Then by the same lemma, there is a longest daughter η
of τ on the true path. We need to show that TWη is a trace for the universal Σ0

2

function g. That is, we need to show:

• For all n, TWη (n) is finite; and

• For all n ∈ dom g, g(n) ∈ TWη (n).

We quickly dispose of the second.

Lemma 2.7. For all n ∈ dom g, g(n) ∈ TWη (n).

Proof. Since Φ(A,W ) is total, for no son ζ of τ can we have ζˆ∞ on the true path.
That is, τ is active at every node on the true path extending τ . By Lemma 2.1,
let ρ be a child of η on the true path such that n = n(ρ).

We argue that there are only finitely many ρ̂ ∞-stages. Since 〈gs(n)〉 eventually
stabilises, the value qs(ρ) will be redefined only finitely many times. Let q =
lims qs(ρ) be the last value chosen.

Since Φ(A,W ) is total, Φ(A,W, q)↓; let u = ϕ(q) be the use of this computa-
tion. If t is a ρ̂ ∞-stage, q was chosen before stage t and the correct computation
Φ(A,W, q) has appeared by stage t, then there will be no more ρ̂ ∞-stages.

Let t be the last ρ̂ ∞-stage. So q = qt(ρ) and the computation Φ(A,W, q)[t]
is correct, with use u. At any ρ-stage s > t we enumerate g(n) into TWη (n) with
use u; this enumeration is permanent. �

We now work toward showing that every TWη (n) is finite. We define a c.e. set B
of nodes which are guaranteed to not be on the true path:

• If σ is a P mother node, s is a σ-stage, t < s and ∅′s � k(σ) 6= ∅′t � k(σ),
then all nodes α < σ t̂ are added to Bs.

• If π is a P child node and y(π) is enumerated into E at stage s, then all
nodes α < π ŵ are added to Bs.

• If ζ̃ is a son of an R matriarch τ̃ ∈ prec(τ) and ζ̃ˆ∞ is accessible at stage s,

then for all t < s, all nodes extending ζ̃ t̂ are added to Bs.
Note that indeed no node in Bs is accessible at or after stage s.

Lemma 2.8. Suppose that α is either a son ζ of τ or a child ρ of η. Let r be an
αˆr̄-stage (for some r̄ ∈ N).

• If α = ζ is a son, let q = p(ζ).
• If α = ρ is a grandchild, let q = qr(ρ).

Let u = ϕr(q). Let s > r be a τˆ∞-stage, and suppose that Wr � u = Ws � u.
Suppose that α /∈ Bs. Then:

(1) Ar � u = As � u, so ϕs(q) = u.
(2) No node that lies to the left of αˆr̄ is accessible at any stage t ∈ [r, s).
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Proof. We prove both parts of the lemma by simultaneous induction on the τˆ∞-
stages s > r. The lemma holds at s = r vacuously. Let s > r be a τˆ∞-stage. Let
s̄ > r be the previous τˆ∞-stage before stage s, and suppose that the lemma held
for stage s̄. We show it holds at s. Let α be a node as described; in particular,
α /∈ Bs.

We start with (1). Every number enumerated into A is γt(k(σ)) for some P
mother node σ. Let σ be a P mother node, and suppose that we enumerate γt(k(σ))
at t ∈ [s̄, s) on behalf of a child π of σ; we show that γt(k(σ)) > u. The argument
depends on the location of σ. Let t̄ be the stage at which the request for π (which
resulted in this enumeration) was made.

• Suppose that σ lies to the right of αˆ∞. As the latter is accessible at stage
r̄ < r, by Lemma 2.3, s∗(σ) > r̄ > u, and of course γt(k(σ)) > k(σ) > s∗(σ).

• Suppose that σ ≺ α, but that π does not lie to the left of α. In this case we
claim that α ∈ Bs. Either π ≺ α; in this case, since y(π) /∈ Er, α extends π ŵ; so
α is placed into B at stage t.

Alternatively, π lies to the right of α. The children of σ are visited from the
left to the right; we never return to children on the left. It follows that t̄ > r, i.e.,
that π is visited after stage r; at that stage (before stage s), α is placed into B.

• The interesting case is when π lies to the left of αˆr̄; here we use the delayed
enumeration feature of the construction. In this case, the node π is not accessible
at any stage in the interval (r̄, r] (consider the cases σ < αˆ∞ and π lying to the
left of α; for the latter, use Lemma 2.2). By induction, π is not accessible at any
stage in the interval [r, s̄). Hence either t̄ 6 r̄ or t̄ = s̄.

Suppose that t̄ = s̄. The node π is the last accessible node at stage t̄. As s̄ is a
τˆ∞-stage, it must be that π � τˆ∞, i.e., τ ∈ prec(π). At stage s̄, the π-token is
placed at τ̃ˆ∞ for some τ̃ ∈ prec(σ), with τ̃ < τ . There is no τ̃ˆ∞-stage between
stages s̄ and s, and so y(π) is not enumerated into E prior to stage s.

Now suppose that t̄ 6 r̄. At the beginning of stage r, the π-token lies at
η̃ = τ̃ˆ∞ for some τ̃ ∈ prec(σ). Now where is η̃?

– If η̃ lies to the left of τ then by Lemma 2.2, as τ is accessible at stage r, and
lies on the true path, η̃ cannot be accessible after stage r.

– η̃ cannot lie to the right of αˆr̄, as η̃ ≺ π and π lies to the left of αˆr̄.
Similarly, η̃ does not extend αˆr̄.

– η̃ ≺ α is impossible, as then r would be a η̃-stage, and η̃ would end that
stage.

– The last case is η̃ � τˆ∞ but η̃ lies to the left of αˆr̄. In this case, by
induction, η̃ is not accessible between stages r and s̄. It may conceivably be
accessible at stage s̄ (though below we show this is not the case), but even if
it is, at the end of stage s̄, the token resides at some η̂ with τˆ∞ 4 η̂ 4 η̃, and
there is no η̂-stage stage between stages s̄ and s.

That concluded the proof of (1) for stage s. We now verify (2) at stage s. Let β
be a node that lies to the left of αˆr̄, and suppose that β is accessible at some
stage t ∈ [s̄, s). As mentioned above, it is impossible that β lies to the left of τ , so
β < τˆ∞. Hence t = s̄.

Now there are two cases, depending on whether β extends αˆ∞ or not.
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Suppose that β < αˆ∞ (so we can take β = αˆ∞). By induction, r̄ is the last
αˆ∞-stage prior to stage s̄. By assumption, Wr̄ � u = Wr � u = Ws̄ � u, and by
induction, Ar̄ � u = Ar � u = As̄ � u. Hence it must be that α = ρ is a grandchild
of τ and that gs̄(n(ρ)) 6= gr̄(n(ρ)), whence q is enumerated into P at stage s̄.

Now by (1) at stage s̄, ϕs̄(q) = u, but as q ∈ Ps and s is a τˆ∞-stage,
Φ(A,W, q)[s] = 1 6= 0 = Φ(A,W, q)[s̄]. But by (1) at stage s, and by assump-
tion, Ws̄ � u = Ws � u and As̄ � u = As � u, making the change in the value of the
computation impossible. So this cannot happen.

Suppose that β lies to the left of α.

Claim. There is some son ζ 4 α of τ which lies to the right of β.

Proof. We may of course assume that α is not a son of τ , i.e. is a grandchild.
Let δ be the longest common initial segment of α and β. Then δ � τˆ∞, and

must be some R matriarch, son or grandchild (not necessarily for the same R
requirement as τ ’s); β < δˆ∞ and α < δ v̂ for some v ∈ N.

Since τ is active at α, it is also active at δ. If δ is an R matriarch or grandchild,
then δ v̂ starts a ζ-block, one level of which will consist of sons of τ ; α will extend
one of them.

Suppose that δ is a son of an R-matriarch τ̃ ; it is a part of some ζ-block, which
also includes a son ζ ≺ α of τ . We consider the ordering between τ and τ̃ .

• If τ ≺ τ̃ then ζ � δ, and so is as required.

• If τ̃ ≺ τ then α is added to Bs̄.
• Suppose that τ = τ̃ , so δ = ζ. Then v < r̄ is the last ζˆ∞-stage prior to

stage r, and by induction, in fact, v is the last ζˆ∞-stage prior to stage s̄. Let
ū = ϕv(p(ζ)). Since there is no ζ-stage between stage v and r, Av � ū = Ar � ū
and Wv � ū = Wr � ū. It follows that ū = ϕr(p(ζ)).

Since ζ ≺ α, p(ζ) < q, and so ū = ϕr(p(ζ)) 6 ϕr(q) = u. It follows by (1) at
stage s̄ then that Ar � ū = As̄ � ū and Wr � ū = Ws̄ � ū. Altogether we see that
Av � ū = As̄ � ū and Wv � ū = Ws̄ � ū. But then the instructions show that ζ v̂,
and not ζˆ∞, is accessible at stage s̄. �

Let ζ be as guaranteed by the claim. At stage s̄, p(ζ) is enumerated into P .
The argument now repeats: since p(ζ) < q, ϕs̄(p(ζ)) 6 ϕs̄(q) = u, and so the
enumeration of p(ζ) into P necessitates a change in either A or W below ϕs̄(p(ζ)),
and hence below u, by the next τˆ∞-stage s. By assumption, and part (1) for
stage s, which we proved above, this does not happen — a contradiction. This
concludes the proof of Lemma 2.8. �

The following lemma concludes the proof of Theorem 1.2.

Lemma 2.9. For all n, TWη (n) is finite.

Proof. Let n < ω.
First, let ρ be the child of η on true path for which n = n(ρ). Note that

ρ /∈ B as it lies on the true path. Suppose that at some stage r, ρ enumerates
a number x = gr(n) into TWη (n) with some use u. Then for some r̄ < r, ρ̂ r̄ is
accesible at stage r; and u = ϕr(qr(ρ)). If there is some ρ̂ ∞-stage t > r, then
by Lemma 2.8, Ws � u 6= Wr � u, where s is the next τˆ∞-stage after stage t.
Otherwise, gt(n) = gr(n) for every ρ-stage t > r. It follows that at most one
number in TWη (n) is there because of an enumeration that ρ makes.
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Nodes to the left of ρ of course make only finitely many enumerations into TWη (n),

and nodes extending ρmake no enumerations into TWη (n). So it suffices to show that
nodes that lie to the right of the true path do not make any permanent enumerations
into TWη (n).

Let ρ̃ be a child of η with n(ρ̃) = n that lies to the right of the true path.

Claim. There is a son ζ ≺ ρ̃ of τ which lies to the right of the true path, such that
ζ /∈ B.

Proof. Let δ be the longest common initial segment of ρ̃ and the true path. Again,
δ is a matriarch, son, or grandchild for some R requirement; δˆ∞ lies on the true
path, and ρ̃ extends δ r̂ for some r ∈ N.

Some options are impossible. The node δ is not a son of τ , as the infinite
outcome of a son of τ cannot be on the true path (Φ(A,W ) is total). Similarly,
δ is not the son of some matriarch τ̄ ≺ τ : Otherwise, following δˆ∞ there will be
another daughter of τ on the true path. But ρ̃, and hence δ, extend η, which is the
longest daughter of τ on the true path.

Hence, either δ is a matriarch or a grandchild, or is a son of some matriacrh
τ̄ � τ . In all of these cases, there is some son ζ of τ such that δ r̂ 4 ζ ≺ ρ̃ and
strictly between δ and ζ there are only sons of matriarchs τ̄ � τ . This last fact
shows that ζ /∈ B; if ζ ∈ B then δ ∈ B, and δ lies on the true path. �

Suppose that at some stage r, ρ̃ makes an enumeration into TWη (n), with some
use u. We want to show that W � u 6= Wr � u. Let ζ be a son of τ given by the
claim. Note that ζˆr̄ 4 ρ̃ for some r̄ < r, as no grandchild of τ extends ζˆ∞. So
r is a ζˆr̄-stage. As we observed above, ϕr(p(ζ)) 6 u. Let s > r be a τˆ∞-stage
such that some node the the left of ζ is accessible between stages r and s. Then by
Lemma 2.8 applied to ζ, Ws � u 6= Wr � u. This shows that indeed, no enumeration
into TWη (n) made by a node that lies to the right of the true path is permanent. �

3. Every cuppable degree has a non-superhigh cupping partner

In this section we show that Theorem 1.2 is sharp:

Theorem 3.1. Every cuppable degree has a cupping partner which is not superhigh.
A non-superhigh cupping partner can be found below any given cupping partner.

In fact, as we soon discuss, we can always find a cupping partner relative to
which ∅′ is not c.e. traceable, equivalently, not array computable (Ishmukhame-
tov [Ish99]). The remainder of this section is devoted to the proof of Theorem 3.1.

