
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 00, Number 0, Pages 000–000
S 0002-9939(XX)0000-0

A STRUCTURE OF PUNCTUAL DIMENSION TWO

ALEXANDER MELNIKOV AND KENG MENG NG

Abstract. The paper contributes to the general program which aims to eliminate
unbounded search from proofs and procedures in computable structure theory. A
countable structure in a finite language is punctual if its domain is ω and its operations
and relations are primitive recursive. A function f is punctual if both f and f−1 are
primitive recursive. We prove that there exists a countable rigid algebraic structure
which has exactly two punctual presentations, up to punctual isomorphism.

1. Introduction

After decades of development, computability theory and computable structure the-
ory [EG00, AK00] gave a well-developed framework to investigate the limits of computa-
tion in mathematics. Beginning in the 1980’s and rather independently, there has been
quite a lot of work on online infinite combinatorics; see [Kie81, Kie98, KPT94, LST89,
Rem86]. Nonetheless, there is no general and established theory for online structures,
and until recently there has been very little (if any) correlation between computable
structure theory and online combinatorics. The paper contributes to a new general
program [KMN17b, Mel17, BDKM, KMN17a, MN] that aims to lay the foundations of
online computability in algebra and combinatorics uniting these independent subjects.
The new program has many aspects; see surveys [Mel17, BDKM] for a detailed expo-
sition. The main result of the paper belongs to a branch of this new framework which
is motivated by the classical results on (Turing) computable dimension of algebraic
structures. The result resembles the well-known theorem of Goncharov [Gon80, Gon81]
saying that there is a structure of computable dimension two. Informally, our theorem
says that there is a structure of “online” or “punctual” dimension two; the formal def-
initions will be given shortly. Although the statement of our result is similar to the
statement of the above mentioned Goncharov’s theorem, our proof shares almost noth-
ing in common with the above-mentioned proof in [Gon80] or with any other known
computable dimension two proof.

1.1. Turing computable mathematics. The general area of computable or effective
mathematics is devoted to understanding the algorithmic content of mathematics. The
standard model for such investigations is a (Turing) computable presentation of a count-
able structure. By this we mean a presentation of the structure with universe N, and
the relations and functions coded as Turing computable objects. There has been a large
body of work on Turing computable presentations of structures, see books [EG00, AK00]
and the relatively recent surveys [FHM14, Mil11].

The first author is partially supported by the Marsden Foundation of New Zealand. The second
author is partially supported by the grants MOE2015-T2-2-055 and RG131/17.

c©XXXX American Mathematical Society

1

2 A. MELNIKOV AND K.M. NG

One popular topic in such investigations has been the study of computable struc-
tures up to computable isomorphism. The motivation here is clear: algebraic groups
and fields are viewed up to algebraic isomorphism, topological groups and rings are
studied up to algebraic homeomorphism, and therefore the right morphisms in the cat-
egory of computable algebraic structures are the computable algebraic isomorphisms.
Maltsev [Mal61] was perhaps the first to make this idea explicit and formal. He also
initiated a systematic study of structures which have a unique computable presentation
up to computable isomorphism. Such structures are called computably categorical or au-
tostable. As was first noted by Goncharov, in many natural classes an algebraic structure
has either exactly one or infinitely many computable presentations up to computable iso-
morphism, see [EG00] for many results illustrating this dichotomy. Remarkably, via an
intricate argument Goncharov [Gon80] constructed an algebraic structure of computable
dimension two; that is, a structure which has exactly two computable presentations up
to computable isomorphism. Although the first such structure was algebraically ar-
tificial, similar examples were later found among two step nilpotent groups [Gon81],
(remarkably) fields [MPSS18], and some other natural classes [HKSS02]. There has
been many further works on finite computable dimension with applications to degree
spectra of relations and categoricity spectra; see the somewhat dated survey [KS99], the
excellent PhD thesis of Hirschfeldt [Hir99], and also the very recent paper [CS19].

Note that this framework uses the general notion of a Turing computable process.
In particular, we put no resource bound on our computation. One therefore naturally
seeks to understand whether the abstract algorithms from computable structure theory
can be made more feasible.

1.2. Feasible mathematics. What happens when we further restrict the notion of
“computability” by putting resource bounds on the definitions of allowable computa-
tion? Khoussainov and Nerode [KN94] initiated a systematic study into automatically
presentable algebraic structures. Automatic structures are linear-time computable and
have decidable theories, but such presentations seem quite rare. For example, the addi-
tive group of the rationals is not automatic [Tsa11]. The approach via finite automata
is highly sensitive to how we define what we mean by automatic. See [ECH+92] for an
alternate approach to automatic groups. Gregorieff, Cenzer and others [CR98, Gri90]
and more recently Alaev and Selivanov [Ala17, Ala18, AS18] studied the much more
general notion polynomial time presentable structures. We omit the formal definitions,
but we note that they are again sensitive to how exactly we represent the domain of a
structure. In contrast with automatic structures, in many common algebraic classes we
can show that each Turing computable structures has a polynomial-time computable
isomorphic copy [Gri90, CR, CR92, CDRU09, CR91].

Kalimullin, Melnikov and Ng [KMN17b] noted that many known proofs from polyno-
mial time structure theory (e.g., [CR91, CR92, CDRU09, Gri90]) are focused on making
the operations and relations on the structure merely primitive recursive, and then ob-
serving that the presentation that we obtain is in fact polynomial-time. Furthermore,
to illustrate that a structure has no polynomial time copy, it is typically easiest to argue
that it does not even have a copy with primitive recursive operations; see, e.g., [CR92].
Almost all natural decision procedures in the literature are primitive recursive, and

A STRUCTURE OF PUNCTUAL DIMENSION TWO 3

as observed in [KMN17b] the natural Henkin construction will automatically give an
appropriately primitive recursively decidable model.

