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Abstract. We study the relative complexity of equivalence relations
and preorders from computability theory and complexity theory. Given
binary relations R,S, a componentwise reducibility is defined by

R ≤ S ⇐⇒ ∃f ∀x, y [xRy ↔ f(x)Sf(y)].

Here f is taken from a suitable class of effective functions. For us the re-
lations will be on natural numbers, and f must be computable. We show
that there is a Π0

1-complete equivalence relation, but no Π0
k-complete

for k ≥ 2. We show that Σ0
k preorders arising naturally in the above-

mentioned areas are Σ0
k-complete. This includes polynomial time m-

reducibility on exponential time sets, which is Σ0
2, almost inclusion on

r.e. sets, which is Σ0
3, and Turing reducibility on r.e. sets, which is Σ0

4.

1. Introduction

Mathematicians devote much of their energy to the classification of math-
ematical structures. In this endeavor, the tool most commonly used is the
notion of a reduction: a map reducing a seemingly more complicated ques-
tion to a simpler question. As a simple example, one classifies the countable
rational vector spaces (under the equivalence relation of isomorphism) using
the notion of dimension, by proving that two such vector spaces are isomor-
phic if and only if they have the same dimension over Q. More generally,
we have the following definition.

Definition 1.1. If E and F are equivalence relations on the domains DE

and DF , a reduction from E to F is a function f : DE → DF with the
property that, for all x, y ∈ DE ,

x E y ⇐⇒ f(x) F f(y).

In our example, E is the isomorphism relation on the class DE of countable
rational vector spaces (with domain ω, say, to avoid set-theoretical issues),
and F is the equality relation on the set {0, 1, 2, . . . , ω} of possible dimen-
sions of these spaces.

A reduction f of a complicated equivalence relation E to a simpler equiva-
lence relation F is entirely possible if one allows f to be sufficiently complex.
(For instance, every equivalence reduction E with exactly n classes can be
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reduced to the equality relation on {1, 2, . . . , n}, but this reduction has the
same complexity as E.) Normally, however, the goal is for f to be a readily
understandable function, so that we can actually learn something from the
reduction. In our example, one should ask how hard it is to compute the
dimension of a rational vector space. It is natural to restrict the question
to computable vector spaces over Q (i.e. those where the vector addition is
given as a Turing-computable function on the domain ω of the space). Yet
even when its domain DE such vector spaces, computing the function which
maps each one to its dimension requires a 0′′′-oracle, hence is not as simple
as one might have hoped. (The reasons why 0′′′ is required can be gleaned
from [7] or [8].)

Effective reductions. Reductions are normally ranked by the ease of com-
puting them. In the context of Borel theory, for instance, a large body of
research is devoted to the study of Borel reductions (the standard book ref-
erence is [17]). Here the domains DE and DF are the set 2ω or some other
standard Borel space, and a Borel reduction f is a reduction (from E to F ,
these being equivalence relations on 2ω) which, viewed as a function from 2ω

to 2ω, is Borel. If such a reduction exists, one says that E is Borel reducible
to F , and writes E ≤B F . A stronger possible requirement is that f be
continuous, in which case we have (of course) a continuous reduction. In
case the reduction is given by a Turing functional from reals to reals, it is a
(type-2) computable reduction.

A further body of research is devoted to the study of the same question
for equivalence relations E and F on ω, and reductions f : ω → ω between
them which are computable. If such a reduction from E to F exists, we say
that E is computably reducible to F , and write E ≤c F , or often just E ≤ F .
These reductions will be the focus of this paper. Computable reducibility on
equivalence relations was perhaps first studied by Ershov [12] in a category
theoretic setting.

The main purpose of this paper is to investigate the complexity of equiva-
lence relations under these reducibilities. In certain cases we will generalize
from equivalence relations to preorders on ω. We restrict most of our dis-
cussion to relatively low levels of the hierarchy, usually to Π0

n and Σ0
n with

n ≤ 4. One can focus more closely on very low levels: Such articles as
[3, 18, 5], for instance, have dealt exclusively with Σ0

1 equivalence relations.
The work [15] considers arithmetical equivalence relations, in particular Σ0

3

ones. At the other extreme, the papers [13, 14] consider equivalence rela-
tions outside the arithmetical or even hyperarithmetical, obtaining certain
results about Σ1

1-completeness of various equivalence relations on ω. The
work [11] is focused on much the same levels of the arithmetical hierarchy as
our work here, but through the prism of Borel equivalence relations on 2ω,
by restricting such relations to the class of computably enumerable subsets
of ω. A few of their results will be extended here. Finally, the complex-
ity of equivalence relations under this kind of reducibility has recently been
studied by a number of authors from various disciplines. Within complexity
theory it seems to have been first introduced in [16], and later studied in [6].
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Completeness. Equivalence relations on ω are subsets of ω2, and so those
with arithmetical definitions can be ranked in the usual hierarchy as Σ0

n

and/or Π0
n for various n ∈ ω. The question of completeness then naturally

arises. A Σ0
n equivalence relation F is complete (among equivalence relations

under ≤c) if for every Σ0
n equivalence relation E, we have E ≤c F . Π0

n-
completeness is defined similarly. Much of this paper is devoted to the study
of complete equivalence relations at various levels of the arithmetical hier-
archy, and we will often speak of their Σ0

n-completeness or Π0
n-completeness

without specifying the reducibility ≤c. At certain times we will need to con-
sider other reducibilities on subsets of ω, such as Turing reducibility ≤T or
1-reducibility ≤1, and these reducibilities give rise to their own (analogous)
notions of completeness, but when referring to those notions we will always
name them specifically.

The standard notion of an m-reduction from one set to another is relevant
here, since computable reducibility on equivalence relations can be seen as
one of two natural ways to extend m-reducibility from sets to binary rela-
tions. However when comparing the complexity between equivalence rela-
tions, it is more natural to use computable reducibility. Following Definition
1.1, we define:

(1) A ≤c B ⇐⇒ ∃ computable g ∀x, y [〈x, y〉 ∈ A↔ 〈g(x), g(y)〉 ∈ B].

The resulting reducibility has many interesting and, at times, surprising
properties. It can be readily seen that (1) is a stronger property than m-
reducibility: A ≤c B via g implies A ≤m B via the function f given by
f(x, y) = 〈g(x), g(y)〉, so a relation complete for a level of the arithmetic
hierarchy in the sense of relations as in (1) is also complete in the sense
of sets. The converse fails: in Subsection 3.2 we shall see that some levels
do not have complete equivalence relations at all.

It is easy to see that for every n, there exists an equivalence relation E
that is Σ0

n-complete under ≤c: let (Ve)e∈ω be an effective list of all symmet-
ric Σ0

n relations, let (Se)e∈ω be the effective list of their transitive closure,
and let E =

⊕
e Se be their effective sum. In Section 3 we demonstrate

the existence of Π0
1-complete equivalence relations, which is not nearly as

obvious. We give a natural example from complexity, namely equality of
quadratic time computable functions. In contrast, we also show that for
n ≥ 2, no equivalence relation is Π0

n-complete.

Preorders. Equivalence relations were the first context in which reductions
arose, but the notion of a reduction can be applied equally well to any pair
of binary relations: The E and F in Definition 1.1 need not be required
to be equivalence relations. In fact, a reduction could be considered as
a homomorphism of structures in the language containing a single binary
relation symbol, whether or not that symbol defines an equivalence relation
on either structure. Preorders (i.e. reflexive transitive binary relations �,
with x � y � x allowed even when x 6= y) form a natural collection of
binary relations on which to study reductions, and in Section 4 we will
turn to the question of computable reducibility on preorders, with some
interesting uses of effectively inseparable Boolean algebras. In this way we
obtain some examples of natural Σ0

n-complete preorders from computability
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theory. For instance, almost inclusion ⊆∗ of r.e. sets, and weak truth table
reducibility on r.e. sets, are Σ0

3 complete preorders. To obtain corresponding
completeness results for equivalence relations, we use the easy Fact 2.1 that
completeness of a preorder P at some level of the arithmetical hierarchy
implies completeness of the corresponding symmetric fragment which is an
equivalence relation. Using this we obtain, for instance, the Σ0

3 completeness
of several of the equivalence relations considered in [11]. In Section 5 we
show that Turing reducibilitiy on r.e. sets is a Σ0

4-complete preorder, and
hence Turing equivalence on r.e. sets is also Σ0

4-complete as an equivalence
relation. Using a direct construction, Fokina, Friedman and Nies [15] have
proved that 1-equivalence and m-equivalence on r.e. sets are Σ0

3-complete.
Our results can be applied to obtain completeness results for preorders

and equivalence relations from effective algebra. For instance, Ianovski [19]
has proved the Σ0

3-completeness of effective embeddability for computable
subgroups of the additive group of rationals by reducing almost inclusion of
r.e. sets. On the other hand, the completeness of several natural equivalence
relations, such as isomorphism of finitely presented groups, remains open.
Such questions are discussed in the final section.

