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Abstract. We examine the sequences A that are low for dimension, i.e., those

for which the effective (Hausdorff) dimension relative to A is the same as the
unrelativized effective dimension. Lowness for dimension is a weakening of

lowness for randomness, a central notion in effective randomness. By consid-

ering analogues of characterizations of lowness for randomness, we show that
lowness for dimension can be characterized in several ways. It is equivalent to

lowishness for randomness, namely, that every Martin-Löf random sequence

has effective dimension 1 relative to A, and lowishness for K, namely, that the
limit of KA(n)/K(n) is 1.

We show that there is a perfect Π0
1-class of low for dimension sequences.

Since there are only countably many low for random sequences, many more

sequences are low for dimension. Finally, we prove that every low for dimension

is jump-traceable in order nε, for any ε > 0.

1. Introduction

The effective (Hausdorff ) dimension of an infinite sequence A ∈ 2ω is

dim(A) = lim inf
n→∞

K(A �n)

n
.

This notion was introduced by Lutz [14], who effectivized a martingale character-
ization of Hausdorff dimension and defined dim(A) to be the effective Hausdorff
dimension of {A}. The characterization above, which reveals effective dimension
to be a natural measure of the information density of infinite sequences, was given
by Mayordomo [15] (see also Ryabko [19]).

We say that A ∈ 2ω is low for (effective Hausdorff ) dimension if

(∀X ∈ 2ω)[dimA(X) ≥ dim(X)].

In other words, A is too weak as an oracle to change the effective Hausdorff dimen-
sion of any sequence. It is clear that dimA(X) ≤ dim(X), for any A ∈ 2ω, so if A

is low for dimension we have dimA(X) = dim(X) for all X.
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This paper initiates the study of lowness for dimension. Our main result gives
several characterizations of the notion. These can be seen as weakenings of well-
known characterizations of lowness for randomness. This analogy helped direct our
research and will be discussed in detail below.

We need one more definition before we can state the main theorem. Given a
set of strings W ⊆ 2<ω and a real s ∈ [0, 1], the s-dimensional weight of W is
wts(W ) =

∑
σ∈W 2−s|σ|.

Main Theorem. The following are equivalent for A ∈ 2ω :

(1) A is lowish for (Martin-Löf) randomness, i.e., if X ∈ 2ω is Martin-Löf

random, then dimA(X) = 1.

(2) There is an s ∈ (0, 1] such that (∀X ∈ 2ω)[ dim(X) = s⇒ dimA(X) = s ].
(3) A is low for dimension.
(4) A has the Σ0

1-covering property, i.e., if W ⊆ 2<ω is A-c.e., 0 ≤ s < t ≤ 1,
and wts(W ) < 1, then there is a c.e. set V with wtt(V ) < 1 such that
[W ] ⊆ [V ].

(5) A has the c.e. covering property, i.e., if W ⊆ 2<ω is A-c.e., 0 ≤ s < t ≤ 1,
and wts(W ) < 1, then there is a c.e. set V ⊇W with wtt(V ) <∞.

(6) lim inf
σ→∞

KA(σ)−K(σ)

|σ|
≥ 0.

(7) A is lowish for K, i.e., lim inf
σ→∞

KA(σ)

K(σ)
≥ 1.

Some of these properties are easily shown to be equivalent to superficially stronger
forms. It is clear that lim supσ→∞KA(σ)/K(σ) ≤ 1, so (7) is equivalent to

(7′) lim
σ→∞

KA(σ)

K(σ)
= 1.

In the same way, (6) is equivalent to

(6′) lim
σ→∞

KA(σ)−K(σ)

|σ|
= 0.

Finally, in (5) we can discard finitely many of the strings in V rW to ensure that
wtt(V ) < 1.

Analogy with lowness for randomness. Recall that a sequence A ∈ 2ω is
K-trivial if K(A �n) ≤+ K(n),1 in other words, if its initial segment prefix-free
complexity is as low as possible. The class of K-trivial sequences has been a rich
area of study in recent years, and many diverse characterizations have been found.
See Nies [18] or Downey and Hirschfeldt [5] for a thorough introduction to K-
triviality. The characterizations of lowness for dimension in the main theorem are
analogous to some of the characterizations of K-triviality (though not K-triviality
itself) stated in the following

Theorem 1.1. The following are equivalent for A ∈ 2ω :

(a) A is K-trivial.
(b) A is low for (Martin-Löf) randomness, i.e., every Martin-Löf random se-

quence is Martin-Löf random relative to A.
(c) A is low for K, i.e., K(σ) ≤+ KA(σ).

1We use f(n) ≤+ g(n) to mean (∃c)(∀n)[f(n) ≤ g(n) + c].
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(d) Every Σ0
1[A]-class of measure less than one is contained in a Σ0

1-class of
measure less than one.

It is easy to see that (c) implies (a) and (b). The equivalence of (a)–(c) was
proved in Nies [16], where the proof that every K-trivial is low for K is attributed
to Hirschfeldt and Nies. Kjos-Hanssen [10] proved that (d) is equivalent to the
others.

There is an obvious similarity between the properties in the main theorem and
Theorem 1.1. Property (1) is a direct weakening of (b), though (2) and (3) have
a similar feel. Properties (6) and (7) are both natural weakenings of (c), while
property (4) is a natural analogue of (d). Property (5) is also analogous to a
known characterization of K-triviality; see Simpson [20, Lemma 5.11] for a strong
version.

It is clear that lowness for randomness implies lowness for dimension. What
about the converse? Hirschfeldt and Weber [9] constructed a sequence A ∈ 2ω

that has finite self-information (see Section 7) but is not low for randomness. They
observed that their sequence is also low for dimension, so lowness for dimension
does not imply lowness for randomness. We can also see this as a corollary to
Theorem 5.1, where we prove that there are continuum many sequences that are
low for dimension (see also Herbert [8]). Chaitin [3] proved that every K-trivial
is ∆0

2, so there are only countably many low for random sequences.

Structure of the paper. The next three sections are dedicated to the proof of
the main theorem. The equivalence of the seven properties will be shown as follows:

(1)

(2)

(3)

(4) (5)

(6)(7)Pr
op

1.2

P
ro

p
4
.1

Prop
4.2 Pr

op
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p
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Prop 3.3

Prop
1.2

There are several trivial implications between the various properties, two of which
appear in the diagram.

Proposition 1.2.

• (3)⇒ (2).
• (7)⇒ (3).

Proof. If A is low for dimension, then for every X ∈ 2ω and s ∈ [0, 1], we have

dim(X) = s implies dimA(X) = s. So it is clear that (3) implies (2).
Now assume that A is lowish for K, i.e., satisfies (7). Then for any X ∈ 2ω,

dimA(X) = lim inf
n→∞

KA(X �n)

n
= lim inf

n→∞

K(X �n)

n

KA(X �n)

K(X �n)

≥ lim inf
n→∞

K(X �n)

n
= dim(X).

So A is low for dimension, i.e., (3) holds. �

In Section 5, we produce a perfect Π0
1-class of low for dimension sequences,

proving that there are continuum many. In Section 6, we investigate the degrees
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of sequences that are low for dimension. The main result in this section is that
if A ∈ 2ω is low for dimension and ε > 0, then A is jump-traceable with bound
nε. No slower-growing bound is known to permit continuum many jump-traceable
sequences. The final section presents a few open questions related to our work.