Kalimullin, Melnikov and Ng [KMN17b] thus proposed that primitive recursive struc-
tures provide an adequate and rather general model to unite the theories of feasible
(polynomial-time) structures and online combinatorics. Although their approach may
seem way too general, they very shortly discovered that “merely” forbidding unbounded
search leads to a profound impact on both intuition and techniques. Also, compare this
to the approach in, e.g., Kierstead [Kie81] where the only restriction on an algorithm
is that it must be total (i.e., simply eventually halts), and there is no resource bound
imposed otherwise.

Recall that the restricted Church-Turing thesis for primitive recursive functions says
that a function is primitive recursive iff it can be described by an algorithm that uses
only bounded loops. Primitive recursiveness gives a useful unifying abstraction to com-
putational processes for structures with computationally bounded presentations. In
such investigations we only care that there is some bound. We have to act “now” or
“without unspecified delay”, where these notions are formalised in the sense that we
can precompute the bound. Irrelevant counting combinatorics is stripped off such proofs
thus emphasising the effects related to the existence of a bound in principle. These ef-
fects are far more significant than it may seem at first glance; the non-trivial and novel
proof of the main result of the paper will be a good illustration of this phenomenon.
See [BDKM] for a detailed exposition of the new unexpectedly rich and technically non-
trivial emerging theory of primitive recursive structures. Below we focus only on the
aspects of the theory relevant to the present article.

1.3. Punctual computability. Kalimullin, Melnikov, and Ng [KMN17b] proposed
that an “online” structure must minimally satisfy:

Definition 1.1 ([KMN17b]). A countable structure is punctual1 if its domain is N and
the operations and predicates of the structure are (uniformly) primitive recursive.

The intuition is that a punctual structure must reveal itself “punctually”, i.e., within a
precomputed number of steps. We will also fix the convention that all finite structures
are also punctual by allowing initial segments of N to serve as their domains. Although
the definition above is not restricted to finite languages, we will never consider infinite
languages in the paper; therefore, we do not need to clarify what uniformity means in
Definition 1.1.

To talk about isomorphisms and categoricity in this framework, we shall also need
to consider “punctual” analogues of computable functions. However, recall that the
inverse of a primitive recursive function does not have to be primitive recursive. This
gives rise to, for instance, several possible ways of defining when two punctual structures
are “punctually isomorphic”. We shall only consider the following strongest such notion:

Definition 1.2 ([KMN17b]). A function f : N→ N is punctual if both f and f−1 are
primitive recursive. A structure is punctually categorical if it has a unique punctual
presentation up to punctual isomorphism.

1In [KMN17b], the authors used the term “fully primitive recursive”.

4 A. MELNIKOV AND K.M. NG

Punctual isomorphisms appear to be the most natural morphisms in the category of
punctual structures. If A and B are punctual structures, we write A ∼= B to mean that
they are isomorphic, and A ∼=pr B to mean that there is a punctual isomorphism from
A onto B. The definition above ensures that ∼=pr is an equivalence relation.

We mention a related notion. If A and B are punctual copies of some countable
structure, we say that A 6pr B if there is a primitive recursive isomorphism from A
onto B. This is clearly a preordering and the induced equivalence relation is denoted by
≡pr. Obviously, A ∼=pr B implies thatA ≡pr B, and it is open (see Question 3.1) whether
having a ≡pr-equivalence class of size 1 is equivalent to being punctually categorical in
general.

Kalimullin, Melnikov and Ng [KMN17b] characterised punctual categoricity in many
standard algebraic classes. Similarly to the above-mentioned “1 vs. ω” Goncharov’s
dichotomy in (Turing) computability, it is easy to see that in each of these classes con-
sidered in [KMN17b] a structure has either one or infinitely many punctual copies up to
punctual isomorphism. Thus one naturally seeks to either confirm or refute the conjec-
ture saying that the “1 vs. ω” dichotomy holds in the punctual world. The main obstacle
in proving or disproving the conjecture had been the lack of adequate techniques and,
more importantly, of intuition. To illustrate the counter-intuitive nature of punctual
structures, we mention that Kalimullin, Melnikov and Ng [KMN17b] constructed a punc-
tually categorical structure which is not computably categorical. Although this sounds
contradictory, the former does not a priori imply the latter; nonetheless, all naturally
occurring examples strongly suggested that the implication should hold. After several
years of investigation, we have finally accumulated enough intuition and technical tools
to refute the “1 vs. ω” conjecture for punctual structures.

Theorem 1.3. There exists an algebraic structure which has exactly two punctual pre-
sentations, up to punctual isomorphism.

The theorem solves a problem left open in [Mel17]; see also [BDKM]. The proof
combines a “pressing” strategy from [KMN17b] with a new technique. We emphasise
that our proof shares virtually nothing in common with Goncharov’s dimension two
proof. The only similarity is perhaps their relatively high combinatorial complexity and
the use of some patterns to “press” the opponent. We believe that both the result and
the new technique introduced in its proof will find important applications in the theory
of punctual structures, and perhaps beyond. In fact, we will shortly mention one such
recent application.

We strongly believe that our proof can be modified to produce a structure with exactly
n punctually incomparable copies, for each n ∈ ω. We leave this as a conjecture. We also
strongly suspect that the construction actually produces a polynomial time structure
which has dimension two with respect to polynomial time isomorphisms, but recall that
the notion of “polynomial time” depends on how exactly one represents the domain;
see [CR98]. In particular, we conjecture that under the unary representation of N (i.e,
n is identified with the string of zeros of length n) our construction as is already gives
a structure of polynomial-time dimension two. One can perhaps adjust our proof to
produce an example of this sort for binary polynomial-time representations. We leave
the investigation of the polynomial-time case as an open problem.

