ONLINE PRESENTATIONS OF FINITELY GENERATED STRUCTURES

NIKOLAY BAZHENOV, ISKANDER KALIMULLIN, ALEXANDER MELNIKOV, AND KENG MENG NG

Abstract

We systematically investigate into the online content of finitely generated structures. The online content of a potentially infinite algebraic or combinatorial structure is perhaps best reflected by its PR-degrees (to be defined). We confirm a natural conjecture by showing that the PR-degrees of a finitely generated structure must be dense. Remarkably, we show that PR-degrees of an f.g. structure do not have to be upwards dense. As an application of our techniques, we refute a natural conjecture about honestly generated structures (to be stated).

Keywords: finitely generated structure; isomorphism; primitive recursive function.

1. Introduction and results

Modern online algorithms are typically dealing with massive, constantly changing and rapidly expanding databases, such as the World Wide Web. It is thus often natural to consider online computations with potentially infinite input. Beginning in the 1980's there has been quite a lot of work on online infinite combinatorics Kie81, Kie98, KPT94, LST89, Rem86, and, rather independently, polynomial time and automatic infinite algebraic structures KN95, BG00, KM10, CR91, CR98. Nonetheless, until the recent work of Kalimullin, Melnikov and Ng KMN17b there had been no systematic theoretical framework that would unite these two fairly independent subjects. The present article contributes to this recently suggested framework which aims to develop a general theory of online computation on potentially infinite data.

Of course, one naturally seeks to understand the truly efficient online algorithms. Kalimullin, Melnikov and Ng [KMN17b] observed that making an algorithm merely primitive recursive is often sufficient to obtain a polynomial-time one, or even a finite automatic one $\left[\mathrm{BHTK}^{+}\right.$. Removing unbounded search seems to be a crucial step whenever we try to transform a Turing computable procedure into a polynomial-time one. When we look at general primitive recursive algorithms - rather than, e.g., polynomial time, automatic, or linear ones - we strip away much of the irrelevant counting combinatorics. Thus, primitive recursion serves as a useful abstraction. All that matters is that there is some precomputed bound on every search and loop. The effects of this seemingly relaxed restriction can be rather significant. This paper contributes to the general program that

[^0]systematically investigates these effects in computable algebra and combinatorics; see KMN17b, Mel17, BDKM19, DHTK ${ }^{+}$, KMN17a, MN. See survey BDKM19, for the foundations of the surprisingly rich emerging theory of primitive recursive ("punctual") structures, and see also Alaev Ala17, Ala18b for an alternative and independent approach. We note that the theory of punctual structures has recently found an unexpected application in the study of automatic structures; see BHTK^{+} for a solution of a long-standing open problem of Khoussainov and Nerode (e.g., Question 4.9 in KN08) on the classification of automata-presentable structures.

In this paper we concentrate on the natural case when the input is a finitely generated structure. For example, any term algebra over a finite alphabet is a finitely generated structure. From the purely algebraic point of view, finitely generated structures are often viewed as the structures which are understood best after the finite ones. For instance, there is a large body of research focused on algorithmic and purely algebraic aspects of finitely generated groups Hig61, Gol64, NA68, Gro81, Ers12] and rings AT51, Lew67, Nos83, AKNS. One pleasant feature of such structures is that decision procedures in them are intrinsic. For example, if G is a finitely generated group and it has an algorithmically decidable word or conjugacy problem, then every $H \cong G$ will also have the problem decidable. Indeed, fix some generators \bar{g} of G and their isomorphic counterparts \bar{h} in H. Then every element of G is a word in the alphabet of \bar{g}, and it can be naturally mapped to the respective word in the alphabet of \bar{h}. This observation is heavily exploited in combinatorial group theory Hig61, LS01.

Notice, however, that the observation above uses a rather general notion of an algorithmically effective process, namely a Turing computable (or general recursive) process. For suppose we are given some algorithmic description \mathcal{C} of $(\mathbb{Z},+)$, and furthermore we know that c generates \mathcal{C}. Our job is to associate every $x \in \mathcal{C}$ with an integer. The naive algorithm would ask for a late enough stage at which we see $c^{m}=x$, and then we can define $x \rightarrow m$. However, how long will we have to wait? It is easy to diagonalise against all polynomial time, all exponential, or even all hyper-exponential (etc.) algorithms. In other words, this procedure uses an instance of a truly unbounded search; this is the same as to say that the algorithm is not primitive recursive Rog87. It is therefore natural to ask what exactly happens when we forbid unbounded search. What used to be trivial from the perspective of general recursion theory now will have some non-trivial and often counterintuitive subrecursive content. To state our results, we need formal definitions.
1.1. Punctual presentations and punctual degrees. Kalimullin, Melnikov, and Ng KMN17b proposed that an online algebraic structure must (at least) satisfy the following general definition.

Definition 1.1. A countable structure is fully primitive recursive if its domain is either \mathbb{N} or an initial segment of \mathbb{N}, and the operations and predicates of the structure are (uniformly) primitive recursive.

We informally call fully primitive recursive structures punctually computable or simply punctual. Although the definition above is not restricted to finite languages,
we intend to keep our languages finite; in particular, will never encounter infinite languages in the present article ${ }^{1}$

Recall that the inverse of a primitive recursive function does not have to be primitive recursive. Fix a punctual structure \mathcal{A}. The collection of all punctual presentations of \mathcal{A} carries a natural reduction, as defined below.

Definition 1.2. Let \mathcal{A} be a punctual structure. Then, for punctual \mathcal{C}, \mathcal{B} isomorphic to \mathcal{A},

$$
\mathcal{C} \leq_{p r} \mathcal{B} \text { if there exists a surjective primitive isomorphism } f: \mathcal{C} \rightarrow_{\text {onto }} \mathcal{B} .
$$

This leads to an equivalence relation $\equiv_{p r}$ and the degree structure on the classes which will be denoted $\mathbf{P R}(\mathcal{A})$.

