
THE DIVERSITY OF CATEGORICITY WITHOUT DELAY

ISKANDER S. KALIMULLIN, ALEXANDER G. MELNIKOV, AND KENG MENG NG.

Abstract. We suggest several new ways to compare fully primitive recursive

presentations of a structure. Properties of this kind have never been seen

in computable structure theory. We prove that these new definitions are non-
equivalent. In this note we give only proof sketches, complete proof will appear

in the full version of the paper.

1. intorduction

We continue the systematic study of fully primitive recursive structures (initiated
in [7]). Informally, an algebraic structure is fully primitive recursive (f.p.r.) if more
of the structure can be computed “now”, i.e. without any unbounded delay. Such
structures tend to have algorithmically feasible presentations (in the sense of [5]).
Eliminating the unbounded search is one of the key difficulties we have to face when
trying to transform a Turing computable (constructive) structure (in the sense of
[3, 6]) into a polynomial-time one (in the sense of [5, 4]). Our approach is designed
to isolate and study this major difficulty. Formally, B = (ω; f1, . . . , fk, P1, . . . , Pn)
is a f.p.r. presentation of a countably infinite A = (A; g1, . . . , gk, R1, . . . , Rn) if
B ∼= A and the functions f1, . . . , fk and P1, . . . , Pn are primitive recursive. We note
that Alaev [1] has recently suggested a similar approach.

Recall that a countably infinite structure is computably categorical (autostable)
if it has a unique (Turing) computable presentation up to computable isomor-
phism [6, 3]. It is natural to view f.p.r. structures under fully primitive recursive
(f.p.r.) isomorphism, i.e. under primitive recursive isomorphism having primitive
recursive inverse. A countably infinite structure is f.p.r.-categorical if it has a
unique f.p.r. presentation up to f.p.r. isomorphism. Remarkably, f.p.r.-categoricity
does not imply computable categoricity in general [7], but in common algebraic
classes f.p.r.-categorical structures tend to be computably categorical and trivial.
Many algebraically natural f.p.r. structures satisfy some weaker property which
resembles f.p.r.-categoricity. We list 5 such properties below, each of these 5 prop-
erties naturally and frequently occur in standard algebraic classes. Our ultimate
goal is to compare these properties, but this is not the main point of this note. It
is more important that properties of this kind have never been seen in computable
structure theory, and the study of these new concepts requires novel ideas and
techniques.

Let FPR(A) be the collection of all f.p.r. presentations of a countably infinite
structure A. Note that the inverse of a primitive recursive function does not have
to be primitive recursive. For A1,A2 ∈ FPR(A), write A1 ≤pr A2 if there exists
a primitive recursive isomorphism from A1 onto A2. We say that A is bottom-
categorical if FPR(A) has the ≤pr-least element. A typical example of a bottom-
categorcial structure is (ω, S) (where S(x) = x + 1). The same applies to any

1

2 ISKANDER S. KALIMULLIN, ALEXANDER G. MELNIKOV, AND KENG MENG NG.

other finitely generated structure in a finite functional language. We say that A is
top-categorical if FPR(A) has the ≤pr-greatest element. An example of a top-
categorcial structure is the dense linear order (Q, <). The same can be said about
the atomless Boolean algebra1.

An alternate way of comparing elements in FPR(A) uses honest computable
functions. A computable total function is honest [8] if its graph is primitive recur-
sive2. We say that a fully primitive recursive structure A is honestly categorical
if for each A1,A2 ∈ FPR(A) there exists a honest isomorphism from A1 onto A2.
The associated binary relation of being honestly isomorphic is symmetric, but it is
not transitive in general. In some sense honest categoricity is a non-deterministic
version of f.p.r. categoricity. Indeed, we can “instantly” decide whether f(x) = y,
but given x finding f(x) may involve a search through the whole structure. In many
standard classes (including e.g. linear orders) honest categoricity is equivalent to
the usual computable categoricity.