A STRUCTURE OF PUNCTUAL DIMENSION TWO 5

Finally, we would like to know whether algebraically natural classes, such as fields or
groups, contain examples of finite punctual dimension. Here the situation is a lot more
complex that in the Turing computable case, because many of the (Turing) universal
classes turned out to be not punctually universal; see [BDKM, DHTK+18, HTMMM17]
for definitions. For instance, in the Turing computable world structures with only
two unary functions are computably universal. Downey, Greenberg, Melnikov, Ng and
Turetsky have recently announced that unary structures are not punctually universal.
Their complex proof relies on a novel strategy introduced in the proof of Theorem 1.3.

The rest of the paper is devoted to the proof of Theorem 1.3. We also state a related
open problem in a short conclusion (Section 3).

2. Proof of Theorem 1.3

2.1. The requirements. We are building two punctual presentations A ∼= B of a
countably infinite rigid structure in a finite language which will be described in due
course.

We need to meet the following requirements:

A |pr B
and

Pe
∼= A =⇒ Pe

∼=pr A or Pe
∼=pr B,

where Pe stands for the eth punctual presentation in a fixed total computable enumer-
ation of all punctual structures of the language (recall that the domain of each Pe has
to be the whole of ω). Note that the enumeration P0, P1, · · · can be done in a com-
putable, but not in a primitive recursive way. Namely, there is a total computable, but
no primitive recursive function Q such that Q(e, k) = Pe(k).

The former requirement we split into subrequirements:

pe : A 6→∼= B and pe : B 6→∼= A,

where pe stands for the eth primitive recursive function in a fixed total enumeration of
all primitive recursive functions. Again, this listing p0, p1, · · · is a computable, but not
primitive recursive listing. We of course only need to show A 6∼=pr B and hence only
need to worry about those pe which are punctual. The requirements pe ensure that A
and B are in fact 6pr-incomparable. Apart from being easier to implement, the stronger
requirements will allow us to say something about ≡pr degree structures:

Corollary 2.1. There is a punctual structure A with exactly two ≡pr-degrees (amongst
all punctual copies of A), and the two degrees are incomparable.

This conclusion may be interesting to the reader who wishes to study the structure
of the degrees arising by considering the preordering 6pr (see [MN]).

2.2. The pressing strategy. In this section we describe the key strategy for proving
Theorem 1.3, which we call the pressing strategy. To illustrate the pressing strategy in
the most basic form, we formulate simplified versions of our requirements in this section
for the purpose of this discussion.

6 A. MELNIKOV AND K.M. NG

We consider only A and attempt to meet, for each e, the requirement

Pe
∼= A =⇒ Pe

∼=pr A,
where (Pe)e∈ω is the natural uniformly computable listing of all punctual structures.
This requirement is known as “pressing Pe”, as the requirement will ensure that if Pe is
a copy of A then in order to have Pe

∼=pr A, we will need to build A in a particular way
in order to force certain local patterns to be generated quickly in Pe. The reader should
think of Pe as of being “increasingly slow” as e increases. However, we will argue that
for each fixed e there is a primitive recursive time-function, i.e., a function that bounds
the speed of convergence of Pe =

⋃
s Pe,s within the overall uniform primitive recursive

approximation (Pe,s)e,s∈ω. We take this property for granted throughout the proof; see
the Appendix of [BDKM] for a formal clarification.

2.2.1. Pressing P0. The idea is as follows. Start by building an infinite chain using a
unary function S:

0→ S(0)→ S2(0)→ S3(0)→ · · · ,
and use another unary function, say U , to attach a U -loop of some fixed small size to
each node Sn(0). To be more specific, suppose we attach 2-loops. Use another unary
function r that sends each point (in the U -loops as well as in the S-chain) back to the
origin:

∀x r(x) = 0.

Do nothing else and wait for the opponent’s structure P0 to respond. The structure will
obviously be rigid.

The opponent’s structure P0 must give us a few 2-loops, otherwise P0 6∼= A. However,
it is important to see how exactly P0 could fail to be isomorphic to A.

(1) The structure P0 does not even look right; that is, it is not an S-chain, etc. In
this case we do nothing.

(2) Otherwise, P0 could give us an U -loop of a wrong size, say 4. Then we will
forever forbid 4 in the construction.

(3) P0 starts growing a long simple U -chain. It is easiest to drive it to infinity in the
construction, as follows. At stage s other strategies will be allowed to use only
loops that are shorter than the U -chain as seen in P0[s], so that if the U -chain
eventually closes into a loop, the resulting size of the U -loop will be larger than
anything currently used in A, and we can then kill P0 by forever forbidding this
size, similar to (2) above.

Notice that after iteratively applying the operations of P0 on any element of P0 at
most three times, we will be able to tell if (1), (2) or (3) above holds. If one of these three
cases hold, we can switch to satisfying P0 by forcing P0 6∼= A. Therefore, assume none
of the above cases apply. This means that P0 responds by giving us a few consequent
2-loops. Note that in order for us not to be able to kill P0 as above, we must see a U -loop
of size 2 after three iterations of P0 operations. Notice that this is primitive recursive
relative to the structure P0, in the sense that this process can be time-bounded by a
primitive recursive transformation of the operations mentioned in P0.

