
INCOMPARABILITY IN LOCAL STRUCTURES OF s-DEGREES AND

Q-DEGREES

IRAKLI CHITAIA, KENG MENG NG, ANDREA SORBI, AND YUE YANG

Abstract. We show that for every intermediate Σ0
2 s-degree (i.e. a nonzero s-degree strictly below

the s-degree of the complement of the halting set) there exists an incomparable Π0
1 s-degree. (The

same proof yields a similar result for other positive reducibilities as well, including enumeration
reducibility.) As a consequence, for every intermediate Π0

2 Q-degree (i.e. a nonzero Q-degree strictly
below the Q-degree of the halting set) there exists an incomparable Σ0

1 Q-degree. We also show how
these results can be applied to provide proofs or new proofs (essentially already known, although
some of them not explicitly noted in the literature) of upper density results in local structures of
s-degrees and Q-degrees.

1. Introduction

The reducibility known as s-reducibility is a restricted version of enumeration reducibility. We
recall that any computably enumerable (or, c.e.) set W defines an enumeration operator (for short:
e-operator), i.e. a mapping ΦW from the power set of ω to the power set of ω (where ω denotes
the set of natural numbers) such that, for A � ω,

ΦW pAq � tx : pDuq rxx, uy PW and Du � As u,

where Du is the finite set with canonical index u: throughout the rest of the paper, we will often
identify finite sets with their canonical indices, thus writing, for instance, xx,Dy instead of xx, uy
if D � Du. If A � ΦpBq for some e-operator Φ then we say that A is enumeration reducible to B
(or, more simply, A is e-reducible to B; in symbols: A ¤e B) via Φ. An e-operator Φ is said to be
an s-operator, if Φ is defined by a c.e. set W such that

p@ finite Dqp@xqrxx,Dy PW ñ cardpDq ¤ 1s

(where the symbol cardpXq denotes the cardinality of a given set X). Following [4] we say that A
is s-reducible to B (in symbols: A ¤s B) if A � ΦpBq, for some s-operator Φ. We refer the reader
to [7] for an introduction to s-reducibility.

It is easy to see (see e.g. [7]) that there is a least s-degree (denoted by 0s, consisting of all c.e.
sets) and that A P Σ0

2 if and only if A ¤s K, where K is the halting set, and for a given set X, the
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symbol X denotes the complement of X. Let us denote by 01s the s-degree of K: the collection of
s-degrees below 01s is called the local structure of the s-degrees.

The reducibility known as Q-reducibility (introduced by Tennenbaum, see [8, p. 159]) is an isomor-
phic copy of s-reducibility: a set A is Q-reducible to a set B (in symbols: A ¤Q B) if there exists
a computable function f such that

p@xqrx P AôWfpxq � Bs.

(It is convenient to exclude ω from the universe of the reducibility, as A ¤Q ω if and only if
A � ω.) Both s-reducibility and Q-reducibility have been frequently and successfully applied to
computability theory, abstract complexity theory, group theory and word problems: we refer the
reader to Omanadze’s paper [6] for an exhaustive survey of applications of Q-reducibility. It is easy
to see that A ¤s B if and only if there exists a computable function f such that (if B � ω)

x P AôWfpxq � B;

in other words A ¤s B if and only if A ¤Q B. Hence the Q-degrees are order isomorphic with
the s-degrees. The local structure of the Q-degrees consists of the Q-degrees of the Π0

2 sets. For
every set A, we have that A P Π0

2 if and only if A ¤Q K: thus the Q-degree of K is the greatest
element of this local structure, whereas the least element is comprised of all decidable sets (with
the exclusion of ω).

We prove in this paper (Theorem 2.3 ) that for every intermediate s-degree of the local structure
of the s-degrees (i.e. for every a with 0s  s a  s 01s) there exists an incomparable Π0

1 s-degree
(i.e. an s-degree containing some Π0

1 set), or, otherwise stated, for every Σ0
2 set A, with A not c.e.

and K ¦s A, there is a Π0
1 set B such that A|sB (where, for a given reducibility ¤r, the symbol

|r denotes incomparability with respect to ¤r). As a consequence, via the isomorphism between
s- and Q-degrees, for every Π0

2 set A, with A undecidable and K ¦Q A, there exists a c.e. set
B such that A|QB. A straightforward modification of the proof shows that for every Σ0

2 set A

such that H  e A  e K there is a Π0
1 set B such that A|eB (in e-degrees this has the additional

interest that every Π0
1 e-degree contains a total function). Different straightforward modifications of

the proof show that the same incomparability result holds of other positive reducibilities, stronger
than ¤s, with the corresponding result holding, via the isomorphism provided by complements of
sets, of the corresponding sub-reducibilities of Q-reducibility. Finally we point out how to use our
incomparability results for ¤s and ¤Q to prove in one shot some upper density results (essentially
already known in the literature, although some of them never explicitly noticed), namely that the
s-degrees lying in the class X (for X P tΠ0

1,∆
0
2,Σ

0
2u) are upwards dense, and the Q-degrees lying

in X (for X P tΣ0
1,∆

0
2,Π

0
2u) are upwards dense.