Finally, the strongest possible notion is that of relative f.p.r. categoricity
which says that there exists a pair of oracle primitive recursive schemata P+ and
P− such that for any isomorphic copy B (upon ω) of the f.p.r. structure A the maps
PB
+ : A→ B and PB

− : B→ A are isomorphisms that are inverses of each other3. All
algebraically natural examples of f.p.r. categorical structures are relatively f.p.r.-
categorical [7]. We summarise all notions in one diagram below.

bottom-categoricity honest categoricity

top-categoricity

OO

f.p.r.-categoricity

OO

44

relative f.p.r.-categoricity

OO

The first main result justifies the diagram.

Theorem 1.1. All implications in the diagram above are proper. Furthermore,
incompatible nodes correspond to independent notions.

An alternate way to compare f.p.r. structures uses relative computation and
the primitive recursive jump 0′PR (to be defined). This is the direct analogy with

the situation in computable structure theory where 0(n)-categorical structures have
been studied extensively [3, 2].

1Of course (FPR(A),≤pr) does not have to have the least of the greatest element. Nonetheless,
these two properties seem to be closest to f.p.r.-categoricity among other naturally occurring
features of (FPR(A),≤pr).

2According to [8], the complexity of such a function comes from its speed of growth and thus
it is “honest”.

3Here a structure is identified with its open diagram, and an open diagram is identified with
its characteristic function. An oracle primitive recursive schema will be defined later.

THE DIVERSITY OF CATEGORICITY WITHOUT DELAY 3

Theorem 1.2. For every n > 0 there exists a fully primitive recursive structure

which is fully 0
(n)
PR-categorical but not fully 0

(n−1)
PR -categorical.

The terminology is self-explanatory and should be clear to any expert in com-
putable structure theory. If the reader is unfamiliar with the standard terminology
of the field, they should wait until Section 2.2 where all these terms will be intro-
duced4.

2. Proofs and proof sketches

2.1. Proof of Theorem 1.1. First, note that all the implications illustrated in
the diagram are fairly obvious. Theorem 1.1 follows from the four claims below.

Claim 2.1. In general, f.p.r.-categoricity does not imply relative f.p.r. categoricity.

Proof of Claim. There exists a f.p.r.-categorical structure that is not computably
categorial [7]. Relative f.p.r.-categoricity implies relative computable categoricity
and thus computable categoricity as well. �

Claim 2.2. Bottom categoricity does not imply honest categoricity.

Proof of Claim. As noted in the introduction, (ω, S) is bottom-categorical. We
build two f.p.r. copies of (ω, S), A and B. To diagonalize against the e’th potential
primitive recursive graph, start building both A and B to consist of an initial
segment and a disjoint region that will temporarily be disconnected from the origin
0 (in both copies). Pick a pair of points (x, y) from these disjoint regions (x ∈ A and
y ∈ B) and wait for the e’th primitive recursive algorithm pe to make a decision.
Depending on the outcome, connect the regions to the initial segment so that the
opposite holds. �

Claim 2.3. Top categoricity does not imply bottom categoricity.

Proof of Claim. Given an arbitrary f.p.r. presentation A ∼= (Q, <) (which is top-
categorical) we build B and make sure the e’th primitive recursive function pe :
A → B is not an isomorphism. We wait for pe(x) to halt, and then freeze the
interval [pe(x),+∞) in B (i.e., enumerate B outside this interval). In contrast,
make sure at least one extra point is enumerated into the interval [x,+∞) in A.
Wait for pe to halt on all these points. �

Claim 2.4. Honest categoricity does not imply top categoricity.

Proof of Claim. Once the reader sees the main idea they should be able to recon-
struct the routine standard technical details (some of which will be omitted).