The articles already cited here are among the principal references for this
subject. For ordinary computability-theoretic questions, we suggest [31], a
second edition of which is to appear soon.

2. Preliminaries

Let X [2] denote the unordered pairs of elements of X. A set R ⊆ X [2]

is transitive if {u, v}, {v, w} ∈ R and u 6= w implies {u,w} ∈ R. We view

equivalence relations as transitive subsets of ω[2].

Fact 2.1. Let P be a preorder, E = {{x, y} : 〈x, y〉 ∈ P and 〈y, x〉 ∈ P},
and n ∈ ω. If P is complete among Σ0

n [Π0
n] preorders under ≤c then E is

complete among Σ0
n [Π0

n] equivalence relations under ≤c.

Proof. We give the proof for Σ0
n. Note that E is clearly Σ0

n. Let F be an
arbitrary Σ0

n equivalence relation. In particular F can be seen as a preorder
and so there is a computable function f such that for every x, y, {x, y} ∈ F
iff 〈f(x), f(y)〉 ∈ P . Then f witnesses that F ≤c E. �

In parts of the Subsections 3.1 and 4.3 we will assume familiarity with the
basic notions of computational complexity theory; see for instance [4]. We
consider languages A ⊆ Σ∗ for the alphabet Σ = {0, 1}. Recall that for a
function h : ω → ω, a language A is computable in time h if there is an O(h)
time-bounded multitape Turing machine (TM) deciding membership in A.
The class of such languages is denoted DTIME(h). Languages in DTIME(n)
are also called linear time.

Recall that a function h from numbers to strings with h(n) ≥ n is time
constructible if h(n) can be computed in O(h(n)) steps on a multitape TM.
Suppose c ∈ ω is a constant. If a function h : ω → ω is time constructible,
then we can equip any given Turing machine with a “clock” on an extra
tape. This is a counter initialized at c · h(n) and decremented each step of
the given machine. It stops the given machine on reaching 0. Since h is time
constructible, the number of steps the clocked machine needs is still within
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O(h). Numbering all Turing machines clocked in this way yields an effective
listing of the class DTIME(h).

3. Π0
n-completeness for equivalence relations

In this section we show that there is a Π0
1-complete equivalence relation,

but no Π0
n-complete equivalence relation for n ≥ 2.

3.1. Π0
1 equivalence relations. For each function f : ω×ω → ω and x ∈ ω,

let fx denote the function n 7→ f(x, n). If f is computable,

Ef = {〈x, y〉 : fx = fy}
appears to be a natural example of a Π0

1 equivalence relation. We show
that indeed every Π0

1 equivalence relation is obtained in this way. A slight
extension of the argument yields a function f such that the corresponding
equivalence relation Ef is Π0

1-complete. We show that f can in fact be
chosen polynomial time computable.

For each Π0
1 equivalence relation E, there is a computable sequence of

cofinite relations (Et)t∈ω contained in ω[2] with E =
⋂
tEt such that from t

we can compute a strong index for the complement of Et, we have Et ⊇ Et+1

and

(2) Et ∩ [0, t][2] is transitive.

Proposition 3.1. For each Π0
1 equivalence relation E, there is a computable

binary function f such that E = Ef , namely, for each x, y, we have

(3) xEy ↔ fx = fy.

Proof. Let (Et)t∈ω be as in (2). We define f(x, n) by recursion on x. Let

f(x, n) =

{
f(r, n), if r < x for the least r such that rEmax(x,n)x,

x, otherwise.

Note that for each z, for sufficiently large k, we have f(z, k) = min[z]E .
Here [z]E is the equivalence class of z with respect to E. We verify that (3)
is satisfied.

For the implication “→”, we show the following by induction on x.

Claim. For each y < x, for each n, if yEmax(x,n)x then fy(n) = fx(n).

To see this, let r < x be as in the definition of f(x, n). Then r ≤ y < x.
By definition of f we have fx(n) = fr(n). By transitivity in (2), we have
rEmax(x,n)y, and hence rEmax(y,n)y. Then by inductive hypothesis, fr(n) =
fy(n).

For the implication “←”, suppose that y¬Ex. Then fy(k) 6= fx(k) for
sufficiently large k by the remark after the definition of f above. �

As a corollary we obtain a presentation of Π0
1 equivalence relations as the

uniform intersection of recursive ones.

Corollary 3.2. For each Π0
1 equivalence relation E, there is a uniformly

recursive sequence (Fn)n∈ω of equivalence relations such that Fn ⊇ Fn+1

and E =
⋂
n Fn.

Proof. Let E = Ef for a computable function f . Let
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Fn = {〈x, y〉 : fx �n= fy �n},

where g �n denotes the tuple 〈g(0), . . . , g(n− 1)〉. �

We obtain a Π0
1-complete equivalence relation by exposing a uniformity

in the proof of Proposition 3.1.

Theorem 3.3. There is a computable binary function g such that the equiv-
alence relation Eg = {〈x, y〉 : gx = gy} is Π0

1-complete.

Proof. Let Ei = ω[2]−Wi where the i-th r.e. set Wi is viewed as a subset of
ω[2]. Uniformly in i we may obtain a computable sequence of strong indices
(Eit)t∈ω as the one used in the proof of Proposition 3.1 such that Ei =

⋂
tE

i
t

whenever Ei is transitive. Now define g(〈i, x〉, n) to have the value f(x, n)
as above where E = Ei. By the argument in that proof, if Ei is transitive
then Ei ≤c Eg via the function x 7→ 〈i, x〉. �

We can in fact obtain in Theorem 3.3 a function on binary strings that is
quadratic time computable (see Section 2). We thank Moritz Müller at the
Kurt Gödel Research Institute in Vienna for suggesting a simplified proof
which we provide at the end of this subsection.

Lemma 3.4. For each computable binary function g, there is a quadratic
time computable binary function G defined on strings over {0, 1}, and a com-
putable unary function p mapping numbers to strings, such that g(x, n) =
G(p(x), p(n)), and G(w, v) = 0 for any string v not of the form p(n).

Unary quadratic time functions over the alphabet {0, 1} are given by in-
dices for multitape Turing machines (TM) that are equipped with a counter
forcing them to stop in time O(n2), where n is the input length.

Theorem 3.5. (i) There is a quadratic time computable binary function G
such that EG is Π0

1-complete. (ii) Equality of unary quadratic time com-
putable functions is a Π0

1-complete equivalence relation.

Proof of Theorem. (i) Let G be the function obtained from the function g
of Theorem 3.3 according to the lemma. Let p be as in the lemma. Then
xEgy ↔ Gp(x) = Gp(y). Since Eg is complete, so is EG.
(ii) Since all the Turing machines considered stop on every input in a qua-
dratic time bound, the equivalence relations is Π0

1. The completeness follows
from (i) since from a string w we can compute an index for a quadratic time
TM computing Gw. �

Proof of Lemma 3.4. Let g(x, y) (with x, y represented in unary) be com-
putable in time t(x, y) where t is a computable function that is increas-
ing in both x and y. We want a time constructible h satisfying t(n, k) ≤
h(n) + h(k). This can be achieved by having h(n) run g(n, n) and count-
ing the number of steps. This satisfies t(n, k) ≤ h(n) + h(k) as for n ≤ k,
t(n, k) ≤ t(k, k) = h(k), and h(n) = m can be calculated in time quadratic
in m: Place a binary counter at the start of the tape and simulate g to the
right of it. In the worst case scenario for every step of f the machine would
iterate over m+ logm cells, and whenever the counter grows in size the en-
tire tape would need to be shifted right which in total would take m logm,
coming to m logm+m(m+ logm) or O(m2).
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To compute G(a, b), verify whether a = 1x01h(x) and b = 1n01h(n). If so
output g(x, n), else output 0. Observe that G is quadratic time: We can

verify whether a = 1x01z is of the form 1x01h(x) by beginning to compute
g(x, x), stopping whenever the number of steps exceeds z. If the input is
of the right form we can compute g(x, n) in time t(x, n) ≤ h(x) + h(n) =
O(|a|+ |b|).