2. Main Result

Although stated for ¤s, via the isomorphism between s-degrees and Q-degrees our main result
(Theorem 2.3) can be viewed as a generalization of the following Fact 2.1: our generalization goes
from c.e. sets to all Π0

2 sets.

Fact 2.1 (Folklore). Given any undecidable c.e. set A such that A  Q K, there exists a c.e. set
B such that A |Q B.

Proof. The idea is the following. Let A be an undecidable c.e. set such that every c.e. set B is
Q-comparable with A. If A is T -incomplete then there exists a c.e. set B such that A and B are
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T -incomparable, so A and B are Q-incomparable as X ¤Q Y implies X ¤T Y for c.e. sets. Thus
assume now that A is T -complete. For each c.e. set We by Dekker’s deficiency set construction one
can construct a hypersimple Wfpeq of the same Turing degree as We such that Wfpeq is semirecursive.
Now A ¤Q Wfpeq if and only if Wfpeq is T -complete, as every semirecursive and hypersimple T -

complete set is also Q-complete. This would give a Σ0
4 predicate recognizing T -incompleteness of

Wfpeq and hence also T -incompleteness of We. However, the index set te : We T -incompleteu is

Π0
4-complete. �

On the other hand it also generalizes the following result:

Fact 2.2. [1, Theorem 13] For every intermediate Π0
2 Q-degree a there is a ∆0

2 Q-degree b such
that a|Qb.

In fact, it is shown in [1, Theorem 13] that the ∆0
2 Q-degree b can be chosen to form a minimal

pair with a in the c.e. Q-degrees. So, our Theorem 2.3 would follow from this, should it be true
that every nonzero ∆0

2 Q-degree bounds a nonzero c.e. Q-degree: but this is not certainly the case
since it is known that there are quasiminimal ∆0

2 e-degrees, which implies that there are nonzero
∆0

2 s-degrees which do not bound any nonzero Π0
1 s-degree, by the already mentioned fact that

every Π0
1 e-degree contains a total function.

Theorem 2.3. Given any A P Σ0
2rΣ0

1 such that A  s K, there exists a Π0
1 set B such that A |s B,

in fact A ¦e B and B ¦s A.

Proof. Let A P Σ0
2 r Σ0

1 be given, with A  s K. The proof turns out to be nonuniform: we will
reach the conclusion by distinguishing the cases A P Σ0

2 r ∆0
2, and A P ∆0

2 r Σ0
1.

The requirements. Fix effective lists tΦe : e P ωu and tΓe : e P ωu of the e-operators and the
s-operators, respectively: we may also assume (see e.g. [5] or [7]) that we have uniform computable
approximations tΦe,s : e, s P ωu and tΓe,s : e, s P ωu to these operators, viewed as c.e. sets, so that
each Φe,s and Γe,s is a finite set given by its canonical index. The reason for taking one of the two
lists consisting of the e-operators is due to the fact that this will allow to derive A ¦e B, and the
more general statement in Corollary 3.1.

We need to build a Π0
1 set B (which will be given through a Π0

1-approximation tBs : s P ωu starting
with B0 � ω) so as to satisfy the following requirements:

Ne : pDxq rApxq � ΦepBqpxqs or A P X
Pe : pDxq rBpxq � ΓepAqpxqs or K ¤s A.

where, in Ne, X � Σ0
1 if A P ∆0

2 r Σ0
1, and X � ∆0

2 if A P Σ0
2 r ∆0

2.

Strategy for Ne in isolation. We start with the more difficult case A P Σ0
2 r ∆0

2, and we fix a
Σ0

2-approximation to A, i.e. a strong array of finite sets tAs : s P ωu such that A � tx : pDtqp@s ¥
tqrx P Assu. In this case, the Ne-requirement becomes:

pDxq rApxq � ΦepBqpxqs or A P ∆0
2.

We organize the possible outcomes of the Ne-strategy in the chain of order type ω � 1:

0   1   2   � � �   x   � � �   fin.

We define an auxiliary set V aiming to show that if A � ΦepBq then A � V and V is ∆0
2.
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Suppose that we are working at stage s� 1.

Starting from x � 0, we work in cycles x � 0, 1, . . ., until x � s � 1, or until giving outcome x or
fin. The case x P A is recognized in a Σ0

2 way (this will be made precise in the construction); the
case x P ΦepBq denotes that there is an axiom xx,Dy P Φe,s and D � Bs, where Bs is the cofinite
approximation to B built by the end of stage s. (For simplicity, in describing the strategy below if
there is no mention of the stage at which a given parameter is assumed to be approximated, then
it is understood that this stage is s.)