We assume that the reader is familiar with elementary computability theory and
algorithmic randomness. Downey and Hirschfeldt [5] and Nies [18] are excellent
references for these topics, although Nies does not cover effective dimension. One
tool that we use repeatedly is the bounded request set. Let W be a c.e. set of
requests of the form 〈σ, d〉 where σ ∈ 2<ω and d ∈ ω. We call W a bounded
request set if

∑
〈σ,d〉∈W 2−d < ∞.2 If W is a bounded request set, then (∀〈σ, d〉 ∈

W )[K(σ) ≤+ d]. This follows from the Kraft–Chaitin Theorem.

2. The covering properties

In this section, we show that if A ∈ 2ω is low for dimension then it satisfies
both covering properties. Although the statements of the covering properties are
very similar, they are on two sides of a divide between properties involving infinite
sequences and properties involving finite strings. This is what separates (1)–(4)
from (5)–(7). Bridging this gap is the most delicate part of proving the main
theorem.

Let s ∈ [0, 1] and U ⊆ 2<ω. The prefix-free s-weight of U is pfwts(U) =
sup {wts(V ) : V ⊆ U is prefix-free}. We say that U is s-closed if for every τ ∈ 2<ω,
if pfwts({σ ∈ U : τ 4 σ}) ≥ 2−s|τ |, then τ ∈ U . Under reasonable assumptions, a
c.e. set has a c.e. s-closed superset with almost the same prefix-free s-weight:

Lemma 2.1. Let r ∈ [0, 1] be rational and R ⊆ 2<ω c.e. For every ε > 0, there is
an r-closed c.e. set U ⊇ R such that pfwtr(U) ≤ pfwtr(R) + ε.

Proof. We may assume that ε is rational. Let U ⊆ 2<ω be the closure of R under
the requirement that for every τ ∈ 2<ω, if there is a finite prefix-free set S ⊆ U
of extensions of τ such that pfwtr(S) > 2−r|τ | − 2−2|τ |−1ε, then τ ∈ U . It is easy
to see that U is c.e. and r-closed. Now let T ⊆ U be a finite prefix-free set. By
recursively replacing each τ ∈ T r R with the finite prefix-free set of extensions
that resulted in its inclusion in U , we get a finite prefix-free T ′ ⊆ R such that

wtr(T ) < wtr(T
′) +

∑
τ∈2<ω

2−2|τ |−1ε ≤ pfwtr(R) + ε.

Therefore, pfwtr(U) ≤ pfwtr(R) + ε. �

If W ⊆ 2<ω, define Wn for all n ∈ ω as follows. Let W 0 = {λ}, where λ is
the empty sequence. Let Wn+1 = {στ : σ ∈ Wn and τ ∈ W}. The next lemma is
completely routine.

Lemma 2.2. Let s ∈ [0, 1] and let W ⊆ 2<ω be a c.e. set such that wts(W ) < 1.
If X ∈ [Wn] for all n ∈ ω, then dim(X) ≤ s.
Proof. Let U =

⋃
n∈ωW

n. Let r > s be rational. Note that wts(W
n) = wts(W )n

for all n ∈ ω. Therefore, wtr(U) ≤ wts(U) ≤
∑
n∈ω wts(W )n < ∞. This means

that {〈σ, r|σ|〉 : σ ∈ U} is a bounded request set, so (∀σ ∈ U)[K(σ) ≤+ r|σ|].
Infinitely many prefixes of X are in U , so dim(X) ≤ r. But r > s was any rational
number, so dim(X) ≤ s. �

2This definition differs slightly from Nies [18], where the sum is required to be ≤ 1.
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Proposition 2.3. (3)⇒ (4).

Proof. We prove the contrapositive, so assume that the Σ0
1-covering property fails

for A ∈ 2ω. Fix a counterexample: Let W ⊆ 2<ω be an A-c.e. set and let s, t ∈ [0, 1]
be real numbers such that s < t and wts(W ) < 1. Assume that there is no c.e.
set V such that wtt(V ) < 1 and [W ] ⊆ [V ].

Fix a rational r such that s < r < t. Consider a c.e. set U such that pfwtr(U) < 1.
We claim that [W ] 6⊆ [U ]. To see this, note that

wtt(U) =
∑
n∈ω
|U ∩ 2n|2−tn =

∑
n∈ω
|U ∩ 2n|2−rn2(r−t)n

≤
∑
n∈ω

pfwtr(U)2(r−t)n <
∑
n∈ω

2(r−t)n <∞.

Since wtt(U) < ∞, there is an m ∈ ω such that wtt(U r 2≤m) < 1 − pfwtr(U).
Since U ∩ 2≤m is finite, it is covered by a finite prefix-free subset V0 of itself. Of
course, wtt(V0) ≤ pfwtt(U) ≤ pfwtr(U). Let V = V0 ∪ (U r 2≤m). Then V is c.e.,
[V ] = [U ], and wtt(V ) = wtt(V0)+wtt(U r2≤m) < pfwtr(U)+(1−pfwtr(U)) = 1.
By assumption, [W ] 6⊆ [V ] = [U ].

Let R = {σ ∈ 2<ω : K(σ) ≤ r|σ|}. So R is a c.e. set and

pfwtr(R) ≤ wtr(R) =
∑
σ∈R

2−r|σ| ≤
∑
σ∈2<ω

2−K(σ) < 1.

Note that if X /∈ [R], then dim(X) ≥ r. By Lemma 2.1, there is an r-closed c.e.
set U ⊇ R such that pfwtr(U) < 1.

We construct a sequence of strings {σk}k∈ω such that for all k ∈ ω, σk ∈ W ,
and X = σ0σ1σ2 · · · is not in [U ]. Let τk = σ0 · · ·σk−1, so in particular, τ0 = λ.
Since pfwtr(U) < 1, we know that [τ0] 6⊆ [U ]. Now suppose that τk has been
defined and [τk] 6⊆ [U ]. Consider Uτk = {σ ∈ 2<ω : τkσ ∈ U}. Since U is r-closed,
pfwtr(Uτk) ≥ 1 would imply that τk ∈ U . Therefore, pfwtr(Uτk) < 1, so by the
discussion above, there is a σk ∈ W such that [σk] 6⊆ [Uτk ]. This means that
[τk+1] = [τkσk] 6⊆ [U ].

The construction ensures that X /∈ [U ]. Since [R] ⊆ [U ], we have X /∈ [R] and

so dim(X) ≥ r. On the other hand, X ∈ [Wn] for all n ∈ ω, so dimA(X) ≤ s by

Lemma 2.2 relativized to A. Therefore, dimA(X) ≤ s < r ≤ dim(X). Hence A is
not low for dimension. �

We are ready to make the transition from the world of infinite sequences to the
world of finite strings.

Proposition 2.4. (4)⇒ (5).

Proof. Assume that A ∈ 2ω has the Σ0
1-covering property. To prove that A has

the c.e. covering property, it is sufficient to consider rational numbers s and t with

0 ≤ s < t < 1. Fix these, and let r = s
1−t+s = t− (1−t)(t−s)

1−t+s . Note that s < r < t.