What does $\mathbf{P R}(\mathcal{A})$ reflect? If $\mathcal{C} \leq_{p r} \mathcal{B}$ then, in a way, \mathcal{B} has more subrecursive content than \mathcal{C} does, in the sense that \mathcal{B} enumerates itself more "impatiently". For example, the standard copy of $(\mathbb{Q},<)$ punctually embeds any other punctual copy of the rationals; it has a prompt Skolem function, but some other copies may have slow intervals. The dense linear order is a canonical example when a computable back-and-forth method works, the other common (algebraically) homogeneous examples include the random graph and the Fraïsse limit of finite abelian p-groups. Remarkably, the PR-degrees of the dense linear order, the random graph, and the universal abelian p-group are pairwise non-isomorphic; see [MN. From the perspective of general Turing computability, the back-and-forth proofs of uniqueness for these standard homogeneous structures are equally effective. A shallow analysis suggests that all three back-and-forth procedures have exactly one potentially unbounded delay. Nonetheless, using a highly sensitive primitive recursive invariant - namely, the punctual degrees - we can detect the subtle differences in these seemingly identical back-and-forth proofs.

In the case of finitely generated structures the situation is somewhat similar to that for the rationals or the random graph. From the perspective of general Turing computability, any two computable presentations of a finitely generated structure are computably isomorphic. In other words, all finitely generated structures are relatively computably categorical EG00, AK00. Computable structure theory is usually concerned with structures which are not relatively computably categorical; in particular, not finitely generated.

From the point of view of punctual structure theory, finitely generated structures are no longer tame. But even we forbid unbounded search, the procedure of building an isomorphism on x seems to be exactly the same for all finitely generated structures. Namely, we search for a term over the generators which is equal to a

[^1]given element x. Nonetheless, there exist finitely generated infinite \mathcal{A} and \mathcal{B} with $\mathbf{P R}(\mathcal{A}) \neq \mathbf{P R}(\mathcal{B})$; see KMN17b].

However, the property of being finitely generated seems to put a significant restriction on the punctual degrees of a structure. The underlying motivation here is to find a nontrivial link between the purely algebraic property " A is finitely generated" and its algorithmic invariant $\mathbf{P R}(A)$. This subject naturally splits into two main themes. In the first theme, one seeks to formulate a general enough property of PR-degrees of \mathcal{A} which is implied by \mathcal{A} being finitely generated. The second theme is concerned with finding finitely generated structures whose PR-degrees have non-trivial and counterintuitive features, e.g., refuting natural conjectures. While the two themes clearly complement each other both technically and methodologically, the second theme is of some special interest to a computable structure theorist because finitely generated structures are often completely overlooked in (Turing) computable structure theory.

The paper at hand contributes to both themes, but the most technically challenging Theorem 1.4 clearly belongs to the second theme. While we believe that the "monstrous" counterexample from Theorem 1.4 is of significant independent interest, the novel techniques developed to construct it have already found applications which contribute to the first "structural" theme. More specifically, in the satellite paper [KMZ] Kalimullin, Melnikov and Zubkov have used similar strategies and intuition to show that, for any finitely generated rigid \mathcal{A} with $|\mathbf{P R}(\mathcal{A})|>1$, a countable lattice \mathcal{L} is embeddable into $\operatorname{PR}(\mathcal{A})$ iff \mathcal{L} is distributive. Without a doubt this is a structural result which is yet to be fully understood. We will discuss one further recent application in due course. Now to the results.
1.2. Results. There are several basic properties of punctual degrees that are shared among all finitely generated (f.g.) structures. Clearly, each such structure has the least punctual degree which is the degree of the naturally generated copy of the structure (i.e., every element at every stage is a term of generators). We will also show that, for a f.g. $\mathcal{A},|\mathbf{P R}(\mathcal{A})|=1$ is equivalent to saying that every two punctual copies of \mathcal{A} are isomorphic via a primitive recursive f having primitive recursive inverse; see Fact 2.1.

Harrison-Trainor, Melnikov and Turetsky have announced that there exists a punctual structure \mathcal{B} for which $\mathbf{P R}(\mathcal{B})$ is not dense. The first main result of the paper says that in the case of finitely generated structures such pathological examples do not exist.

Theorem 1.3. Suppose a punctual \mathcal{A} is finitely generated. Then $\mathbf{P R}(\mathcal{A})$ is dense.
Kalimullin, Melnikov, and Ng KMN17b constructed a finitely generated punctual structure \mathcal{A} with the property $|\mathbf{P R}(\mathcal{A})|=1$, and therefore the punctual degrees of a finitely generated structure do not have to be upward dense. However, all natural examples of finitely generated structures seem to have the punctual degrees upward dense whenever $|\mathbf{P R}(\mathcal{A})|>1$. Rather unexpectedly, this natural hypothesis fails in the strong sense below.

Theorem 1.4. There exists a finitely generated \mathcal{A} such that $|\mathbf{P R}(\mathcal{A})|=\infty$ and $\mathbf{P R}(\mathcal{A})$ has a greatest element.

In some way, Theorem 1.4 should be compared with Goncharov's celebrated example of a structure having computable dimension two (e.g., Gon81), in the
sense that both results are counterintuitive and require significant novel technical insights. Since a finitely generated structure always has the least PR-degree, our first main result Theorem 1.3 excludes the possibility of $|\mathbf{P R}(\mathcal{A})|=2$ for a finitely generated structure \mathcal{A}. The structure from Theorem 1.4 is thus the closest one can get to punctual dimension two with a finitely generated structure.

We have already mentioned above one (indirect) application of Theorem 1.3 . We also note that Melnikov and Ng have recently announced that there is a (clearly, not f.g.) structure C with $|\mathbf{P R}(C)|=2$. The methods that they used are similar to those in the proof of Theorem 1.4 but have virtually nothing in common with the above-mentioned proof of Goncharov.