3.1. The Requirements. Fix a cuppable c.e. set A; let C be a c.e. set which is a
cupping partner of A. We shall enumerate a c.e. set X 6T C, a cupping partner
of A, which is not superhigh. As in the previous proof, to ensure that ∅′ 6T A⊕X
we employ movable markers δs(n); we allow δs+1(n) 6= δs(n) only if a number
x 6 δs(n) enters either A or X at stage s.

Also as above, we enumerate an auxiliary c.e. set P , a private copy of ∅′. By
the fixed point theorem, we may assume that we are given a functional Γ such that
P = Γ(A,C). Again we assume that the A- and C-use of Γ are always the same. By
speeding up the enumerations of A and C, we assume that at every stage s we have
agreement between Γs(As, Cs) and Ps which is long enough for our purposes. Thus,
if we enumerate a number m we previously prepared into P at stage s (meaning
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that m ∈ Ps+1 \ Ps) then we see some x < γs(m) enter either A or C at that stage
as well.

We will ensure that ∅′ is not c.e. traceable relative to X, which implies that
it is not superhigh. We know that a c.e. degree is c.e. traceable if and only if
every function in that degree has a c.e. trace T with size bounded by the identity:
|T (n)| < n for all n.2 Relativising, to show that ∅′ is not c.e. traceable relative
to X, we will construct a ∆0

2 function f : ω → ω and ensure that the following
requirements are met for all e:

Re: There exists z such that f(z) 6∈ TXe (z).

Here 〈Te〉 is an effective list of all oracle trace operators with |TYe (n)| < n for every
e, n, and every oracle Y . Obviously we will build a computable approximation 〈fs〉
for f .

3.2. A first attempt. Let us consider some basic aspects of the construction.
Coding ∅′ requires enumerating numbers into X when no corresponding changes
are given by A. On the other hand, the basic idea for meeting Re is to freeze X.
Namely, we set a value fs0(z) for some z; we wait for it to show up in TXe (z), say
at some stage s1 > s0. Let v be the X-use of this enumeration; we then want to
preserve X � v, change fs1(z) to be some new large value, and repeat. If we do
this z many times we must win. Further, another requirement is that fs(z) does
reach a limit f(z).

The natural approach to balancing these competing requirements is to try to clear
markers δ(n) beyond the various uses v mentioned above. We hope to achieve this
by getting A-changes below these markers. To get these changes, we use agitators,
which are numbers that we enumerate into P . If γ(a) < δ(n) and we enumerate a
into P then we are guaranteed a change below δ(n) in either A or C. The former
is desirable. To make use of the latter, we need to employ the incompleteness of C.
We threaten to compute ∅′ from C by building a functional Ψ. The naive plan is
then:

(i) Prepare z many agitators a with γ(a) 6 ψ(z), δ(z); wait for z to enter ∅′.
(ii) When we see the current version of f(z) enumerated into TXe (z) with use v,

enumerate one of the agitators a into P , and observe the change we get:
(a) If the change is in C, we get to correct Ψ(C, z); we give up on z. We

enumerate δ(z) into X to record the change in ∅′.
(b) If the change is in A, then we can lift δ(z) beyond v without enumerat-

ing it into X, preserving X � v. We then enumerate another agitator
into P and repeat.

The idea is that since Ψ(C) cannot equal ∅′, for some z we will only get A-changes,
allowing us to fill up TXe (z), so that the last value of f(z) will not show up in that
trace. Note that if in the meantime some smaller z′ < z enters ∅′, we can abandon
our attack on z and start one for z′; of course a correction of Ψ(C, z′) will also yield
a correction for Ψ(C, z).

So what goes wrong? Surprisingly, the difficulty is not in the interaction between
the requirements. We can let each requirement control infinitely many inputs for f ;
we can let each requirement build its own threat Ψe for computing ∅′ from C. As
long as we set up sufficiently many agitators, the requirements can share them.

2We stipulate that |T (0)| = |T (1)| = 1.
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Actually, the real difficulty is in spontaneous A-changes. For the naive plan
above to work, we set up z many agitators a, and we need to keep γ(a) smaller
than ψ(z). But a small number going into A, not necessarily in response to an
enumeration into P , may cause some or all of these γ(a) to grow beyond ψ(z),
without us gaining anything toward meeting Re.

3.3. The solution: cascading attempts. How can we utilise spontaneous A-
changes? The idea is the following. We will arrange our agitators by blocks G(y),
and ensure that δ(y) > γ(a) for every agitator a in the yth block G(y); see Fig. 4.
When trying to attack with y, we relax our attempt to clear the marker δ(y) beyond
the uses v; rather, we only try to clear δ(y + 1). Nonetheless we use the agitators
in the block G(y) for this attack, rather than the agitators in G(y + 1). If there is
a spontaneous A-change somewhere in the block G(y), that would spoil our attack,
we see that this change allows us to lift δ(y) — thereby allowing us to attack with
y − 1 instead.

X

A

C

γ(a1
0) γ(a1

1) γ(a1
2) γ(a2

0) γ(a2
1) γ(a2

2) γ(a2
3) γ(a3

0) γ(a3
1) γ(a3

2) γ(a3
3) γ(a3

4) γ(a3
5)

δ(1) δ(2) δ(3)

Figure 4. G(1) = {a1
0, a

1
1, a

1
2}, etc.

The way we interleave the various requirements is as follows. We let Re con-
trol the f -inputs 〈e, y〉 for y > e. Toward meeting Re on input 〈e, y〉, we will
allow the requirement to use some agitators from the block G(y). Ignoring re-
assignments of agitators, on input y, Re will need at most 〈e, y〉 many agitators
(because |TXe (〈e, y〉)| < 〈e, y〉); to ensure that we never run out of agitators, we will
set the number of agitators in G(y) to be

Ny = 1 +
∑
e<y

〈e, y〉.

To ensure that we do not waste any agitators, and minding that we need to keep
γ(a) < δ(y) for a ∈ G(y), we see that we have to use the agitators backwards,
always enumerating the largest possible agitator into P .

Notation. For typographical nicety, we write f(e, y) for f(〈e, y〉) and TXe (e, y) for
TXe (〈e, y〉).

Also, if f(e, y) ∈ TXe (e, y) [s] then we write ue,s(y) for the use of enumerating this
value in the trace; otherwise we say that ue,s(y) is undefined. We use the convention
that the use of enumerating z in a trace is at least z, so ue,s(y) > fs(e, y) (if defined).

The guiding principles for the construction are:
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(1) Maintaining the general structure indicated in Fig. 4: at every stage,

γ(maxG(y)) < δ(y) < γ(minG(y + 1)).

(2) Making sure that we never run out of agitators: we need to ensure that
when we use an agitator in G(y) on behalf of some e < y, we protect a new
element of TXe (e, y).

(3) Making sure that fs(e, y) reaches a limit; this we do by only changing the
current value of f(e, y) if an A-change causes δ(y+1) to grow beyond ue(y).

(4) For the sake of computing ∅′ from A⊕X, we need to ensure that each marker
δ(y) eventually stabilises. In light of the requirement δ(y) > γ(maxG(y)),
this implies that we need G(y) to stabilise as well.

(5) Keeping our ability to change Ψe(C, y) if y enters ∅′. For this, our aim
is to keep ψe(y) > δ(y) (as this is greater than γ(maxG(y))). However,
the main point is that our renewed strategy requires more, namely, we
aim for ψe(y) > δ(y + 1). By induction, if this holds for y − 1, then
we immediately get ψe(y) > δ(y). Thus, the dangerous situation is when
δ(y) 6 ψe(y) < δ(y + 1), which is when we use agitators to change things.

3.4. Construction. The construction at stage s consists of the following steps.

Step 1 - enumerating agitators: Let a be the smallest of:
• minGs(n), where n ∈ ∅′s+1 \ ∅′s; and
• maxGs(y), for the least y such that for some e < y,

δ(y) 6 ψe(y) < δ(y + 1) 6 ue(y) [s]

(in particular ψe,s(y)↓ and ue,s(y)↓).
Enumerate a into Ps+1.

Step 2 - responding to changes: Let x be the smallest element in either As+1 \
As or Cs+1 \ Cs. We know that x < γs(a). Let c be the smallest agitator
(at stage s) such that x < γs(c); let y such that c ∈ Gs(y).
(a) Suppose that x ∈ Cs+1.

(i) If c = a and it is not the case that y ∈ ∅′s+1 \ ∅′s, enumerate
δs(y + 1) into Xs+1.

(ii) Otherwise, enumerate δs(y) into Xs+1.
(b) In all cases, reappoint agitators above c and markers as described

below.
Step 3 - updating f : For each e < y < s such that

max{ψe,s(y), ue,s(y)} < δs+1(y + 1)

(in particular both ψe,s(y)↓ and ue,s(y)↓), redefine fs+1(e, y) to be large.
Step 4 - defining Ψe: For each e < s,

(a) if δs+1(e+ 1) > δs(e+ 1), restart Ψe.
(b) let y > e be least such that Ψe,s(Cs+1, y) ↑. If ue,s+1(y) ↓, define

Ψe(C, y) = ∅′(y) [s+ 1] with use

ψe(y) = max{ue(y), δ(y + 1), ψe(y − 1)} [s+ 1],

where we always let ψe(e) = 0.

Reappointing agitators above c and markers δ(n), if c ∈ Gs(y), means: discarding
all agitators greater than c; and appointing new large agitators and markers so that:

(i) For all z > y, |Gs+1(z)| = Nz;
(ii) If δs+1(y) > δs(y), then |Gs+1(y)| = Ny;
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(iii) For all n, γ(maxG(n)) < δ(n) < γ(minG(n+ 1)) [s+ 1].

We do this according to the following cases:

(1) If y ∈ ∅′s+1 \ ∅′s, then Gs+1(y) consists of all new agitators, and δs+1(y) is
large.

(2) Otherwise, if c < a, we let δs+1(y) be large, and add followers to Gs+1(y)
(but keep those b ∈ Gs(y) with b 6 c).

(3) Otherwise, we let Gs+1(y) = Gs(y) \ {a}, and let δs+1(y) = δs(y).

In all cases we preserve δ(y−1) and all G(z) for z < y; and for z > y we completely
redefine Gs+1(z) and let δs+1(z) be large. In making these definitions, we use our
assumption that the enumerations of A and C are sped-up sufficiently so that the
agreement between Γ(A,C) [s+ 1] and Ps+1 is sufficiently long to enable us to find
sufficiently many new agitators a with γs+1(a) already defined.

Remarks. Before we formally verify that the construction works, we explain some
of the details. In case (3) above (when a = c), we leave δs+1(y) = δs(y) because we
do not want to enumerate δs(y) into Xs+1. This is important of course only if the
change below γs(c) is in C rather than A. The point is that in this case, to justify
using the agitator a, we need to protect Xs � δs(y + 1), as this oracle enumerates
elements of TXe (e, y) [s] that account for some agitators used.

Above we mentioned that the dangerous situation that requires enumerating an
agitator is when δ(y) 6 ψe(y) < δ(y + 1). However in the construction we added
the clause δ(y + 1) 6 ue(y). This is important because otherwise we could keep
enumerating followers after δ(y + 1) and ψe(y) have stabilised. When accounting
for the agitators used (Lemma 3.4 below), this requirement shows that the next
value in TXe (e, y), that will account for the agitator we use, was not an old value
that was already used to account for older agitators.

The idea behind restarting Ψe when δ(e + 1) changes is being the base case in
an inductive argument (see the proof of Lemma 3.9 below). The idea is that if we
cannot correct Ψe(C, y), it is because we could possibly make progress on meeting
Re on input y − 1. If this fails as well, we look at y − 2, . . . ; but at the lowest y,
namely y = e + 1, we cannot go lower, so when this attack fails, we must simply
restart the whole process, starting with a fresh version of Ψe.

3.5. Verification.

Lemma 3.2. For all s, for all y < s, γ(maxG(y)) < δ(y) < γ(minG(y + 1)) [s].

Lemma 3.3. X 6T C. In fact, for all s and m, if Xs+1 � m 6= Xs � m then
Cs+1 � (m− 1) 6= Cs � (m− 1).

Proof. By examining the construction. If δs(k) ∈ Xs+1 then there is some a in
either Gs(k) or Gs(k−1) enumerated into Ps+1, and x < γs(a) < δs(k) enumerated
into Cs+1 (as γs(maxGs(k)) < δs(k)). �

For e < y < s let Me,s(y) be the set of n ∈ TXe (e, y) [s], enumerated with
Xs-use v < δs(y + 1). Note that |Me,s(y)| < 〈e, y〉.