We will apply the Σ0
1-covering property to the pair s, r, which gives us extra room

when proving the c.e. covering property for s, t.
Let {Se}e∈ω be an effective list of all A-c.e. sets of strings (sufficiently universal

to apply the Recursion Theorem below). Uniformly in e ∈ ω, there is an A-c.e. set

Ŝe ⊆ Se such that wts(Ŝe) ≤ 2−e−1 and if wts(Se) ≤ 2−e−1, then Ŝe = Se. Let
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S =
⋃
e∈ω Ŝe. Then

wts(S) ≤
∑
e∈ω

wts(Ŝe) <
∑
e∈ω

2−e−1 = 1,

where the strict inequality follows from the fact that Se = ∅ for some e ∈ ω. By
the Σ0

1-covering property, there is a c.e. set R ⊆ 2<ω such that [S] ⊆ [R] and
wtr(R) < 1. This is our only use of the Σ0

1-covering property.
Let W ⊆ 2<ω be an A-c.e. set such that wts(W ) < 1. Our goal is to find a c.e.

set V ⊇ W such that wtt(V ) < ∞. We will build an auxiliary A-c.e. set U . By
the Recursion Theorem, we may assume that the construction of U has access to
a parameter e ∈ ω such that U = Se. As long as we ensure that wts(U) ≤ 2−e−1,

then [U ] = [Ŝe] ⊆ [R].
Before we proceed to the details, it will be helpful to sketch the construction

of V . When a string σ is enumerated into W , we will respond by putting a code
string τ into U and waiting for [τ ] to be covered by [R]. Say that this happens
because ρ 4 τ goes into R. If ρ and τ are approximately of the same length, then
we can use the enumeration of ρ as permission to put σ into V . If ρ is much shorter
than τ , then its enumeration gives us permission to try again by putting a new
code string into U for the sake of σ. Of course, it is possible that [τ ] is covered by a
collection of longer strings in R. To eliminate the need to consider this possibility
explicitly, we replace R by the set Q of all strings that are covered by extensions
in R. For n ∈ ω, let 2≥n = {ρ ∈ 2<ω : |ρ| ≥ n}. Let

Q =
{
τ ∈ 2<ω : [τ ] ⊆

[
R ∩ 2≥|τ |

]}
.

It is clear that [Q] = [R]. We want to show that wtr(Q) < ∞. Consider the
contribution that a string ρ ∈ R makes to wtr(Q). For every τ 4 ρ that ends up
in Q, we could attribute 2|τ |−|ρ| of its r-weight 2−r|τ | to ρ. In this way, the total
cost of τ ∈ Q is split up between the strings from R that cover it. So

wtr(Q) ≤
∑
ρ∈R

∑
m≤|ρ|

2m−|ρ|2−rm ≤
∑
ρ∈R

O(1)2−r|ρ| = O(1) wtr(R) <∞.

We will also use the fact that

µ[Q] = µ[R] ≤
∑
ρ∈R

2−|ρ| ≤
∑
ρ∈R

2−r|ρ| = wtr(R) < 1.

Fix c ∈ ω large enough that µ[Q] ≤ 1 − 2−c and 2−sc ≤ 2−e−3. Fix d ∈ ω large
enough that 2−d wtr(Q) ≤ 2−e−2.

Let {ρk}k∈ω be a computable enumeration of Q and let Qk = {ρi}i<k. We
dynamically assign code strings. At each stage k ∈ ω, we have a (computable)
injection τk : 2<ω → 2<ω such that for every σ ∈ 2<ω

• |τk(σ)| = |σ|+ c,
• no prefix of τk(σ) is in Qk, and
• if τk(σ) 6= τk+1(σ), then there is a prefix of τk(σ) in Qk+1.

Note that it is always possible to reassign strings: µ[Q] < 1− 2−c implies that, for
each n ∈ ω, there are at least 2−c2n+c = 2n usable strings of length n+ c.

The purpose of the code strings should be clearer if we describe how Q is decoded
to produce a c.e. set V ⊆ 2<ω. If ρ ∈ 2<ω enters Q at stage k, τk(σ) < ρ, and

|τk(σ)| < r|ρ|+d
s , then put σ into V . Note that several strings may enter V in
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response to a single ρ entering Q. Despite this, we can show that wtt(V ) < ∞.
Consider ρ ∈ Q with n = |ρ|. The contribution of ρ to wtt(V ) is at most∑

m< rn+d
s −n

2m2−t(n+m−c) ≤ O(1)2(1−t)[
rn+d
s −n]−tn = O(1)2−rn,

where the last equality follows from the fact that (1− t)
[
r
s − 1

]
− t = −r. (Indeed,

this is the reason for our choice of r.) Therefore, wtt(V ) ≤
∑
ρ∈QO(1)2−r|ρ| =

O(1) wtr(Q) <∞.
We are now ready to build U . Recall that U ⊆ 2<ω is the A-c.e. set that we

are constructing, and that if wts(U) ≤ 2−e−1, then [U ] ⊆ [R] = [Q]. The goal
of the construction is to ensure that V ⊇ W . Let {σj}j∈ω be an A-computable
enumeration of W . Let k0 = 0. At stage ki of the construction, let σj be the first
element of the enumeration of W that we have not yet successfully coded. Put
τ = τki(σj) into U and wait for the first stage ki+1 at which some ρ 4 τ enters Q.

If |τ | < r|ρ|+d
s , then we have successfully coded σj , since in that case, σj ∈ V . At

stage ki+1, we either attempt again to code σj , or if we were successful, attempt to
code σj+1. This completes the construction.

We must prove that wts(U) ≤ 2−e−1 without assuming that [U ] ⊆ [Q]. Note,
however, that if [U ] 6⊆ [Q], then there is some final stage ki at which we enumerate
a string into U , and then we wait forever for a stage ki+1. So there is at most one
string τ̂ ∈ U with [τ̂ ] 6⊆ [Q]. Since |τ̂ | ≥ c, 2−s|τ̂ | ≤ 2−sc ≤ 2−e−3.

For all remaining τ ∈ U , some prefix of τ is necessarily enumerated into Q. The
total cost of all of the τ that are put into U that result in a successful coding is∑
σ∈W 2−s(|σ|+c) = 2−sc wts(W ) < 2−sc ≤ 2−e−3. For every τ other than τ̂ that

is put into U but does not result in a successful coding, there is a corresponding

ρ ∈ Q such that |τ | ≥ r|ρ|+d
s . Hence the total cost of these τ is at most∑

ρ∈Q
2−s(

r|ρ|+d
s ) = 2−d wtr(Q) ≤ 2−e−2.

Therefore, wts(U) ≤ 2−e−3 + 2−e−3 + 2−e−2 = 2−e−1. This means that every τ we
put into U eventually has a prefix in Q. Furthermore, we cannot put more than
2|σj |+c strings into U for the sake of σj , so it must eventually be successfully coded.
Hence W ⊆ V . �

3. Lowishness for K

The next goal is to prove that if A ∈ 2ω is low for dimension, then it is lowish
for K. An easy lemma shows that the c.e. covering property gives us a connection
between K and KA. From there we show that (6) holds for A, meaning that
K(σ) − KA(σ) is asymptotically small relative to |σ|. Finally, we prove that A
is lowish for K, in other words, that K(σ) − KA(σ) is asymptotically small even
relative to K(σ).