The proof of Theorem 1.4 is combinatorially quite involved. It extends a strategy introduced in KMN17b and blends it with a new technique. While we put much effort into semi-formal explanation of the argument, a rather solid background in computable structure theory is perhaps necessary to understand the proof in full depth.

The high combinatorial complexity of our proof of Theorem 1.4 leaves some hope. More specifically, perhaps the upward density hypothesis will hold for many general enough natural classes of finitely generated structures.

Problem 1.5. Give a general enough sufficient condition on a finitely generated \mathcal{A} which would imply that $\mathbf{P R}(\mathcal{A})$ is upward dense.

We finish the paper with an application of the technique developed in the proof of Theorem 1.4. But first, we give some intuition.

In computable structure theory, adding prime root extraction to the language of an abelian group Khi98 or assuming a factorisation algorithm in a field Rab60] have profound effects to the global and local computability-theoretic properties of the respective structure. For example, adding p-root extraction may effect computable categoricity of an abelian p-group. However, even in Turing computability, all these augmentations of signatures by Skolem-like functions (to be made precise in Def. 1.6 below) make little difference when a structure is finitely generated. In particular, a finitely generated structure is already relatively computably categorical, and - from the perspective of Turing computable structures - it cannot be made much better than that. To clarify what we mean by a Skolem-like function, consider the definition below which is a bit weaker than punctual 1-decidability KMN17b.

Definition 1.6. Let \mathcal{A} be a punctual structure in a finite functional language. We say that \mathcal{A} is honestly generated if there is a primitive recursive procedure which, for every term t and each element $x \in \mathcal{A}$:
(1) decides whether $\exists \bar{y} t(\bar{y})=x$, and
(2) if the answer is "yes", it gives such a \bar{y}.

The following conjecture is supported by many natural examples as well as by the pathological structure from Theorem 1.4 .
Hypothesis: Suppose $|\mathbf{P R}(\mathcal{A})|=\infty$ for a finitely generated \mathcal{A}, then \mathcal{A} also has infinitely many honestly generated copies, up to $\equiv_{p r}$.
Indeed, adding the predecessor unary function P into the language of (ω, S) will not result in $|\mathbf{P R}(\omega, S, P)|=1$. Adding Skolem function for division or "-" (or both) into the language of finitely generated abelian groups does not seem to have
any significant effect on their PR-degrees either. Even if we could quickly find the elements that generate a given element via a given term (if they exist), it would not give us any extra power. The intuition here is that there could be a general notion of a "distance" which measures the size of the smallest term that generates a given element. The ability to honestly generate (Def. 1.6) the subalgebra $\langle x\rangle$ of C should not help us to promptly find the term expressing x via the generators \bar{c}, thus giving us enough diagonalization witnesses. Nonetheless, we apply our techniques to refute this conjecture, in particular showing that, in general, there is no wellbehaved notion of a "distance" which would be enough to prove the conjecture.

Theorem 1.7. There exists a finitely generated structure \mathcal{A} such that $|\mathbf{P R}(\mathcal{A})|>1$ (thus, $|\mathbf{P R}(\mathcal{A})|=\infty)$ and \mathcal{A} has a unique honestly generated punctual presentation, up to $\equiv_{p r}$.

We suspect that the structure constructed in the theorem possesses certain peculiar features related to the speed of growth which could be of some interest to combinatorial algebraists. The proof is again non-trivial, but the good news is that it shares one strategy with the proof of Theorem 1.4 . This common feature will allow for a more compact exposition. Also, as before, there is perhaps some general enough sufficient condition that implies the conjecture. We leave this as an open problem.

We also leave open if being honestly generated can be replaced by punctual 1-decidability in the theorem above. See BDKM19, Mel17, KMN17b, Ala18a, Bli19] for a detailed discussion of punctual 1-decidability. Finally, we leave open whether the counterexamples constructed in this paper can be witnessed by finitely generated groups or at least semigroups.

2. The first steps. Proof of Theorem 1.3

All algebraic structures throughout the paper are finitely generated and have a finite functional language.

It is clear that every finitely generated punctual structure has the least presentation under $\leq_{p r}$. This least presentation is the naturally generated term algebra upon some (any) fixed tuple of generators. We usually write \mathcal{B} for this smallest presentation, where \mathcal{B} stands for "bottom". We note that the choice of the generators does not really matter here, for we could primitively recursively bi-embed two different naturally generated term algebras onto one another.

Recall that a punctual structure \mathcal{S} is punctually categorical if for any punctual \mathcal{A} isomorphic to \mathcal{S}, there is an isomorphism $f: \mathcal{A} \rightarrow \mathcal{S}$ such that both f and f^{-1} are primitive recursive. It is easy to construct an example of a (not finitely generated) pair of punctual structures \mathcal{A} and \mathcal{B} such that $\mathcal{A} \leq_{p r} \mathcal{B}$ and $\mathcal{B} \leq_{p r} \mathcal{A}$ but $\mathcal{B} \not 千_{p r} \mathcal{A}$ in the sense that there is no primitive recursive isomorphism with primitive recursive inverse between them; we omit details. It is not known, however, if $|\mathbf{P R}(\mathcal{A})|=1$ is equivalent to \mathcal{A} being punctually categorical. In [MN, Melnikov and Ng used a rather non-trivial argument to illustrate that the two notions are equivalent for undirected graphs. In contrast, the case of finitely generated structures is rather straightforward.

Fact 2.1 (With Harrison-Trainor). Suppose \mathcal{A} is a finitely generated punctual structure, and suppose $|\mathbf{P R}(\mathcal{A})|=1$. Then \mathcal{A} is punctually categorical.