Lemma 3.4. Let e < y, and let s0 < s1 be two stages s at which we enumerate
maxGs(y) into Ps+1 on behalf of e. Suppose that between stages s0 and s1, no new
agitators are added to G(y). Then Me,s0(y) (Me,s1(y).



22 N. GREENBERG, K. M. NG, AND G. WU

Proof. The assumption that we do not add agitators to G(y) means that at no stage
s ∈ [s0, s1] do we enumerate δs(y), or any smaller marker, into Xs+1. It follows
that for all s 6 t in the interval [s0, s1], Xs � δs(y + 1) = Xt � δt(y + 1). Therefore
Me,s0(y) ⊆Me,s1(y).

At stage s0, we have δ(y) 6 ψe(y) < δ(y+1) 6 ue(y) [s0], so fs0(e, y) /∈Me,s0(y).
Let x be the least number in (As0+1 \As0)∪ (Cs0+1 \Cs0). There are two options.

If x /∈ Cs0+1, then δs0+1(y + 1) > ue,s0(y), while Xs0+1 = Xs0 . The argument
above applied to s = s0 + 1 and t = s1 shows that fs0(e, y) ∈Me,s1(y), yielding the
desired inequality.

The case x ∈ Cs0+1 is slightly more complicated. In this case we do enumerate
δs0(y + 1) into Xs0+1, making the enumeration of fs0(e, y) into TXe (y)[s0] void.
However, x < γ(maxG(y)) < δ(y) 6 ψe(y) [s0], that is, C changes below ψe,s0(y)
between stages s0 and s0 +1. On the other hand, Ψe(C, y)↓ [s1]; let t 6 s1 at which
we define this computation. At stage t we have ue,t(y)↓, i.e., f(e, y) ∈ TXe (e, y) [t].
Either ft(e, y) = fs0(e, y), or ft(e, y) was redefined after stage s0, and is therefore
large relative to stage s0; in either case, ft(e, y) /∈Me,s0(y).

The computation Ψe(C, y) defined at stage t persists up to stage s1; by Lemma 3.2,
as ue,t(y) 6 ψe,t(y), the enumeration of ft(e, y) into TXe (e, y)[t] is preserved until
stage s1 as well, with use u = ue,t(y). At stage s1 we have ψe,t(y) = ψe,s1(y) <
ue,s1(y), which means that fs1(e, y) 6= ft(e, y). At some stage r ∈ [t, s1) we rede-
fine fr+1(e, y) to be large, and this happens because ψe,r(y) < δr+1(y + 1). Since
ψe,r(y) = ψe,t(y), we have u < δr+1(y + 1) 6 δs1(y + 1), thus ft(e, y) ∈ Me,s1(y),
again giving the inequality. �

Corollary 3.5. For all s and all y < s, Gs(y) is nonempty.

Proof. Fix y. For s > y let ts(y) be the greatest t 6 s such that |Gt(y)| = Ny. Note
that for all r ∈ [ts(y), s), either Gr(y) = Gr+1(y) or Gr+1(y) = Gr(y)\{maxGr(y)},
and this enumeration is made on behalf of some e < y (and in particular, it is not the
case that y ∈ ∅′r+1 \∅′r). For e < y let ks(e, y) be the number of stages r ∈ [ts(y), s)
at which maxGr(y) was enumerated into Pr+1 on behalf of e. Then

|Gs(y)| = Ny −
∑
e<y

ks(e, y).

Lemma 3.4 implies that ks(e, y) 6 〈e, y〉 for all e < y, and Ny =
∑
e<y 〈e, y〉+1. �

Lemma 3.6. For every y, Gs(y) stabilizes, that is, for some s, for all t > s,
Gt(y) = Gs(y).

So after stage s, no agitator from Gt(y) is every enumerated into P , no agitator
is cancelled, and no new agitators are appointed to Gt(y). We call the stabilised
set G(y).

Proof. By induciton on y. Suppose that after stage s0, no changes happen to G(z)
for all z < y. For every a ∈

⋃
z<y G(z), both A and C eventually stabilise below

γ(a), after which γs(a) is stable. Suppose that after stage s1, for no a ∈
⋃
z<y G(z)

do we have an A- or a C-change below γs(a) = γ(a). Also suppose that ∅′s1(y) =
∅′(y).

Now for all s > s1 write Gs(y) = {a0,s, a1,s, . . . , ams,s}, in increasing order. By
induction on k we show that either ak = lims ak,s exists (and so is never cancelled,
or enumerated into P ), or ms < k for almost all s. Let k ∈ [0, Ny), and suppose
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that for all k′ < k, ak′ = lims ak′,s exists; say these have stabilised by some stage s,
and further A and C have stablised below γs(ak′) = γ(ak′) for all k′ < k. There
are several possibilities. Either ak,s is undefined (ms = k− 1). In that case no new
followers will ever be appointed, so Gt(y) = Gs(y) for all t > s. Suppose that ak,s
is defined. It can never be cancelled. Either there is some stage r > s at which
ak,s = ak,r is enumerated into Pr+1; in that case Gr+1(y) = {a0, . . . , ak−1}, and
for all t > r, Gt(y) = Gr+1(y). Otherwise, for all t > s, ak,t = ak,s. �

Lemma 3.7. For all y, δs(y) stabilises; ∅′ 6T A⊕X.

Proof. That δs(y) stabilises follows immediately from Lemma 3.6, since after G(y)
stabilises, we never increase δs(y). Also, we have ensured that δs(y) can only change
after changes to either A or X below δs(y) + 1, showing that the final value δ(y)
is computable from A ⊕X. Finally, if y enters ∅′ at stage s, then we ensure that
either δs(y) ∈ Xs+1, or there is an A-change below δs(y). �

Lemma 3.8. f = lims fs exists.

Proof. Fix a pair (e, y) with e < y; we show that fs(e, y) stablises. Suppose that
δs(y + 1) is stable after stage s0 (Lemma 3.7). Suppose that at stage s > s0 we
redefine fs+1(e, y). Then for all t > s, if ue,t(y) is defined then (by convention) it is
at least ft(e, y) which is greater than δ(y+ 1), meaning that we will not redefine f
after stage s. �

Lemma 3.9. Every requirement Re is satisfied.

Proof. By Lemma 3.6, the functional Ψe is reset only finitely many times; we
refer here to the last version. We assume, for a contradiction, that for all y > e,
f(e, y) ∈ TXe (e, y); we will show that for all y > e, Ψe(C, y)↓= ∅′(y), contradicting
the incompleteness of C.

First we show that for all y > e, Ψe(C, y)↓. Since f(e, y) ∈ TXe (e, y), the use
ue(y) eventually stabilises; also δ(y + 1) eventually stabilises, which means that
eventually ψe(y) is constant at all stages at which we attempt to define ψe(y). By
induction, eventually, Ψe(C, y

′)↓ (and is C-correct) for all y′ ∈ (e, y); so eventually,
whenever Ψe(C, y)↑ we will make an attempt to redefine it; and we will eventually
successfully define a C-correct computation.

Toward showing that Ψe(C, y) = ∅′(y), we prove that for all y > e, ψe(y) >
δ(y + 1). We prove this by induction on y. For y > e, let ty be the stage at which
the C-correct computation Ψe(C, y) is first defined.

First, we tackle y = e + 1: here we note that te+1 is later than the last stage
at which Ψe is restarted, which is the last stage at which we increase δ(e+ 1). At
stage te+1 we define ψe(y) > δty (e+ 1), which equals δ(e+ 1).

Now, let y > e + 1 and suppose that for all z ∈ (e, y), ψe(z) > δ(z + 1). At
stage ty we define ψe(y) > ψe,ty (y − 1); since C does not change below ψe(y) after
stage ty, it follows that ψe,ty (y− 1) = ψe(y− 1). And so ψe(y) > ψe(y− 1) > δ(y).

Suppose, for a contradiction, that ψe(y) < δ(y+ 1). If s > ty is late enough, and
ue,s(y) < δs(y+1), then we redefine fs+1(e, y) to be large, whence ue(y) > δs(y+1).
It follows that ue(y) > δ(y + 1). To sum up, we have

δ(y) 6 ψe(y) < δ(y + 1) 6 ue(y);

so at any late enough stage, we will enumerate maxGs(y) into Ps+1, which contra-
dicts the stabilisation of G(y). Hence ψe(y) > δ(y + 1) as desired.
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This completes the proof: suppose, for a contradiction, that y enters ∅′ at stage
r > ty. At stage r we redefine δr+1(y) (and so δr+1(y+ 1)) to be large, larger than
ψe(y) — impossible.3 �

4. Witnesses for low-cuppability

In this section we prove:

Theorem 4.1. Suppose a is low-cuppable and c is a cupping partner of a. Then
there is a low b 6 c which is also a cupping partner of a.

Actually, the constructed B is wtt-reducible to C. As mentioned above, this
answers a question from [DGMW08]:

Corollary 4.2. If a is low-cuppable, then it has a cupping partner which is both
low and array computable.

Proof. Let a be low-cuppable. By [DGMW08], there is an array computable de-
gree c which joins a to 0′. Apply Theorem 4.1 to a and c. �

4.1. Requirements and notations. As mentioned in the introduction, the low-
cuppable c.e. degrees coincide with the promptly simple degrees [ASJSS84]. Let A
be a given promptly simple set, and let C be a c.e. cupping partner of A. We will
construct a c.e. set B, and an auxiliary c.e. set P . We will ensure that B is low,
that B 6T C, and that ∅′ 6T A ⊕ B. By the recursion theorem, we are given a
functional Φ such that P = Φ(A,C).

To ensure the lowness of B, we will try to preserve the computation JB(e) each
time it converges, where JB(e) is a universal partial B-computable function. The
uses of the functionals Φ and J are denoted by ϕ and j respectively.

4.2. Coding and Permitting. To ensure that ∅′ 6T A ⊕ B we use movable
markers γ(n) as in the constructions above. To define γ(e), we first choose an
agitator qe, and then obtain a use ϕ(qe) for a computation Φ(A,C, qe) = 0. We
define γ(e) > ϕ(qe). When either A or C changes below ϕ(qe) we will want to
move γ(e); when A changes we can do this with no penalty, but when C changes,
we will enumerate γ(e) into B. We then update γ(e) to be greater than the new
use ϕ(qe).

When e enters ∅′, we need a change in either A or B below γ(e) + 1. In this
case we enumerate qe into P , and thus force a change in either A or C below ϕ(qe).
Again, if the change is in C rather than in A, we need to enumerate γ(e) into B.

As these are the only enumerations into B, as in the previous construction, we
see that every enumeration of some γ(e) into B is accompanied by a change in C
below ϕ(qe) 6 γ(e), yielding B 6T C, in fact, with identity use.

Note that we do not require the prompt simplicity of A in the coding process.

4.3. Lowness of B. We now consider how to ensure that B is low. We need to
ensure that for each e, if JB(e)↓ infinitely often, then JB(e)↓.
Ne: ∃∞s (JB(e)↓ [s]) ⇒ JB(e)↓.

3Note that in the end we in fact get ψe(y) < δ(y) rather than just ψe(y) < δ(y + 1) for the
contradiction; but to prove that ψe(y) > δ(y) inductively, we actually need to prove ψe(y) >
δ(y + 1).
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To this end, whenever JB(e)[s] converges (with use js(e)), we will try to lift γ(e)
above js(e) by forcing an A-change below γs(e). We will use the prompt simplicity
of A here, to ensure that a wanted A-change will appear eventually.

We will enumerate an auxiliary array of c.e. sets Ue, and by a slowdown lemma
and the recursion theorem, we may assume that we have a computable function p
such that for the original given enumeration of A, if we put numbers x0 < x1 < · · ·
into Ue at stages s0 < s1 < · · · respectively, then A has to promptly permit one of
them; namely there is some i such that Asi � xi 6= Ap(si) � xi.

When JB(e)↓ [s], in order to lift γs(e) above the use js(e), we enumerate γs(e)
into Ue, and hope for the desired A-change, which we can check by observing Ap(s).
If the required change has not happened, we try again by enumerating qe into P ,
forcing a change in either A or C below ϕ(qe) 6 γ(e). If we fail again (the change
was in C, not A), then we enumerate γ(e) into B, killing the convergence of JB(e).
We then need to pick a new version of qe. The prompt simplicity of A will ensure
that after finitely many attempts, we will succeed in lifting γ(e) beyond js(e),
helping us protect the convergence of JB(e).

Note that we cannot make B superlow because we do not have control over when
we receive A-permission to lift γ(e).