Note that for every x, n,

G(1x01h(x), 1n01h(n)) = g(x, n),

and for all other values the function is 0. Thus the function p(y) = 1y01h(y)

is as required. �

In work independent of ours [10, Proposition 3.1] the authors offer a char-
acterisation of Π0

1 preorders: Every such preorder is computably isomorphic
to the inclusion relation on a uniformly computable family of sets. As an
equivalence relation is merely a symmetric preorder, a Π0

1 equivalence re-
lation is then isomorphic to equality on such a family. Since sets can be
viewed as 0/1 valued functions, this yields another proof of Proposition 3.1.
Methods similar to the ones employed in the proof of Theorem 3.5 above
now yield a version of that Theorem for the inclusion of quadratic time
computable languages.

Theorem 3.6 ([19] based on [10]). Inclusion of quadratic time computable
languages is a complete Π0

1 preorder.

For a proof see [19, Thm 5.5]. Using that result one can also obtain a
stronger form of Cor. 3.2 where the Fn have at most 2n equivalence classes.

3.2. For n ≥ 2 there is no Π0
n-complete equivalence relation. Π0

n equiv-
alence relations often occur naturally. For instance, equality of r.e. sets as
a relation on indices is Π0

2. See [11] for further examples along these lines.
Computable model theory is a further source of interesting examples. Con-
sider the class P of computable permutations on ω with all cycles finite.
Isomorphism as a relation on computable indices for structures in this class
is Π0

2. This equivalence relation is easily seen to be computably equivalent
to equality on r.e. sets. Melnikov and Nies [23] have studied isometry of
compact computable metric spaces, They showed that it is properly Π0

3 in
general, and properly Π0

2 for effectively compact metric spaces.
Here we show that there is no Π0

n-complete equivalence relation for n ≥ 2.
Intuitively speaking, one would then expect that the computable reducibility
degrees of Π0

n equivalence relations are complicated.

Theorem 3.7. For each Π0
2 equivalence relation E there is a ∆0

2 equivalence
relation L such that L 6≤c E.

Let α be a computable ordinal. Relativizing to ∅(α) yields an immediate
corollary. We say that E ≤0(α) F if Definition 1.1 holds for E and F for

some f ≤T ∅(α).

Corollary 3.8. Let α be a computable ordinal. No Π0
α+2 equivalence relation

can be hard for all the ∆0
α+2 equivalence relations under the reducibility

≤0(α), let alone under computable reducibility ≤c. �
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In contrast, there is a Π1
1-complete equivalence relation E. Similar to the

case of Σ0
n relations, the class of symmetric Π1

1 relations is uniformly closed
under taking the transitive closure. Let (Ve)e∈ω be an effective list of all
symmetric Π1

1 relations, let (Se)e∈ω be the effective list of their transitive
closure, and let E =

⊕
e Se.

Proof of Theorem 3.7. E be any Π0
2 equivalence relation on ω. Since E

is Π0,∅′
1 we may fix a ∅′-computable function f such that 〈x, y〉 ∈ E iff

f(x, y, t) = 1 for every t. Now define L as follows.
For e0 6= e1, {〈e0, s0〉, 〈e1, s1〉} 6∈ L for any s0, s1. For each e, we distin-

guish two cases.
Case 1. There is a number t, chosen least, such that

ϕe(〈e, 0〉) ↓= x, ϕe(〈e, 1〉) ↓= y, ϕe(〈e, t+ 2〉) ↓= z, and f(x, y, t) = 0.

Let v be least such that f(x, z, v) = 0 or f(y, z, v) = 0.

• If f(x, z, v) = 0 we set {〈e, 0〉, 〈e, t+ 2〉} ∈ L.
• If f(y, z, v) = 0 we set {〈e, 1〉, 〈e, t+ 2〉} ∈ L.

Declare {〈e, s0〉, 〈e, s1〉} 6∈ L for every other pair s0 6= s1.
Case 2. There is no such number t. Then we set {〈e, s0〉, 〈e, s1〉} 6∈ L for
every s0 6= s1.

To see that L is ∆0
2, it suffices to note that for each e, if Case 1 applies

then by the transitivity of E the number v exists. Transitivity of L follows
from the fact that we relate each element to at most one other element.

Now suppose that L ≤c E via the total function ϕe. Since {〈e, 0〉, 〈e, 1〉} 6∈
L it follows that the least number t described above exists. By construction
we ensure that either {〈e, 0〉, 〈e, t + 2〉} ∈ L and {x, z} 6∈ E, or we have
{〈e, 1〉, 〈e, t+ 2〉} ∈ L and {y, z} 6∈ E, a contradiction. �

Remark. Observe that given any two Π0
n+2 equivalence relations R,S, the

disjoint union RtS = {{2n, 2m} | nRm}∪{{2n+ 1, 2m+ 1} | nSm} is also
a Π0

n+2 equivalence relation and we have R,S ≤c R t S. Hence Theorem

3.7 shows that amongst Π0
n+2 equivalence relations there can be no maximal

element under ≤c.
The following is an immediate consequence of Theorem 3.7; for preorders

we also apply Fact 2.1.

Corollary 3.9. For each n ≥ 2, there is no Π0
n-complete preorder, and no

∆0
n-complete equivalence relation, or preorder.

There also is no Π0
2 analogue of Cor. 3.2. Let us say a Π0

2 equivalence
relation E is effectively Π0

2 if there is a uniformly r.e. sequence (Fn)n∈ω of
equivalence relations such that E =

⋂
n Fn. (We may also require Fn ⊇ Fn+1

without loss of generality.) If S is an r.e. nonrecursive set then the ∆0
2

equivalence relation with the two classes S and ω − S is not effectively Π0
2.

Note that we can effectively list the effectively Π0
2 equivalence relations. By

putting together all the effectively Π0
2 equivalence relations in the obvious

way we see that there is a complete one under computable reducibility.



COMPLEXITY OF EQUIVALENCE RELATIONS AND PREORDERS 9

4. Σ0
k-complete preorders

The concept of an effectively inseparable r.e. Boolean algebra was in-
troduced by Pour-El and Kripke [29, Lemmas 1,2] when they studied the
complexity of logical derivability for recursively axiomatizable theories. The
method was developed in more generality by Montagna and Sorbi [25]. For
instance, in their Theorem 3.1 they showed that the preorder associated with
any effectively inseparable Boolean algebra is Σ0

1-complete. They developed
their method further in order to show that for a sufficiently strong arith-
metical theory T (such as a consistent axiomatizable extensions of PA), for
any r.e. preorder � there is a Σ1 formula G with i � j iff T ` G(i)→ G(j).

We are interested mostly in semantic preorders such as reducibilities,
which are usually at higher levels of the arithmetical hierarchy. So we ex-
tend the methods discussed above in order to show the completeness of a Σ0

k

preorder, using effectively inseparable Σ0
k Boolean algebras. Thereafter we

apply it to preorders in the subrecursive setting, which are Σ0
2, and to pre-

orders on the r.e. sets arising from computability theory, which are Σ0
3. Each

time, we naturally embed an effectively inseparable Σ0
k Boolean algebra for

the appropriate k into the preorder.
For sets X,Y , we write X ⊆∗ Y (X is almost contained in Y ) if X \ Y is

finite. We write X =∗ Y if X ⊆∗ Y ⊆∗ X. The preorders we will consider
in this section for the cases k = 2, 3 are given on certain natural classes of
sets, either by almost containment, or by reducibilities,.

4.1. The method of effectively inseparable Σ0
k Boolean algebras.

Our proofs rest on the following notion, which is an analogue of creativity
for disjoint pairs of sets. For detail see [31, II.4.13]. We relativize r.e. sets

to ∅(k−1), thereby obtaining Σ0
k sets. Note, however, that the analogue g of

the productive function remains computable.

Definition 4.1. (see [31, II.4.13]) We say that disjoint Σ0
k sets A,B ⊆ ω

are effectively inseparable (e.i.) if there is a computable binary function g
(called a productive function) such that for each p, q ∈ ω,

if A ⊆W ∅(k−1)

p , B ⊆W ∅(k−1)

q and W ∅
(k−1)

p ∩W ∅(k−1)

q = ∅,
then g(p, q) 6∈W ∅(k−1)

p ∪W ∅(k−1)

q .

Remark 4.2. (a) If we enlarge both components of the disjoint pair to
disjoint Σ0

k sets, the function g is still a productive function.
(b) We say that a disjoint pair A,B of Σ0

k sets is m-complete for disjoint
pairs if for each disjoint pair U, V of Σ0

k sets, there is a computable map α
such that

x ∈ U ↔ α(x) ∈ A, and x ∈ V ↔ α(x) ∈ B.

It is a well-known result going back to Smullyan [30] that each e.i. pair of Σ0
k

sets is m-complete in this sense. See [31, II.4.15] for a more recent reference.
Note that the m-reduction in [31, II.4.15] can be determined from indices of
the given Σ0

k sets U, V,A,B, and the productive function g for A,B. Even
If U ∩ V 6= ∅ or A ∩B 6= ∅, as long as g is total the construction still yields
a (total) computable function.