Proof. Let \mathcal{B} be the natural presentation of \mathcal{A} which is the term algebra over generators \bar{b}. Let \mathcal{C} be some other punctual copy of \mathcal{A}, and let $f: \mathcal{B} \rightarrow \mathcal{C}$ be a primitive recursive isomorphism from \mathcal{B} onto \mathcal{C}. Write \bar{b}^{\prime} for the f-image of \bar{b} in \mathcal{C}. Fix a primitive recursive surjective isomorphism $g: \mathcal{C} \rightarrow \mathcal{B}$, and let $\bar{b}^{\prime \prime}$ be the g-image of \bar{b}^{\prime} in \mathcal{B}. Since $\bar{b}^{\prime \prime}$ generates \mathcal{B}, it must generate \bar{b}; fix the finitely many terms witnessing this fact.

Consider $c \in \mathcal{C}$. We explain how to promptly compute $f^{-1}(c)$. Compute $g(c) \in$ \mathcal{B}. Every element of \mathcal{B} is a term in \bar{b} and, thus, is a term in $\bar{b}^{\prime \prime}$; the latter term can be quickly computed using the finitely many terms that witness that \bar{b} is generated by $\bar{b}^{\prime \prime}$. Recall that $\bar{b}^{\prime \prime}=g\left(\bar{b}^{\prime}\right)$. If $g(c)=t\left(\bar{b}^{\prime \prime}\right)$ then $c=t\left(\bar{b}^{\prime}\right)$. Recall that $\bar{b}^{\prime}=f(\bar{b})$ and set $f^{-1}(c)=t(\bar{b})$.
2.1. Proof of Theorem $\mathbf{1 . 3}$. Let \mathcal{A} be a finitely generated punctual structure. We need to prove that $\mathbf{P R}(\mathcal{A})$ is dense.

If $|\mathbf{P R}(\mathcal{A})|=1$ then there is nothing to prove. Otherwise, let $\mathcal{B}<_{p r} \mathcal{T}$ be two punctual presentations of \mathcal{A}, where \mathcal{B} is not necessarily the "bottom" copy of \mathcal{A}. We build a punctual copy \mathcal{X} with the property:

$$
\mathcal{B}<_{p r} \mathcal{X}<_{p r} \mathcal{T} .
$$

We fix a computable listing $\left(p_{e}\right)_{e \in \omega}$ of all unary primitive recursive functions. We meet the requirements:

$$
\begin{aligned}
& P_{e}: p_{e}: \mathcal{X} \rightarrow \mathcal{B} \text { is not an onto isomorphism; } \\
& R_{j}: p_{j}: \mathcal{T} \rightarrow \mathcal{X} \text { is not an onto isomorphism, }
\end{aligned}
$$

and we also construct two surjective primitive recursive isomorphisms $f: \mathcal{B} \rightarrow \mathcal{X}$ and $g: \mathcal{X} \rightarrow \mathcal{T}$. All constructed objects will be build inductively by stages. At each stage we will extend the previous finite part of the structure \mathcal{X}_{s} to some larger portion of the structure. Since our objects should be primitive recursive, we cannot apply an unbounded search before extending the definition of \mathcal{X}_{s}, f_{s} and g_{s}. For instance, we cannot hope to immediately compute a desired value of p_{e} or p_{j} for the corresponding strategies of P_{e} and R_{j} because the uniform enumeration of all primitive recursive functions is not uniformly primitive recursive. Thus, we will have to keep extending the definition of \mathcal{X}_{s}, f_{s} and g_{s} and wait for p_{e} or p_{j} to converge.

The idea is to build \mathcal{X} by copying either \mathcal{B} or \mathcal{T}, and switch between letting \mathcal{X} copy \mathcal{B} and letting \mathcal{X} copy \mathcal{T}. However, this would not be possible in general without \mathcal{A} being finitely generated. Fix the generators \bar{a} of \mathcal{B}. Recall that $\mathcal{B}<_{p r} \mathcal{T}$, and assume h witnesses this reduction. We let $\bar{a}^{\prime \prime}$ be the h-image of \bar{a} in \mathcal{T}. We will also initially define f to be the identity map naturally copying \mathcal{B} into \mathcal{X} for a few stages of the construction. Let \bar{a}^{\prime} be the image of \bar{a} in \mathcal{X}. For the benefit of the uninitiated, recall that the domain of each structure is ω, and we have to generate the term algebra of \mathcal{X}_{s} and assign elements in the domain to elements of the term algebra in a primitive recursive way. By letting " \mathcal{X} copy \mathcal{B} " we mean that we generate the term algebra for \mathcal{B}_{s} and \mathcal{X}_{s} up to the same number of steps and define f on these elements appropriately. If there are elements in \mathcal{B}_{s} which are currently independent from $\operatorname{dom}\left(f_{s}\right)$ then we introduce new elements into \mathcal{X}_{s+1} for the images of these elements. Basically, we want to ensure that when copying \mathcal{B} into \mathcal{X}, f_{s} is a finite isomorphism between the two finite substructures (and g_{s} will be an embedding between \mathcal{X}_{s} and \mathcal{T}_{s} and not necessarily surjective). A similar idea
holds when \mathcal{X} is copying \mathcal{T}; in this case, g_{s} will be a finite isomorphism between \mathcal{X}_{s} and \mathcal{T}_{s} while f_{s} is a non-surjective embedding.

The strategy for P_{e}. In the construction, we will initially start by waiting until we see that $p_{e}\left(\bar{a}^{\prime}\right)$ generates \bar{a} in \mathcal{B}. If this never happens then p_{e} cannot be an onto isomorphism, and thus the requirement will be met. (Of course we have to continue extending \mathcal{X}_{s}, f_{s} and g_{s} and attending to other requirements while waiting for P_{e}). Suppose we see that $p_{e}\left(\bar{a}^{\prime}\right)$ generates \bar{a} in \mathcal{B}. Then the strategy is declared ready for diagonalisation.