The speed-up. In the previous construction, we have sped-up the enumerations
of A and C to get long agreement between Φ(A,C) and P at every stage. In this
construction though, the function p witnessing prompt simplicity with respect to
the array 〈Ue〉 is with respect to the original given enumeration 〈As〉 of A. We

therefore incorporate p into a speed-up. Let us be precise. Suppose that 〈Âs〉, 〈Ĉs〉
are given enumerations of A and C (and Φ̂s is a given enumeration of the functional
Φ), and that p witnesses prompt simplicity of A with respect to the enumeration

〈Âs〉 and an array 〈Ûe,s〉 that we define during the construction: for every e, if Ûe
is infinite, then there are infinitely many s and x such that x enters Ûe at stage s
and Âp(s) � x 6= Âs � x. We also define, during the construction, an enumeration

〈P̂s〉 of the set P we are building.
We then define an increasing sequence t(0) < t(1) < . . . of stages as follows:

• t(0) = 0;

• t(s+ 1) is the least t > p(t(s)) such that the agreement between Φ̂t(Ât, Ĉt)

and P̂t is well beyond any number previously seen in the construction.

Then, we define As = Ât(s), Cs = Ĉt(s), Ps = P̂t(s), Φs = Φ̂t(s) and Ue,s = Ûe,t(s).
Then 〈As〉, 〈Cs〉 and 〈Ps〉 are computable enumerations of A, C and P ; for every s,
the agreement between Φs(As, Cs) and Ps is large relative to what happened so far
in the construction; and for all e, if Ue is infinite, then there are infinitely many s
such that for some x, enumerated into Ue at s, we have As+1 � x 6= As � x. This
is because the construction really uses the hatted versions and happens on the
stages t(s) (so elements enter Ûe only at stages t(s)); but we rephrase it using the
un-hatted notation, to keep things tidy, if less precise.

4.4. The construction. We are ready to give a full construction. By our speed-
up, we may assume that at the beginning of each stage s, Φ(A,C) [s] and Ps agree
on all the agitators qe,s for e < s, and that γs(e) = ϕs(qe,s) for all e < s.

Let e be least such that either:

(1) e ∈ ∅′s+1 \ ∅′s; or
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(2) JB(e)↓ [s] with use js(e) > γs(e).

Our actions for e are, depending on the case:

(1) Enumerate qe,s into Ps+1.
(2) Enumerate γs(e) into Ue,s. Check if As+1 � γs(e) 6= As � γs(e). If not,

enumerate qe,s into Ps+1.

If we enumerated qe,s into Ps+1, then we choose qe,s+1 to be large (and so qe′,s
to be large for all e′ > e as well). Next, let d be the least such that either As+1 �
γs(d) 6= As � γs(d) or Cs+1 � γs(d) 6= Cs � γs(d) (or d = s if there is no such d). Note
that if we enumerated qe,s into Ps+1 then d 6 e. If As+1 � γs(d) = As � γs(d) then
we enumerate γs(d) into Bs+1. In either case we redefine γs+1(d′) = ϕs+1(qd′,s+1)
for all d′ > d.

4.5. Verification. The verification is straightforward. Note that if γs+1(e) 6= γs(e)
then either A or B changes below γs(e) + 1; that such a change occurs if e enters
∅′ at stage s; and that B 6T C as promised.

By induction on e we show that:

(i) Ue is finite; and
(ii) Ne is satisfied.

Note that (i) implies that 〈qe,s〉 stabilises, as its value changes only when we enu-
merate numbers into Ue, or once when e enters ∅′. In turn, because Φ(A,C) is
total, this implies that 〈γs(e)〉 stabilises as well; it will follow that ∅′ 6T A ⊕ B.
For a proof, suppose that these all hold for all d < e, and say that qd,s and γs(d)
have all stabilised by some stage s0; also let s0 be sufficiently late so that ∅′s0 � e+ 1
is correct.

If Ue is infinite, then there is some stage s > s0 and some x enumerated into Ue
at stage s such that As+1 � x 6= As � x. Since x = ϕs(qe,s), we have Bs+1 = Bs
and we redefine γs(e) to be larger than js(e). However, by assumption, no markers
γs(d) for d < e enter B after stage s0; so in this case the computation JB(e) [s] is
B-correct, and no further enumerations into Ue are ever made. Thus Ue is finite.
This, in turn, implies that Ne is satisfied: from some stage on, either JB(e)↑ [s], or
JB(e)↓ with use js(e) 6 γs(e); as 〈γs(e)〉 stabilises, if this happens infinitely often,
then JB(e)↓.

5. low2-cuppable degrees are AC-cuppable

In this section we show that the classes of Low2-cuppable degrees and AC-
cuppable degrees coincide.

Theorem 5.1. Suppose ∅′ 6T A ⊕ C where C is low2. Then there is an array-
computable set B such that ∅′ 6T A⊕B.

5.1. The method of exploiting low2-ness. The usual way of utilizing the low2-
ness of C is to use it to enable us to successfully guess whether any reduction Γ(C)
is total. This is due to the fact that the totality of Γ(C) can be described by a
∆0

3-procedure for each Turing functional Γ. One can set up the construction so
that the answers to such questions are naturally represented on the construction
tree, and such that the leftmost outcome gives the true answer about the totality
of each Γ(C) being tested in the construction. One can then use this information
along the true path of the construction to reduce certain injuries, in a similar way



CUPPING AND JUMP CLASSES IN THE C.E. DEGREES 27

to how Robinson’s guessing technique converts infinitary actions into finite activity
for a given low c.e. set.

Recall that another characterization of a low2 c.e. set C is the existence of
some f 6T ∅′ which dominates every C-computable function. Using this alternate
formulation of low2, we can exploit a given low2 set C in a game-theoretic way.
A construction involving C can be viewed as a game between ourselves and the
opponent. The opponent controls the function f and the low2 set C and provides
computable approximations 〈fs〉 and 〈Cs〉 for both. At the same time we can build
a reduction ∆(C) (and even allow a different ∆ to be built at each requirement
and ∆ can be specifically tailored for that requirement). We will ensure that we
make ∆(C) total unless we can have an easy win at the requirement. Each axiom
〈σ, x, y〉 we enumerate into ∆ will represent a challenge to the opponent, and can
be viewed as a request for the assurance that σ ≺ C. If C is low (instead of merely
low2) the opponent has to respond promptly to each of our challenges. Specifically,
the opponent must either demonstrate that σ ⊀ C by changing Cs below |σ|, or
he has to provide the certification that σ ≺ C. Our strategy can utilize this by
freezing the construction until one of the two outcomes occurs. Since C might be
noncomputable, the opponent might first certify that σ ≺ C, and then later change
C below |σ|. However, as C is low, this can only happen finitely often at each
requirement.

Now however C is merely low2 and we must set up a similar game to play with
the opponent. We can still issue challenges to the opponent in the form of axioms
〈σ, x, y〉 as discussed above. The opponent must now respond with one of the
following:

(i) demonstrate that σ ⊀ C by changing Cs � |σ|,
(ii) certify that σ ≺ C by changing the approximation of fs(x) to become larger

than y, or
(iii) do nothing at all.

The third outcome is now available to the opponent, and unlike in the low case, we
cannot freeze the construction and wait for (i) or (ii). We call a challenge pending
if neither (i) nor (ii) happens after we issue a challenge. We must proceed with the
construction and make sure that all of our future actions do not undo or destroy
the strategy associated with a pending challenge. In particular we must continue
making ∆(C) total. Only then can we be assured that only finitely many challenges
remain pending forever. Even on the cofinite set of challenges where the opponent
does respond, there will potentially be a huge delay between the stage where we
issue the challenge and the stage where he responds with (i) or (ii). In the next
section we will discuss how to set up the construction correctly so that we can
benefit from the low2-ness of C.

5.2. The setup and the modular approach. Recall that by Ishmukhametov
[Ish99], the array computable c.e. sets are exactly the same as the c.e. traceable
c.e. sets. Thus, we want to build a c.e. traceable cupping partner B for A and
satisfy the requirements

RΨ : if Ψ(B) is total then it has a c.e. trace T with |T (x)| 6 x for all x.

The choice of the bound |T (x)| 6 x is unimportant; any fixed non-decreasing,
unbounded computable function (an order function would do). The reduction of ∅′
to A⊕B is built by movable markers. We maintain a set of markers ϕ(0), ϕ(1), · · ·
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which should be viewed as the use of a reduction Φ(A,B) = ∅′. In the actual
construction, we will need two seperate sets of markers {ϕA(x)} and {ϕB(x)} for
the A and B-use; however for simplicity we will assume that they are the same for
the time being (this is not a real restriction since we can always take the larger of
the two). Coding always takes place in B; i.e. whenever some x enters ∅′, we will
enumerate ϕ(x) into B. This obviously conflicts with the strategy RΨ, which want
to restrain B each time after we had committed some current value Ψ(B, x) [s] into
the trace T (x). Each RΨ obviously cannot directly restrain the global requirement
from performing coding, so it will have to ensure that B does not change too often
by disengaging dangerous ϕ-markers from below the use of Ψ(B)-computations
before committing any value into the c.e. trace T (x). The meaning of “disengaging
a ϕB-marker ϕB(x) from below the use of a computation Ψ(B; z)” is to move the
marker ϕB(x) to be larger than the use ψ(z) of the computation Ψ(B; z) without
damaging the computation. Since ϕB(x) can only be moved if A changes below
ϕA(x) or B changes below ϕB(x) (see section 4.2), we cannot do this at will as
we do not control the set A. Therefore in order to disengage a ϕB-marker, we will
need to try and stimulate an A-change below the corresponding ϕA-marker.

The construction takes place on a tree of strategies. The design of the priority
tree and the strategy for the requirements will have to take into account of pending
challenges. Each level is devoted to one requirement RΨ. For a node α we write
Ψα for the functional Ψ. Each node α divides its main strategy into infinitely many
substrategies, which are run separately by individual α-modules Mα

0 ,M
α
1 , . . . . We

divide N into infinitely many partitions, zoneα0 , zone
α
1 , . . . , and the module Mα

k

monitors the computations Ψα(B, x) for each x ∈ zoneαk .
At the beginning of the construction, we set zoneαx = {x} for all x. The partitions

will be rearranged as the construction proceeds. If x is currently in zoneαk , the
module will monitor the computation Ψα(B, x)[s] and wait for it to converge. The
module will be allowed to trace the value Ψα(B, x)[s] into T (x) only if it manages
to disengage ϕ(k) from below the use of Ψα(B, x)[s] (recall that this first requires
an A-change).

If the computation Ψα(B, x)[s] is later on injured (either due to higher priority
requirements acting or the global coding actions), we will lower the tolerance of
x and transfer control of x to a higher priority α-module. In particular, we will
now set zoneαj−1[s+ 1] = zoneαj [s] for every j > k. Thus we say that x previously
had tolerance number k, and after the injury to Ψα(B, x)[s] it will have a reduced
tolerance number of k − 1 and will now be handled by the module Mα

k−1. When x
reaches a tolerance number of 0 it will only be traced if Mα

0 manages to disengage
ϕ(0), so no injury can possibly happen and Ψα(B, x) will be preserved forever.

This allows us to limit the injury to each Ψα(B, x)[s] and help ensure that T (x)
will have size at most x. There are two potential problems here and we will describe
how they are resolved later. Firstly we have to ensure that each ϕ(k) is moved
only finitely often. Secondly, we have to ensure that for almost all x, the module
eventually responsible for x can manage to disengage ϕ and trace the correct value
Ψ(B, x).

Atomic strategy of a single Mα
k . In the rest of the proof the super-script α is

dropped from our notation whenever the context is clear. We first describe how
a single module Mα

k acts to disengage ϕ(k) from below the use ψ(x) of every
x ∈ zoneαk . The goal of Mα

k is to force an A � ϕ(k)-change whenever Ψ(B, x)↓ so
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that it can allow the marker ϕ(k) to be lifted while at the same time preserving
the Ψ(B, x)-computation.

As in previous constructions, we enumerate a private version P of ∅′. We are
given a functional Γ such that Γ(A,C) = P . Numbers that potentially go into P
are called agitators. The purpose of agitators is to enumerate them into P at
appropriate times in order to stimulate changes in A that are required for modules
to achieve the disengagement of ϕ-markers.

The agitator for Mα
k is denoted by aαk . The module waits for Γ(A,C, aαk )↓ [s].

We say that Mα
k is set correctly if γ(aαk ) < ϕ(k); in order for the agitator to be

able to help in disengaging ϕ(k), it must first be set correctly. If Mα
k is not set

correctly then we simply enumerate ϕ(k) into B and move the ϕ(k) marker above
γ(aαk ). Since C and Γ are not under our control, we may have to do this repeatedly
to keep Mα

k in the state of being set correctly. When Mα
k is set correctly and we

see Ψ(B, x)↓, we enumerate a challenge ∆(C, p) with C-use σ = Cs � γ(aαk ). As
discussed above (in Section 5.1), the opponent has to (i) demonstrate that σ ⊀ C,
(ii) certify that σ ≺ C, or (iii) do nothing for this challenge.