In cycle x we try to recognize a winning outcome Apxq � ΦepBqpxq. Whenever we see x P ΦepBq we
act to restrain x P ΦepBq and we define V pxq � 1: in case A makes useless our efforts to diagonalize
x P ΦepBqr A by ending up with the Σ0

2 event x P A we have at least that V pxq gives the correct
Apxq � V pxq � 1. Likewise, when we are not able to force x P ΦepBq because we are short of
opportunities of restraining x in ΦepBq, then, whenever we see this, we define V pxq � 0: should A
refuse to diagonalize at x (such a diagonalization would make fin with parameter x the winning
Σ0

2 outcome) we still end up with the correct guess of the value V pxq, i.e. Apxq � V pxq � 0.

If we see x P ΦepBqrA then we give outcome x, a Π0
2 outcome since infinitely many times we may

see x P A, although x R A; if we see x P A r ΦepBq then we give outcome fin with parameter x:
as the event x R ΦepBq will turn out to be Σ0

2 (we try to restrain x P ΦepBq whenever this appears
to be the case, and we could certainly be able to do so, should this appear infinitely often) this is
a winning Σ0

2 outcome.

Whether we give outcome x or fin we move on to next requirement; in the other cases (i.e. when
it appears Apxq � ΦepBqpxq) we move to cycle x� 1 (unless already x � s)

If A � ΦepBq then we can easily argue that V is in the end a ∆0
2 set (in fact, as we will see at the

end of the proof, a c.e. set if A P ∆0
2), so that there is some least x such that Apxq � V pxq, and x is

the winning outcome (recognized infinitely often) if x R A, or fin with parameter x is the winning
outcome if x P A.

We summarize the cases into the following table

x R As x P As Vspxq
x P ΦepBqrss (1.1); outcome x (2.1); outcome Ñ 1
x R ΦepBqrss (1.2); outcome Ñ (2.2); outcome fin with parameter x 0

where we assume that “outcome Ñ” means that we move to x � 1, if x   s. (In the expression
ΦepBqrss we use the suffix rss to denote that both Φe and B in the expression are evaluated at
stage s.)

Strategy for Pe in isolation. We now describe Pe in isolation. We work with a fixed Π0
1-

approximation tKs : s P ωu to K. We have movable markers be0, b
e
1, . . . (for simplicity we will write

bi � bei ) aiming at B, and targeted for Pe. The plan is to code K into B (if i stays in K, then we

keep bi into B; when i enters K we extract bi from B) and threaten to have i P K if and only if
i P ΓpAq, in the case that ΓepAqpbiq � Bpbiq: here Γ is the s-operator consisting of axioms xi,Dy P Γ
if and only if xbi, Dy P Γe, so if B � ΓepAq then this would give K ¤s A, a contradiction.

In the following we measure the value ΓepAqpbq in a Σ0
2 way, as will be made precise in the con-

struction. (Again, for simplicity, if there is no mention of the stage at which a given parameter is
assumed to be approximated, then it is understood that this stage is s.)
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Suppose we are working at stage s � 1. Starting from i � 0, we work in cycles i � 0, 1, . . .,
until i � s � 1 or we give outcome i or fin: In cycle i, we try to recognize a winning outcome
ΓepAqpbiq � Bpbiq. If we see i P K (hence bi P B), but bi R ΓepAq then we give outcome i, a
winning Π0

2 outcome. If we see i R K (hence bi R B), but bi P ΓepAq then we give outcome fin with
parameter i, a winning Σ0

2 outcome. In the previous two cases we move on to next requirement; in
all other cases we move on to next cycle (unless already i � s).

We summarize the cases into the following table:

i P Ks and bi P Bs i R Ks and bi R Bs
bi R ΓepAqrss (1.1); outcome i (2.1); outcome Ñ
bi P ΓepAqrss (1.2); outcome Ñ (2.2); outcome fin with parameter i.

Should there be no least i such that i, or fin with parameter i, is the final winning outcome
(recognized infinitely often) then we would end up with ΓepAqpbiq � Bpbiq for every i. But then the
s-operator Γ (as described earlier) would give K � ΓpAq, contrary to the assumption that K ¦s A.

Interactions between strategies. We now briefly discuss the interactions between the strategies.
Although the tree of strategies is formally introduced only in next section, nevertheless for the ease
of the reader who is acquainted with priority arguments using trees of strategies we will make in
this section occasional references to the tree of strategies.

N -strategies below a P -strategy. Now an adjustment to the strategy of Pe must be made. If i is
the leftmost outcome to be played infinitely often, then it can be the case that at infinitely many
times we play outcomes to the right of i: this could be a problem for N -strategies below outcome
i of Pe, as they might require to restrain in B markers of the form bjp� bejq, with j ¡ i (again, in

referring to these markers, we will omit to specify the superscript e), that at the moment are still
in B, but later may be requested to be extracted from B by Pe, in response to Pe working in cycle
j, and j entering K. So we must take measures to prevent this from happening: when we play at
s � 1 outcome i P ω we shall extract the current values, if defined, of the markers bj from B for
every j ¡ i, and later choose a fresh value for bj when needed.