Lemma 3.1. Assume that A has the c.e. covering property and that 0 ≤ s < t ≤ 1.
Then (∀σ ∈ 2<ω)[ KA(σ) ≤ s|σ| ⇒ K(σ) ≤+ t|σ| ], where the constant does not
depend on σ.

Proof. Let W = {σ : KA(σ) ≤ s|σ|}. So W is A-c.e. and

wts(W ) =
∑
σ∈W

2−s|σ| ≤
∑
σ∈W

2−K
A(σ) < 1.
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Therefore, there is a c.e. set V ⊇ W such that wtt(V ) < ∞. The latter condition
implies that U = {〈σ, t|σ|〉 : σ ∈ V } is a bounded request set, so for every σ ∈ V ,
we have K(σ) ≤+ t|σ|. �

Proposition 3.2. (5)⇒ (6).

Proof. Assume that (6) fails, so there are a rational r < 0 and a sequence of distinct
strings {σi}i∈ω such that (∀i)[KA(σi)−K(σi) < r|σi|]. Let ` = lim inf

i→∞
KA(σi)/|σi|.

Clearly, ` ∈ [0, 1]. Note that

` = lim inf
i→∞

KA(σi)

|σi|
≤ lim inf

i→∞

K(σi) + r|σi|
|σi|

≤ 1 + r < 1.

Take s and t such that ` < s < t < 1 and `− t > r. Thin {σi}i∈ω to a subsequence
{τi}i∈ω such that (∀i)[KA(τi) ≤ s|τi|]. By Lemma 3.1, K(τi) ≤+ t|τi|. This means
that lim supi→∞K(τi)/|τi| ≤ t. Since {τi}i∈ω is a subsequence of {σi}i∈ω, we have
lim infi→∞KA(τi)/|τi| ≥ `. Therefore,

lim inf
i→∞

KA(τi)−K(τi)

|τi|
≥ lim inf

i→∞

KA(τi)

|τi|
− lim sup

i→∞

K(τi)

|τi|
≥ `− t > r.

This contradicts the fact that KA(τi)−K(τi) < r|τi| for all i ∈ ω. �

Proposition 3.3. (6)⇒ (7).

Proof. We prove the contrapositive. Assume that (7) fails, so there is an ε > 0
such that KA(σ) < (1 − ε)K(σ) for infinitely many σ. This says that there are
infinitely many σ that A can compress better by a multiplicative factor of K(σ).
To prove the failure of (6), we need to show that A compresses infinitely many η
better by a multiplicative factor of |η|. If a witness σ to the failure of (7) has
low complexity, then it might not serve as a witness to the failure of (6). The
idea is to replace σ with a short η such that U(η) = σ. The choice of η will be
made so that it is essentially a compressed witness to the failure of (7), hence
also to the failure of (6). In particular, we will find infinitely many η for which
KA(η)−K(η) ≤+ −ε|η|, which is sufficient.

Let UX denote the universal prefix-free machine with oracle X. We define a
prefix-free machine MA relative to A as follows. If UA(ρ) ↓= σ and k ∈ ω, let
τ = ρ0k1 and search for a string η such that U(η) = σ and (1− ε)|η| ≤ |τ |. If such
an η is found, let MA(τ) = η. The fact that UA is prefix-free implies that MA is
prefix-free.

Take σ for which KA(σ) < (1− ε)K(σ). Let ρ be a minimal UA-program for σ
and let η̂ be a minimal U -program for σ. By assumption, |ρ| < (1 − ε)|η̂|. Let
k ∈ ω be minimal such that (1− ε)|η̂| ≤ |ρ|+ k + 1 and let τ = ρ0k1. This ensures
that MA(τ) converges, though possibly not to η̂. Let η = MA(τ). Our choice of k
ensures that |τ | − 1 < (1 − ε)|η̂| ≤ (1 − ε)|η| ≤ |τ |, from which it follows that
|η| =+ |η̂|. Also note that |η̂| = K(σ) = K(U(η)) ≤+ K(η). Putting everything
together, we obtain

KA(η)−K(η) ≤+ |τ | − |η̂| ≤+ (1− ε)|η| − |η| = −ε|η|. �

4. Lowishness for randomness and lowness for dimension s ∈ (0, 1]

We have almost completed the proof of the main theorem. All that remains it
to show that the following properties are also equivalent to lowness for dimension.
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(1) A is lowish for randomness, i.e., every Martin-Löf random sequence has
dimension 1 relative to A,

(2) A is low for some dimension s ∈ (0, 1].

It is easy to see that both properties are implied by lowness for dimension. In
particular, we have already noted that (3)⇒ (2).

Proposition 4.1. (2)⇒ (1).

Proof. Assume that A ∈ 2ω is low for dimension s ∈ (0, 1]. Given a Martin-Löf
random sequence X ∈ 2ω, we will spread X out to create a sequence s[X] of

dimension s. We will then observe that dimA(s[X]) = s implies that dimA(X) = 1.
For Z ∈ 2ω, the spread out version of Z is s[Z] = {bn/sc : Z(n) = 1}. We

want to show that K(s[1ω] �n) is O(log n). Fix n ∈ ω and let r be the maximum
value of bm/sc/m for all m < sn. Then r is a rational approximation of 1/s that
is good enough to determine s[1ω] �n. To see this, consider any m < sn. Then
brmc ≥ bbm/sc/m ·mc = bm/sc. But it also follows from the definition that
r ≤ 1/s, so brmc ≤ bm/sc. Therefore, brmc = bm/sc for all such m. So s[1ω] �n
can be computed uniformly from r, n and max{m : m < sn}. But r is a ratio of
natural numbers less than n, so K(s[1ω] �n) is O(log n).

Now note that K(s[Z] �n) differs from K(Z � bsnc) by at most K(s[1ω] �n)+O(1)
because all we need to know to translate between the two strings is the location of
the bits of Z in the spread out version. Therefore

dim(s[Z]) = lim inf
n→∞

K(s[Z] �n)

n
= lim inf

n→∞

K(Z � bsnc) +O(log n)

n

= s lim inf
n→∞

K(Z � bsnc)
sn

+ lim
n→∞

O(log n)

n
= sdim(Z).

Similarly, dimA(s[Z]) = sdimA(Z) for all Z ∈ 2ω.
To finish the proof, let X ∈ 2ω be any Martin-Löf random sequence. Then

dim(s[X]) = s, which implies that dimA(s[X]) = s. So dimA(X) = 1
s dimA(s[X]) =

1. This proves that A is lowish for randomness. �

Proposition 4.2. (1)⇒ (3).