If (i) happens then we enumerate ϕ(k) into B to kill the current Ψ(B, x)-
computation, set Mα

k correctly and wait for it to converge again. We repeat with
a new challenge.

If (ii) happens we enumerate aαk into P and wait for an A or a C-change below
γ(aαk ). If an A-change is given, then we can lift the marker ϕ(k) and successfully
disengage ϕ(k). We can then trace the current value of Ψ(B, x) in T (x). If a
C-change is given then the opponent would lose one change available to him, and
since we have not yet committed the current value of Ψ(B, x) into the trace T (x),
we can simply set Mα

k correctly again and repeat with a new challenge.
If neither (i) nor (ii) happens then the module Mα

k cannot proceed further, since
it requires the disengagement of ϕ(k) before it can trace any Ψ(B;x) computation.
In this case, Mα

k is pending and does no further work until it sees (i) or (ii) happen
for the pending challenge.

This describes the actions of a single module Mα
k in isolation. We make two

straightforward but important observations. First, note that as each γ-use is finite,
(i) cannot happen infinitely often on the same agitator. Second, note that each
module may wait in the pending state for an arbitrary number of stages. However,
there are only finitely many k such that Mα

k is forever pending; otherwise ∆(C)
will be total and escapes f .

Now we will discuss how two different modules interact. We first discuss in
Section 5.3 how modules belonging to different nodes interact. In Section 5.4 we
discuss how to coordinate different modules belonging to the same node.

5.3. Coordination between different nodes. Since each node α may poten-
tially make infinitely many enumerations into B (though only finitely often for
each module), we have to equip α with two outcomes, ∞ to the left of f . As usual
a node ε < α f̂ is not allowed to injure α, so at each stage when ε is visited, only
the modules Mε

j for j > the previous α-expansionary stage are allowed to act. By
the usual convention on picking followers, these modules will only act with numbers
that are far larger than anything seen by α so far.

However, a node β < αˆ∞ will wait for enough α-modules to be successful. In

particular, a module Mβ
k will wait for all of Mα

0 , . . . ,M
α
k to successfully trace every

computation they are looking after before β begins to act for Mβ
k . By coordinating
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the actions of α and β in this way, we ensure that α never injures any β-module, al-

though it might be the case for instance, that Mβ
k acts and injures Mα

k+1,M
α
k+2, . . .

which already have traced computations. This means that a module Mα
k can only

be injured by finitely many modules belonging to a node extending αˆ∞ (unless of
course α itself is initialized).

As per usual we arrange for nodes of each length k to agree never to move ϕ(k).
In this way, we can ensure that each ϕ(k) is only moved finitely often (since there
are only finitely many nodes on the construction tree that can move it). Also this

ensures that for instance, injury to Mβ
k will eventually cease, since the only modules

which can injure it are of the form Mσ
j for some j < k and σ < βˆ∞. Hence every

module belonging to a node along the true path is injured only finitely often.

5.4. Coordinating different modules belonging to the same node. Due to
the fact that modules can be pending forever, a node α cannot run the actions
of its modules sequentially and start Mα

k+1 only after Mα
k has completed all of its

actions. Rather, α will need to go through its modules in two phases. The first
phase is done sequentially, where we go through Mα

0 ,M
α
1 , . . . in order and extend

∆α(C) at each module; this step only requires Ψ(B) to be total and therefore can
be done by the modules of α in order.

After a module Mα
k has completed its first phase, it is pending and is waiting for

the opponent to respond to the challenge. We cannot go through all the modules
without the opponent responding to cofinitely many of the challenges; if infinitely
many modules are pending forever we will make sure that ∆α(C) is total which will
then contradict the fact that ∆α(C) is dominated by f . On the other hand if the
opponent eventually responds to the challenge on some pending Mα

k , we will start
the second phase of Mα

k and try to force a change in A � ϕ(k).
The opponent is of course not obliged to respond to our challenges in a sequential

fashion, and only has to make sure that at the end of time, he responds to all but
finitely many of α’s challenges. This introduces additional injury on top of the
global coding actions. We illustrate this with the following example.

Suppose that Mα
k has completed its first phase and is now pending. A module

Mα
j for j > k might successfully trace the computations that it is looking after

while Mα
k is still pending. Suppose that later on we attend to Mα

k and enumerate
ϕ(k) into B because we received certification on an incorrect C-segment. This will
injure all modules of lower priority than Mα

k . Consequently, all the computations
previously in

⋃
j>k zone

α
j will have to lower their tolerance. In particular, zoneαk

will receive new values of x.
We need to argue that zoneαk does not receive infinitely many new values in this

way: Notice that Mα
k has not yet been successful, and we will wait for Ψ(B, x) to

converge for all the new x ∈ zoneαk , before issuing a new challenge to the oppo-
nent. The above cannot happen infinitely often because otherwise infinitely many
incorrect certifications are issued contradicting that f 6T ∅′.

We have just seen that changing B will cause zoneαk to increase; the above
scenario doesn’t pose a big problem since we can limit the increase in zoneαk by
counting the number of incorrect certifications received at the module Mα

k . How-
ever, a more serious issue occurs if the B-change is made by another requirement in
the construction. For instance, Ψα(B, x) (for some x ∈ zoneαk ) could converge with
a very large use ψα(x), and after a challenge is issued by Mα

k , we might change B
below ψα(x) when Mα

k is still pending. Now if A � γ(aαk ) changes before Ψα(B, x)
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next converges, we would be unable to benefit from the A-change. The opponent
could then certify that C was correct (on the old γ(aαk )-use), and never change C
below that. This is bad for Mα

k , for it would have lost all progress it had previously
made on the test ∆(C, p), and p cannot be used in future challenges. We will be
forced to pick a new value of p for Mα

k to use in future iterations of its strategy, but
since Ψα(B, x) might converge with larger and larger use, Mα

k might end up losing
every p it picks if we are not careful. Now of course locally, the requirement at α
is satisfied as Ψα(B) is not total, however, the module Mα

k will end up moving the
marker ϕ(k) infinitely often, which we absolutely must avoid doing.

To deal with the above problem, we will do the following. We ensure that every
time some computation in zoneαk is injured while Mα

k is pending, there must also a
sufficiently small C-change so that ∆α(C, p) is made undefined and Mα

k can reuse
the same test ∆α(C, p). To be more specific, we wait for Ψα(B, x) to converge for
every x ∈ zoneαk . We then challenge the opponent (via ∆α(C, p)) to certify that
C � γ(aαp ) is correct, where p is largest such that ϕ(p) < ψα(x) for any x ∈ zoneαk .
Any action which can injure the computations in zoneαk will have to be either due
to the global actions (which happens at most once for each ϕ(p)), or due to the

actions of some Mβ
j where β � α and j 6 p. Therefore, the only reason why a

module Mβ
j enumerates ϕ(j) into B and destroys the computation, must be due to

one of the following two reasons:

(i) Mβ
j is no longer set correctly, and it enumerates ϕ(j) into B in an attempt

to set itself correctly again. In this case, there must have been some change
in C which now makes ∆α(C, p) undefined, because of Mα

k -believability.

(ii) the opponent responded to some challenge put forward by Mβ
j , where we

would have enumerated aβj in response, and observed a resulting C � γ(aβj )-

change. In this case ∆α(C, p) is now undefined as well.

In either of the two cases above, Mα
k can now reuse the test ∆α(C, p) on the same p,

so that previous progress on this test location is not wasted. Even if this happens
infinitely often, Mα

k will only use finitely many agitators and hence only move ϕ(k)
finitely often. In this way, the actions of a larger module Mα

j may affect Mα
k ,

but no real injury is inflicted on Mα
k . Any Ψα(B)-computation which is true, will

eventually become believable. For each k, we need to arrange for two outcomes -
k∞ to the left of kf .

Since α does not know what the nodes extending it are currently doing, it is the
responsibility of β1 < α k̂f to ensure that it never damages a convergent Ψα(B, x)-
computation which is pending the opponent’s response for every x ∈ zoneαk . This
outcome kf of α also encodes the fact that every challenge associated with Mα

k will
eventually cease to be pending; by the assumption that f dominates ∆α(C), one
of the outcomes of α must be true. Now since β below α has to act above the use
of convergent Ψα(B, x)-computation, and because of the possibility of ψα(x) going
to ∞ for some x ∈ zoneαk , we will also need to have the infinitary outcome k∞. A
node β0 < α k̂∞ is only visited if ∆α(C, p) is undefined, so Mα

k does not care what
β0 does during the α k̂∞-stages.

5.5. Requirements and conventions. As discussed above, we are given A and C,
enumerate P , and are given Γ such that Γ(A,C) = P . We enumerate B. We are
given a computable approximation 〈fs〉 to a ∆0

2 function f which dominates all
C-computable functions.
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The usual convention regarding stage numbers and notations applies. The use
of functionals Γ and Ψ are denoted respectively by γ and ψ. We assume that for
all x and s, if Ψ(B, x)↓ [s] then x < ψs(x) < s, and similarly for Γ; we also assume
that the uses are monotone. During the actual construction, there may be several
actions taken one after another in a single stage s. It is sometimes convenient to
break down a single stage into substages where a single action is taken at each
substage. In this construction we will not bother with distinguishing between a
stage and its substages; when we refer to a stage s we actually mean the instance
within the stage s (or the substage of s) where the action is taken.

As indicated above, we introduce a minor difference with respect to the markers;
we will have separate markers ϕA(k) and ϕB(k). If either A changes below ϕA(k)
or B changes below ϕB(k) + 1 then we are allowed to lift either or both uses.

5.6. The construction tree. The construction takes place on an infinite branch-
ing tree. Nodes at level e are devoted to the requirement RΨ for the eth functional
Ψ = Ψe in some effective list of all functionals. There are two groups of outcomes,
and we will alternate between the two groups in the ordering: 1∞ <L 1f <L 2∞ <L
2f <L 3∞ <L 3f <L . . . . The first group of outcomes 1∞, 2∞, . . . are called in-
finite outcomes, in order to distinguish these from the second group 1f, 2f, . . . ,
which we will call the finite outcomes. The choice of these names have little to do
with the frequency of actions and when the respective outcomes are played; in the
actual construction the finite outcomes do have infinitary actions, however they are
tagged as “finite” simply because certain associated ΨB

e -computations converge in
the limit.

The ordering between outcomes extends lexicographically to an ordering of nodes.
α <L β means that α is strictly to the left of β. We write α ≺∞ β if αˆn∞ 4 β
for some n, and α ≺f β if a similar situation holds with f instead of ∞. We write
α 4∞ β if α ≺∞ β or α = β, and similarly write α 4f β.

We say that α is an RΨ-node, if α is assigned the requirement RΨ, and write Ψα

for Ψ. Each node α measures the totality of Ψα(B). As described previously, α k̂∞
will be visited if Mα

k has its current test reset, i.e. ∆α(C, p) undefined, so that Mα
k

does not care what happens in the region [α k̂∞] (defined as the set of all nodes
β < α k̂∞). Whenever α plays this outcome, we initialise all nodes β < α ô for any
outcome o to the right of k∞. Whenever Mα

k progresses in its atomic strategy, we
will visit the outcome kf , and initialise all nodes extending an outcome o >L kf .
Any node β < α k̂f will coordinate its actions with α as described previously. That

is, Mβ
j will wait until all the modules Mα

k ,M
α
k+1, . . . ,M

α
j are successful, before Mβ

j

is allowed to act (this prevents α-modules from injuring β-modules). To ensure the
true path of the construction exists, whenever a module Mα

k becomes successful, we
will visit the outcome k′f where k′ is the least place 6 k where a run of successful
modules starts. For instance, using s to denote success, and w otherwise, we could
have initially:

Module Mα
0 Mα

1 Mα
2 Mα

3 Mα
4 Mα

5 Mα
6 Mα

7 Mα
8 · · ·

State w w w w w w w w w · · ·
Outcome played = 0f . Then we have:

Module Mα
0 Mα

1 Mα
2 Mα

3 Mα
4 Mα

5 Mα
6 Mα

7 Mα
8 · · ·

State w w s w w w w w w · · ·
Outcome played = 2f .
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Module Mα
0 Mα

1 Mα
2 Mα

3 Mα
4 Mα

5 Mα
6 Mα

7 Mα
8 · · ·

State w w s w w s w w w · · ·
Outcome played = 5f .

Module Mα
0 Mα

1 Mα
2 Mα

3 Mα
4 Mα

5 Mα
6 Mα

7 Mα
8 · · ·

State w w s w w s w w s · · ·
Outcome played = 8f .