10 E. IANOVSKI, R. MILLER, K.M. NG, AND A. NIES

We consider Boolean algebras in the language with partial order ≤, meet
∧, join ∨, and complementation ′. A Σ0

k Boolean algebra B is represented
by a model (ω,�,∨,∧,′ ) such that � is a Σ0

k preorder, ∨,∧ are computable
binary functions, ′ is a computable unary function, and the quotient struc-
ture (ω,�,∨,∧,′ )/≈ is isomorphic to B. Here ≈ is the equivalence relation
corresponding to �, and we assume the functions are compatible with ≈.
We may also assume that 0 ∈ ω denotes the least element of the Boolean
algebra, and 1 ∈ ω denotes the greatest element. If necessary, we write �B
etc. to indicate the Boolean algebra a relation on ω belongs to.

The usual effectiveness notions defined for sets or functions on the natural
numbers can be transferred to B. For instance, we say that an ideal I of B
is Σ0

k if I is Σ0
k when viewed as a subset of ω.

Let F be a computable Boolean algebra that is freely generated by a
computable sequence (pn)n∈ω. For instance, we can take as F the finite
unions of intervals [x, y) in [0, 1)Q. We fix an effective encoding of F by
natural numbers. Then, equivalent to the definition above, a Σ0

k Boolean
algebra is given in the form F/I, where I is a Σ0

k ideal of F . We rely on
this view for coding a Σ0

k preorder into a Σ0
k Boolean algebra. We slightly

extend concepts and results of [25] where k = 1.

Lemma 4.3. For any Σ0
k preorder �, there is a Σ0

k ideal I of F such that
n � k ↔ pn − pk ∈ I.

Proof. Let I be the ideal of F generated by {pn− pk : n � k}. The implica-
tion “→” follows from the definition. For the implication “←”, let B� be the

Boolean algebra generated by the subsets of ω of the form î = {r : r � i}.
The map pi 7→ î extends to a Boolean algebra homomorphism g : F → B�
that sends I to 0. If n 6� k then n̂ 6⊆ k̂, and hence pn − pk 6∈ I. �

Definition 4.4. We say that a Σ0
k Boolean algebra B is Σ0

k effectively in-
separable (e.i.) if the sets [0]≈ and [1]≈ (that is, the names for 0 ∈ B and
for 1 ∈ B, respectively) are effectively inseparable.

We will frequently use the following criterion to show that a Σ0
k Boolean

algebra B is effectively inseparable.

Fact 4.5. Suppose that U, V is a pair of e.i. Σ0
k sets. Let B be a Σ0

k Boolean
algebra. Suppose there is a computable function g such that

x ∈ U → g(x) ≈ 0 and x ∈ V → g(x) ≈ 1.

Then B is effectively inseparable.

Proof. Let A = {x : g(x) ≈ 0} and B = {x : g(x) ≈ 1}. Then A,B are Σ0
k

sets, A ∩B = ∅, U ⊆ A, and V ⊆ B. By Remark 4.2 this implies that A,B
are effectively inseparable as Σ0

k sets, whence B is effectively inseparable as
a Σ0

k Boolean algebra. �

We slightly extend a result [25, Prop. 3.1]. As mentioned already, that
work goes back to results of Pour-El and Kripke [29, Lemmas 1,2] who only
worked in the setting of axiomatizable theories. It is worth including a proof
of the extension because we only partially relativize the setting of [25]: The
preorder of the Boolean algebra is Σ0

k, while all of its algebraic operations,
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as well as the reduction function in the definition of completeness, are still
computable.

Theorem 4.6. Suppose a Boolean algebra B is Σ0
k-effectively inseparable.

Then �B is a Σ0
k-complete preorder.

Proof. We say that a Σ0
k Boolean algebra is Σ0

k-complete if each Σ0
k Boolean

algebra C is computably embedded into it. We first show that the given
Boolean algebra B is Σ0

k-complete. For an element z of a Boolean algebra

define z(0) = z and z(1) = z′.
Given a Σ0

k Boolean algebra C, we construct the desired computable em-
bedding h of C into B recursively. Recall that the domain of a presentation
of C is ω by our definition. Suppose yi = h(i) has been defined for i < n.
For each n-bit string τ let

pτ =
∧
i<n i

(τi) and yτ =
∧
i<n y

(τi)
i .

In particular, if n = 0, we let p∅ = 1C and y∅ = 1B.
We define h in such a way that for each n and each string τ of length n,

we have

(∗) pτ ≈C 0↔ yτ ≈B 0.

This is clearly the case for n = 0. Inductively assume (∗) holds for n. To
define h(n) we use the following.
Claim. From a string τ of length n we can effectively determine an element
zτ �B yτ such that

n ∧ pτ ≈C 0↔ zτ ≈B 0, and n �C pτ ↔ zτ ≈B yτ .

To see this, first suppose yτ 6≈B 0. Then the pair of Σ0
k sets

A = {r : r ∧ yτ ≈B 0}, B = {r : r �B yτ}

is disjoint. By Remark 4.2(a) this pair is e.i. with the same productive
function g as the one for the e.i. pair of sets {r : r ≈B 0}, {r : r ≈B 1B}.

Since yτ 6≈B 0, by (∗) for n we have pτ 6≈C 0. Hence the pair of Σ0
k sets

U = {k : k ∧ pτ ≈C 0}, V = {k : k �C pτ}

is also disjoint. By Remark 4.2(b), we are uniformly given an m-reduction
α from U, V to A,B. We let zτ = yτ ∧ α(n). Then the claim is satisfied in
case yτ 6≈B 0.

If yτ ≈B 0 then, by (∗) for n, we have pτ ≈C 0. None of the pairs of
sets is disjoint now, but (based on the productive function g) we still have
a computable index for a function α, and hence a definition of zτ such that
zτ ≈B 0, which vacuously satisfies the claim.

Now let h(n) =
∨
|τ |=n zτ . It is clear that (∗) holds for n + 1. Then by

induction, the map h is a computable embedding of C into B, as required.
To conclude the proof of the theorem, let �P be any Σ0

k preorder. By
Lemma 4.3 there is a Σ0

k ideal I of the free Boolean algebra F such that
n � k ↔ pn − pk ∈ I. Since B is Σ0

k-complete, there is a computable
embedding g of F/I into B. Thus, n �P k ↔ g(pn) �B g(pk). �
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A forth-and-back version of the argument above shows that any two e.i.
Σ0
k Boolean algebras are effectively isomorphic. This fact for k = 1 was

already noted in [29, 25]. It is interesting in view of the applications below:
for a fixed k, all the preorders considered are complete “for the same reason”.

4.2. Derivability in first-order logic. Let T be a recursively axiomatized
sufficiently strong theory in the language of arithmetic, such as Robinson
arithmetic Q. Note that such a theory T can be finitely axiomatizable.
The following was first observed in [25, Section 4], building on Pour-El and
Kripke [29].

Theorem 4.7. For sentences φ, ψ in the language of T , let φ � ψ if `T
φ→ ψ. Then � is a Σ0

1-complete preorder.

Proof. Clearly � is Σ0
1. It was first observed by Smullyan [30] that the

Lindenbaum algebra of T is Σ0
1-effectively inseparable (or see [25, Section

4]). Now Theorem 4.6 implies that � is complete. �

In [19] the first author has given a direct proof that logical implication for
the first order language in a full signature is Σ0

1-complete. His proof relies
on a coding of Turing machine computations.

4.3. Σ0
2 preorders in the resource-bounded setting. For relevant nota-

tion from complexity theory see Section 2. In particular, there is an effective
listing of the class DTIME(h), which we fix below without further mention.
We use a technical tool:

Lemma 4.8. Given a disjoint pair of Σ0
2 sets U, V , we can effectively in x

determine a linear time computable language Lx such that

x ∈ U → Lx is finite, and x ∈ V → Lx is cofinite.

Proof. It follows from [31, pg. 66] that there is a uniformly r.e. pair of
sequences (Sx)x∈ω, (Tx)x∈ω such that

x ∈ U → Sx is finite, and x ∈ V → Tx is finite.

To define Lx, at stage n, in linear time we determine whether w ∈ Lx for
each string w of length n. Let t ≤ n be largest such that t > 0 and in n
steps one can verify that (a) Sx,t 6= Sx,t−1 or (b) Tx,t 6= Tx,t−1; if there is no
such t, let t = 0. If (a) applies or t = 0, declare that w is in Lx. Otherwise,
declare that w is not in Lx.