Observation 1. This move of pulling out of B the current values of the markers bj will make it
possible for the N -requirements below outcome i for Pe to choose elements to restrain which are
different from these discarded markers and for which there is no danger that Pe will later demand
to have them out of B. So if Pe is located at node τ in the tree of outcomes, Nk is located at node
σ � τpxiy in the tree of outcomes, then no injury is made by τ to σ when τ is working at cycles
j ¡ i.

In this updated version of the Pe-strategy, now bi may change depending on the stage, and so one
should rather talk about lims bi,s (whenever this limit exists), where bi,s denotes the value of bi at
s, rather than a single e-marker bi for i, appointed once for all. Then the above considerations for
Pe in isolation work for bi � lims bi,s. But this introduces new outcomes, with respect to the ones
shown above: if at s� 1 we discard bi,s which is thus moved out of B, then if the reduction given
by Γ is to fail because of bi,s (before discarding bi,s we may have added axioms xi,Dy P Γ with

xbi,s, Dy P Γe, and now we may have i P ΓpAq even if i R K), it must be via (2.2) and outcome fin

will detect this (we shall say in this case that the outcome is fin with parameter pi, uq, where u
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denotes that bi,s is the u-th different value of bi chosen after last initialization of Pe). This is a Σ0
2-

outcome for Pe. Otherwise, the burden of coding Kpiq is resting only on the limit value bi for which
we can repeat the analysis of the outcomes of cycle i for Pe in isolation (with the only difference
that what was therein called “outcome fin with parameter i”, will now be called “outcome fin

with parameter pi, uq”, where u denotes that the final bi is the u-th different value of bi chosen after
last initialization of Pe).

P -strategies below an N -strategy. As we have seen, P -requirements below outcome x for Ne may
need to extract markers from B. Assume that x is the true outcome of Ne because of (2.2): due
to the infinitary nature of the construction, infinitely many times we may have outcomes y ¡ x,
for which Ne would like to restrain elements in B, but we cannot give to this restraints priority σ
(where we assume that Ne is located at σ in the tree of strategies) since moving infinitely many
times to the right of x could entail an infinite amount of restraint located at σ, which would spoil
the strategies of the P -requirements below outcome x for Ne. In order to overcome this problem,
we give priority σpxyy to the restraint requested by y, so that this restraint will not be obeyed by
the P -strategies below σpxxy, with the agreement that when Ne plays outcome x, we will reset all
outcomes y ¡ x by cancelling their restraints. Hence all those y ¡ x for which we previously had
ΦepBqpyq � 1 and which were restraining some number zy in B will now release the restraint they
held on zy.

Observation 2. This allows P nodes extending Ne below outcome x to use these numbers zy for
their markers. So no injury will be made by Ne to a P -node τ � σpxxy.
The construction. As for the description of the strategy of Ne in isolation, we deal first with the
more difficult case, i.e. A P Σ0

2 r ∆0
2, and we work with our fixed Σ0

2-approximation to A. For the
construction we use the tree of outcomes T � pωYtfinuq�, i.e. the set of finite strings over the set
ω Y tfinu ordered by

0   1   2   � � �   x   � � �   fin.

Notations and terminology for trees of outcomes are standard, see e.g. [9]: in particular, λ denotes
the empty string; if σ, τ P T , then σ is to the left of τ if σ precedes τ in the lexicographical order
(we use the symbol σ  L τ); and we say that σ has higher priority than τ if σ � τ or σ  L τ . To
each σ P T is assigned a requirement Rpσq, by

Rpσq �

#
Ne, if |σ| � 2e,

Pe, if |σ| � 2e� 1.

If Rpσq � Ne for some e, then we say that σ is an N -node, or an N -strategy ; otherwise, σ is a
P -node, or a P -strategy. The construction uses several parameters: if σ is an N -node, then it uses
the parameters (all depending on the stages) V σ, and tzσx : x P ωu; if σ is a P -node, then it uses
markers tbσi : i P ωu (these markers are targeted for σ, i.e. distinct P -nodes pick markers from
disjoint sets), and the s-operator Γσ; together with each current value of bσi we have a sequence
bσpi, 0q, . . . , bσpi, nσi q (which introduces a new parameter nσi ): these are the old chosen versions of
the marker, appointed after last initialization of σ, which have been later abandoned (except for
the last one, bσi � bσpi, nσi q) due to procedure of resetting its markers performed by the P -node σ
to deal with its interactions with lower priority N -strategies, as explained in the previous section.
All parameters, including markers, Γσ and nσi , depend of course on the stages.

We say that a strategy σ is initialized at stage s if at s we set V σ � Γσ � H, and all its other
parameters are set to be undefined.
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At stage s together with the values of the parameters, we also define a finite string δs, of length
¤ s. A stage s is a σ-stage if σ � δs. It is understood that at the end of stage s�1 each parameter
keeps the same value as at s unless it is explicitly redefined, or initialized, during stage s� 1.

Stage 0. Initialize all strategies. Let B0pxq � 1 for all x.

Stage s� 1. We define δs�1 by substages: if stage s � 1 has not been already stopped, then at
substage t   s� 1 we define σt extending all σr with r   t.

If t � 0 then we define σ0 � λ, and we move to substage 1.