The reader who is new to this strategy may now wonder why we need U -loops in
our structure A; after all, is the “root pointer function r(x)” not enough to carry out

A STRUCTURE OF PUNCTUAL DIMENSION TWO 7

the above pressing strategy? The answer lies in the observation that as A is rigid, in
order to have A ∼=pr P0, we need to not only map the root of A to the root of P0, but
must also preserve the distance of elements to the root. Having r(x) merely forces P0

to generate 0P0 quickly, but P0 could, for instance introduce an element x ∈ P0 and
keep the distance of x to the root undeclared. More specifically, P0 may never contain a
sequence of elements 0, S(0), · · ·Sn(0) such that Sn(0) = x. Since we have to declare the
preimage of x in A relatively quickly, as we have to ensure that A ∼=pr P0, the structure
might only show such a sequence (and hence reveal the true distance of x from 0P0) only
after we have declared the preimage of x, and cause our attempt at showing A ∼=pr P0

to be wrong. Note that even including the “predecessor function” x 7→ S−1(x) into the
language is insufficient, and we are thus forced to innovate by the use of U -loops.

Our solution is to use different U -loop sizes to press P0. As soon as P0 responds by
giving two distinct 2-loops in its structure, the first of which is attached to some element
x in the primary S-chain of P0, we will switch from the pattern

2− 2− 2− 2− 2− 2− 2− 2− · · ·

to the pattern (say)

2− 4− 2− 4− 2− 4− 2− 4− · · · ,
assuming that 4 is currently not forbidden in the construction of A. What this means
is that from this point on, we will attach U -loops of alternating 2, 4-sizes to subsequent
elements in the primary S-chain.

How do we punctually map the element x ∈ P0 (see above) to A? Equivalently, how
can we quickly compute the distance of x from the root in P0? Recall that x ∈ P0

had the property that x and S(x) had 2-loops attached to them. In A, the initial
segment consisting of adjacent 2-loops has a specific length that we know at the stage,
say k, where k is the stage where P0 has revealed the elements x, S(x) and all of their
attached 2-loops. Since after stage k, we switched from the 2 − 2 pattern to the 2 − 4
pattern, our structure A has the property that for every element Sm(0) with m > k,
the loops attached to Sm(0) and Sm+1(0) cannot both have size 2. In order for P0 to
be isomorphic to A, the element x in P0 must have distance at most k to the root. To
compute the exact distance of x, we simply evaluate the function S to 0P0 iteratively at
most k times, and we must obtain x by then. This process can be time-bounded by a
primitive recursive transformation of the operations in P0, and hence can be repeated
to produce a punctual isomorphism between A and P0.

To formally compute the unique isomorphism from A to P0, simply start from the
origin in P0 and map A onto P0 naturally, according to the speed of P0. We use the
primitive recursive time which measures the speed of the enumeration of P0 (see the
discussion above), and iteratively generate images for each element of N.

2.2.2. Pressing P0 and P1. For simplicity, the highest priority structure can be pressed
using loops attached to the even positions in the S-chain:

0, S2(0), S4(0), · · · , S2k(0), · · ·

and the lower priority P1 will be associated with odd positions of the S-chain. Also, P0

will be using U -loops of even length, and P1 of odd length.

8 A. MELNIKOV AND K.M. NG

The difference in the strategy for pressing P0 is that the loops corresponding to P0

are now located at even positions, rather than at every position:

2−�− 2−�− 2−�− 2− · · · ,
where the content of � does not worry the strategy for P0. This strategy then switches
to:

· · · − 2−�− 4−�− 2−�− 4− · · · ,
assuming that 4 is small enough and is not restrained by the construction. If the strategy
for P0 must act again then we could use a more complex pattern of 2s and 4s, such as:

· · · − 2−�− 4−�− 4−�− 2−�− 4−�− 4 · · · .
Alternatively, we could start using 23 = 8:

· · · − 2−�− 8−�− 2−�− 8−�− 2−�− 8 · · · .
We prefer to go with the second option. For simplicity, we associate each Pi with loops
of sizes pki , k ∈ ω, where (pi)i∈ω is the standard list of all prime numbers. Then we
could slowly introduce longer loops into the construction whenever we are ready to do
so. This will allow us to keep the strategies fairly independent from each other.

Remark 2.2. In several related constructions that uses a similar pressing strategy, we
could get around with using only loops of size 2 and 4 for a single pressing strategy. At
a late enough stage we will know the exact 2, 4 pattern that we have to check in P0 to
understand where the respective location is.

From the perspective of the P0 pressing strategy, the following scenarios are possible:

• P0 has an obviously wrong isomorphism type. This is an instant win which
requires no further action.
• P0 shows an S-pattern of size 4 with a loop of size 2k, where k has not yet been

used. Then the strategy forever forbids this pattern, and thus guarantees that
P0 is not isomorphic to our structure.
• P0 shows an S-pattern of size 4, and at least one of the attached loops could

potentially have length of the form 2k and has not closed yet. We wait until the
chain grows longer than the largest loop of the form 2k used so far. While we
are waiting, we keep building our chain using the same pattern as before. We
will never switch to a new pattern of powers of 2. Again, P0 must have a wrong
isomorphism type, since our structure will never have a loop of size 2k for any k
larger than all the ones used thus far.

Remark 2.3. Note that, in the third clause we do not worry about the � components,
as long as the � components use loops of size pj for p 6= 2, and this trick removes some
tensions in the construction. We elaborate on it using an example. Suppose we see a
sequence x− y− z−w of S-successors. We start evaluating the unary loop function for
all of them. Suppose the P0-strategy had used loops of sizes 2, 4 and 8 so far. Evaluate
the unary function on x, y, z, w exactly 8 times. We have the following sub-cases:

• We discover that exactly two loops (x and z, or y and w) form an admissible
pattern of powers of 2. Then ignore what happens at the other two points, even
if their chains have not yet closed.