Module Mα
0 Mα

1 Mα
2 Mα

3 Mα
4 Mα

5 Mα
6 Mα

7 Mα
8 · · ·

State w w s w w s s w s · · ·
Outcome played = 5f .

Module Mα
0 Mα

1 Mα
2 Mα

3 Mα
4 Mα

5 Mα
6 Mα

7 Mα
8 · · ·

State w w s w s s s w s · · ·
Outcome played = 4f .

Module Mα
0 Mα

1 Mα
2 Mα

3 Mα
4 Mα

5 Mα
6 Mα

7 Mα
8 · · ·

State w w s s s s s w s · · ·
Outcome played = 2f .

Hence if Ψα(B) is total, then ∆α(C) is total and the opponent has to respond
at all but finitely many of the modules. In between, infinitary outcomes may be
played from time to time, as different Ψα-computations are injured, but the above
will describe the situation in the limit. In the above example we will visit α-
outcome 2f infinitely often, and so a node β < α 2̂f can wait patiently to start any
β-module. On the other hand if some infinite outcome k∞ is played infinitely often
then it must be that some x ∈ zoneαk is divergent and ∆α(C) is not total, so that
the opponent doesn’t have to respond at all. However this is an automatic win for
us at α.

5.7. Notation for the formal construction. Each α builds a c.e. trace Tα, and
ensures that for all x, |Tα(x)| 6 x. For each α and x, we have a parameter tαx
which keeps track of an upper bound for x− |Tαs (x)|. At the beginning (each time
α is initialised) we start with tαx = x. Every time a value Ψα(B, x)[s] is traced in
Tα(x) and later B � ψα(x) is changed, we will decrease tαx by 1. When tαx reaches
1 (if ever), then any current value traced must be preserved forever. This ensures
that |Tα(x)| 6 x. During the construction we will sometimes say that we lower tαx .
This simply means that we decrease the value of tαx by 1. When we lower tαx , we
also lower tαy for every y > x at the same time. The inverse of the parameter tαx
is denoted by the parameter zoneαk , which is the set of all numbers x such that
tαx = k. Each node α will be building a Turing functional ∆α, which is used as a
test. Following conventions, the use of currently applicable computations ∆α(C, x)
is denoted by δα(x).

Every x in the same zone has the same goals; they all want to “disengage” the
same ϕB-markers from below their use ψα(x). That is, every x in zoneαk wants
to ensure that ψα(x) < ϕB(k). The kth module Mα

k will act on behalf of all the
x ∈ zoneαk , and will elect a number pαk called a follower. The idea is that Mα

k will
be enumerating computations for ∆α(C, pαk ). It also appoints a number aαk called
an agitator, and as the name suggests, will be used to force an A⊕ C-change.

We will introduce what we call global agitators, denoted by gk. That is, gk will
be used to help in the coding of ∅′(k). The primary aim of the global agitator is to
ensure that if k enters ∅′ and we need to code, we will only change B � ϕB(k) if we
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have an accompanying C � γ(gk)-change. Since we only need to use up gk if coding
occurs, we may choose and fix the values for the global agitators in advance.

Each module Mα
k is in a particular state at any point in time. It can either be

unstarted, ready, waiting or successful. Roughly speaking, being in the state
unstarted means that the module has just been initialised and needs to pick a new
follower and agitator. The state ready represents the fact that we are waiting for an
appropriate chance to define ∆α(C, pαk ). When the module passes to state waiting,
we have defined ∆α(C, pαk ) and are now waiting for the opponent to respond with
f(pαk ) > ∆α(C, pαk ). Lastly the state successful represents the fact that we have
managed to disengage all dangerous markers, and have increased the trace size by
1 for all x ∈ zoneαk . The state of a module will retain its assigned value until we
assign a new state to it. There is one exception to this: if a module Mα

k has state
waiting and a C-change occurs so that ∆α(C, pαk ) becomes undefined, then we set
the module to have state ready (this is assumed to be a background task which is
done implicitly, we do not mention this step in the construction). The reason why
we want to implement this is to be consistent with the fact that

Mα
k has state ready ⇒ ∆α(C, pαk ) is undefined,

Mα
k has state waiting ⇒ ∆α(C, pαk ) is defined.

We say that the module Mα
k is set correctly, if its state is not unstarted, and

γ(aαk ) 6 ϕA(k), with everything mentioned here defined. That is, a module is said
to be set correctly if its agitator has its use in the correct place. Similarly, the
global agitator gk is said to be set correctly, if γ(gk) 6 ϕA(k). We define lαk to
be the module ending the longest run of consecutive α-modules starting with Mα

k ,
that are in the state successful. That is, lαk = least number j > k such that Mα

j

is not in the state successful.

Definition 5.2 (Active modules). With each node α we associate a collection of
α-modules which we call active modules. At stage s, a module Mα

k is said to be
active, if the following holds:

(1) k > |α|,
(2) for every β ≺ α and n such that βˆnf 4 α, we have n < k < lβn,
(3) for every β ≺ α and n such that βˆn∞ 4 α, we have n < k and for every

n 6 k′ 6 k, we have Mβ
k′ is either successful or is set correctly,

(4) gn is set correctly for all n 6 k.

When we visit α during the construction, only the α-modules which are currently

active get a chance to act. The idea is that once a module Mβ
k enters the state

successful, then it never moves ϕB(k) anymore, and so when α �f β is visited we
only allow α-modules which are currently active to act. This is to prevent injury
to the α-modules by β-modules.

Definition 5.3 (Believable computation). We define what we mean by a believable
computation. A computation Ψ(B, x) which converges at a stage s with use u =
ψ(x), is said to be Mα

k -believable, if for every z > k such that ϕB(z)↓< u, we have
Mα
z is currently active, and either successful or is set correctly.

When we initialise a module Mα
k , we set pαk and aαk to be undefined, and declare

the state of Mα
k as unstarted. When we initalize a node α, we first initialise all of

its modules. Then, we set Tα(x) = ∅ and tαx = x for all x, and restart ∆α.
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5.8. The ordering amongst modules. The driving force behind the construction
is the action of the individual modules (instead of the actions of nodes). During
the construction when a node α is visited, we will take actions for some α-module.
This action will affect and injure β-modules, possibly for all nodes β comparable
with α. Due to these interactions between the modules of different nodes, we will
introduce the following two concepts.

We first define a local priority ordering amongst the modules (of different nodes).
Note that a moduleMα

k only enumerates current ϕB(k)-marker values intoB (under
its individual strategy). If Mα

k is an α-module, we define the set of modules with a

lower local priority, to be all the modules Mβ
i for some β ≺f α, and k 6 i. We also

include all the modules Mα
i for i > k in this list (i.e. larger α-modules are also of

a lower local priority).
We say that a computation Ψβ(B, x)[s] is a current traced computation at s, if

Ψβ(B, x)↓∈ T β(x) [s], and there is no change in B below ψβ(x) since the time the
value was traced in T β(x). Furthermore we also require that tβx was not lowered
since the time the value was traced. That is, current traced computations are
the computations that we should not allow to be injured easily. Another minor
technical point to note is the following. We will think of the trace T β(x) as tracing
the use of Ψβ(B, x)[s], instead of the value of the output (so when we enumerate
Ψβ(B, x)[s] into T βx we assume that we enumerate the code of the use instead). If
the computation Ψβ(B, x) is traced at two different times, we will have two different
strings in the trace T β(x). At stage s, we will also say that a computation Ψα(B, x)
has persisted for two visits to α, if Ψα(B, x)[s−]↓ and there has been no change
in B below the ψ-use between s− and s, where s− is the previous visit to α. We
say that a computation has persisted between two stages s < t if the above holds
with the obvious modifications. The point of making this definition is to identify

the following situation: a module Mβ
i may have a currently traced computation

Ψβ(B, x), but it may be initialised after it had made the trace of Ψβ(B, x) into
T β(x). Namely, it is possible for a module to have a current traced computation,
but it is not successful.

Next, for an α-module Mα
k , we define the injury set of Mα

k to be the set of

modules Mβ
i where β � α, i > k, and such that for some x ∈ zone

β
i , we have

Ψβ(B, x) is a current traced computation (in this case, we also say that Mβ
i has

a current traced computation). Note that if Mβ
i is successful, we will always

consider it to be in the injury set as well. That is, Mβ
i is a module in which

some Ψβ(B, x)-computation which has already been traced, would be injured if
Mα
k decides to act and enumerate ϕB(k) into B. Note that the modules of a lower

priority depends only on the layout of the tree and do not change with time, while
the injury set varies with time.

5.9. The construction. At stage s = 0, initialise all nodes and do nothing. At
stage s > 0 we define which nodes (up to length s) are accessible at that stage; as
usual, the root (the empty node) is always accessible.

Suppose then that a node α was declared to be accessible at stage s. We state
the actions to be taken by α at stage s, and if |α| < s, its successor which is next
accessible. If such exists, pick the smallest k < s such that k is greater than the last
stage at which α was initialised, and Mα

k is currently active and requires attention.
We say that Mα

k requires attention, if one of the following holds:
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(A1) Mα
k is unstarted.

Otherwise, ϕA(k) and ϕB(k) are defined, Γ(A,C, aαk )↓= P (aαk ), and as well as one
of the following:

(A2) Mα
k is ready, and let s− be the previous visit to α. There exists some largest

α-stage t 6 s− such that after α has acted at t, we have Mα
k not ready.

We require that for some x ∈ zoneαk , Ψα(B, x) has persisted between t and
s−, but not between s− and s. In short, some relevant computation has
recently been destroyed (and possibly by α itself at s−).

(A3) Mα
k is ready, but is not set correctly.

(A4) Mα
k is ready, and for every x ∈

⋃
j6k zone

α
j , Ψα(B, x)[s] ↓ and is Mα

k -
believable.

(A5) Mα
k is waiting, and γ(aαk ) > δα(pαk ) [s].

(A6) Mα
k is waiting, and ∆α(C, pαk )[s] < f(pαk ) [s].

Step 1. We will act for the α-module Mα
k . At each visit to α, at most one α-module

receives attention. Choose the first item in the list above that applies, and take the
corresponding action:

• (A1) applies: pick a fresh follower pαk and a fresh agitator aαk . Declare Mα
k

to be in ready state.
• (A2) applies: do nothing. This is included to ensure that infinite outcomes

of α gets a chance to act.
• (A3) applies: enumerate ϕB(k) (if defined) into B.
• (A4) applies: let p be largest such that ϕB(p) ↓< ψα(x) for some x ∈⋃

j6k zone
α
j (we always take p > k), and let

z = max{g0, · · · , gp} ∪ {aβq : β 4∞ α & q 6 p}.

Note that all the parameters involved must be defined and set correctly,
because of Mα

k -believability. Let

m = max{δα(y)↓ [s] : y 6 pαk}.

Define ∆α(C, y)↓= a fresh number, with use Cs � γ(z) +m, for every y 6 pαk
such that ∆α(C, y)↑ [s]. Declare Mα

k as waiting.
• (A5) applies: declare Mα

k as successful. For every x ∈ zoneαk , we enu-
merate the value of Ψα(B, x)[s] into the trace Tα(x).

• (A6) applies: enumerate aαk into P and pick a fresh agitator. Wait for
either C � γ(aαk ) or A � γ(aαk ) to change (one of the two must change). If A
changes do nothing, else if C changes then we enumerate ϕB(k) (if defined)
into B.

If an enumeration was made into B in Step 1, we say that the module Mα
k was

injurious. We separate this case from the rest because these are the “bad actions”
which will injure the other modules on the tree.

Step 2. We now determine the effect that our actions in step 1 have (if any) on
the other modules in the construction. If Mα

k was not injurious, we do nothing.
Otherwise we do the following in the specified order.

• for every x ∈ zone
β
j such that Mβ

j is of lower local priority (than Mα
k ) and

j > k, we lower tβx .
• we initialise all modules of a lower local priority.
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• for every β � α, do the following. Let i > k be least (if any) such that

Mβ
i is in the injury set of Mα

k . Note that we naturally consider the injury

set before step 1 is taken, so that Mβ
i is the smallest β-module which has

a current traced computation being injured by the action in step 1. We

then initialise all modules Mβ
j for all j > i − 1, and we lower tβx for every

x ∈
⋃
j>i zone

β
j .

Step 3. Now decide which outcome of α is next accessible. Suppose that Mα
k has

just received attention (if no module received attention let k = s). If (A5) was the
action taken, let the next outcome be jf , where s− < j 6 k is largest such that
Mα
j is active and Mα

j−1 is not successful. Otherwise if (A5) was not the action

taken, we search for the least j with s− < j 6 k such that Mα
j is ready and active,

and for some x ∈ zoneαj , Ψα(B, x) has not persisted for at least two visits to α. If
j exists, we let the next outcome be j∞; otherwise we let the next outcome be kf .