At substage t� 1, if t� 1 � s� 1 then we go directly to stage s� 2.

Otherwise (i.e. t� 1   s� 1) denote σ � σt. In the following description of the actions at substage
t � 1, for simplicity we do not specify σ when referring to the various parameters (assumed to be
approximated as at the end of the previous substage, or at the end of stage s if t � 1), thus writing
for instance V � V σ, zx � zσx , etc. The string σt�1 � σpxoy, for some outcome o, ends the stage,
or is the string which will be let to act next. The action to be taken depends of course on whether
σ is an N -node or a P -node.

σ is an N -strategy. Suppose Rpσq � Ne. We first give two definitions. Given a number x we say
that we see x P A at σ, s � 1 if, letting s� be the last σ-stage at which we processed cycle x, if
any, and s� � 0 otherwise, we have that x P Av for all v with s� ¤ v ¤ s. We also say that we
see x P ΦepBq at s � 1 to denote that there exists xx,Dy P Φe,s and D � B�

s�1, where B�
s�1 is Bs

minus the elements y which have been extracted from B by the P -strategies that have acted at the
previous substages 0, 1, . . . , t of the current stage s� 1.

Observation 3. An easy argument shows that if there are infinitely many stages v at which we
process cycle x for σ, then x P A if and only if at cofinitely many such stages v we see x P A at σ, v.

We start the cycles.

Cycle x. Suppose we have dealt with the cycles y   x all ending with “outcome”Ñ, i.e. all ending
with neither y nor fin. We now process cycle x if x   s � 1, otherwise if x � s � 1 we stop the
stage with outcome x. If x   s� 1 we distinguish the following cases.

Case 1. We see x P A at σ, s� 1.

Subcase 1.1. We do not see x P ΦepBq at s� 1. Let the outcome be fin with parameter x, hence
σpxfiny is eligible to act next. Define V pxq � 0. Go to next requirement.

Subcase 1.2. We see x P ΦepBq at s� 1. Define V pxq � 1 and add a restraint on B (with priority
σpxxy) to keep in B from now on some D such that xx,Dy P Φe,s and D � B�

s�1: in fact, take
the least such D if no such restraint has been made after the last initialization of σpxxy, otherwise
keep the same D as already chosen at the previous σpxxy-stage. If we restrain this D for the first
time then stop the stage with outcome x, otherwise go to cycle x� 1.

Case 2. We do not see x P A at σ, s� 1.

Subcase 2.1. We do not see x P ΦepBq at s� 1. Define V pxq � 0. Go to cycle x� 1.

Subcase 2.2. We see x P ΦepBq at s � 1. Define V pxq � 1. Let the outcome be x and add a
restraint on B (with priority σpxxy) to keep in B from now on the least D such that xx,Dy P Φe,s

and D � B�
s�1: in fact, take the least such D if no such restraint has been made after the last
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initialization of σpxxy, otherwise keep the same D as already chosen at the previous σpxxy-stage.
If we restrain D for the first time then stop the stage with outcome x.

Notice that in both subcases 1.2 and 2.2, if we restrain D for the first time then we stop the stage:
since lower priority P -strategies are reset by our stopping the stage and will have to choose their
(fresh) markers again out of D, the restraint of D � B will be preserved unless we move in the
future to the left of σpxxy again.

The case of a P -node σ. Suppose Rpσq � Pe. We start the cycles. Suppose we have dealt with
the cycles j   i all ending with “outcome” Ñ, i.e. all ending with neither outcome j nor fin. We
now deal with cycle i, if i   s � 1, otherwise if i � s � 1 then we stop the stage with outcome
i. For simplicity, when mentioning any defined marker bσj or bσpj, uq, we will omit the superscript

σ. In the following, when writing i P K we mean that i P Ks, where tKs : s P ωu is our fixed
Π0

1-approximation to K; we write i P K to denote that i R Ks.

Preparing cycle i. We first define bi if it is undefined, and update the s-operator Γ, as follows.

- if bi is undefined, then pick and appoint a new targeted bi � bi,s�1 P Bs (not currently
restrained out of B by higher priority nodes); this also defines the new value of ni; stop the
stage.

- Otherwise bi is defined: if i P K then keep Bpbiq � 1, and if i P K then let Bpbiq � 0.
Update Γ, i.e. add an axiom xi,Dy P Γs�1 for each axiom xbi, Dy P Γe,s, where bi is the
current value of the i-marker for σ.

Now, in the case bi is defined, let

bpi, 0q, bpi, 1q, . . . , bpi, niq

(with bi � bpi, niq) be the markers for i defined after last initialization of σ and later abandoned
(except for the last one) with bpi, uq � bi,su , where su is the stage at which bpi, uq has been appointed,
and s0   s1   � � �   sni . (The construction has ensured that bpi, uq R B, for all u   ni.)

Starting from our fixed Σ0
2-approximation tAs : s P ωu to A and our uniform c.e. approximation

tΓe,s : e, s P ωu to the s-operators, we can build (see e.g. [5] and [7]) a computable relation Rpe, x, sq
such that

x P ΓepAq ô pDtqp@s ¥ tqRpe, x, sq.