A STRUCTURE OF PUNCTUAL DIMENSION TWO 9

• All the four attached loops have size at most 8, and that x− y − z − w cannot
possibly give us a right pattern of powers of 2. This can be decided based on
the sizes of the loops that we discover.
• None of the two cases above. This means that some of the chains are longer than

8, which makes k > 3 in any configuration of the form 2−�− 2k or 2k −�− 2
that could potentially be realised by the sequence in the future. In this case it
is sufficient to forbid 2k when (and if) it is every discovered. Meanwhile, keep
using only 2, 4, and 8.

Meanwhile, the locations reserved for P1 – these are marked with � above – will
be filled with 3 and perhaps (later) with 3k for some k. Our punctual definition of
the isomorphism between P1 and A is essentially the same as in the description of one
strategy in isolation. We only need to look at a bit larger interval in P1 around a given
point x.

2.2.3. Pressing all Pe at once with a single S-chain. In the general case of many Pe we
generalise the ideas described above. At later stages the construction will respect more
of the P -structures. To implement the above idea, we allow P0 to play at every second
location, P1 at every forth, P2 at every eighth etc., and we fill the missing locations with
loops of size 1. When we are ready to monitor Pj, we start replacing the filler 1-loops
with loops of the form pkj . This way there is always some room left for the next Pj when
it steps into the construction.

Also, using 1 as a filler will allow for a similar analysis as above, where we could pick
an interval and challenge the opponent’s structure to show us loops or chains in the
interval. Note that Pj will know the minimum length of an S-interval sufficient for at
least two loops (associated with Pj) to be found in the interval. Initially, this length
will depend on the stage at which Pj steps into the construction. Later, if Pj responds,
this length can be dropped to a constant dependent on j (more specifically, 2j+2). The
outcomes in the general case are similar, and the strategies still act independently. See
[KMN17b] for a further explanation.

2.2.4. Making the chains finite. In the subsection above the whole structure was as-
sumed to be one single S-chains with complicated patterns of U -loops, and with another
unary function r which maps every point to the single generator – the left-most point
in the S-chain.

Clearly, our structure will be much more complicated than just one chain. For that,
we should be able to close a chain and start a new one.

Suppose at a stage of a construction we are monitoring P0, . . . , Pk. If each of
these structures either responded by giving the right patterns or have been declared
dead, we can finish the current S-chain by declaring S(x) = x for the right-most
point. We say that the chain is now closed. We immediately start a new, disjoint
S-chain which is built using updated patterns. The patterns are updated according
to the basic pressing strategies for P0, . . . , Pk and the first-attended Pk+1.

Note that making the chains finite does not change the essence of the pressing strategy.
We still can recognise the “coordinates” of any point of Pi using the same argument as
in the case of a single S-chain. This idea was first used in [KMN17b].

10 A. MELNIKOV AND K.M. NG

Notation 2.4. We will also use another unary function p to connect chains. The unary
function will be used to map the final element of a chain to the root (the generator) of
some other chain.

We will view every finite S-chain as a substructure (of A or B). Its isomorphism type
will be uniquely determined by the patterns of loops used in its definition. Furthermore,
we will guarantee that any isomorphic pair of finite S-chains will be automorphic.

Notation 2.5. We will use letters with subscripts do denote finite chains. We imagine
that the S-chains are build from left to right, with the generator being the left-most
point.

• x3 means that x3 has been finished and declared closed, and x3 means that the

chain is still being built.
• a1 ← a2 means that the final point of the chain a2 is mapped to the left-most

point of the closed chain a1 under the unary function p, and that both chains
have been declared finished (or closed). We note that only closed chains can be
mapped to chains, and only to closed chains.
• c1 L99 c2 means that we intend to map c2 to c1 as soon as c2 is declared closed.

2.2.5. A special binary relation K. In the construction, we will be building two punctual
copies A and B of the same structure. At the end of the construction our structure will
consist of infinitely many finite chains, all having distinct isomorphism types. At every
stage of the construction A and B will consist of different configurations of finite chains
interlinked by a unary function. For example, for a number of stages A will contain a
finite chain xj but B will not, while B may contain some other chain xk which will not
be present in A for a large number of stages.

Recall also that, for each punctual P , we must build a punctual isomorphism either
from P to A or from P to B. The obvious potential conflict here is that P may reveal
some parts of both xj and xk too early, long before A or B are ready to accommodate
both chains simultaneously.

To resolve this conflict we will be using a new binary relational symbol K, as follows.
In P , evaluate K on the generators of xj and xk. Later, when we are ready to put

both xj and xk into A (and B), evaluate K differently on the respective pair.
In presence of only one P the idea above clearly prevents P from revealing itself too

early. In the general case the idea will have to be slightly modified and blended with
the standard priority technique.

2.3. One basic strategy in isolation. We will follow the notation and terminology
introduced in the previous section. In particular, we will be forming (finite) chains
according to the instructions of the pressing strategy as described in Subsection 2.2.

Initially, start building A and B as follows:

• Put a chain x1 into A and a chain x2 into B.
• Wait for P0 to either copy x1 or to copy x2.
• Wait for pe : A → B to halt and, thus, prove that it is not an isomorphism.

Remark 2.6. We pause the description of the strategy to emphasise the implicit
use of a binary predicate K which is crucial even at the first stages of the strategy.
We must make sure A ∼= B, and therefore at some point in the future we must

A STRUCTURE OF PUNCTUAL DIMENSION TWO 11

introduce x1 to B and x2 to A. The opponent’s structure P = P0 may try to
reveal both x1 and x2 too early (to be more precise, not x1 and x2 but their
recognisable fragments). But in this case we ask P evaluate K on x1 and x2,
say, on their left-most generators. Note that x1 and x2 have not yet been seen
together in A (or B). Later, when we finally put both chains into A (and B),
we will define K differently, thus making sure A 6∼= P . (We also note that,
unless there is a specific instruction for K, we set K equal to 1.) We resume the
strategy below.