Proof. We prove the contrapositive, so assume that A ∈ 2ω is not low for dimension.
Therefore, there is an X ∈ 2ω and a rational t > 0 such that 4t ≤ dim(X) −
dimA(X). The idea is to code X compactly into a random sequence Z ∈ 2ω and

use the fact that A is better at compressing X to prove that dimA(Z) < 1.
Fix a functional Φ and let W = {〈σ, d〉 : d > t|σ| − logµ

(
Φ−1[σ]

)
}, where

Φ−1[σ] = {Y : ΦY � |σ| = σ}. Then W is a c.e. set and∑
〈σ,d〉∈W

2−d ≤
∑
σ∈2<ω

2−t|σ|µ
(
Φ−1[σ]

)
=
∑
n∈ω

2−tn
∑
σ∈2n

µ
(
Φ−1[σ]

)
≤
∑
n∈ω

2−tn <∞,

where we use the fact that if σ and τ are incomparable strings, then Φ−1[σ] ∩
Φ−1[τ ] = ∅. Thus W is a bounded request set, so there is a c ∈ ω such that for
all σ ∈ 2<ω, we have K(σ) ≤ t|σ| − logµ

(
Φ−1[σ]

)
+ c. Therefore, µ

(
Φ−1[σ]

)
≤

2t|σ|−K(σ)+c.
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The next step is to code X into a Martin-Löf random sequence. Kučera [12]
and Gács [7] both proved that every sequence is computable from a Martin-Löf
random. We need the version due to Gács, who proved that for any sequence X,
there are a Martin-Löf random Z and a functional Φ such that ΦZ = X with use
ϕ(n) = n+ o(n). We may assume that ϕ(n) = 2n, so for any n,

Z � 2n ∈ Un := {ρ ∈ 22n : Φρ �n = X �n}.

From above, µ
(
Φ−1[X �n]

)
≤ 2tn−K(X �n)+c for some c ∈ ω. So Un has size at

most 22n+tn−K(X �n)+c and is uniformly c.e. in X �n. We can code Z � 2n using a
code for X �n and an index within Un, therefore

KA(Z � 2n) ≤ KA(X �n) + (2n+ tn−K(X �n)) +O(log n).

Here we use that if m ≤ 22n+tn−K(X �n)+c, then K(m) ≤+ (2n+ tn−K(X �n)) +
2 log(2n+ tn−K(X �n)), and log(2n+ tn−K(X �n)) ≤ log(2n+ tn) = O(log n).
By assumption, there are infinitely many n such that K(X �n)−KA(X �n) > 3tn.

For each such n, we have KA(Z � 2n) ≤ 2n − 2tn + O(log n), so dimA(Z) ≤ 1 − t.
This proves that A is not lowish for randomness. �

5. A perfect class of low for dimension sets

As we mentioned in the introduction, only countably many sets are low for ran-
domness, but continuum many are low for dimension. In this section, we prove
the latter fact by constructing a perfect Π0

1-class containing only lowish for K se-
quences. This result was also recently proved by Herbert [8]. He built a perfect
Π0

1-class Q ⊆ 2ω of sequences with finite self-information (see Section 7) and ob-
served that, as a consequence of his construction, every element of Q is low for
dimension. His Π0

1-class has another interesting property: every sequence is com-
putable from the join of two elements of Q. Compare this to the fact that the join
of two low for random sequences is also low for random (as proved for K-trivial
sequences by Downey, Hirschfeldt, Nies and Stephan [6]).

Theorem 5.1. There is a perfect Π0
1-class P ⊆ 2ω such that every A ∈ P is lowish

for K.

Proof. We construct a computable sequence Ts : 2<ω → 2<ω of partial function
trees with finite domain such that T (σ) = lims→∞ Ts(σ) is a total function. Our
Π0

1-class will be P = [T ], the set of infinite paths through T . We use σ to denote
strings in the domain of Ts, and τ to denote strings in the image of Ts. We let U
be the universal prefix-free oracle machine and we write Uτ for both the partial
function and its domain. We use η to denote strings in Uτ . If σ has positive length,
then σ− denotes σ �(|σ| − 1).

Parameters: We say that τ is on Ts if τ 4 Ts(σ) for some σ in the domain of Ts.
For every s ∈ ω, we keep Ts(λ) = λ and Ts(σ) < Ts−1(σ) if both converge. If
Ts(σ) � Ts−1(σ), we say that σ is moved at stage s. At every stage, at most one σ
is moved. If σ is moved at stage s, then Ts(σ

′) ↑ for every σ′ � σ. We say that
such σ′ are initialized. For convenience, we require that for every σ and s, Ts(σ0) ↓
iff Ts(σ1) ↓. To ensure that [T ] is a (perfect) Π0

1-class, we also require that every
leaf of Ts+1 extends a leaf of Ts. That is, if σ is moved at a stage s then we require
that the new value Ts(σ) extends a leaf of Ts−1.
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We will make T (X) =
⋃
n∈ω T (X �n) lowish for K for every X ∈ 2ω. We let

rn = (n+ 2)/(n+ 1)

for n ∈ ω. We want to ensure that for every X ∈ [T ] and n ∈ ω, and for almost
every η in the domain of UX , we have that K(UX(η)) ≤+ rn|η|. This would imply
that every X ∈ [T ] is lowish for K (see Lemma 5.4).

We enumerate a c.e. set L consisting of sets of triples 〈η, τ, rn〉 (called requests)
such that η, τ ∈ 2<ω and n ∈ ω. The intention is that for each such request, we
have η ∈ Uτ and we want K(Uτ (η)) to have complexity ≤+ rn|η|. Such L-requests
have to be made for each τ on T , and the entire construction will involve a careful
accounting to keep the total weight of L finite. Here we define

wt(L) =
∑

〈η,τ,r〉∈L

2−r|η|.

As long as wt(L) < ∞, we can build a bounded request set from L so that if
〈η, τ, r〉 ∈ L, then K(Uτ (η)) ≤+ r|η|.

Viewed as a domain instead of an operator, we will assume that Uτ is a uniformly
computable finite set of strings that increases with respect to τ . As usual, UX =⋃
τ≺X U

τ is infinite and has weight less than 1 for each X ∈ 2ω. For convenience,

we will also assume that |Uτ0 r Uτ | = 1 (which we can ensure by modifying the
uses of computations). We order 2<ω first by length, then lexicographically, i.e.,
λ < 0 < 1 < 00 < · · · . Associated with each σ is a c.e. set Binσ that we build
during the construction. This set will contain certain L-requests. The aim is to
ensure that every L-request 〈η, τ, rn〉 issued during the construction will fall into
Binσ for some σ. Intuitively, this means that we will charge the weight of this
particular request to the node σ. The entire construction will attempt to keep the
total weight in each Binσ small so that we can show that wt(L) < ∞. We also
maintain counters iσ for each σ ∈ 2<ω. These record the number of times that σ
has been initialized so far (initialization is formally defined in the construction).
For every i ∈ ω, we define the computable sequence tσ,i inductively on |σ| as follows:

tλ,i = 0,

tσ,i =

〈
tσ−,i
r|σ| − 1

,
σ − log

(
1− 21−r|σ|

)
+ 5

r|σ| − 1
, i, σ

〉
, if |σ| > 0.

Here we identify σ ∈ 2<ω with its code number and all fractions are rounded up,
if necessary. This seemingly bizarre choice for tσ,i is simply to ensure that certain
sums converge and will be made clear during the verification. We prefer to take 〈·〉
rather than max{·} in the definition for tσ,i because we want the quantity tσ,i to
be strictly increasing in i.

During the construction, when we refer to tσ at a stage s, we mean the value of
tσ,iσ evaluated at stage s. We sometimes write tσ[s]. Each tσ represents a threshold
value for σ.