We build a f.p.r. M in a finite language consisting of unary functional symbols
f, g, h. We need to meet

Re,k : M ∼= Pe
∼= Pk =⇒ Pe

∼=honest Pk,

4In fact, in Section 2.2 we will prove more than is stated in Theorem 1.2. More specifically, we

will show that the PR-degree any honest function can be realized as the f.p.r.-degree of categoricity

of some structure (all undefined terms will be clarified). Remarkably, for any n, the PR-degree of

0
(n)
PR is honest. We also note that the structures witnessing Theorem 1.2 are finitely generated in

a finite functional language and thus are bottom-categorical. It is unclear whether there is any

non-trivial relationship between fully 0
(n)
PR-categoricity and any of the properties of (FPR,≤pr)

described above, but we conjecture that the approach via the primitive jump is mostly independent

from the approach taken in Theorem 1.1.

4 ISKANDER S. KALIMULLIN, ALEXANDER G. MELNIKOV, AND KENG MENG NG.

where (Pi)i∈ω is the computable listing of all f.p.r. structures (upon initial segments
of ω), and Pe

∼=honest Pk is self-explanatory. We also need to satisfy

Se : M ∼=e Pe =⇒ (∃Be)(∀i) pi : Be 6→ Pe,

where (pi)i∈ω is the computable listing of all primitive recursive functions, and
pi : Be 6→ Pe indicates that pi is not an isomorphism from Be to Pe. The basic
strategy for Se will be using a special component which is labeled by a loop of
a specific length. More formally, a sequence of the form x, f(x), . . . , fu(x) = x
where u is a number specifically reserved for the requirement in the construction.
For future convenience, using another unary functional symbol g we ensure that
g(y) = x for any y in this special f -loop. Apart from the f -loop, the special
component will contain an extra auxiliary h-loop (for another unary h) of length 2.
For each z in the auxiliary loop, we define g(z) = x. In other words, x is the “root”
of the special component, and every other element can be promptly sent to the root
via g.

Our structure M will consist of infinitely many special components, one for each
requirement. In the construction we may be (temporarily) dealing with a special
component having no auxiliary h-loop, this incomplete component will be denoted

1 . The full special component with the auxiliary h-loop will be denoted 2 .
(Note the component also depends on e.) We also note that the strategy below
will have intermediate substages at which we will be waiting. This waiting will be
implemented by infinite unbounded copying a special, smallest component reserved
for this copy-delay reason (with the length of the f -loop equal to 2, say, and having
no auxiliary h-loop). With the exception of this smallest special component, any
other special component will appear in M exactly once.

The strategy for Se is:

1. Introduce 1 into M and 2 into Be, but temporarily keep 2 out of M .

2. Wait for either pe : 2 → Pe to halt or for Pe to illustrate M 6∼= Pe.

3. Transform 1 into 2 in M .

Note that it could be the case that Pe 6∼= M . If we have a prompt evidence of this

fact, we will not transform 1 into 2 in M . Also observe that a special component
is designed so that we can promptly pass to the “root” of the component from any
other node of it (using g). Note that in either case pe cannot be an isomorphism,
and we must see this in a finite number of stages.

The strategy for Re,k is reduced to forcing large loops to appear late in both Pe

and Pk. In fact, we work with each Pe (individually). In the construction we will
explicitly ensure that an element of index n in Pe cannot be contained in a special
component of size larger than s(e) + n (we mean the size of its f -loop), where s(e)
is the stage of the construction at which Pe is first monitored. This is done by extra
delaying the enumeration of M via promptly cloning the smallest component. As
usual, if Pe reveals itself too fast we make sure Pe 6∼= M by keeping some sizes of
f -loops temporarily or permanently outside of M . This way we can ensure that
Pe reveals large f -loops slowly (see [7] for a detailed discussion of this and similar
strategies).