• After the waits above have been finished, close x1 in A and x2 in B.
• Immediately initiate x3 in A and x4 in B.

Remark 2.7. Currently A consists of x1 and x3, and B contains only x2 and
x4.

• Wait for P to either show a segment of x3 or prove P 6∼= A. (Recall that P
follows A.)

Remark 2.8. Note that, according to the description of finite chains given in
the previous section, as soon as we recognise a segment l of x3 we can, with a
bounded delay, reconstruct the origin of x3 using l. Also, if P chooses to show
some other pattern which we plan to include into A later, we use K (as described
above) to ensure P 6∼= A.

• Once P responds, initiate the B-recovery andA-recovery stages (simultaneously)
as described below. Note that x3 and x4 have not yet been declared finished.

• A-recovery: Using a fresh point along x3 and a unary function p (see Notation
2.4), map this point of x3 to x2 (which must be instantly introduced in A). This

forces P to introduce x2 too.

Remark 2.9. Currently A consists of x1 and x2 ← x3.

• B-recovery: Simultaneously with A-recovery, use a fresh point along the x4-chain
and p to put x1 into B.

Remark 2.10. Currently B consists of x1 ← x4 and x2. Of course, in isolation

we would not have to be too careful with B because P has chosen to copy A.
However, in general care must be taken, so we treat A and B symmetrically.

• Close x3 and x4.

After the module above has finished its work, immediately restart the strategy using
fresh chains x5 and x6 in A and B instead of x3 and x4, respectively. We diagonalise
against another potential isomorphism, this time from B to A. Later, use fresh points
on these chains and p to put x4 into A and x3 into B. Then repeat this with x7 and x8

to diagonalise against the next potential isomorphism from A to B, etc. Note that in
the limit A ∼= B.

Remark 2.11. If we ignore the exact definition of K which will depend on the con-
struction, then the isomorphism type of both A and B can be sketched as follows:

12 A. MELNIKOV AND K.M. NG

x1 ← x4 ← x5 ← x8 ← . . .← xi ← xi+3 ← xi+4 ←

x2 ← x3 ← x6 ← x7 ← . . .← xi+1 ← xi+2 ← xi+5 ←

Obviously, the isomorphism type of each chain will also depend on the construction.

2.4. The case of two structures P0 and P1. Initially, we monitor only P0. The
exact stage at which we finally start considering P1 depends on us. This delay will
not effect the construction because it does not delay the enumerations of A and B. In
particular, before we start considering P1 we wait for P0 to start copying either A or B
or be “killed” using K.

We make sure that when P1 finally steps into the construction, P0 has already made
its choice. If we ensure that A 6∼= P0 then P0 no longer has any effect in the construction,
and thus the analysis of P1 is identical to that in the previous subsection. Thus, without
loss of generality, assume that P0 is currently copying A.

• Suppose xi is open in A and xj in B.
• Wait for P1 to either reveal a segment of xi or a segment of xj.
• If in the process P1 reveals some of its parts too early2 then declare P1 ready for

execution.

While we monitor P1 we also keep observing P0 because we have to punctually define
an isomorphism between P0 and A. If P0 reveals itself too quickly, it must also be
immediately declared ready for execution.

There are three cases to consider.

2.4.1. Case 1: P1 has been declared ready for execution. If P0 keeps obediently following
A, then the next time we introduce the missing chains into A and B we will use K to
ensure P1 6∼= A in the same way we did it in the previous section. However, it could be
the case that P0 also reveals its parts too early and thus is declared ready for execution.

The obvious conflict there is that the value of K on a pair of points (which we intend
to use for diagonalization) may be different in P0 and P1. Say, we are planning to use the
left-most points a and b of xi and xk (resp.) in both P0 and P1, but KP0(a, b) 6= KP1(a, b).
The fix however is trivial. Simply use the successors of a and b along the respective
chains xi and xk to diagonalise against P1, and use a and b to “kill” P0.

More generally, we reserve the k’th point of each chain as a potential witness for diago-
nalization against Pk. This way there will be no interaction between the diagonalization
strategies because they will evaluate K at distinct points.

2.4.2. Case 2: Both P1 and P2 copy A. This is similar to the description of one P0 in
isolation, but now we have to wait for both P0 and P1 to respond in the basic pressing
strategy according to its description in Subsection 2.2; this process has already been
described in Subsection 2.2. Any action for the sake of P1 has to be delayed until P0

gives more evidence that A ∼= P0. In particular, if P1 is declared ready for execution, we
first finish all actions associated with P0 and then we can diagonalise against P1 using
K and the reserved witnesses in the respective chains.

2That is, if P1 shows some recognisable parts of chains which are not currently and simultaneously
present in either A or B; see the previous subsection.

A STRUCTURE OF PUNCTUAL DIMENSION TWO 13

2.4.3. Case 3: P1 copies A and P2 copies B. This is essentially the same as Case 2 above,
but simpler because the basic pressing technique is now essentially acting independently
in the currently active chains inA and B (because they are pressing different structures).
As in Case 2, we always wait for P0 to respond before taking any action for the sake
of P1. The diagonalization with the help of K is also similar. Since we agreed to use
different points of the chains as witnesses for K, there is essentially no interaction or
conflict between the two diagonalization strategies working with P0 and P1, respectively.