Global actions. At the end of stage s, we initialise all nodes β that lie to the right
of the last accessible node, and take the global actions for coding: pick the smallest
e < s such that either

(i) ge is not set correctly, or
(ii) e enters ∅′ at stage s.

If (i), holds enumerate ϕB(e) into B. On the other hand if (ii) holds, then we
enumerate ge into ∅′, and wait for A � γ(ge) or C � γ(ge) to change. If C � γ(ge)
changes first then we enumerate ϕB(e) into B. In addition, if we had enumerated
ϕB(e) into B in the previous step, we will also perform the following: for every
node α and every k > e, we initialise the module Mα

k . We also lower tαx for every
x ∈ zoneαk where k > e.

Next, we define new ϕ-markers. Wait for Γ(A,C, z)↓= P (z) for every z 6 the
largest number used so far. For every e < s for which we have observed a change
in A below ϕA(e) or a change in B below ϕB(e), or for which the markers have
not yet been defined, we define new markers: ϕB(e) is defined to be large, whereas
ϕA(e) is defined to be

max{γ(aαe ) : α is a node such that aαe↓} ∪ {γ(ge)}.

Clearly there is a danger that the A-use ϕA(e) might get driven to infinity, but we
will later show that this cannot be the case.

5.10. Verification. It is easy to verify the following facts.

Fact 5.1. Suppose Mα
j is a module which is active at a stage s. Then for any k < j,

either Mα
k is also active at s, or else Mα

k will never be active after s.

Fact 5.2. Observe that we never wait forever at some step of the construction.
When a module Mα

k acts, it can only enumerate the current marker value of ϕB(k)
into B. If Mα

x is initialised, then all larger α-modules are also initialised by the
same action. Furthermore if Mα

x is initialised then at the same time either the node
α is initialised, or the markers ϕ(x) becomes undefined (due to changes in either
the A or B side). For any α and k, zoneαk is never empty. If Mα

j and Mα
i are both

active at some stage s, and j < k < i, then Mα
k is also active at s. If pαj ↓ and pαk↓

for j < k, then we have pαj < pαk .
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It is also not too difficult to verify the following fact. The nontrivial case to con-
sider is when Mα

k−1 takes an injurious action, and initialises Mα
k . In this situation,

Mα
k−1 itself is not initialised, however its state will be ready:

Fact 5.3. If an action is taken to lower tαx for some x ∈ zoneαk , then Mα
k will also

be initialised and Mα
k−1 will become either unstarted or ready.

Lemma 5.4. Suppose Mα
k receives attention at s, and ϕ(k)[s]↓ and s− < s is the

stage of the most recent visit to the left of α. Then, every module Mα
i which is

active at s, for s− < i < k must either be successful or be set correctly at s.

Proof. Mα
i cannot be unstarted (otherwise Mα

i would have received attention
at s). If Mα

i is ready then it has to be set correctly (otherwise again, Mα
i would

have received attention). This leaves the case Mα
i is waiting. Since ϕ(i) is defined

at s, by considering ∆α(C, pαi ), it is not difficult to see that at s we must have Mα
i

set correctly as well. �

Lemma 5.5. Suppose Mα
k is waiting at stage s. Then for every x ∈

⋃
j6k zone

α
j ,

we have Ψα(B, x)[s]↓. Furthermore B � ψα(x)[s] cannot change before Mα
k has a

change of state.

Proof. Let s0 6 s be the largest when (A4) holds to change Mα
k from ready to

waiting. By Fact 5.3, zoneαj [s0] = zoneαj [s] for every j 6 k, it suffices to prove the
lemma with s0 in place of s. Fix an x ∈ zoneαk [s0], clearly Ψα(B, x)[s0]↓. Suppose
that ϕB(z)[s0] < ψα(x)[s0] is enumerated into B at some least stage t > s0, and
some z. Suppose to the contrary that β has had no state change between s0 and t.
Suppose firstly that the enumeration was made by the global actions. We have gz
is set correctly at s0; this follows from the fact that Mα

k is active at s0 (if z < k),
and Mα

k -believability if z > k. In either case we have δα(pαk ) set to be larger than
γ(gz)[s0] at s0, and consequently neither γ(gz) nor ϕ(z) could have changed between
s0 and t. Hence, the global actions at t would destroy the ∆α(C, pαk )-computation
set at s0, resulting in a change of state at t.

Next, we want to show that at stage s0 the outcome kf is played when α is
visited: if not then there is some j < k and j > s−0 such that Mα

j is ready and
active. For x ∈

⋃
y6j zone

α
y , we claim that the Ψα(B, x)[s0]-computation (besides

being Mα
k -believable) is also Mα

j -believable at s0. This follows by Lemma 5.4
because every module Mα

i for j 6 i < k must be active (since Mα
j and Mα

k are).
Hence Mα

j would have received attention instead of Mα
k at s0, a contradiction.

Suppose now that the enumeration of ϕB(z)[s0] was made by the module Mβ
z for

some node β, at stage t. Clearly β <L α, or β >L α is trivial. Suppose β < α ô for
some outcome o. Again o >L kf is trivial, and from the fact that Mα

k is waiting

between s and t, it follows that o = kf is impossible. Suppose that o = k′f for some
k′ < k. Since Mβ

z is active at t it follows that at t we have z < lαk′ 6 k, which means
that after Mβ

z acts at t, we would initialise Mα
k (Mα

k being of lower local priority).
If on the other hand we have o = k′∞ for some k′ 6 k, then stage t is strictly
after s0. We may assume k′ < k otherwise Mα

k is ready at t. At t there is some
x′ ∈ zoneαk′ [t] such that Ψα(B, x′) has not persisted for two visits to α. Since Mα

k

had no change in state between s0 and t, it follows that x′ ∈ zoneαk′ [s0] = zoneαk′ [t],
which means that x′ < x. Since Ψα(B, x′) had not persisted between s0 and t, this
contradicts the minimality of t.
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We are now left with the case β 4 α. If βˆnf 4 α then at s0 we have z < lβn
(again due to either Mα

k being active or Mα
k -believability). If z < n then at t some

outcome to the left of nf will be played when β acts, resulting in an initialisation
to α. Suppose therefore, that n 6 z < lβn, and hence Mβ

z is successful at s0. The
only way for Mβ

z to get out of successful, is for Mβ
z to be initialised before t,

and so by Fact 5.2, either β itself is initialised or ϕB(z) is lifted between s0 and t,
another contradiction.

Finally we have the case βˆn∞ 4 α or β = α. We can conclude (again due
to either Mα

k being active or Mα
k -believability) that Mβ

z is either successful or
is set correctly at s0 (for β = α and z < k, use Fact 5.1 and Lemma 5.4). A
similar argument as the one used above can be applied to show that Mβ

z cannot
be successful. Hence Mβ

z has to be set correctly at s0, and furthermore α at s0

will set the use δα(pαk )[s0] at least as big as γ(aβz )[s0]. Between s0 to t there can
be no change in A below γ(aβz )[s0], because Mβ

z was observed to be set correctly at
s0. There is also no change in C below γ(aβz )[s0], since Mα

k was assumed to have
no state change. Hence at t when β gets to act, it must still be that Mβ

z is set
correctly, and that (A6) applies, causing us to enumerate aβz and get a C � γ(aβz )-
change, which would in turn cause ∆α(C, pαk ) to become undefined after the action
at stage t. �

Lemma 5.6. At any time, if the module Mα
k is active, and k > stage number of

the previous visit to the left of α, the following are true:

(i) Mα
k is not unstarted ⇔ pαk and aαk are both defined.

(ii) Mα
k has state ready ⇒ ∆α(C, pαk ) is undefined.

(iii) Mα
k has state waiting ⇒ ∆α(C, pαk ) is defined.

Proof. (i) and (iii) are obvious.
(ii): suppose on the contrary that s is a stage such that Mα

k is ready and is
active, but ∆α(C, pαk ) has an axiom that applies. Let s− < s be the latest action
that caused Mα

k to become ready. Note that this must be either Mα
k receiving

attention under (A1), or due to some C-change occuring. In any case it must be
that ∆α(C, pαk )[s−] is undefined. Hence at some time t where s− < t < s we have
some module Mα

j where j > k taking action under (A4) and enumerating the axiom
for ∆α(C, pαk )[s]. Since Mα

j is active at t, it follows by Fact 5.1 that Mα
k is also

active at t, and in fact by Lemma 5.4, every Mα
i has to be active, and has to be

either successful or be set correctly at t for all k 6 i < j. Hence at stage t when
α was visited, it is not hard to see that we have t− < k < t, and also that Mα

k

requires attention under (A4), because every relevant computation converges and is
Mα
k -believable at t. Hence it is impossible for Mα

j to act at t, a contradiction. �

Lemma 5.7. Suppose that Mα
k has just received attention under (A5) at s. Then

for every x ∈
⋃
j6k zone

α
j [s], we have Ψα(B, x)[s]↓. Furthermore if ϕB(k)[s]↓, then

ϕB(k)[s] > ψα(x)[s].

Proof. Let s0 < s be the largest stage where (A4) applies to Mα
k and causes

the state changes from ready to waiting. It follows again by Fact 5.3 that
zoneαj [s0] = zoneαj [s] for all j 6 k, and by Lemma 5.5, we have Ψα(B, x)[s0]↓,
and this computation is not injured between s0 and s. Furthermore at s0 we had
set ∆α(C, pαk )↓ with use u = δα(pαk ), where we clearly have Mα

k set correctly with
γ(aαk ) < u. It also follows that the values of C � u and pαk did not change between



40 N. GREENBERG, K. M. NG, AND G. WU

s0 and s, so consequently A � γ(aαk )[s0] has to change between s0 and s in order
for (A5) to hold at s. Because Mα

k was set correctly at s0, it follows that ϕB(k)[s]
is picked fresh and so is larger than ψα(x)[s0] (this is why it is important that
B � ψα(x)[s0] did not change between s0 and s, so that we can benefit from the
A-change in between). �

Lemma 5.8. Suppose ϕB(x)[s] is enumerated into B at stage s (by any action),
and for some α and k > x, Mα

k is either successful or has a current traced
computation at s. Then the same action will either

• initialise the node α, or
• initialise Mα

k , and lower tαx for every x ∈ zoneαk

Proof. We proceed by induction on the sequence of actions (or substages) in the
construction. If ϕB(x) was enumerated by the global actions, then it is clear. So,
we assume some Mβ

x took an injurious action. We must have β and α comparable
(otherwise it is trivial), and if β <f α then it is easy. If β ≺ α then one can verify
that Mα

k would be in the injury set of Mβ
x when β acted. The only case left is

αˆn∞ 4 β for some n. We show this case is not possible.
At stage s we have Mα

k is either successful or has a current traced computation.
Clearly we have k > x > n. When α was visited earlier in the stage s, we had some
y ∈ zoneαn[s] where Ψα(B, y) has not persisted for two visits to α. If Mα

k has a
current traced computation at s, then Mα

k would have received attention under
(A5) and enumerated Ψα(B, z)[s0] into Tαz at some stage s0 6 s. Furthermore
between s0 and s, tαz is not lowered. On the other hand if Mα

k is successful at s,
then it also receives attention under (A5) at some stage s0 6 s. We claim that in
either case, we have tαy [s0] 6 k.

In the latter case, this follows because of Fact 5.3 and the fact that k > n. In
the former case, we cannot apply Fact 5.3 directly because Mα

k might be initialised
between s0 and s. However if z < y then k = tαz [s] 6 tαy [s] = n is a contradiction,
and on the other hand if z > y then k = tαz [s0] > tαy [s0] > k.

In that case it follows by Fact 5.3 and by Lemma 5.5 that Ψα(B, y)[s0]↓ and at
s0 it had already persisted for two visits to α. Therefore the visit to α at s0 and
the visit to β at s cannot take place in the same stage. Therefore B � ψα(y)[s0] has
to change at some action strictly between s0 and s. By Lemma 5.7 this has to be
ϕB(x′) for some x′ < k. Apply induction hypothesis to get a final contradiction,
and hence we conclude that the case α ≺∞ β is also not possible. �

Lemma 5.9. For any β and e, if Mβ
e is initialised finitely often, then it only picks

finitely many agitators aβe .