Clearly Lx is computable in linear time, uniformly in x. If x ∈ U , then
Sx is finite, so Tx is infinite. Then for almost all n we are in case (b), so Lx
is finite. If x ∈ V then Tx is finite, so Sx is infinite, so for almost all n we
are in case (a) and Lx is cofinite. �

We obtain a variation on Theorem 3.6.

Theorem 4.9. The preorder of almost inclusion ⊆∗ among quadratic time
computable languages is Σ0

2-complete.

Proof. Let (Gi)i∈ω be an effective listing of all the linear time computable
languages. Fix a set A computable in quadratic time but not in linear time.
We claim that the Σ0

2 Boolean algebra
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B = ({A ∩ L : L is linear time},⊆∗)/ =∗

with the canonical representation given by (Gi)i∈ω, is Σ0
2 effectively insep-

arable. To see this, in Lemma 4.8 let U, V be any pair of Σ0
2 effectively

inseparable sets. If x ∈ U then A ∩ Lx =∗ ∅. If x ∈ V then A ∩ Lx =∗ A.
Now we apply Fact 4.5.

The preorder of B on indices for linear time computable languages is Σ0
2-

complete by Theorem 4.6. From i we can compute an index for A∩Gi within
our effective listing of the quadratic time sets. Hence we can effectively
reduce the preorder on B to almost inclusion ⊆∗ among quadratic time
computable languages. �

In the following, ≤pr will denote a polynomial time reducibility in between
polynomial time many-one (m) and Turing (T) reducibility. Clearly this
reducibility is Σ0

2 on DTIME(h).

Theorem 4.10. Suppose the function h is time constructible and dominates
all polynomials. Then ≤pr on sets in DTIME(h) is Σ0

2-complete preorder.

For instance, we can let h(n) = 2n, or h(n) = nlog logn. The proof relies on
the following notion of Ambos-Spies [2].

Definition 4.11. Let f : ω → ω be a strictly increasing, time constructible
function. We say that a language A ⊆ {0}∗ is super sparse via f if A ⊆
{0f(k) : k ∈ ω} and “0f(k) ∈ A ?” can be determined in time O(f(k + 1)).

Supersparse sets exist in the time classes we are interested in.

Lemma 4.12 ([2]). Suppose that h : ω → ω is an increasing time con-
structible function with P ⊂ DTIME(h), so that h(n) ≥ n + 1 and h even-
tually dominates all polynomials. Then there is a super sparse language
A ∈ DTIME(h)− P.

Sketch of Proof. Let f(n) = h(n)(0). Since h eventually dominates all poly-

nomials, we can construct A ⊆ {0f(k) : k ∈ ω} such that A ∈ DTIME(h), but
still diagonalize against all polynomial time machines. �

We will keep this set A fixed in what follows. Given a reducibility ≤pr ,
we write a = degpr(A) for the degree of A. We write [0,a] for the initial
segment of the degrees below a, viewed as a partial order.

Proof of Theorem 4.10. Recall the e.i. Σ0
2 Boolean algebra B from the proof

of Theorem 4.9. It is represented via an effective listing (Gi) of linear time
computable languages. We will embed a Σ0

2 quotient of B into [0,a].
Since A is super sparse, by [27, Lemma 6.2.9] for polynomial time sets

U, V we have

A ∩ U ≤pr A ∩ V ↔ A ∩ (U − V ) ∈ P.

So we may well-define a map Φ: B → [0,a] as follows. For a linear time set
L = Gi, let

Φ(A ∩ L/ =∗) = degpr(A ∩ L).
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Let I be the Σ0
2 ideal of B consisting of all the equivalence classes A∩L/ =∗

such that A∩L ∈ P. Then C = B/I is in a natural way a Σ0
2 Boolean algebra,

and C is effectively embedded into [0,a]. Since B is e.i. and the map Φ is
effective, it follows that C is e.i. Hence by Theorem 4.6, the Σ0

2 preorder
{〈e, i〉 : A∩Ge ≤pr A∩Gi} is complete. Via a computable transformation of
indices, this preorder is effectively reducible to ≤pr on DTIME(h). �

4.4. Almost inclusion of r.e. sets.

Theorem 4.13. The preordering {〈e, i〉 : We ⊆∗ Wi} of almost inclusion
among r.e. sets is Σ0

3-complete.

Proof. All sets in this proof will be r.e. Fix a non-recursive r.e. set A. By
X t Y = A we denote that r.e. sets X,Y are a splitting of A. That is,
X ∩ Y = ∅ and X ∪ Y = A. We also write X v A to denote that X is part
of a splitting of A.

The following technical tool parallels Lemma 4.8.

Lemma 4.14. Given a disjoint pair of Σ0
3 sets U, V , we can effectively in

x determine an r.e. splitting A = Ex t Fx such that

x ∈ U → Ex is computable, and x ∈ V → Fx is computable.

Proof of the lemma. By [31, pg. 66] we may choose a uniformly r.e. double
sequence (Px,n)x,n∈ω of initial segments of ω such that

x ∈ U ↔ ∃n [Px,2n = ω] and x ∈ V ↔ ∃n [Px,2n+1 = ω].

We fix x. Let g(k, s) be the greatest t ≤ s such that t = 0, or Px,k,t−1 6=
Px,k,t. We enumerate sets Ex, Fx with Ex t Fx = A as follows. At stage
s > 0, if a ∈ As−As−1, see if there is a k ≤ s be least such that a < g(k, s).
If so, choose k least. If k is even, enumerate a into Fx; otherwise, or if there
is no such k, enumerate a into Ex.

First suppose that x ∈ U . Then the least k such that Px,k = ω is even.
We have lims g(k, s) = ∞. If k > 0 then also r = maxi<k lims g(i, s) < ∞.
For any v ≥ r, we have v ∈ Ex ↔ v ∈ Ex,s, where s is least such that
g(k, s) > v. Therefore Ex is computable.

If x ∈ V , then the least k such that Px,k = ω is odd. A similar argument
shows that Fx is computable. �

Since A is non-recursive, there is a major subset D ⊂m A (see [31, Section
X.4]). Thus, if R ⊆ A is computable then R ⊆∗ D. We now define an e.i.
Σ0
3 Boolean algebra B which is a subalgebra of the complemented elements

in [D,A]/ =∗. Suppose we are given a pair of e.i. Σ0
3 sets U, V . Let (Ex)x∈ω,

(Fx)x∈ω be the u.r.e. sequences obtained through the foregoing lemma. We
let B be the Boolean algebra generated by all the elements of the form (Ex∪
D)∗ for x ∈ ω. Since uniformly in x we can recursively enumerate both Ex
and its complement Fx = A−Ex, it is clear that B is a Σ0

3 Boolean algebra.
Furthermore, by Lemma 4.14 and Fact 4.5, B is effectively inseparable. So
by Theorem 4.6 the preorder of B, namely, {〈x, y〉 : Ex ⊆∗ Ey ∪D}, is Σ0

3-
complete. Since the sequence (Ex)x∈ω is uniformly r.e., this establishes the
theorem. �
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Note that we have in fact shown that almost inclusion of sets of the form
(We ∪D) ∩ A is Σ0

3-complete. It is worth noting that by a result of Maass
and Stob [22], the lattice [D,A]/ =∗ is unique up to effective isomorphism
whenever D is a major subset of A . Thus, only the complemented elements
of the Maass-Stob lattice are needed to establish the completeness of ⊆∗ as
a Σ0

3 preorder; this lattice is in itself merely a “tiny” part of the lattice of
r.e. sets under almost inclusion.

Corollary 4.15. The equivalence relation {〈e, i〉 : We =∗ Wi} is Σ0
3-complete.

Proof. This follows immediately from Fact 2.1. �

The relation =∗ on r.e. indices is the same relation as that called Ece0 in
[11, Thm. 3.4]. In the spirit of that article, we consider this and several other
equivalence relations carried over from the Borel theory. The relations E0,
E1, E2, and E3 are all standard Borel equivalence relations, whose definitions
can be found in [17] (and may also be gleaned from the definitions given
shortly). If A ⊆ ω, we write (A)n = {x : 〈n, x〉 ∈ A} for the n-th column
of A. The analogues of these for r.e. indices are relations on the natural
numbers, derived by letting each natural number e represent the set We.
Thus, for an equivalence relation E on reals, we let i Ece j iff Wi E Wj ,
yielding the following specific relations.

i Ece0 j ⇐⇒ |Wi4Wj | <∞ (⇐⇒ Wi =∗ Wj)

i Ece1 j ⇐⇒ ∀∞n [(Wi)n = (Wj)n]

i Ece2 j ⇐⇒
∑

i∈Wi4Wj

1

i
<∞

i Ece3 j ⇐⇒ ∀n [ |(Wi)n4(Wj)n| <∞] .