2.5. The construction. In the construction, we will slowly increase the number of
monitored structures Pe. At every stage we monitor only finitely many of them. Only
after each of them has responded again or has been diagonalised against, will we start
looking at the next structure in the list. The formation of the simple chains xi in
presence of many Pe has already been described in Subsection 2.2. Since Pi and Pj

will use different witnesses for K, there is no conflict between the diagonalization K-
strategies working with different structures. Thus, in the construction we let all the
strategies act according to their instructions as described above; no further modifications
are necessary.

2.6. Verification. Although a strategy monitoring Pe may have an infinitary outcome
(in this case Pe 6∼= A), no tree of strategies was necessary. Also, injury in the construction
is merely finite. Therefore the combinatorics related to priority is rather tame and, more
importantly, standard.

As for the combinatorics specific to primitive recursion, much of it was explained and
verified explicitly into the description of the strategies. For instance, it is clear that A
and B are algebraically isomorphic, but they cannot be punctually isomorphic because
we have diagonalised against each potential punctual isomorphism from A to B and
from B to A. It takes a bit more effort to show that each Pe

∼= A either is punctually
isomorphic to A or is punctually isomorphic to B. We split it into several claims.

Claim 2.12. If Pe initially chooses to copy A (or B) then it will either be diagonalised
against or will forever keep copying A (resp., B).

Proof. Assume Pe has initially chose to follow A. If Pe ever attempts to not follow A by
revealing some pattern so far unseen, the basic pressing strategy (Subsection 2.2) will
ensure Pe 6∼= A by forbidding this pattern from use in the construction. If A attempts to
show a part of B not yet enumerated into A, then it will be declared ready for execution
and will be diagonalised against (and in finite time) using the special binary predicate
K, as described above. �

Note that A ∼= B is rigid and consists of two (infinite) chains of (finite) chains.

Claim 2.13. If Pe initially chooses to copy A (or B) then Pe and A are punctually
isomorphic3.

Proof. The description of the pressing strategy allows us to for a set of local “coordi-
nates”. As described in Subsection 2.2, using these “coordinates” we can punctually
map points in Pe to points in A if Pe initially chose to copy A. Punctually mapping

3Meaning that both the isomorphism and its inverse are primitive recursive.

14 A. MELNIKOV AND K.M. NG

points in A to points in Pe requires a bit more care. The pressing strategy in Subsec-
tion 2.2 does not take into account the following scenario. It could be the case that Pe

initially chose to copy B by giving a pattern in the chain xj which is currently being
built in B but is not yet present in A. Then xj will be eventually mapped to roughly
a half of the chains currently present in B, but this delay is not punctual. The other
half will be forced to appear in Pe too, due to the actions on a recovery stage; that is,
another fresh chain will eventually be put into B, then much later closed and mapped
to the “other half” of B via p. This delay is also not punctual. However, we can use
the stage at which these processes finally happen as a non-uniform parameter. After all
chains currently present in B are forced to appear in Pe, we can use the loop patterns
defined by the pressing strategy to punctually map any point in B to a point in Pe. �

The verification is finished, and the theorem is proved.

3. Conclusion

Recall that the inverse of a primitive recursive function does not have to be primitive
recursive.

Question 3.1. Suppose for any pair A and B of punctual presentations of a structure,
there exist primitive recursive isomorphisms from A onto B and from B onto A. Does
the structure have to be punctually categorical?

In other words, is there an isomorphism f : A → B with both f and f−1 primitive
recursive. Note that A and B must be arbitrary punctual presentations of the structure.
It is not hard to see that if the structure is finitely generated then the answer is positive.
Melnikov and Ng [MN] have used a rather involved argument to prove that the same
holds for graphs. It is not even clear at present if their proof can be extended to cover
ternary relational structures, several binary relations, or unary functional structures.

References

[AK00] C. Ash and J. Knight. Computable structures and the hyperarithmetical hierarchy, volume
144 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing
Co., Amsterdam, 2000.

[Ala17] P. E. Alaev. Structures computable in polynomial time. I. Algebra Logic, 55(6):421–435,
2017.

[Ala18] P. E. Alaev. Structures computable in polynomial time. II. Algebra Logic, 56(6):429–442,
2018.

[AS18] Pavel Alaev and Victor Selivanov. Polynomial-time presentations of algebraic number
fields. In Sailing routes in the world of computation, volume 10936 of Lecture Notes in
Comput. Sci., pages 20–29. Springer, Cham, 2018.

[BDKM] N. Bazhenov, R. Downey, I. Kalimullin, and A. Melnikov. Foundations of online structure
theory. Bulletin of Symbolic Logic, 2019.

[CDRU09] Douglas Cenzer, Rodney G. Downey, Jeffrey B. Remmel, and Zia Uddin. Space com-
plexity of abelian groups. Arch. Math. Log., 48(1):115–140, 2009.

[CR] D. Cenzer and J.B. Remmel. Polynomial time versus computable boolean algebras. Re-
cursion Theory and Complexity, Proceedings 1997 Kazan Workshop (M. Arslanov and
S. Lempp eds.), de Gruyter (1999), 15-53.

[CR91] Douglas A. Cenzer and Jeffrey B. Remmel. Polynomial-time versus recursive models.
Ann. Pure Appl. Logic, 54(1):17–58, 1991.

A STRUCTURE OF PUNCTUAL DIMENSION TWO 15

[CR92] Douglas A. Cenzer and Jeffrey B. Remmel. Polynomial-time abelian groups. Ann. Pure
Appl. Logic, 56(1-3):313–363, 1992.

[CR98] D. Cenzer and J. B. Remmel. Complexity theoretic model theory and algebra. In Yu. L.
Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel, editors, Handbook of recursive
mathematics, Vol. 1, volume 138 of Stud. Logic Found. Math., pages 381–513. North-
Holland, Amsterdam, 1998.