The construction is standard. The verification of Se has already been explained
above, we discuss why all Re,k are met. Given Pe and Pk isomorphic to M , we can
fix the stages s(e) and s(k) at which Pi and Pj are first attended in the construction.
We define an isomorphism u : Pe → Pk such that the graph of u is primitive

THE DIVERSITY OF CATEGORICITY WITHOUT DELAY 5

recursive, as follows. If x ∈ Pe and y ∈ Pk and we evaluate f on the components
for at least s(e)+s(k)+x+y stages we must fully reveal the respective components
of x and y. If the components are not isomorphic then we say “no” (i.e., u(x) 6= y).
If the components are isomorphic but either x and y have different locations in their
components or u(x) 6= y has already been found, we also “no”. Otherwise we have
just discovered that y can be made the image of x and then we say “yes” (thus set
u(x) = y). �

2.2. Proof of Theorem 1.2. Recall that a function t : ω → ω is honest if the
graph of t is primitive recursive. Given a total function f , we may define f -primitive
recursive schema by adding f to the elementary functions in the basis of recursion.
A total function g is primitively recursively reducible to a function f (g 6PR f)
if g = Φf for some f -primitive recursive schema Φf . The relations g ≡PR f and
g <PR f as well as the notion of primitive recursive (PR-) degree are defined by the
standard way. The PR-degree of a function f is denoted by degPR(f). For a total
function f let {Φf

n} be the Gödel numbering of all f -primitive recursive schemata
for functions with one variable. Define the primitive recursive jump f ′PR as the
function f ′PR(n, x) = Φf

n(x). It is easy to check that f 6PR g =⇒ f ′PR 6PR g′PR

and f <PR f ′PR.

Definition 2.5. For a total function f and a f.p.r. structure A we say that A is
fully f -categorical if for every f.p.r. copy B ∼= A there is an isomorphism h from
B onto A such that h 6PR f and h−1 6PR f . We say that A has PR-degree of
categoricity degPR(f) if for all total g such that A is fully g-categorical we have
f 6PR g.

To prove Theorem 1.2 it is sufficient to construct, for every n, an example of a

f.p.r. structure whose PR-degree of f.p.r. categoricity is ∅(n)PR. In fact, we will prove
more. We will show that the PR-degree of a honest function is the PR-degree of
categoricity of some f.p.r. structure, and we will also show that the PR-degrees
∅′PR, ∅′′PR, ∅′′′PR, . . . contain honest functions.

Definition 2.6. A partial function f(~x)[s] is a primitive recursive approximation
of a total function f(~x) if

(1) if f(~x)[s] ↓ then f(~x)[s] = f(x) 6 s and f(~x)[s + 1] ↓;
(2) for every ~x there is a stage s such that f(~x)[s] ↓;
(3) the function

f ′(~x, s) =

{
−1, if f(~x)[s] ↑;
f(~x)[s], if f(~x)[s] ↓;

is primitive recursive.

The function t(~x) = min{s : f(~x)[s] ↓} will be called the time function for f(~x).

Note that a function t(~x) is the time function for some function f(~x) with respect
to a primitive recursive approximation f(~x)[s] if and only if the function t is honest.
Moreover, if t(~x) is honest then t(~x) is a time function for itself with respect to the
primitive recursive approximation t(~x)[s] such that t(~x)[s] ↓ ⇐⇒ (∃y 6 s)[(~x, y) ∈
graph t].

Lemma 2.7. Let f(~x)[s] be a primitive recursive approximation for f(~x) with the
corresponding time function t(~x). There is a primitive recursive function i(n) such

6 ISKANDER S. KALIMULLIN, ALEXANDER G. MELNIKOV, AND KENG MENG NG.

that for every n the function Φt
i(n)(x) is the time function for Φf

n(x) with respect

to the uniformly primitive recursive approximation Φf
n(x)[s] as defined above.

The proof of the lemma above is a straightforward analysis of the recursive
definition of Φf

n(x).

Proposition 2.8. If t(~x) is honest and i(n) is from Lemma 2.7 with f = t then
the function u(n, x) = Φt

i(n)(x) is honest and u ≡PR t′PR. Therefore, the primitive

recursive jump of honest primitive recursive degree is a honest primitive recursive
degree.

Proof. Follows from u(n, x) = t′PR(i(n), x) and t′PR(n, x) = Φt
n(x)[u(n, x)]. �

Thus, Theorem 1.2 follows from the proposition below.