During the construction, if we see some η in Uτ for some τ on T , then we
must issue a description for Uτ (η). Fortunately for us, we are allowed to issue
a description of length r|η| for some r > 1, and so we would use up 2−r|η| much
measure to describe Uτ (η) compared to 2−|η| for the opponent. It might appear that
we have much more measure to play with compared to the opponent, but remember
that the opponent has used up 2−|η| much measure in the oracle machine Uτ .
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This means that he could repeat this by adding η to Uτ1 , Uτ2 , · · · , Uτk for a large
number k (remember that our Π0

1-class has to be perfect, so we must allow an
antichain of arbitrarily large size to be extendible in our Π0

1-class). So the opponent
has really only used up 2−|η| along each oracle, but we would have to use up k·2−r|η|,
which could be very large. We can, of course, counter this by picking a large r, but
we must eventually use only small values of r to ensure that each path is lowish
for K, and so such a naive strategy will not succeed.

The solution to this problem is to block the accumulation of measure by the
opponent as described above. We assign a threshold value tσ to each node σ.
When we see new strings added to UT (σ′) r UT (σ) with very small weight, we will
issue requests for the new strings and charge the cost of these requests to σ′. If
these new strings all have weights smaller than the threshold values tσ0 and tσ1,
then we will never move T (σ), T (σ0) or T (σ1), and the cost of describing these new
strings are charged to extensions of σ. If, however, we see a new string η added to,
say, UT (σ0σ′), that increases the cumulative weight above the threshold of σ0 (i.e.,

µ[UT (σ0σ′)rUT (σ0)] > 2−tσ0), then we will charge the cost of describing η to σ. We
will also move T (σ0) to the position T (σ0σ′). Doing this will render (essentially)
all of the L-requests previously made for oracles extending Ts(σ00) and Ts(σ01)
wasted; however, if we are careful, these will have small weight, and we can reset
all of the corresponding thresholds to be much larger.

Now observe that a request issued to describe η is charged to σ only if it was
too costly for σ0 (or σ1), and in this case σ0 will be moved so that η is now in
UT (σ0) rUT (σ). Now the crucial point is that not too much weight can be charged
to σ, because otherwise UT (σ0) r UT (σ) would exceed the threshold 2−tσ , and we
would then move σ.

Barring the action of higher-priority nodes, σ can only move in this way at most
2tσ many times, since each time it is moved, we have at least 2−tσ measure of new
strings in UTs+1(σ). Hence the total weight of garbage left in L due to the movement
of σ in this way can be made small. This allows us to bound the overall weight
of L.

Construction: At stage 0, we start with L = ∅, Binσ = ∅, and iσ = 0 for every
σ ∈ 2<ω. Let T0(λ) = λ. At stage s > 0, let σ be the least node such that
Ts−1(σ0) ↑ (and hence Ts−1(σ1) ↑). We say that we act for σ. Let τ = Ts−1(σ),
and let ηi ∈ Uτi r Uτ . We first process η0 (before moving on, if necessary, to η1,
and then end stage s). To process η0, there are two steps:

Step 1: Let n ≤ |σ| be largest such that |η0| > tσ �n. Note that n exists as
tλ = 0. We enumerate the request 〈η0, τ0, rn〉 into L.

Step 2: We now decide which prefix of σ we will charge this request to. Let
σ0 4 σ be the minimal node such that µ[Uτ0 r UTs−1(σ0)] ≥ 2−tσ0 . Note
that σ0 6= λ. If σ0 exists, then we enumerate 〈η0, τ0, rn〉 into Binσ−0

. We

move σ0 by setting Ts(σ0) = τ0, initializing every σ′ � σ0, and letting Ts
copy Ts−1 everywhere else. Initializing σ′ means that we increment iσ′ and
adjust the value of the threshold tσ′ . Note that initialization does not reset
Binσ′ . Go to the next stage. If σ0 does not exist, then we set Ts(σ0) = τ0
and put 〈η0, τ0, rn〉 into Binσ.

If we did not stop the construction while processing η0, we will move on and
process η1 in the same way.
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Verification: It is clear that the sequence Ts meets the conditions stated above
(other than the totality of T = lims→∞ Ts, which we will verify below). Every
L-request is also placed into Binσ for some σ ∈ 2<ω, so wt(L) ≤

∑
σ∈2<ω wt(Binσ).

We need to show that T is total, and each wt(Binσ) is small. We first prove a
crucial lemma:

Lemma 5.2. Consider σ ∈ 2<ω and s′ < s such that both Ts′(σ) ↓ and Ts(σ) ↓. If σ

is not initialized strictly between s′ and s, then wt[Binσ,srBinσ,s′ ] < 2(1−r|σ|)tσ,s+4.

Proof. Let s′ < s0 < · · · < sk ≤ s be all the stages at which Binσ receives new
elements. Let t = tσ,s, and note that σ− is not moved at any of these stages.
Consequently, it is easy to see that there are at most 2t many j ≤ k for which σ is
moved at sj . For each i ≤ k, there are three possibilities for si:

(i) σ is moved at stage si. The only way for σ to be moved and for Binσ to
increase at stage si, is for us to act for σ at stage si. Hence Binσ receives
exactly one new request of the form 〈η, τ, r|σ|〉 when processing η0 and σ is

moved when processing η1. Since |η| > t, it follows that 2−r|σ||η| < 2−r|σ|t.
(ii) We act for σ at si but σ is not moved at stage si. In this case, Binσ receives

two new requests of the form 〈η, τ, r|σ|〉, but note that this item (ii) will not

apply again until σ is again moved. As in (i), we have 2−r|σ||η| < 2−r|σ|t

for each of the two requests.
(iii) Either σ0 or σ1 is moved (without loss of generality, assume the former).

Then a request of the form 〈η, τ, rn〉 is added to Binσ, where |η| > tσσ′ and

n = |σσ′| ≥ |σ|. We claim that 2−rn|η| < 2−|η|2(1−r|σ|)t. If |σ′| = 0 then
we are done as in case (i). Otherwise suppose that σ ⊂ σσ′. Now for any
string α 6= λ and any i, we have that

tα,i >
tα−,i
r|α| − 1

>
r|α−| − 1

r|α| − 1
· tα−,i,

where the first inequality follows by the definition of t and the second follows
because 1 < r|α−| < 2. Applying this, together with the fact that iσσ′ ≥ iσ,

we obtain tσσ′ >
r|σ|−1
rn−1 t. It follows that |η| > r|σ|−1

rn−1 t, so our claim follows.