Within cycle i we will work in subcycles pi, uq with u ¤ ni. We stipulate that we see bpi, uq P ΓepAq
at σ, s� 1 if, letting s� be the last σ-stage at which we processed subcycle pi, uq within cycle i, if
any, and s� � 0 otherwise, we have that

p@vqrs� ¤ v ¤ sñ Rpe, bpi, uq, vqs.

Observation 4. For u ¤ ni it is easy to see that if there are infinitely many σ-stages at which we
process subcycle pi, uq then bpi, uq P ΓepAq if and only if we see bpi, uq P ΓepAq at cofinitely many
such stages.

Subcycle pi, uq. Suppose we have already dealt with all subcycles pi, vq relative to v   u ¤ ni, and
we now consider u. We distinguish the following cases.

Case u   ni. We have two subcases:
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Case 1. If we see bpi, uq P ΓepAq at σ, s�1 (remember that bpi, uq has been extracted from B) then
let the outcome be fin with parameter pi, uq, hence σpxfiny is eligible to act next.

Case 2. otherwise, we move on to subcycle pi, u� 1q.

Case u � ni. We now consider the case u � ni, i.e. bpi, niq � bi, and we process cycle pi, niq.

Case 1. i P K (then, currently, Bpbiq � 1).

Subcase 1.1. We see bi R ΓepAq at σ, s � 1. Let the outcome be i. Extract bj from B by defining
Bpbjq � 0 for the current values of all defined bj with j ¡ i.

Subcase 1.2. We see bi P ΓepAq. Then go to cycle i� 1.

Case 2. i R K. Let Bpbiq � 0.

Subcase 2.1. We see bi R ΓepAq at σ, s� 1. Then go to cycle i� 1.

Subcase 2.2. We see bi P ΓepAq at σ, s � 1. Let the outcome be fin with parameter pi, niq, hence
σpxfiny is eligible to act next.

At the end of the stage, initialize all strategies τ with τ ¡ δs�1, where δs�1 � σt for the last
substage t of stage s� 1.

At the end of the construction if σ is initialized only finitely often, then take Γσ to be the s-operator
consisting of all axioms xi,Dy P Γ which have been added to Γ after last initialization of σ.

The verification. It is immediate to see that B is Π0
1, as we start with B0 � ω and no number

is ever re-enumerated in B after being extracted from B. The rest of the verification relies on the
following lemma.

Lemma 2.4. There exists an infinite path f through T , called the true path, such that (letting fn
denote fæn, i.e. the initial segment of f having length n) for every n there exists a least stage sn
for which

(1) for all s ¥ sn if fn � δs then fn � δs;
(2) for all s ¥ sn, δs � L fn;
(3) there exist infinitely many s such that fn � δs;
(4) Rpfnq is satisfied.

Proof. The proof is by induction on n. We show in fact that if (1), (2), (3) are true of n then (4)
is also true of n, and (1), (2), (3) are true of n� 1.

Clearly (1), (2), (3) hold of n � 0, as f0 � λ, which never ends the stage.

Assume now that claims (1), (2) and (3) hold of n, and let sn be as in the statement of the lemma.
For simplicity, in the rest of the proof we will omit to specify fn when referring to the parameters

relative to fn, thus writing, if appropriate, V � V fn �
�
s¥sn

V fn
s , and similarly for the other

parameters.

Case n � 2e, i.e. Rpfnq � Ne. Let TN pxq be the following predicate: “There is a stage tx ¥ sn such

that for all s ¡ tx fnpxxy  L δs, and infinitely many times when processing cycle x for fn we get
“outcome Ñ”, i.e. we go on and process cycle x � 1 for fn, and the value V pxq changes finitely
often with Apxq � V pxq, where V pxq is the limit value.”
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By induction on x we want to show:

(*) If TN pyq holds of every y   x, then TN pxq or Apxq � ΦepBqpxq (this latter case implying that
Rpfnq is satisfied).

Assume that TN pyq holds of all y   x. Notice that this implies that infinitely many times we
process cycle x for fn. For each y   x pick a stage ty as in the definition of TN pyq, and let
ux � maxtty : y   xu.

Assume that at some stage s� 1 ¥ ux we define V pxq � 1: this depends on the fact that at s� 1
we see an axiom xx,Dy P Φe,s with D � B�

s�1, so that we restrain D in B with priority fnpxxy in
subcase 1.2. or 2.2.. But by our assumptions on ux we will never visit in the future any P -strategy
to the left of fnpxxy, whereas by Observation 1 only P -strategies of this priority would be entitled
to use elements in D as markers, and possibly extract them from B. So, this shows that V pxq can
change only finitely often, since we never go back to see x R ΦepBq.