Now it is not hard to see that Ece3 is Π0
4-complete as a set (since =∗ is

Σ0
3-complete as a set), and therefore not computably reducible to any of

the others, since the others are all Σ0
3. In the Borel theory, E0 <B E1,

E0 <B E2, and E0 <B E3, with no other reductions holding among these
relations. The proofs of the Borel reducibilities can be adapted to give proofs
that Ece0 ≤c Ece1 , Ece0 ≤c Ece2 , and Ece0 ≤c Ece3 . Therefore, Corollary 4.15
gives a further result, providing the relation left open in [11, Fig. 3]

Corollary 4.16. Ece0 , Ece1 and Ece2 are all Σ0
3-complete equivalence relations,

and hence are bireducible with each other under ≤c.

In contrast, Corollary 3.8 showed that the relation Ece3 cannot be complete
under ≤c at any level of the arithmetical hierarchy, as it is Π0

4 but not Σ0
4

by virtue of its Π0
4-completeness as a set of pairs.

4.5. Weak truth-table reducibility on r.e. sets. It is well-known that
weak truth-table reducibility ≤wtt on r.e. sets is a Σ0

3 preorder with com-
putable supremum operation. It determines the distributive upper semilat-
tice of r.e. weak truth-table degrees; see e.g. [28].

Theorem 4.17. The preorder {〈e, i〉 : We ≤wtt Wi} is Σ0
3-complete.
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Proof. Ambos-Spies [1] called an r.e. set A antimitotic if for any r.e. splitting
A = XtY , the setsX and Y induce a minimal pair in the Turing degrees. He
built an incomputable antimitotic set A, which we will fix in the following.
Let a = degwtt(A).

Note that the degrees {degwtt(X) : X v A} form a Boolean algebra of
complemented elements in [0,a] with the usual degree ordering. We estab-
lish an e.i. Σ0

3 subalgebra C of this Boolean algebra. We are given a pair of e.i.
Σ0
3 sets U, V . Let (Ex), (Fx) be uniformly r.e. sequences as in Lemma 4.14.

Thus Ex v A for each x. Let C be the Boolean algebra generated by the
degwtt(Ex), x ∈ ω. Since A is antimitotic, intersection, union and comple-
mentation for splits of A correspond to the operations of meet, join, and
complementation in [0,a]. Since the former operations are effective, C is
indeed a Σ0

3 Boolean algebra.
If x ∈ U then Ex is computable, so deg(Ex) = 0. If x ∈ V then Fx is

computable, so deg(Ex) = a. This implies that C is effectively inseparable.
So the preordering of C, namely, {〈x, y〉 : Ex ≤wtt Ey}, is Σ0

3-complete by
Theorem 4.6. Since the sequence (Ex)x∈ω is uniformly r.e., this establishes
the theorem. �

5. Turing reducibility on r.e. sets is a Σ0
4-complete preorder

Theorem 5.1. The preorder {〈i, j〉 |Wi ≤T Wj} is Σ0
4-complete. Hence the

equivalence relation {〈i, j〉 |Wi ≡T Wj} is also Σ0
4-complete.

Proof. We fix a Σ0
4 preorder R. We give a construction with the overall aim

to build a uniform sequence of r.e. sets (Vi)i∈ω such that iRj iff Vi ≤T Vj .
Following Nies [26] we fix a uniformly r.e. sequence Xi,j

e,p of initial segments
of ω, such that

iRj → For almost all e and p, |Xi,j
e,p| <∞,

¬iRj → ∀e∃pXi,j
e,p = ω.

Here |X| denotes the cardinality of the set X. The facts “Xi,j
e,p = ω” and

“Xi,j
e,p <∞” are (uniformly) Π0

2 and Σ0
2 respectively, so each such statement

can be measured at a single node on a priority tree measuring infinitary or
finitary behaviour. That is, ¬iRj would be equivalent to the fact that “∀e∃p
such that the node measuring |Xi,j

e,p| has true infinitary outcome”. Similarly,

if iRj then “for almost all e, p, the node measuring |Xi,j
e,p| has true finitary

outcome”. Hence the ordered pairs in R will determine the true path of the
construction, i.e. which nodes are visited infinitely often and which are not.
We will arrange the strategies on the construction tree to align our actions
with the true path.

In this proof we use Y � k to mean the first k + 1 bits of Y . We say “Y
changes below k” to mean a change in Y � k.

5.1. Requirements and a high-level description. The requirements to
be met are Si,j for i, j ∈ ω:

Si,j : iRj ↔ Vi ≤T Vj .

The way in which each Si,j is satisfied can only be answered by a 0
′′′′

or-
acle, and so it is difficult to split Si,j explicitly into subrequirements in a
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meaningful way. We will instead describe the local action of each node on
the priority tree and then describe how the priority tree ensures that each
requirement Si,j is met globally.

The construction tree is a labeled binary tree. Each node of length

〈i, j, e, p〉 is assigned the set Xi,j
e,p and has two outcomes labelled ∞, 0. As

usual ∞ is to the left of 0. If α is assigned the set Xi,j
e,p we write

iα, jα, eα, pα, Xα for i, j, e, p,Xi,j
e,p, respectively.

Outcome ∞ stands for Xα = ω, while outcome 0 stands for Xα finite.
We now describe the local action of each node α. During the construction

α has a dual role. During the non-expansionary stages (i.e. α ∗ 0 stages)
α builds a Turing reduction aiming to make Vi ≤T Vj . Loosely speaking,
this strategy monitors for changes in Vi and responds with a change in Vj
each time it sees an element entering Vi. The other (conflicting) strategy
of α acts at each expansionary stage (α ∗ ∞ stage). At each expansionary

stage α checks to see if it can make Vi 6= Φ
Vj
eα by enumerating some number

in Vi and restraining Vj (henceforth we will write Φα instead of Φeα for
convenience). These two strategies are clearly conflicting, and we always
initialize the Turing reduction whenever an expansionary stage occurs for α.

We now describe how Si,j can be met globally. Suppose ¬iRj. Then for
each e there is some node α along the true path with iα = i, jα = j, eα = e

and having true outcome∞. This α will ensure that Φ
Vj
e 6= Vi, and so overall

we get Vi 6≤T Vj . In this case there could be infinitely many nodes β along
the true path also working for i, j, but which have true outcome 0. The local
strategy for β will attempt to demonstrate Vi ≤T Vj , which cannot possibly
be achieved. Indeed each such node β along the true path will be injured
infinitely often by another node α further along the true path aiming to

diagonalize Φ
Vj
e 6= Vi. This is the key difference between this construction

and a typical ∅′′′ tree argument. In the latter case we usually only allow a
finite amount of injury to each requirement along the true path, whereas in
our case it is necessary that some node gets injured infinitely often along
the true path.

Now suppose that iRj. Then almost every node along the true path
working for the pair i, j must have true outcome 0. In particular there is
a shortest node α along the true path with true outcome 0 (we will later
call all possible candidates for α a top node). In this case there could be
finitely many top nodes α′ ≺ α with true outcome 0. However the Turing
reducibilities built by these α′ will all be destroyed (by nodes between α′ and
α which are attempting to diagonalize), and Vi ≤T Vj will be demonstrated
by the final top node α along the true path. It is important to note that
each top node α′ cannot possibly know anything about the nodes on the
true path which are longer than α′, and so the situation described above
cannot be avoided.

We conclude this section with some technical definitions. We say that
α is a top node if there is no β ≺ α such that iα = iβ and jα = jβ, or if
α(|β|) =∞ for the maximal such β. Given a node α we define the top of α
to be the maximal top node τ � α such that iα = iτ and jα = jτ . We say
that α is a child of τ if α has top τ .
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We let Z∞(α) = {β ≺ α | β ∗ ∞ � α and β is not a top node}, which
are all the nodes extended by α running the ∞ strategy. Similarly we let
Z0(α) = {β ≺ α | β ∗ 0 � α and β is a top node}.

5.2. Ensuring Vi ≤T Vj. Each top node α will build a Turing reduction
∆α to ensure that Viα ≤T Vjα in the case that α ∗ 0 is along the true path.
The Turing reduction is built indirectly by specifying the coding markers
{δα(x)[s]}x,s∈ω. Each δα(x)[s] is not in Vjα [s] and obeys the following stan-
dard marker rules: For all x and s, we ensure

(i) δα(x)[s] < δα(x+ 1)[s].
(ii) If δα(x)[s] 6= δα(x)[s + 1] or if δα(x)[s] ↓ and δα(x)[s + 1] ↑ then

Vjα,s−1 � (δα(x)[s]) 6= Vjα,s � (δα(x)[s]).
(iii) If x is enumerated in Viα at stage s, and if δα(x)[s] is defined then

Vjα must change below δα(x)[s] at the same stage or later.
(iv) lims δα(x)[s] exists (if α ∗ 0 is along the true path).