Now suppose that si < sj are two consecutive stages where σ is moved (the same
analysis below applies if either si = s′ or sj = s). We now account for how
much weight is added to Binσ at those stages si0 , where si < si0 < sj . (ii) con-
tributes on at most one stage, and the sum of the contributions from (iii) is at

most
∑
η 2−|η|2(1−r|σ|)t = 2(1−r|σ|)t ·

∑
η 2−|η|, where the sum is taken over all

strings η in UT (σ0) r UT (σ) or UT (σ1) r UT (σ). Now clearly this sum
∑
η 2−|η|

is less than twice the threshold value 2 · 2−t, because otherwise one of the two
UT (σ0) r UT (σ) or UT (σ1) r UT (σ) would get too heavy and we would be forced to
move σ before sj . Thus we conclude that the sum of contributions from (iii) is at

most 2 · 2−t2(1−r|σ|)t = 2−r|σ|t+1.
Totaling the contribution of all the stages si, we have wt(Binσ,srBinσ,s′) ≤

(2t + 1)((i)+(ii)+(iii)) ≤ (2t + 1)
(
3 · 2−r|σ|t + 2−r|σ|t+1

)
< 2(1−r|σ|)t+4. �

Lemma 5.3. For each σ ∈ 2<ω, we have wt(Binσ) < 2−σ. (Here we identify σ
with its code number).
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Proof. Fix σ ∈ 2<ω. We do not add anything to Binσ at a stage s ∈ ω unless
Ts−1(σ) ↓. Each time σ is initialized, tσ is increased. To calculate an upper bound
on wt(Binσ), we consider the stages s0 < s1 < · · · where σ is initialized. The total
weight added to Binσ for stages si < s < si+1, for every i, can be bounded by
applying Lemma 5.2. This weight is at most∑

t≥tσ,0

2(1−r|σ|)t+4 =
2(1−r|σ|)tσ,0+4

1− 2(1−r|σ|)
≤ 2−σ−1.

The first equality follows by applying the sum of a geometric series, while the second

inequality follows from the fact that tσ,0 <
σ−log

(
1−21−r|σ|

)
+5

r|σ|−1
.

On the other hand, if anything is added to Binσ at stage si, then we must have
acted for σ at stage si, and the request was added to Binσ during the processing
of η0. This is at most 2−r|σ|tσ [si] < 2−tσ [si]. So the sum of the weights of stuff
added at all si is bounded above by∑

i

2−tσ,i < 2−tσ,0+1 < 2−σ−1.

Therefore adding both parts together we have wt(Binσ) < 2−σ. �

The previous lemma tells us that wt(L) ≤ 1. It follows by a straightforward
induction on |σ| that each σ is moved finitely often and each σ is initialized finitely
often. Hence T is total. It is routine to verify (by induction on s) that for every s,

every τ on Ts, and every η ∈ Uτ r Uτ
−

, we have 〈η, τ, r〉 in L for some r.

Lemma 5.4. For each X ∈ 2ω, T (X) is lowish for K.

Proof. Let X ∈ 2ω, and fix an n ∈ ω. We want to show that for almost every η ∈
UT (X), we enumerate 〈η, τ, rm〉 into L for the sake of UT (X), for some m ≥ n. Let s
be a stage where both tX �n and Ts(X �n) are stable. Clearly, for any η ∈ UT (X),

〈η, τ, rm〉 ∈ L for some τ ≺ T (X) and m. For any η ∈ UT (X) where |η| > tX �n and
〈η, τ, rm〉 enters L after stage s, we must have m ≥ n.

By the fact that L is a bounded request set, we have some constant c such that
for almost every σ, K(σ) ≤ rmKT (X)(σ) + c for some m ≥ n, and so

K(σ) ≤ rnKT (X)(σ) + c.

That is, we have for almost every σ,

KT (X)(σ)

K(σ)
≥ n+ 1

n+ 2
− c

K(σ)rn
.

Hence T (X) is lowish for K. �

This completes the proof of Theorem 5.1. �

6. Relationship to other degree classes

In this section we make a few observations about the degrees of sequences that
are low for dimension. The first is that if A ∈ 2ω is low for dimension, then it
is jump-traceable with a reasonably slow-growing bound. We recall the necessary
definitions. A function h : ω → ω is an order function if it is computable, nonde-
creasing and unbounded. If h is an order function, then A ∈ 2ω is jump-traceable
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with bound h if for every partial A-computable function f , there is a c.e. “trace”
(sequence of c.e. sets) {Te}e∈ω such that

(∀e)[ |Te| ≤ h(e) and if f(e) ↓ , then f(e) ∈ Te ].

We could relax the above statement to only hold for sufficiently large e, and the
class of reals so defined would remain unchanged. We say that A is jump-traceable
if A is jump-traceable with some bound.

Theorem 6.1. Suppose that A ∈ 2ω is low for dimension. Then for every ε > 0,
A is jump-traceable with bound nε.

This is an adaptation of a proof found in Nies [17] for the jump-traceability of
K-trivials.

Proof. Let A ∈ 2ω be low for dimension, hence lowish for K. Fix f partial A-
computable. Then for sufficiently long σ, K(σ) < (1 + ε/4)KA(σ). In particular,
K(n, f(n)) < (1+ε/4)KA(n, f(n)) for sufficiently large n in the domain of f , where
K(n,m) is the prefix-free complexity of the pair 〈n,m〉. Since KA(n, f(n)) <+

KA(n) <+ K(n), we have K(n, f(n)) < (1 + ε/3)K(n) for sufficiently large n in
the domain of f .

Fix a universal prefix-free machine U . We enumerate a c.e. set W by enumerating
〈n, d〉 into W when we see

∑
U(σ)=〈n,c〉 2

−|σ| > 2−d. For each n, let dn be least such

that we enumerate 〈n, dn〉 into W .
Then ∑

〈n,d〉∈W

2−d ≤
∑
n

∑
d≥dn

2−d = 2
∑
n

2−dn ≤ 2
∑
n

∑
U(σ)=〈n,c〉

2−|σ| < 2,

and so W is a bounded request set.
Hence there is a b such that K(n) ≤ dn + b. Since 〈n,K(n)− b− 1〉 was not

enumerated into W , it follows that
∑
U(σ)=〈n,c〉 2

−|σ| ≤ 2b+1−K(n). So if we count

the number of distinct c with K(n, c) ≤ (1 + ε/3)K(n), since each contributes at
least 2−(1+ε/3)K(n) to this sum, there can be at most 2b+1+(ε/3)K(n) such c. Since
K(n) ≤ 2 log n, we see that there are at most Bn2ε/3 such c for some constant B,
and if n is in the domain of f , then f(n) is one such c.

We now build our trace as follows: We approximate K(n) from above, beginning
with K0(n) = 2 log n. At stage s, if we see a c such that Ks(n, c) ≤ (1 + ε/3)Ks(n),
and we have not yet enumerated Bn2ε/3 many such c for this current guess of K(n),
then we enumerate c into Tn.

Since Ks(n) is non-increasing and positive, it takes on at most 2 log n distinct
values. For each such value, we enumerate at most Bn2ε/3 elements into Tn, and so
|Tn| ≤ Bn2ε/3 · 2 log n < nε for sufficiently large n. If n is in the domain of f , then
once Ks(n) takes its final value, f(n) will be one of the c we enumerate into Tn.
Thus {Tn}n∈ω is a trace for f with bound nε. �

Nies [17] constructed a perfect Π0
1-class such that every element is jump-traceable

with bound 2·4e. He remarked that his argument could be “massaged a bit to obtain
a bound close to 2e.” Together with Theorem 5.1, we get a much better bound:

Corollary 6.2. For any ε > 0, there is a perfect Π0
1-class P ⊆ 2ω such that every

A ∈ P is jump-traceable with bound nε.



16 LEMPP, MILLER, NG, TURETSKY, AND WEBER

Hence there are continuum many nε jump-traceable sequences.3 Downey and
Greenberg [4] proved that for a sufficiently slow-growing order function h : ω → ω,
every sequence that is jump-traceable with bound h is ∆0

2 (and even K-trivial).
But it is not clear where the transition is between having countably many and con-
tinuum many jump-traceable sequences (even allowing for the dependence on the
numbering of partial computable functions).