If Apxq � ΦepBqpxq � 0 then any time we process cycle x for fn after ux we always see x R ΦepBq,
since if we ever see x P ΦepBq then by the above argument we would be able to permanently restrain
x P ΦepBq. For big enough fnpxxy-stages when processing cycle x for fn either we move to x�1 or
have outcome fin with parameter x, but since by Observation 3 there are infinitely many fn-stages
at which we process cycle x and we see Apxq � 0, then infinitely many times we go to cycle x� 1.
In this case, the final value of V pxq is V pxq � 0.

If Apxq � ΦepBqpxq � 1 then from some stage on, when processing cycle x for fn we always go to
cycle x� 1. In this case, for the final value of V pxq we have V pxq � 1.

This shows that either TN pxq or Apxq � ΦepBqpxq, and in the latter case Rpfnq is satisfied. On the
other hand there must be a least x such that Apxq � ΦepBqpxq, otherwise it would be TN pxq for
all x, but this would imply that V P ∆0

2 and A � V , giving A P ∆0
2, a contradiction. For this least

x for which Apxq � ΦepBqpxq, if x P ΦepBq and x R A, then there exist infinitely many fn-stages
at which we give outcome x (thus fn�1 � fnpxxy); if ΦepBqpxq � 0 and x P A, then at cofinitely
many fn-stages we give outcome fin with parameter x (thus fn�1 � fnpxfiny). Finally, let ux
be the same stage as before: strategy fn�1 may stop the stage, at stages bigger than ux and x, at
most once more (namely, the first time when subcase 1.2. or 2.2 happens). Thus claims (1), (2),
(3) hold of n� 1.

Case n � 2e� 1, i.e. Rpfnq � Pe. This time let TP piq be the following predicate: “There is a stage ti
such that for all s ¡ ti fnpxiy  L δs, and lims bi,s � bi and lims ni,s � ni exist (where ni,s is the value
of ni at s), so that we can fix the finite sequence bpi, 0q, . . . , bpi, niq, with bpi, niq � bi, of i-markers
appointed after last initialization of fn, and later abandoned except for bi; Bpbiq � ΓepAqpbiq and
ΓepAqpbpi, uqq � 0 for every u   ni (remember that bpi, uq R B for all u   ni); infinitely many times
when we process a subcycle pi, uq with u   ni for fn we move on to subcycle pi, u� 1q, and when
we process subcycle pi, niq for fn, we move on to cycle i� 1.”

We want to show:

(**) If TP pjq holds of every j   i then TP piq, or Bpbpi, uqq � ΓepAqpbpi, uqq for some u ¤ ni (in
the latter case Rpfnq is satisfied).

Suppose that (**) is true of all j   i. By Observation 2 and the inductive assumption (2) on fn,
we have that Rpfnq has to deal only with a finite amount of restraint posed by higher priority
N -strategies, so that it can eventually pick its markers, lims bi,s � bi and lims ni,s � ni exist, and
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thus we may also fix the corresponding sequence bpi, 0q, . . . , bpi, niq of i-markers previously defined,
and later abandoned except for bi � bpi, niq; when we choose the final value of bi then initially
bi P B, and bi is not subject to be extracted from B by any other P -strategy as bi is targeted for
fn, bi is not subject to be restrained by any N -strategy to the left of fn (by Observation 2, these
are the only N -strategies that would be entitled to restrain bi), as no such N -strategy will ever
act again. Thus in the future bi will be extracted from B only following Rpfnq’s own demands, in
response to i being extracted from K.

If Bpbpi, uqq � ΓepAqpbpi, uqq for all u ¤ ni then by an argument similar to the one for N -strategies
(using this time Observation 4), we see that TP piq holds. Indeed an easy induction on u   ni shows
that at infinitely many stages at which we process subcycle pi, uq for fn, with u   ni, we move to
subcycle pi, u�1q for fn (due to the existence of infinitely many fn-stages at which we process pi, uq
for fn, when we see ΓepAqpbpi, uqq � 0). It follows also that at infinitely many times we process
subcycle pi, niq, and arguing as for the N -strategies infinitely many times after processing pi, niq
we move on to cycle i� 1.

On the other hand, if TP piq holds for every i, then by definition of Γ � Γσ �
�
s¥s̄ Γσs (where s̄ is

the least stage such that at no s ¥ s̄ is σ initialized) we see that for every i if u   ni then there is
no axiom xi,Dy P Γ, with D � A, which has been added because of an axiom xbpi, uq, Dy P Γe, as
bpi, uq R ΓepAq; as a consequence, to see whether or not i P ΓpAq, we need only look at the axioms
xi,Dy P Γ which have been added because of an axiom xbi, Dy P Γe: but since i P K if and only if
bi P B we easily conclude that

i P K ô i P ΓpAq.