Assume that P_{e} is the highest priority requirement and has been declared ready for diagonalisation. If \mathcal{X} is currently naturally copying \mathcal{B} then switch to copying \mathcal{T} (to be explained below). Then wait for a finitary disagreement in p_{e} illustrating that p_{e} is not an isomorphism. (In the construction, the action of switching will be decided according to the priority order between P_{e} and the requirement currently in control of the construction)

The strategy for R_{j}. The same as for P_{e} above, mutatis mutandis.
The switching. There are two substantially different cases that need to be treated separately.

Switching from \mathcal{B} to \mathcal{T}. Suppose \mathcal{X} is currently copying \mathcal{B} via f, and assume we want to switch to copying \mathcal{T} into \mathcal{X}. To perform the switch, identify \mathcal{B} (and, thus, $\mathcal{X})$ with $h(\mathcal{B})$ in \mathcal{T}. From now onwards, change the interpretation of the currently computed atomic diagram of \mathcal{X} by replacing each natural pre-image of $x \in \mathcal{X}$ in \mathcal{B} by the respective element in \mathcal{T}. This will ensure that $h=g \circ f$ can be maintained.

In other words after the switch we start to add into \mathcal{X} the images of elements of \mathcal{T} which formerly could not be added because they were not yet enumerated into $h(\mathcal{B})$.

Switching from \mathcal{T} to \mathcal{B}. Now suppose \mathcal{X} is currently copying \mathcal{T}, and we need to switch to \mathcal{B} at stage s. Stop copying \mathcal{T} but keep producing the term algebra generated by \mathcal{X}_{s} which is naturally associated with the part \mathcal{T}_{s} of \mathcal{T} that had been copied into \mathcal{X} before stage s. In other words, we keep growing \mathcal{X} by generating only the term algebra of existing elements and we do not continue identifying new independent elements of \mathcal{T} inside \mathcal{X}. (This is necessary for keeping \mathcal{X} punctual, as we cannot delay extending \mathcal{X} while waiting for $h(\mathcal{B})$ to catch up).

Naturally identify these elements with the terms of the respective g-images in \mathcal{T}. Wait for $h(\mathcal{B})$ to catch up with \mathcal{T}_{s} by generating all elements in \mathcal{T}_{s}. Note that this must eventually happen because the structure is finitely generated and h is onto.

As soon as we see that $h(\mathcal{B})$ has covered all of \mathcal{T}_{s}, pause the enumeration of \mathcal{X} and quickly compute all the terms that we have used in the enumeration of \mathcal{X} since stage s for $h^{-1}\left(\mathcal{T}_{s}\right)$ in \mathcal{B}. Note that there is a natural bound on the time needed to make these computations, so this delay in extending \mathcal{X}_{s} is justified. This will give us a natural pre-image for the currently constructed part of \mathcal{X}. Switch to \mathcal{X} copying \mathcal{B} by identifying (the currently built part of the diagram of) \mathcal{X} with this natural pre-image in \mathcal{B}. From now we can simply copy the structure \mathcal{B} into \mathcal{X} almost identically up to a finite permutation of elements.

Construction. We pick some natural priority ordering on the requirements. If there are no requirements that are ready for diagonalisation then copy \mathcal{B} into \mathcal{X}. Otherwise, fix the highest priority requirement which is ready for diagonalisation and switch \mathcal{X} (if necessary) until the requirement is met.

Verification. Much of the verification was incorporated into the description of the diagonalisation strategies and the switching procedure. We only clarify a few points which were not explained in detail above. The description of the switching strategy guarantees that \mathcal{X} is primitive recursive and is isomorphic to \mathcal{A}. Each diagonalisation requirement $P_{e}\left(\right.$ and $\left.R_{j}\right)$ is met because otherwise we would have a contradiction with $\mathcal{B}<_{p r} \mathcal{T}$. It is also crucial that the disagreement will be discovered at a finite stage and will be finitary in nature. This is because we used the generators to ensure that if p_{e} (or p_{j}) is an isomorphism then it must be onto; see the description of P_{e}.

3. Proof of Theorem 1.4

Proof idea. For simplicity, first suppose we have to merely build \mathcal{A} with exactly one punctual degree using the strategy from KMN17b (Proposition 4.2). Then we will extend this strategy to construct an \mathcal{A} with the desired properties. We give only a very brief global outline of this strategy; see KMN17b for further details, and see survey BDKM19] for a detailed informal outline of this strategy.

The structure \mathcal{A} will consist of an ω-chain constructed using a unary function s :

$$
o \rightarrow s(o) \rightarrow s^{2}(o) \rightarrow \cdots
$$

where each element of the form $x=s^{k}(o)$ is a part of an m-cycle (for some m):

$$
x \rightarrow c(x) \rightarrow c^{2}(x) \rightarrow \cdots c^{m-1}(x) \rightarrow x
$$

All such m-cycles will be disjoint. Also, we fix a third unary function p that maps each point of the form $s^{t}\left(c^{k}(o)\right)$ back to the fixed generator o. (We omit some trivial details of, e.g., how exactly we define s on the new points forming the c cycles, etc.) If we choose the sizes m for different k very carefully then we can guarantee that $|\mathbf{P R}(\mathcal{A})|=1$. For a higher-level understanding of what will happen next, the reader may imagine that the ω-chain serves as a "coordinate axis" while various special patterns of cycles play the role of the "coordinates" along this axis. We illustrate the basic idea in the example below.