It is easy to see that if these rules are ensured, and if α∗0 is visited infinitely
often, then Viα ≤T Vjα : To compute if x is in Viα we find recursively in Vjα
a stage s where Vjα [s] is correct up to δα(x)[s]. This stage exists because of
(iv). At all stages t > s we have δα(x)[s] = δα(x)[t] because of (ii). By (iii)
we must have x ∈ Viα iff x ∈ Viα [s].

5.3. Informal description of the strategy. We now describe the strategy
and the method of overcoming the key difficulties. Each top node α will

have a dual role. At α ∗ 0 stages it must extend the Turing reducibility ∆
Vj
α

by picking a fresh value for δα(x). It must also ensure the correctness of

∆
Vj
α (x) by enumerating δα(x) if x had been enumerated into Vi recently. At

each α ∗∞ stage α will attempt to diagonalize by enumerating (if possible)
some number l into Vi and preserving Vj . Clearly these two strategies are
conflicting and we give the diagonalization strategy higher priority; Hence
at each α∗∞ stage we reset ∆α and all δα markers. If α∗0 is along the true

path then we ensure Vi = ∆
Vj
α , and if α ∗ ∞ is along the true path then we

ensure Φ
Vj
α 6= Vi. In the latter case the reduction ∆α fails. Analyzing the

overall outcome of the construction we note that if ¬iRj then for every e

we ensure Φ
Vj
e 6= Vi at some node along the true path, and if iRj then there

is a final top node τ along the true path where Vi = ∆
Vj
τ is successfully

maintained. In this case there can be finitely many top nodes α where

α ∗∞ � τ for which ∆
Vj
α is initialized infinitely often.

We now describe the main issue which will arise in implementing the above
strategy. Suppose α ≺ β are both working for the same i, j, and α has true
outcome 0, while β has true outcome ∞. We may as well assume that α is
the top of β. Now α and β will have conflicting actions. At each β∗∞ stage,
we may want β to diagonalize by putting some number l in Vi. If δα(l) has
already been defined then α will later want to correct ∆α by putting δα(l)
into Vj , which can destroy the diagonalization previously obtained by β. We
overcome this by delaying β from diagonalizing. In the meantime, at each
β ∗∞ stage we lift δα(k) for some fixed number k by enumerating δα(k) into
Vj and later picking a fresh value for δα. Since there are infinitely many
β ∗ ∞ stages, δα(k) goes to infinity. Hence β destroys ∆α but will now be
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able to meet Φ
Vj
β 6= Vi (via diagonalization or an undefined computation).

∆
Vj
α is now destroyed. However this is fine because β witnesses the fact that

α is not the final top node along the true path. In this case the reduction
∆Vj = Vi will be built further down the true path (if iRj) or may not be
built at all (if ¬iRj).

In the general situation (when considering nodes devoted to other pairs
i′, j′) we consider the nodes β0, β1 ≺ α where β0, β1 have true outcome 0,
α has true outcome ∞, i = iα = iβ1 , jβ1 = iβ0 and jβ0 = jα = j. Again if
α wants to diagonalize at some α ∗ ∞ stage it must be careful; A number

l enumerated in Vi might cause β1 to later correct ∆
Vjβ1
β1

by changing Vjβ1 ,

which might in turn cause β0 to correct ∆
Vj
β0

by changing Vj , destroying the

previous diagonalization attempt of α. In this case we observe that along
the true path, we must have one of the following three situations hold:

(i) There is some child γ0 of β0 where γ0 ∗∞ is along the true path.
(ii) There is some child γ1 of β1 where γ1 ∗∞ is along the true path.

(iii) Almost every γ working for the same pair 〈i, j〉 as α along the true
path has true 0 outcome.

One of these three situations must hold since R is transitive. If (iii) holds
then it is fine for α to fail in diagonalizing even though it has true outcome
∞. If (i) or (ii) holds then γv (for some v < 2) witnesses that βv is not
the final top node along the true path; In this case γv will destroy ∆βv by
pushing some δβv(k) to infinity. In this case we delay α from diagonalizing

until we find that Φ
Vj
α (l) has converged on a number l with use u safely.

That is, the combined response of β0 and β1 to the entry of l into Vi will
not change Vj below u.

5.4. Markers for capricious destruction. Each node α which is not a
top node is given a parameter kα. At each α-expansionary stage, α will
enumerate δτ (kα) into Vjτ and lift this marker. Hence if α ∗ ∞ is along
the true path then δτ (kα) goes to infinity. This is fine because τ is not the
maximal top node along the true path; in this case there may be a top node
further down the true path, or there may be none along the true path, and
so the Turing reducibility witnessing Viτ ≤T Vjτ need not be built at τ .
The important thing here is to ensure that for each top node τ where τ ∗ 0
is along the true path and τ is not the maximal top node along the true
path, we have to destroy the τ markers and create an interval (i,∞) where
every point is eventually cleared of τ markers. This allows a conflicting
diagonalization strategy of lower priority to succeed.

If τ is the final top node along the true path then each τ marker is lifted
finitely often this way, and so the Turing reducibility witnessing Viτ ≤T Vjτ
will be built at τ .

5.5. Believable computations. A computation Φ
Vjα
α (l)[s] with use u is

said to be α-believable at stage s if the following two conditions are met.

• For every β ∈ Z0(α) there is no β marker below u which is pending.
A β marker δβ(x) is said to be pending at t if x was enumerated into
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Viβ at some s < t where δβ(x)[s] is defined and Vjβ has not changed
below δβ(x)[s].
• There does not exist a sequence of distinct nodes β0, · · · , βn ∈ Z0(α)

such that iβn = iα, jβ0 = jα, and for every m < n, jβm+1 = iβm , and
δβm(l)[s] ↓≤ u.

The first item says that a computation is α-believable if there is no δ marker
below the use that will be enumerated by some β ≺ α due to coding. The
second item ensures that if l were to be enumerated by α into Viα for the
sake of diagonalization then the resulting sequence of correction actions will
not cause the computation to be later destroyed.

5.6. Formal construction. At stage 0 we initialize every node. This
means to reset δα and kα to be undefined. At stage s > 0 we define TPs
of length s, where TPs is the stage s approximation to the true path of
construction. Assume that α ≺ TPs has been defined. If |Xα| has increased
since the last α-stage then we play outcome∞ for α, otherwise play outcome
0 for α. Initialize every node to the right of α ∗ o where o is the outcome
played. We now act for α. There are four cases.

(i) α is not a top node and outcome 0 is played. Do nothing.
(ii) α is a top node and outcome ∞ is played. Initialize α. Check if

it is possible to diagonalize, and if so, do it. This means to check

if there exists some l < s such that Φ
Vjα
α (l)[s] ↓ is α-believable,

l ∈ ω[α] − Viα [s], and for every l′ ≤ l we have Viα(l′) = Φ
Vjα
α (l′)[s].

We also require l to be larger than the previous stage where α was
initialized by another node. If such l is found enumerate l into Viα
and initialize every node extending α.

(iii) α is not a top node and outcome∞ is played. Let τ be the top of α.
If kα ↑ we pick a fresh value for it. Otherwise if δτ (kα) ↓ enumerate
it into Vjτ and make it (and all larger τ marker) undefined. Check
if it is possible to diagonalize, and if so, do it.

(iv) α is a top node and outcome 0 is played. We will correct and extend
the Turing reduction ∆α. For correction, we check to see if there is
any number l enumerated into Viα since the last visit to α. Let l be
the least. If δα(l) ↓ we enumerate it in Vjα and make δα(l) ↑. To
extend ∆α we let k < s be the least such that δα(k) ↑. We pick a

fresh value x ∈ ω[α] and set δα(k) ↓= x.

5.7. Verification. Let TP = lim infs TPs be the true path of the construc-
tion, which clearly exists as the construction tree is finitely branching. We
first prove the following key lemma.

Lemma 5.2. Suppose α is a node on the true path. Then α makes finitely
many diagonalization attempts.

Proof. Assume we are at a stage of the construction where each β ≺ α makes
no more diagonalization attempt, and we never move left of α. Suppose α
makes infinitely many diagonalization attempts after this. Let l be the
smallest number put in by α due to a diagonalization attempt, at some

stage t. At t we have Φ
Vjα
α (l)[t] ↓= 0 with use u, and is an α-believable
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computation. We claim that at t, Vjα is stable below u, which contradicts
the assumption that infinitely many attempts are made.