Since K ¦s A, it follows that there exist a least i and a least u ¤ ni so that Bpbpi, uqq �
ΓepAqpbpi, uqq: thus Rpfnq is satisfied. On the other hand, if u   ni and ΓepAqpbpi, uqq �
1 then when processing subcycle u we eventually give outcome fin with parameter pi, uq; if
Bpbiq � 0 � 1 � ΓepAqpbiq then we eventually give outcome fin with parameter pi, niq; if
Bpbiq � 1 � 0 � ΓepAqpbiq then there are infinitely many fn-stages at which we give outcome
i. This shows also that fn�1 � fnpxoy exists. Finally, since fn�1 never ends the stage at stages
bigger than i and after the final value of bi has been appointed, we conclude that claims (1), (2),
(3) hold of n� 1. �

This ends the proof of the case A P Π0
2 r ∆0

2.

We now consider briefly the case when A P ∆0
2 r Π0

1. In this case we work with some fixed ∆0
2-

approximation to A, so that the N -strategies are finitary since for every x, limsAspxq exists. Our
tree of strategies is now organized so that any N -strategy σ has outcomes

0   1   � � �   x   � � �

and any restraint requested by σ to fix x P ΦepBq has now priority σ and not σpxxy so that even if
in the future we have an outcome y   x at σ, the restraint made for x is not abandoned. If σ is on
the true path, then this entails that when we define V pxq � 1 depending on the fact that we see
x P ΦepBq then from now on we will always see x P ΦepBq and thus we never go back to redefine
V pxq � 0. Hence, if at the node σ on the true path where our N -strategy is located we have that
TN pxq for all x, then we would have A � V and thus A P Σ0

1 as V P Σ0
1, a contradiction: we rely of

course on the fact that for the least x for which TN pxq does not hold, at cofinitely many σ-stages
we get outcome x, and thus σ demands only a finite amount of restraint which does not prevent
lower priority P -strategies from pursuing their strategies. �
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3. Applications

If A ¤Q B via a computable function f such that for all x, y,

x � y ñWfpxq XWfpyq � H,

then we say that A is Q1-reducible to B, denoted by A ¤Q1 B, via f . One can view Q1-reducibility
as the “injective” version of Q-reducibility. It is easy to isolate the subreducibility ¤s1 of ¤s which
equals Q1-reducibility on complements of sets. Precisely, A ¤s1 B if and only if A � ΦpBq via an
s1-operator, i.e. an s-operator such that:

(a) for all distinct x, y, tz : xx, tzuy P Φu X tz : xy, tzuy P Φu � H;
(b) there is no x with xx,Hy P Φ.

In the same vein, one can define A ¤s2 B if and only if A � ΦpBq for some s2-operator Φ, i.e. an
s-operator such that for all distinct x, y, tz : xx, tzuy P Φu X tz : xy, tzuy P Φu � H. The difference
between s1 and s2 is that for s2 we may have also axioms of the form xx,Hy P Φ. Clearly ¤s1�¤s2 :
it is shown in [2] that inclusion is proper even at the level of Σ0

2 sets.

Corollary 3.1. If r P te, s, s1, s2u then for every Σ0
2 set A such that H  r A  r K there exists

a Π0
1 set B such that A|rB. As a consequence, if r P tQ1, Qu then for every Π0

2 set A such that
H  r A  r K there exists a Σ0

1 set B such that A|rB.

Proof. For r P te, s, s1, s2u the claim follows immediately from the proof of Theorem 2.3 since
A ¦e B implies A ¦r B, and the fact (which is immediate to check) that if tΓe : e P ωu is an
effective list of all r-operators, then for every σ in the tree of strategies, the operator Γσ built
by Rσ is an r-operator. The claim about Q-reducibility (and Q1-reducibility, respectively) follows
from the isomorphism between the Σ0

2 s–degrees (s1-degrees, respectively) and the Π0
2 Q-degrees

(Q1-degrees, respectively). �

Finally, we show how Theorem 2.3 may be used to give rather uniform proofs of upper density for
the local structures of s- and Q-reducibility. Both downwards density and upwards density of the
Σ0

2 s-degrees hold: downwards density follows from the proof of Gutteridge’s celebrated theorem
stating that there is no minimal enumeration degree; upper density was proved in [7]. However
(with the exception of [3] which shows density of the c.e. Q-degrees, yielding also, via isomorphism,
density of the Π0

1 s-degrees) none of these papers dealing with upper density seems to care about
distinguishing the three main arithmetical classes in which these local structures can be divided,
namely the classes Σ0

2,∆
0
2,Π

0
1 for s-reducibility, and Π0

2,∆
0
2,Σ

0
1 for Q-reducibility: hopefully a nice

feature of Theorem 2.3 is that, as a side effect, it yields in one shot upwards density for all the
above arithmetical classes.

We recall that the s-degree of K (and hence the Q-degree of K) is join-irreducible, see [7].

Corollary 3.2. The Σ0
2 (respectively: ∆0

2, Π0
1) s-degrees are upwards dense. The Π0

2 (respectively:
∆0

2, c.e.) Q-degrees are upwards dense.

Proof. We prove the claim for s-reducibility. Assume that H  s A  s K. By Theorem 2.3 let
B be a Π0

1 set such that A|sB. Then by join-irreducibility of the s-degree of K, we have that
A  s A`B  s K. Clearly if A P ∆0

2 (respectively, A is Π0
1) then so is A`B. �
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