Example 3.1. For example, suppose in \mathcal{A} we start by producing only 1-cycles (loops):

$$
c\left(s^{k}(o)\right)=s^{k}(o) \text { for } k=1,2, \ldots
$$

Given some other punctual \mathcal{C}, we wait for \mathcal{C} to show us two consequent 1-cycles. Either we will discover that \mathcal{C} is not isomorphic to \mathcal{A} or \mathcal{C} will give us two consequent 1 -cycles. Once this happens we can switch in \mathcal{A} to a sequence of 1-cycles and 2cycles:

$$
\ldots-1-2-1-2-1-2-1-\ldots
$$

We will then use the speed of enumeration of \mathcal{C} and the unary functions p, c, s to locate the exact position of the revealed two consequent cycles of \mathcal{C} relative to its version of the origin o. With some care this idea can be extended to handle all primitive recursive structures $\mathcal{C}_{0}, \mathcal{C}_{1}, \ldots$

Now, based on this intuition, we will give an informal overview of the proof of the theorem. Imagine for a moment that the structure \mathcal{A} constructed above did not have any cycles and was simply the successor structure (ω, s). To produce a copy \mathcal{T} of \mathcal{A} not punctually isomorphic to the standard term-presentation \mathcal{B} of (ω, s), we could do the following naive diagonalization. In \mathcal{T}, introduce a new fresh element v but keep it disconnected from the generator o. We do not have to punctually declare k such that $s^{k}(o)=v$, so we will opt to pick such a k very late. We wait until $p_{0}(v) \downarrow=s^{j}(o)$ in \mathcal{B}, and then make sure $k>j$. Then we repeat with new witnesses $v^{\prime}, v^{\prime \prime}, \ldots$ for p_{1}, p_{2}, \ldots to diagonalise against all potential primitive recursive isomorphisms. Note that each p_{i} has to be total, and also that there is no delay in building \mathcal{T}, for we can freely define $s^{t}(v)$ even though we do not know the term for v itself. The intuition here is that x may look "non-standard" for as long as we wish.

Of course, our structure is not simply (ω, s) (and it cannot be, for the punctual degrees of (ω, s) are upwards dense). Indeed, we are dealing with a chain of cycles. Imagine that we wish to put a fresh v into \mathcal{T} for the sake of diagonalization. Not only we have to start promptly producing elements of the form $s^{i}(v)$ in \mathcal{T}, but also we must punctually decide on the sizes of c-cycles around these elements. Recall that the purpose of these cycles was to press $\left(\mathcal{C}_{e}\right)_{e \leq t}$ to reveal themselves in a predictable way, where t depends on the current stage (and is slowly increasing with time). To punctually reconstruct the unique isomorphism from a fixed \mathcal{C}_{e} onto \mathcal{T} we could try to use the unary function p to go back to the generator of \mathcal{C}_{e} and then work from there to find the "coordinates" of the revealed pattern, but this p will no longer help.

Clearly, there is a conflict between the naive diagonalization strategy and the pressing strategy, for we intend to keep parts of the chain disconnected from o. In particular, we cannot possibly hope to use the generator o to reconstruct the "coordinates" of the revealed pattern, because it may well be corresponding to one of the "non-standard" elements generated by the current diagonalization witness v. There will be no uniformly primitive recursive bound on how long it will take for v to be declared a term of o. This time non-uniformity tricks will not help.

Instead, whenever we introduce a fresh diagonalization witness v, the s-chain generated by v will be associated with some fresh array of admissible cycles distinct from those used so far in the chain $s^{i}(o), i \leq t$, seen so far in \mathcal{B}. For example, in the term subalgebra $\langle o\rangle$ we will be operating with 1-cycles, 2-cycles, and 3-cycles, while in the term subalgebra $\langle v\rangle$ we will be using exclusively $7-, 9$ - and 11-cycles. Using p, we will map each such $c^{m}\left(s^{k}(v)\right)$ back to v (not to o as before). Otherwise the strategies restricted to $c^{m}\left(s^{k}(v)\right)$ will be roughly similar to those outlined above for pressing \mathcal{C}_{e}.

Now, when \mathcal{C}_{e} reveals a part of itself, we will be checking on the sizes of the c-cycles which are revealed. If the sizes correspond to those currently built in the "standard" chain, we will act (roughly) as before. If the sizes look too large, then we may have an opportunity to ensure $\mathcal{C}_{e} \not \approx \mathcal{A}$ by keeping all our currently admissible c-cycles smaller than the longest c-chain \mathcal{C}_{e}; this is the same as before. Finally, if these cycles have sizes which belong to the chain generated by v, we will find the position of these elements relative to v. This will allow us to map these revealed elements of \mathcal{C}_{e} to the respective elements in \mathcal{T} without knowing the term for v.

Unfortunately, the strategy described above is not easy to formally implement. Apart from the evident priority conflicts, there will also be rather subtle timing issues. For example, what if \mathcal{C}_{e} responds almost at the same stage as when we decide to declare $s^{k}(o)=v$? Whenever we declare $s^{k}(o)=v$ we must also make further alterations in the way we build \mathcal{T}, and this will potentially result in a delay in the definition of the isomorphism. The underlying idea is, of course, to produce a uniform bound on whatever delays that may occur in \mathcal{T}. Furthermore, each isomorphism-building strategy will typically have to deal with a finite non-uniform parameter which will depend on injury and on the actions of the higher priority diagonalization and pressing strategies. All these subtleties will be handled in the formal proof below. Although this is just a Π_{2}^{0}-argument and the injury will be merely finite, there will be much combinatorics to sort out.

Proof. The language of the structure \mathcal{A} contains the following symbols:

- a constant o, and
- unary functions s, c, p, and r.

The structure \mathcal{A} (see Figure 1) will have the following properties:
(1) The domain of \mathcal{A} is a disjoint union of finite c-cycles. For any c-cycle C, the function s maps every element from C to a fixed element from another c-cycle C^{\prime}. The function s is arranged in such a way that the values $o, s(o)$, $s(s(o)), \ldots, s^{n}(o), s^{n+1}(o), \ldots$ form an ω-chain, and every c-cycle from \mathcal{A} contains exactly one element of the form $s^{k}(o), k \in \omega$.
(2) For $x \in \omega$, consider the unique number n such that $s^{n}(o)$ belongs to the c-cycle of x. Then $p(x)$ satisfies one of the following two cases:
(a) $p(x)=s^{n-1}(o)$, or
(b) $p(x)=s^{n}(o)$.