By convention u < t, and so the only nodes which can enumerate a number
less than u into any set after stage t, are nodes of the form β � α. In fact we
cannot have β = α because if α is a top node then it is initialized at t and
any further diagonalization action by α involves a number l′ > l, and if α is
not a top node then kα or δτ (kα) is undefined before the diagonalization at t
(here τ is the top of α). Similarly we cannot have β∗∞ � α, because if β is a
top node then it is initialized at t and never again performs diagonalization,
and if β is not a top node then kβ or δτ (kβ) is undefined when α was visited
at t. Hence if β is a node which enumerates a number smaller than u into
any set after t, it must satisfy β0 ∈ Z0(α).

Let β0 ∈ Z0(α) be the first node after t to change Vjα below u, say at
t0 > t. At t0, β0 is correcting ∆β0 and responding to the action of β1 at t1,
t1 < t0. Let l0 be the number which was enumerated by β1 into Viβ0 at t1.
We cannot have t1 < t because of α-believability at t. Suppose t1 > t. Since
l < δ(l) for every l, δ, we have β1 ∈ Z0(α). Then we have correction at t1 and
so jβ1 = iβ0 . We can then repeat to get a sequence β0, · · · , βn ∈ Z0(α) and
t0 > · · · > tn > tn+1 = t, where βn+1 = α, jβ0 = jα, iβn = iα, and for every
m < n, jβm+1 = iβm . Furthermore for every m ≤ n, lm < δβm(lm) = lm−1,
and ln = l. Since δβm(lm)[tm] ↓< u we have δβm(lm)[t] ↓< u (since δ
markers are picked fresh), and so δβm(l)[t] ↓< u. By removing any cycles in
the sequence, we may assume that the nodes β0, · · · , βn are distinct. This
contradicts the second requirement for α-believability at t. �

We devote the remainder of the proof to showing that each requirement
Si,j is met. Fix i and j such that iRj. Let α be the shortest node along TP
such that iα = i, jα = j and for every node β such that iβ = i and jβ = j
where α � β ≺ TP , we have β ∗ 0 � TP . Clearly α is a top node. We argue

that Vi = ∆
Vj
α (by a symmetric argument we can then conclude Vi ≡T Vj).

Since α has true 0 outcome there are finitely many self-initializations, and
by Lemma 5.2, there are only finitely many initializations to α. The marker
rules (i), (ii) and (iii) are clearly met for δα. We argue (iv) holds. Since
α is visited infinitely often it suffices to check that each marker is made
undefined finitely often. Each δα(k) can only be made undefined by some
child of α, and only when k = kα. A child of α to the left of the true path
only does this finitely often, while a child to the right of the true path has
kα = k at finitely many stages. A child on the true path must have true 0
outcome and acts at only finitely many stages.

Now fix i and j such that ¬iRj. Fix an e, and let α be the node on the
true path such that iα = i, jα = j, eα = e and α ∗ ∞ ≺ TP . We argue that

Φ
Vj
α 6= Vi. Suppose that Φ

Vj
α = Vi.

Lemma 5.3. For almost every l, the true computation Φ
Vj
α (l) is eventually

α-believable.

Proof. Call a sequence of distinct nodes β0, · · · , βn ∈ Z0(α) such that iβn =
iα, jβ0 = jα, and for every m < n, jβm+1 = iβm , a bad sequence. There are
only finitely many bad sequences, and for each bad sequence there exists a
node γ which is a child of some βm such that γ ∗∞ ≺ TP . This follows by
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the transitivity of R. Since γ is not a top node it is initialized finitely often
and so achieves a stable value for kγ . We consider l larger than every kγ

and argue that Φ
Vj
α (l) is eventually α-believable.

Fix l and fix a large stage s such that α is visited and Φ
Vj
α (l)[s] ↓ with

the correct use u. The first requirement for α-believability must be met
because any pending marker from any node in Z0(α) must be enumerated
in Vj below u before the next visit to α. For the second requirement, we can
assume that s is large enough such that for each bad sequence and associated
γ, we have δβm(kγ)[s] > u. This is possible because at each visit to γ ∗ ∞
we make δβm(kγ) undefined.

Let us assume the second requirement for α-believability fails. Fix a bad
sequence witnessing this, and let γ be the associated node. By the failure
of believability we have δβm(l)[s] ≤ u; On the other hand by the choice of s
we have δβm(l)[s] > δβm(kγ)[s] > u, a contradiction. �

By Lemma 5.2, there are only finitely many initializations to α initiated
by a different node; Let s be large enough so that there are no more initial-
izations to α of this type. By Lemma 5.3 pick l large enough, and wait for

Φ
Vj
α (l) to become α-believable, and for Φ

Vj
α to agree with Vi below l. Hence

α will make another diagonalization attempt after s. Since this holds for
any large s, we have a contradiction to Lemma 5.2. This ends the proof of
Theorem 5.1. �

We also obtain as a corollary, examples of complete equivalence relations
at the Σ0

n+4 level for each n ∈ ω:

Corollary 5.4. For each n ∈ ω, the preorder {〈i, j〉 | W ∅(n)i ≤T W ∅
(n)

j } is

Σ0
n+4-complete.

Proof. The proof of Theorem 5.1 produces a computable function f such
that for each i, j, we have iRj iff Wf(i) ≤T Wf(j). Relativizing this to ∅(n),
for each Σ0

n+4 preorder R, we get a function f ≤ ∅(n) such that iRj iff

W ∅
(n)

f(i) ≤T W
∅(n)
f(j) ⊕ ∅

(n).

For each oracle X and each function g ≤T X there is a computable
function h such that WX

g(i) = WX
h(i) for every i. To see this, observe that

the set {(n, i) : n ∈ WX
g(i)} is Σ0,X

1 and is hence equal to the domain of ΨX

for some functional Ψ. The function h is obtained by applying the s-m-n
Theorem.

Now applying this fact we may assume that f is computable. Let f̂ be a
computable function such that WX

f(i) ⊕X = WX
f̂(i)

for all X and i. Then f̂

witnesses that R is reducible to the preorder {〈i, j〉 |W ∅(n)i ≤T W ∅
(n)

j }. �

Corollary 5.5. For each n ∈ ω, the preorder {〈i, j〉 | W (n)
i ≤T W

(n)
j } is

Σ0
n+4-complete.

Proof. The proof of Corollary 5.4 shows that the preorder {〈i, j〉 | W ∅(n)i ⊕
∅(n) ≤T W ∅

(n)

j ⊕ ∅(n)} is complete among the Σ0
n+4 preorders. By the uni-

formity of Sacks’ Jump Inversion Theorem (see [31, Corollary VIII.3.6.]),



COMPLEXITY OF EQUIVALENCE RELATIONS AND PREORDERS 23

for each n there is a computable function qn such that for all x, we have

W
(n)
qn(x)

≡T W ∅
(n)

x ⊕ ∅(n). �

Corollary 5.6. For each n ∈ ω the relation

{〈i, j〉 : W ∅
(n+1)

i ≡1 W
∅(n+1)

j }

is Σ0
n+4-complete.

6. Discussion and open questions

Many effective equivalence relations from algebra can be considered under
the aspect of relative complexity. For instance:

Question 6.1. Is the equivalence relation E of isomorphism between finite
presentations of groups Σ0

1-complete?

Adyan and Rabin independently showed in 1958 that the triviality prob-
lem, whether a finite presentation describes the trivial group, is m-complete.
See Lyndon and Schupp [21, IV.4.1], letting the given group H there have a
word problemm-equivalent to the halting problem. In fact, by the discussion
following the proof there, every single equivalence class of E is m-complete:
Being isomorphic to a particular finitely presented group P is incompatible
with free products in their sense because P ∗ A has higher rank than P for
any nontrivial group A.

Question 6.2. Is the equivalence relation E of isomorphism between auto-
matic equivalence relations Π0

1-complete?

Kuske, Liu and Lohrey [20] showed that this is Π0
1-complete as a set of

pairs. A similar question can be asked about the Π0
1 relation of elementary

equivalence of automatic structures for the same finite signature.
Computable isomorphism of computable Boolean algebras is Σ0

3 complete
by [15]. By [13], isomorphism on many natural classes of computable struc-
tures, such as graphs, is a Σ1

1-complete equivalence relation. The third
author has observed that isomorphism of computable Boolean algebras also
is a Σ1

1-complete equivalence relation. This uses the fact that the coding of
graphs into countable Boolean algebras from [9] is effective. Thus, uniformly
in a computable graph it produces a computable Boolean algebra.
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