[CS19] Barbara F. Csima and Jonathan Stephenson. Finite computable dimension and degrees
of categoricity. Ann. Pure Appl. Logic, 170(1):58–94, 2019.

[DHTK+18] Rod Downey, Matthew Harrison-Trainor, Iskander Kalimullin, Alexander Melnikov, and
Daniel Turetsy. Graphs are not universal for online computability. Preprint, 2018.

[ECH+92] David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S.
Paterson, and William P. Thurston. Word processing in groups. Jones and Bartlett Pub-
lishers, Boston, MA, 1992.

[EG00] Y. Ershov and S. Goncharov. Constructive models. Siberian School of Algebra and Logic.
Consultants Bureau, New York, 2000.

[FHM14] Ekaterina B. Fokina, Valentina Harizanov, and Alexander Melnikov. Computable model
theory. In Turing’s legacy: developments from Turing’s ideas in logic, volume 42 of Lect.
Notes Log., pages 124–194. Assoc. Symbol. Logic, La Jolla, CA, 2014.

[Gon80] S. Goncharov. The problem of the number of nonautoequivalent constructivizations.
Algebra i Logika, 19(6):621–639, 745, 1980.

[Gon81] S. Goncharov. Groups with a finite number of constructivizations. Dokl. Akad. Nauk
SSSR, 256(2):269–272, 1981.

[Gri90] Serge Grigorieff. Every recursive linear ordering has a copy in DTIME-
SPACE(n, log(n)). J. Symb. Log., 55(1):260–276, 1990.

[Hir99] Denis Roman Hirschfeldt. Degree spectra of relations on computable structures. ProQuest
LLC, Ann Arbor, MI, 1999. Thesis (Ph.D.)–Cornell University.

[HKSS02] D. Hirschfeldt, B. Khoussainov, R. Shore, and A. Slinko. Degree spectra and computable
dimensions in algebraic structures. Ann. Pure Appl. Logic, 115(1-3):71–113, 2002.

[HTMMM17] Matthew Harrison-Trainor, Alexander Melnikov, Russell Miller, and Antonio Montalbán.
Computable functors and effective interpretability. J. Symb. Log., 82(1):77–97, 2017.

[Kie81] H. A. Kierstead. An effective version of Dilworth’s theorem. Trans. Am. Math. Soc.,
268:63–77, 1981.

[Kie98] H. A. Kierstead. On line coloring k-colorable graphs. Israel J. Math., 105(1):93–104,
1998.

[KMN17a] I. Sh. Kalimullin, A. G. Melnikov, and K. M. Ng. The diversity of categoricity without
delay. Algebra Logic, 56(2):171–177, 2017.

[KMN17b] Iskander Kalimullin, Alexander Melnikov, and Keng Meng Ng. Algebraic structures com-
putable without delay. Theoret. Comput. Sci., 674:73–98, 2017.

[KN94] Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures. In Logi-
cal and Computational Complexity. Selected Papers. Logic and Computational Complex-
ity, International Workshop LCC ’94, Indianapolis, Indiana, USA, 13-16 October 1994,
pages 367–392, 1994.

[KPT94] H. A. Kierstead, S. G. Penrice, and W. T. Trotter Jr. On-line coloring and recursive
graph theory. SIAM J. Discrete Math., 7:72–89, 1994.

[KS99] Bakhadyr Khoussainov and Richard A. Shore. Effective model theory: the number of
models and their complexity. In Models and computability (Leeds, 1997), volume 259
of London Math. Soc. Lecture Note Ser., pages 193–239. Cambridge Univ. Press, Cam-
bridge, 1999.

[LST89] L. Lovász, M. Saks, and W. T. Trotter Jr. An on-line graph coloring algorithm with
sublinear performance ratio. Discrete Math., 75:319–325, 1989.

[Mal61] A. Mal′cev. Constructive algebras. I. Uspehi Mat. Nauk, 16(3 (99)):3–60, 1961.

16 A. MELNIKOV AND K.M. NG

[Mel17] Alexander G. Melnikov. Eliminating unbounded search in computable algebra. In Un-
veiling dynamics and complexity, volume 10307 of Lecture Notes in Comput. Sci., pages
77–87. Springer, Cham, 2017.

[Mil11] Russell Miller. An introduction to computable model theory on groups and fields. Groups
Complexity Cryptology, 3(1):25–45, 2011.

[MN] A. G. Melnikov and K. M. Ng. The back-and-forth method and computability without
delay. Israel J.Math, to appear.

[MPSS18] Russell Miller, Bjorn Poonen, Hans Schoutens, and Alexandra Shlapentokh. A com-
putable functor from graphs to fields. J. Symb. Log., 83(1):326–348, 2018.

[Rem86] J. B. Remmel. Graph colorings and recursively bounded Π0
1-classes. Ann. Pure Appl.

Logic, 32:185–194, 1986.
[Tsa11] Todor Tsankov. The additive group of the rationals does not have an automatic presen-

tation. J. Symbolic Logic, 76(4):1341–1351, 2011.

Massey University Auckland, Private Bag 102904, North Shore, Auckland 0745, New
Zealand

E-mail address: alexander.g.melnikov@gmail.com

Nanyang Technological University, Singapore

	1. Introduction
	1.1. Turing computable mathematics
	1.2. Feasible mathematics
	1.3. Punctual computability

	2. Proof of Theorem 1.3
	2.1. The requirements
	2.2. The pressing strategy
	2.3. One basic strategy in isolation
	2.4. The case of two structures P0 and P1
	2.5. The construction
	2.6. Verification

	3. Conclusion
	References