Furthermore, $p\left(c^{k}(x)\right)=p(x)$, for any $k \in \omega$.
Consider the greatest $m \leq n$ such that $p\left(s^{m}(o)\right)=s^{m}(o)$. Such a number m exists, since $p(o)=o$. Then we have $r(x)=s^{m}(o)$.
(3) The element $y \in \mathcal{A}$ is called a root if $r(y)=y$ or, equivalently, if $p(y)=y$. Notice that for every root y, there is a natural number n such that $y=$ $s^{n}(o)$. For an element x, the island coordinates (m, k) of x are defined as follows: m is the number such that $s^{m}(r(x))$ belongs to the c-cycle of x; and k is the least number such that $x=c^{k}\left(s^{m}(r(x))\right)$.
Note that the first property above ensures that \mathcal{A} is rigid and 1-generated. The canonical presentation of \mathcal{A} is built as the term algebra generated by o. The canonical fpr presentation of \mathcal{A} will be denoted by \mathcal{B} ("bottom"). We will also build an fpr copy \mathcal{T} ("top") of \mathcal{A}.

We use the pairing function $\langle n, m\rangle=2^{n} \cdot(2 m+1)-1$.

We fix a uniformly computable list of all primitive recursive unary functions $\left\{h_{e}\right\}_{e \in \omega}$. We also choose a uniformly computable list of all fpr structures in the language of our structure \mathcal{A} :

$$
\mathcal{C}_{n}=\left(\omega ; o_{n}, s_{n}, c_{n}, p_{n}, r_{n}\right), n \in \omega
$$

The functions $s_{n}, c_{n}, p_{n}, r_{n}$ are treated as "partial" computable functions with corresponding primitive recursive time functions t_{n} : we assume that the value $f(x)\left[t_{n}(x)\right]$ converges, for any $n, x \in \omega$ and $f \in\left\{s_{n}, c_{n}, p_{n}, r_{n}\right\}$.

Figure 1. The structure \mathcal{A} with two roots o and v shown.

We will satisfy the following series of requirements:
$P_{e}: h_{e}$ is not an isomorphism from \mathcal{T} onto \mathcal{B}.
$R_{n}:$ If $\mathcal{C}_{n} \cong \mathcal{T}$, then there is a primitive recursive isomorphism from \mathcal{C}_{n} onto \mathcal{T}.

For a functional symbol $f \in\{s, c, p, r\}$, we use notations f_{B} and f_{T} to denote the interpretation of the symbol f inside \mathcal{B} and \mathcal{T}, respectively.

An overview. The structures \mathcal{B} and \mathcal{T} are constructed with the following agreement in mind. One may think of \mathcal{T} as a version of \mathcal{B} which runs a little bit faster than \mathcal{B}. At the beginning of each stage $s, \mathcal{T}[s]$ consists of two disjoint parts B^{\prime} and I, where B^{\prime} is isomorphic to $\mathcal{B}[s]$, and I is a (possibly empty) substructure of $\mathcal{T}[s]$ such that (for now) I does not contain elements of the form $s_{T}^{k}(o), k \in \omega$. Informally speaking, B^{\prime} is copying \mathcal{B}, and I is an island. The island I will be eventually attached to B^{\prime} with the help of the function s_{T} (to be explained below).

The priority ordering of the strategies is arranged as per usual: $R_{0}<P_{0}<R_{1}<$ $P_{1}<\ldots$. Every strategy P_{e} will be in one of the following states:
(S1) unstarted;
(S2) calculating the island tag;
(S3) active;
(S4) finished.
An unstarted strategy P_{e} wants to begin building the P_{e}-island inside \mathcal{T}. First, P_{e} goes into state S 2 and (slowly) calculates the length l_{e} of the c-cycle for the root of the P_{e}-island. We call this l_{e} the island tag of P_{e}. These calculations will involve evaluating various things inside structures $\mathcal{C}_{i}, i \leq e$. When the island tag is computed, P_{e} goes into state S 3 .

When P_{e} is active, it builds its own island while looking for an opportunity to diagonalise against h_{e}. When this opportunity is seized, P_{e} becomes finished.

Note that at a stage s, each of the strategies $R_{i}, i \leq s$, can construct something in \mathcal{B} and \mathcal{T}.

In order to ensure that both \mathcal{B} and \mathcal{T} are punctual, at each stage s of the construction we proceed as follows:

- pick the least k such that $s_{B}^{k}(o)$ is still undefined, and define it as the next element in the domain;
- introduce the c_{B}-cycle of $s_{B}^{k}(o)$ according to the description of the strategies (see below);
- the functions p_{B} and r_{B} on the new elements are defined right away;
- the structure \mathcal{T} copies the new elements from \mathcal{B}.

Beforehand, we assign to each $P_{e}, e \in \omega$, the set of acceptable tags

$$
L\left(P_{e}\right)=\left\{m_{0}(e), m_{1}(e), \ldots, m_{e}(e), m_{e+1}(e)\right\}
$$

We ensure that for $i \neq j, L\left(P_{i}\right)$ and $L\left(P_{j}\right)$ are disjoint: e.g., one can define

$$
m_{k}(e):=3\langle e+1, k\rangle+3 .
$$

A strategy P_{e} will always choose its island tag as one of the elements from $L\left(P_{e}\right)$.
We assume that o belongs to a c-cycle of size 3 , and we set $L\left(P_{-1}\right):=\{3\}$. Thus, one can say that the main part of \mathcal{T} is tagged by the length 3 .