Proposition 2.9. For every honest function t there exists a f.p.r. rigid structure
A such that:

(1) for every f.p.r. copy B ∼= A the isomorphism h from B onto A is PR-
reducible to t;

(2) for every f.p.r. copy B ∼= A the isomorphism h from B onto A has a prim-
itive recursive inverse h−1;

(3) there is a f.p.r. copy C ∼= A such that for the isomorphism g from C onto
A we have t 6PR g.

We also note that the language of the structure is finite and functional.

Proof. The functional signature of the structure A = At consists of a constant o
and two unary functions s and c. The universe of the structure is a disjoint union
of c-cycles of finite length C0, C1, C2, . . . The s-function maps all elements of the
cycle Ck to a fixed element ok+1 ∈ Ck+1. The values of the s-function together
with o form the ω-chain

o0 = o, o1 = s(o), o2 = s(s(o)), . . . , ok = sk(o), ok+1 = sk+1(o),

For an element x ∈ A let N(x) denote the least number s > 0 such that cs(x) = x.
Then let `(k) = N(sk(o)) be the size of the c-cycle containing the k-th element of the
ω-chain sk(o). It is clear that the function ` : ω → ω \ {0} uniquely determines the
isomorphic type of A. The structure A has a f.p.r. copy if and only if the function ` is
honest. Furthermore, if ` is honest we can identify A with its canonical f.p.r. copy
(ω, o, s, c) where we can primitive recursively calculate a(k) and b(k) < `(a(k))
such that k = cb(k)(sa(k)(o)) for every k ∈ ω. Then for every f.p.r. copy B of A the
isomorphism h−1 from A onto B is primitive recursive. Let C be an f.p.r. copy of A
in which the odd numbers are reserved for the elements of c`(k)−1(sk(o)). Namely

we have 2n + 1 = c
`(n)−1
C (snC(oC)) for every n. Then for the isomorphism g from C

onto A we have `(n) = b(g(2n + 1)) + 1 for every n ∈ ω, so that ` 6PR g. We need
to satisfy the requirements

Pn : Bn
∼= A =⇒ (∃hn)[hn — p.r. isomorphism from Bn onto A],

where Bn = (ω, on, sn, cn) is the n-th f.p.r. structure. The functions sn and cn given
by their primitive recursive schemas. Then sn and cn have primitive recursive time
functions. Let Nn(x) be the least number s > 0 such that csn(x) = x. To meet Pn

we define the structure A in such a way that `(2n+1(2m+1)) ∈ {3n+1, 3n+2}. The

THE DIVERSITY OF CATEGORICITY WITHOUT DELAY 7

choice between 3n+1 and 3n+2 depends only on the behaviour of the f.p.r. structure
Bn.

We define the primitive recursive function g(n,m) as the greatest k 6 m such
that for all x < k

(1) the primitive recursive approximations cjn(sin(x))[m] are defined for every
i 6 2n+2(2x + 2) and j 6 3n + 2;

(2) there is a nonzero i 6 2n+2, such that Nn(sin(x)) ∈ {3n + 1, 3n + 2}; and
(3) for the least nonzero i 6 2n+2 from (2) there are u and v such that u 6 x+1,

0 < v 6 x and Nn(si+2n+2u
n (x)) = Nn(s

i+2n+2(u+v)
n (x)) = 3n + 1.

Now let

f(n,m) =

{
3n + 1, if f(n,m′) = 3n + 2 for all m′ ∈

[
m ·− g(n,m),m

)
;

3n + 2, otherwise.

Let A be the canonical structure (ω, o, s, c) for the honest size function

`(k) =

{
3t(n) + 3, if k = 2n + 1;

f(n,m), if k = 2n+1(2m + 1).