Proof. Suppose t0 is a stage after which Mβ
e is never initialised. Then p = lim pβe

must exist. Since after t0, we only pick a new agitator if (A6) applies, it follows
that we may assume that there are infinitely many stages t1 < t2 < · · · larger than
t0 such that Mβ

e receives attention under (A6) at all of these stages. When Mβ
e

next receives attention after each tn, we must have Mβ
e ready (otherwise it is not

hard to see by Lemma 5.6 that (A5) will apply and break the cycle), which means
that ∆C

β (p) receives a fresh axiom between each tn and tn+1. This is contrary to

the fact that f(p) reaches a limit. �

Lemma 5.10. For each e, the following are true:

(i) ϕ(e) is moved finitely often,
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(ii) there is a stage after which no module Mα
k for any α and k 6 e is injurious.

Proof. We prove (i) and (ii) simultaneously by induction on e. Let s0 > e be large
enough such that (i) and (ii) holds for all k < e, and also the global actions for
coding have stopped acting for ϕ(0), · · · , ϕ(e). That is, the global requirements
no longer enumerate ϕ(0), · · · , ϕ(e). Note that we are not assuming that (i) and
(ii) of the global actions hold for e finitely often; instead we only require that the
global actions enumerate ϕB(e) into B finitely often. Let α be the leftmost node
such that |α| = e − 1 and α is visited on or after stage e (assume s0 large enough
such that this happens before s0). Thus the only modules Mβ

e which can receive
attention after stage s0, will belong to the nodes β 4 α, because modules to the
right of α are never active after stage s0. We proceed in a series of steps:

Claim 1: if β0 ≺f β1 4 α, then no β0-module can take an action which initialises
Mβ1
e after stage s0. The only β0-module which can do that after s0 is Mβ0

e , and
so if β0

_nf 4 β1, then we must have n 6 e (otherwise it is trivial). Let t1 > s0

be a stage where Mβ0
e acts and initialises Mβ1

e . Note that we only need to show
that there are finitely many of such stages t1 (since we can choose s0 large enough

for the rest of the lemma). Clearly Mβ1

e+1 is in the injury set of Mβ0
e at t1, and

consequently we have Mβ1

e+1 is either successful at t1, or else it has a current

traced computation at t1. In any case we can let t0 < t1 be the stage where Mβ1

e+1

receives attention under (A5), and sets things up for t1. Note that at t1, we will

also have Mβ1

e+1 initialised and every x ∈ zone
β1

e+1 gets lowered, but the latter does
not happen between t0 and t1. Therefore, if there are infinitely many such stages
t1, we may assume that t0 is large (enough for our purpose) as well. At t0, we have

Mβ0
e is successful (since Mβ1

e+1 is active), and hence between t0 and t1, the module

Mβ0
e has to be initialised. Since t0 is large, the module Mβ0

e has to be initialised by
the actions of a third module Mσ

e for some σ, which took an injurious action. By
Lemma 5.8 this is impossible, by the choice of t0. This contradiction shows that
Mβ0
e has to be successful at t1 still, and so cannot be injurious towards Mβ1

e .
Note that a β-module can receive attention infinitely often, in which case ΨC

β

is not total. However, a module cannot be infinitely injurious; this is important
because we want each module to have a finite effect on the rest of the construction:

Claim 2: for any β, if Mβ
e is initialised finitely often, then it can be injurious

only finitely often. This follows directly from Lemma 5.9.
Claim 3: for any β such that β 4∞ α, we have Mβ

e is initialised finitely often.
Start with the minimal such node β 4 α, and work downwards inductively by
applying Claims 1 and 2.

Claim 4: if β ≺f α, then Mβ
e is also initialised finitely often. This time round,

start with the maximal such node β 4 α, and work upwards inductively by applying
Claims 1, 2 and 3.

The claims above prove (ii) for e. We now show (i). Assume s1 > s0 is such that
no module Mσ

k for any σ and k 6 e is injurious anymore. Note that if σ >L α, then
aσe is undefined after s0, and never receives a definition again. If σ <L α then aσe
never receives a new value after s0. Let σ 4 α, and by Lemma 5.9, we have lim aσe
exists. Finally, it is not hard to put the various facts together and conclude that
(i) holds for e as well. �
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An immediate corollary to Lemma 5.10 is that ∅′ 6T A⊕B. We define the true
path of the construction to be the leftmost path visited infinitely often. Before we
can show that the true path exists, we start with a preparatory lemma:

Lemma 5.11. Suppose α is visited at s and has just finished acting and has decided
to visit the outcome k0∞. Then, it is impossible for Mα

k1
to be waiting if k1 > k0.

Proof. Let s− 6 s be the stage where Mα
k1

received attention under (A4) to give
its current waiting state. Since outcome k0∞ was played at s, it follows by Fact
5.1 that Mα

k0
would be able to receive attention at s− if it required to do so.

Hence at s−, Mα
k0

cannot be unstarted or successful, and by Lemma 5.6(ii)

we have ∆α(C, pαk0)[s−]↓. Hence when δα(pαk1) was set at s−, it must be larger

than δα(pαk0)[s−]. Since Mα
k0

is ready at s it follows that C must change below

δα(pαk0) < δα(pαk1) between s− and s, a contradiction. �

Note that in the above lemma, we do not actually need α to have outcome k0∞
at s. All we really require is that k0 > s− (the previous visit to α) and Mα

k0
is

active and ready at s.

Lemma 5.12. The true path of construction exists.

Proof. Suppose we have defined the true path up till α. Hence α is visited infinitely
often, and nodes to the left of α are accessible at only finitely many stages. We
want to show that some outcome of α is visited infinitely often. Suppose each
outcome is visited finitely often; we want to derive a contradiction to the fact that
C is low2. Since α is initialised only finitely often, it follows by Lemma 5.10 that
each α-module is initialised finitely often. We first show the following:

Claim 1: for almost all k, Mα
k eventually becomes active and is active at every

α-stage after that. Fix k large enough. We may assume by induction hypothesis,
that the statement of the claim holds for any β ≺ α. Let s0 be large enough such

that all parameters for Mβ
j for β ≺ α and j 6 k have settled. We can do this

because each β-module is initialised finitely often, and by Lemma 5.9, we know

that aβj is never refreshed again. We want to show that (1) to (4) of Definition 5.2

holds for Mα
k forever after s0. (1) and (4) are obvious, so we consider the other

two. First consider some βˆnf 4 α.
If Mβ

n receives attention infinitely often, then it is not hard to see that eventu-
ally we must have Mβ

n only receiving attention under (A4). Note that no β-module
smaller than Mβ

n can receive attention, so only Mβ
n can be responsible for enumer-

ating ∆C
β (y)-axioms for y 6 pβn. Therefore there must be some x ∈ zoneβn (which

would have settled) such that Ψβ(B, x) is divergent (because otherwise the vari-
ables z and m in (A4) would eventually settle). Consequently we must visit β at
some stage t in which Ψβ(B, x)[t] has not persisted for two β-stages, and by Lemma
5.5 Mβ

n would have to be ready at t. It follows that (A2) will apply to Mβ
n at t,

a contradiction (to the fact that nf is the true outcome of β) follows by applying
the induction hypothesis to β. Therefore, Mβ

n only receives attention finitely often,

and it follows that eventually, at each time βˆnf is visited, some module Mβ
j for

j > n would have to receive a state change from waiting to successful, and
subsequently stays successful forever (assuming of course, that j 6 k). If we wait
long enough then lβn > k at every visit to α.

Now consider some βˆn∞ 4 α. We want to show that eventually, every module

Mβ
n , . . . ,M

β
k is either successful or is set correctly at every α-stage. Any β-module
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Mβ
j for j 6 k which receives attention at an α-stage, can only have done so if (A2)

applies (use Lemma 5.11 for this, and the fact that aβj has settled). If every module

Mβ
j for n 6 j 6 k receives attention at finitely many α-stages, then by Lemma 5.4,

we clearly have what we want. Therefore, we may assume that j is least such that

Mβ
j receives attention at infinitely many α-stages for some n 6 j 6 k. Take a large

enough α-stage t where Mβ
j receives attention.

Let t− < t be the previous visit to β, and t′ 6 t− be the largest β-stage where

we finished β’s action with Mβ
j in state waiting. Furthermore, t′ and t− satisfy

the conditions described in (A2) of the construction. Hence at stage t∗ 6 t′ when

we bestowed the state waiting upon Mβ
j , we had set δβ(pβj ) = γ(z) + m where

z,m are as defined in the construction. We may assume t∗ > s0. Since no module

smaller than Mβ
j can be responsible for setting ∆β-axioms anymore, it follows by an

argument similar as above, that m will reach a limit. Hence at stage t∗, there must

be some x ∈ zone
β
j [t∗] such that ϕB(k+ 1)[t∗]↓< ψβ(x)[t∗]. Since the computation

Ψβ(B, x)[t∗] must be Mβ
j -believable at t∗, we can also deduce that every module

Mβ
n , · · · ,M

β
k is either successful or is set correctly. This concludes the proof of

Claim 1.
By Claim 1 it follows that pn = lim pαn is defined for almost all n. Note that

each α-module is initialised only finitely often, and receives attention finitely often
(by assumption). If ΨB

α is not total then one can verify using Lemma 5.11 that
αˆn∞ will be visited infinitely often for some n, a contradiction. On the other hand
suppose that Ψα(B), is total. If n is large enough, what is the final state of the
module Mα

n ? Clearly it cannot be unstarted, and cannot be ready since Ψα(B)
is total. If it is waiting for infinitely many n, then ∆α(C, pn) will be defined
forever at infinitely many n. Consequently ∆C

α is defined on almost all inputs,
which implies (by low2-ness) that f(pn) > ∆α(C, pn) for almost all n. This in turn
implies that for all large enough n, Mβ

n has to become successful and stay in
that state forever. Hence some finitary outcome of β will be visited infinitely often
(depending on where the consecutive run of successful modules start), contrary to
assumption. Therefore, there is a leftmost outcome of α visited infinitely often. �

Lemma 5.13. Along the true path of construction, the requirements succeed.

Proof. Let α be on the true path of construction, and suppose that Ψα(B) is total.
We show that the version of Tα built after the final initialisation of α at s0 traces
Ψα(B, x) correctly for almost all x.

Claim 1: for any s > s0 and every x, we have x+1−|Tα(x)| > tαx . Fix two stages
s2 > s1 > s0 such that two different elements are enumerated into Tα(x) at s1 and
s2. We will be done if we can show that tαx is decreased between s1 and s2. At s1 it
must be the case that Mα

m receives attention under (A5), enumerating Ψα(B, x)[s1]
into Tα(x) where m = tαx [s1]. By Lemma 5.7, the change in B � ψα(x)[s1] has to
be due to some ϕB(z) entering B for some z < m. By Lemma 5.8, tαx is certainly
lowered, which proves the claim.

From Claim 1 it follows that |Tα(x)| 6 x + 1, because zoneα0 is never lowered.
It remains to show that almost every Ψα(B, x) is traced. Firstly, we argue that
the true outcome of α cannot be infinitary. Suppose not, and the true outcome of
α is n∞ for some n. Let s1 be large enough, so that no module Mα

j is initialised,
and ϕ(j) has settled, for every j 6 n + 1. Thus zoneαj has settled for all j 6
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n, and we also assume that Ψα(B, x)[s1]↓ on the correct use for every x in the
final

⋃
j6n zone

α
j . By Claim 1 of Lemma 5.12 (applied to αˆn∞) we may as well

assume that all the ΨB
e (x)-computations above are Mα

n -believable. Observe that
Mα
n cannot remain ready forever after s1, because otherwise (A4) will eventually

apply for Mα
n , and Mα

n would have received attention at the next stage where αˆn∞
is visited. So, Mα

n eventually becomes waiting and enumerates some computation
∆α(C, pαn), with a use that we can assume does not change anymore. This is a
contradiction because Mα

n has to get back to state ready in time for the next
αˆn∞ visit.

Thus we let the true outcome of α be nf for some n. Hence lαn → ∞, because

Mαˆnf
j eventually becomes active for all large enough j > n, following from Claim 1

of Lemma 5.12. Again wait for a stage s1 large enough so that all relevant activity
in Mα

0 , · · · ,Mα
n+1 has ceased. Let x0 = min

⋃
j>n+1 zone

α
j [s1]. We claim that

q = Ψα(B, x) is traced in Tα(x) for all x > x0. Note that tαx > n + 1 after s1, so
let m > n+ 1 be the final value attained by tαx . Let s be the time where an action
was taken to make tαx = m (note that s may be smaller than s1). If the action was
an initialisation to α, then Mα

m is initialised as well. Otherwise the action was to
lower tαx from m + 1 to m. By Fact 5.3 we know that Mβ

m will have to become
successful after stage s, which means that at some point s′ > s, we have (A5)
applies for Mβ

m and Ψα(B, x)[s′] enumerated into Tα(x). By Lemmas 5.7 and 5.8,
we have Ψα(B, x)[s′] = p. �
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