Every jump-traceable sequence A ∈ 2ω is GL1, i.e., A′ ≤T A⊕∅′ (see Nies [17]),
hence this is true if A is low for dimension. We can also draw some degree-theoretic
conclusions from the perfect Π0

1-class P ⊆ 2ω of low for dimension sequences con-
structed in Theorem 5.1. Let T : 2<ω → 2<ω be the function tree such that P = [T ].
Consider the low for dimension path A = T (∅′′), Then

∅′′ ≤T A⊕ T ≤T A⊕ ∅′ ≤T T ⊕ ∅′′ ≤T ∅′′,
so A′ ≡T A⊕∅′ ≡T ∅′′. In other words, A is high. More generally, for any C ≥T ∅′,
the low for dimension sequence A = T (C) satisfies A′ ≡T A ⊕ ∅′ ≡T C. Finally,
it is easy to see that any perfect Π0

1-class must contain a sequence A ≤T ∅′ that is
not ω-c.e.

7. Open questions

We highlight three questions related to our work. Two ask about the relationship
between lowness for dimension and other notions: lowness for packing dimension
and having finite self-information. We also ask to what extent our various char-
acterizations remain equivalent when we pass to partially relativized “two oracle”
versions.

Lowness for packing dimension. The effective packing dimension of X ∈ 2ω is

Dim(X) = lim sup
n∈ω

K(X �n)

n
.

Though it is not clear from this definition, Athreya, Hitchcock, Lutz and Mayor-
domo [1] proved that effective packing dimension is the effective analogue of packing
dimension in the same way that effective dimension is the analogue of Hausdorff di-
mension. We relativize effective packing definition in the obvious way and consider
the corresponding lowness notion:

Definition 7.1. We call A ∈ 2ω low for packing dimension if (∀X)[DimA(X) ≥
Dim(X)].

How does this notion relate to lowness for (Hausdorff) dimension? Are they
equivalent? One direction follows easily from the main theorem:

Corollary 7.2. Lowness for dimension implies lowness for packing dimension.

Proof. Assume that A ∈ 2ω is low for dimension, hence lowish for K. Then for any
X ∈ 2ω,

DimA(X) = lim sup
n→∞

KA(X �n)

n
= lim sup

n→∞

K(X �n)

n

KA(X �n)

K(X �n)

≥ lim sup
n→∞

K(X �n)

n
= Dim(X).

3Independently, Yu and Hirschfeldt showed that for any ε > 0, there are continuum many n1+ε

jump-traceable sequences.
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So A is low for packing dimension. �

We suspect that lowness for packing dimension is a weaker property than lowness
for dimension, but it remains open.

Question 7.3. Does lowness for packing dimension imply lowness for dimension?

Finite self-information. Levin [13] defined the mutual information of A,B ∈ 2ω

to be
I(A : B) = log

∑
σ,τ∈2<ω

2−K(σ,τ)−KA(σ)−KB(τ)+K(σ)+K(τ).

This is one of several definitions that Levin has put forward to capture the notion of
mutual information. Hirschfeldt and Weber [9] investigated the sequences A ∈ 2ω

that have finite self-information for this definition, i.e., I(A : A) <∞. It is easy to
see that if A ∈ 2ω is low for randomness, or more specifically, low for K, then it
has finite self-information. Hirschfeldt and Weber constructed an A ∈ 2ω that has
finite self-information but is not low for randomness. Not surprisingly, the key to
their construction is to ensure that KA(σ)−K(σ) grows very slowly. They observe
that the sequence A they build is both low for (Hausdorff) dimension and low for
packing dimension. This led them to ask:

Question 7.4 (Hirschfeldt and Weber [9, Question 20]). What is the relationship
between having finite self-information and being low for dimension?

It is possible that neither property implies the other.

Partial relativization. All of the properties in the main theorem have natural
“two oracle” versions. For example, Given A,B ∈ 2ω, we could consider:

(1) If X ∈ 2ω is Martin-Löf random relative to B, then dimA(X) = 1.

(3) (∀X ∈ 2ω)[dimA(X) ≥ dimB(X)].
(4) If W ⊆ 2<ω is A-c.e., 0 ≤ s < t ≤ 1, and wts(W ) < 1, then there is a B-c.e.

set V with wtt(V ) < 1 such that [W ] ⊆ [V ].

(7) lim inf
σ→∞

KA(σ)

KB(σ)
≥ 1.

If A ≥T B, then these and the analogues of the other properties can be shown to
be equivalent by relativizing the proofs we have given. What about the general
case? Consider Proposition 2.4, where we show that (4) implies (5). The proof
is dynamic and requires that the A-computable enumeration of U can respond to
the enumeration of elements into Q. If Q is only assumed to be B-c.e., so not
necessarily enumerable from A, then it is not clear how to modify the proof to
make it work. A similar problem arises in Proposition 3.3, where we prove that (6)
implies (7).

Question 7.5. Are the two oracle versions of the properties in the main theorem
equivalent?

Consider the two oracle versions of properties (b)–(d) in Theorem 1.1. Nies [16]
defined A ≤LR B to mean that every sequence that is Martin-Löf random relative
to B is Martin-Löf random relative to A. Similarly, he defined A ≤LK B to mean
that KB(σ) ≤+ KA(σ). These are clearly the two oracle versions of (b) and (c)
from the theorem. Kjos-Hanssen [10] proved that A ≤LR B is equivalent to the two
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oracle version of (d): every Σ0
1[A]-class of measure less than one is contained in a

Σ0
1[B]-class of measure less than one. Kjos-Hanssen, Miller and Solomon [11] built

on this result to prove that A ≤LR B if and only if A ≤LK B. So the analogy with
lowness for randomness might suggest a positive answer to Question 7.5. However,
not all results relativize in this way. Write A ≤W2R B to mean that every sequence
that is weak 2-random relative to B is weak 2-random relative to A. Lowness
for randomness is equivalent to lowness for weak 2-randomness (by Kjos-Hanssen,
Miller and Solomon [11] and Nies [18]), butA ≤LR B is not equivalent to A ≤W2R B
(by Barmpalias, Miller and Nies [2]).

In partial answer to the question, we can show that the two oracle versions of
lowness for dimension and the Σ0

1-covering property are equivalent.

Proposition 7.6. In the two oracle case, (3)⇔ (4).

Proof. ⇒: Note that the proof of (3) ⇒ (4) in Proposition 2.3 works for the two
oracle versions.
⇐: Assume that A,B ∈ 2ω satisfy the two oracle version of property (4). Fix

X ∈ 2ω and let s and t be rational numbers such that dimA(X) < s < t. Let
W = {σ ∈ 2<ω : KA(σ) ≤ s|σ|}. So W is an A-c.e. set, wts(W ) < 1, and every
tail of X is in [W ]. By assumption, there is a B-c.e. set V such that wtt(V ) < 1

and [V ] ⊇ [W ]. We have X ∈ [Wn] ⊆ [V n] for every n ∈ ω, so dimB(X) ≤ t

by Lemma 2.2 relativized to B. But t was any rational greater than dimA(X), so

dimB(X) ≤ dimA(X). �
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