Note that ` ≡PR t. Fix an f.p.r. copy C of A such that 2n + 1 = c
`(n)−1
C (snC(oC))

for every n. Then by the arguments above for the isomorphism g from C onto A

we have ` 6PR g and, hence, t 6PR g.
To prove that each requirement Pn is satisfied suppose that Bn = (ω, on, sn, cn) ∼=

A = (ω, o, s, c). Then limm g(n,m) = ∞. Indeed, if limm g(n,m) = x < ∞
then for the integer x one of conditions (2) and (3) does not hold. But (2)
should hold for every x since 2n+1(2(m + 1) + 1) − 2n+1(2m + 1) = 2n+2 and
`(2n+1(2m + 1)) ∈ {3n + 1, 3n + 2}. If (3) fails for x then there exists some

u 6 x + 1 such that Nn(s2
n+2v

n (si+2n+2u
n (x))) = Nn(s

i+2n+2(u+v)
n (x)) = 3n + 2 for

every v 6 x. Since Bn
∼= A we have y = si+2n+2u

n (x) = s
2n+1(2m+1)
n (on) for some m.

Then for every v 6 x 3n+ 2 = Nn(s2
n+2v

n (y)) = Nn(s
2n+1(2(m+v)+1)
n (on)), and thus

`(2n+1(2(m + v) + 1)) = f(n,m + v) = 3n + 2 for every v 6 x. This is impossible
since by the definition of f for every m ∈ ω there is an v 6 x = limm g(n,m) such
that f(n,m + v) = 3n + 1. To calculate hn(x) it is enough to find integers a and
b such that x = can(sbn(on)). At first we use time functions for cn and sn to get an
integer m such that g(n,m) > x. By (2) and (3) there are i < 2n+2, u 6 x+ 1 and

0 < v 6 x such that Nn(si+2n+2u
n (x)) = Nn(s

i+2n+2(u+v)
n (x)) = 3n + 1. Then the

element y = si+2n+2u
n (x) should have the form y = s

2n+1(2s+1)
n (on), and the element

z = s
i+2n+2(u+v)
n (x) should have the form z = s

2n+1(2(s+v)+1)
n (on). Therefore, we

have

`(2n+1(s + 1)) = `(2n+1(2(s + v) + 1)) = f(n, s) = f(n, s + v) = 3n + 1.

By the definition of f we have s /∈
[
s + v ·− g(n, s + v), s + v

)
and, hence, g(n, s+

v) < v. Then g(n, s) 6 g(n, s + v) < v 6 x < g(n,m), so that s < m and, hence,
b < m. Thus, hn(x) = ca(sb(o)) for integers a and b such that a < `(b), b < m and
x = can(sbn(on)). This shows that hn 6PR ` 6PR t. �

8 ISKANDER S. KALIMULLIN, ALEXANDER G. MELNIKOV, AND KENG MENG NG.

References

[1] P. Alaev. Existence and uniqueness of polinomial-time presentations of struc-
tures. Submitted.

[2] C. Ash. Recursive labeling systems and stability of recursive structures in hy-
perarithmetical degrees. Trans. Amer. Math. Soc., 298:497–514, 1986.

[3] C. Ash and J. Knight. Computable structures and the hyperarithmetical hi-
erarchy, volume 144 of Studies in Logic and the Foundations of Mathematics.
North-Holland Publishing Co., Amsterdam, 2000.

[4] Douglas Cenzer, Rodney G. Downey, Jeffrey B. Remmel, and Zia Uddin. Space
complexity of abelian groups. Arch. Math. Log., 48(1):115–140, 2009.

[5] Douglas A. Cenzer and Jeffrey B. Remmel. Polynomial-time versus recursive
models. Ann. Pure Appl. Logic, 54(1):17–58, 1991.

[6] Y. Ershov and S. Goncharov. Constructive models. Siberian School of Algebra
and Logic. Consultants Bureau, New York, 2000.

[7] I. Kalimullin, A. Melnikov, and K.M. Ng. Algebraic structures computable
without delay. Submitted.

[8] L. Kristiansen. Papers on Subrecursion Theory, Dr Scient Thesis, Research
report 217. PhD thesis, University of Oslo, 1996.

	1. intorduction
	2. Proofs and proof sketches
	2.1. Proof of Theorem 1.1
	2.2. Proof of Theorem 1.2

	References