The description of P_{e} in isolation. We note that the strategy will have to be slightly modified in the construction.

Recall that P_{e} has the finite set of acceptable tags $L\left(P_{e}\right)$. Each higher priority strategy $R_{n}, n \leq e$, can forbid to use at most one tag l from $L\left(P_{e}\right)$. Therefore, the choice of the cardinality of $L\left(P_{e}\right)$ ensures that at any stage s, the strategy P_{e} has at least one non-forbidden tag.

First, we pick the next element w_{e} in the domain of \mathcal{T} and the least non-forbidden $\operatorname{tag} l_{e} \in L\left(P_{e}\right)$. The length l_{e} is declared the island tag of P_{e}.

While the value $h_{e}\left(w_{e}\right)[t]$ either is undefined or does not belong to $\mathcal{B}[t]$, build the P_{e}-island inside \mathcal{T} as follows (note that we always use next elements from the domain to build islands):

- Put w_{e} in a c-cycle of size l_{e}. The element w_{e} will be the root of the P_{e}-island: for any element x from the island, we will have $r(x)=w_{e}$.
- Continue constructing the island as follows. Suppose that $s^{k}\left(w_{e}\right)$ is already defined. Then we put a fresh c-cycle C (its length is decided by the R_{i}-strategies) and connect it in a natural way with our island, i.e. we declare some element from C as $s^{k+1}\left(w_{e}\right)$, and for each $x \in C$, define $p(x)=s^{k}\left(w_{e}\right)$ and $r(x)=w_{e}$.
Suppose that t_{0} is the first stage such that $h_{e}\left(w_{e}\right)\left[t_{0}\right] \downarrow \in \mathcal{B}\left[t_{0}\right]$. Then we attach the island to the main part of $\mathcal{T}\left[t_{0}\right]$ and extend $\mathcal{B}\left[t_{0}\right]$ to an isomorphic copy of \mathcal{T}. More formally, let k be the least number such that the value $s_{B}^{k}(o)$ is still undefined at stage t_{0}. We define:
(i) $s_{T}^{k}(o):=w_{e}$;
(ii) $s_{B}^{k}(o)$ is the least unused element in \mathcal{B}, and we grow the main part of \mathcal{B} by attaching a copy of the constructed P_{e}-island.
Then requirement P_{e} is declared satisfied: Indeed, our construction will be organized in such a way that before stage t_{0}, the structure $\mathcal{B}[t]$ does not contain c-cycles of size l_{e}. Therefore, the element $h_{e}\left(w_{e}\right)$ cannot belong to a c_{B}-cycle of size l_{e}, and h_{e} cannot be an isomorphism from \mathcal{T} onto \mathcal{B}.

After that, every new c-cycle inside \mathcal{B} will be attached to the "end" of the "glued" copy of the P_{e}-island.

The description of R_{e} in isolation. We build a (partial) function θ from ω to ω. Our goal is the following: If the structure \mathcal{C}_{e} is isomorphic to \mathcal{T}, then θ will be a primitive recursive isomorphism acting from \mathcal{C}_{e} onto \mathcal{T}.

The basic idea behind the construction of θ is pattern-switching. For the sake of simplicity, first we consider a toy situation: assume that R_{e} does not care at all about other strategies R_{l}, where $l \neq e$. Then every c-cycle, which is not an island tag, will have length equal to either $3 e+1$ or $3 e+2$.

We use the following patterns:

- The simplest pattern is denoted by $[3 e+1]$. When we say that we iterate (or produce, or propagate) the pattern $[3 e+1]$, this means that whenever we add a fresh c-cycle C (which is not an island tag) into \mathcal{B} or \mathcal{T}, the cycle C has length $3 e+1$.
- A little bit more complicated pattern is denoted by $[3 e+1,3 e+2]$. When we write that we iterate the pattern $[3 e+1,3 e+2]$, then this means the following: when we attach fresh c-cycles either to the main part B^{\prime} of \mathcal{T}, or to the current island I inside \mathcal{T}, we alternate lengths between $3 e+1$ and $3 e+2$. For example, attaching cycles to B^{\prime} looks like this:
- Assume that n is the largest number such that $s_{T}^{n}(o)$ is currently defined, and the length of the c_{T}-cycle of $s_{T}^{n}(o)$ is equal to $3 e+2$. Then choose $s_{T}^{n+1}(o)$ as an element of a fresh c-cycle of size $3 e+1$.
- Pick $s_{T}^{n+2}(o)$ as an element of a fresh cycle of size $3 e+2$.
- Pick $s_{T}^{n+3}(o)$ as an element of a cycle of size $3 e+1$.
- Pick $s_{T}^{n+4}(o)$ as an element of a cycle of size $3 e+2$; etc.

Surely, a similar construction proceeds inside the structure \mathcal{B}.

- Iterating the pattern $[3 e+1,3 e+2,3 e+2]$ means the following: Inside both the main part B^{\prime} and the island I, we choose the lengths of fresh c-cycles as follows:
$3 e+1,3 e+2,3 e+2,3 e+1,3 e+2,3 e+2,3 e+1,3 e+2,3 e+2, \ldots$.
Again, similar actions are taken for \mathcal{B}.
- In a similar way, one can define what does it mean to produce the pattern

$$
[3 e+1, \underbrace{3 e+2, \ldots, 3 e+2}_{k \text { times }}],
$$

where k is an arbitrary natural number.
When we talk about a pattern-switching, we always mean that we switch from a pattern

$$
[3 e+1, \underbrace{3 e+2, \ldots, 3 e+2}_{k \text { times }}],
$$

which is currently propagated, to the pattern

$$
[3 e+1, \underbrace{3 e+2, \ldots, 3 e+2]}_{(k+1) \text { times }}
$$

The switching can be done pretty straightforwardly: For example, suppose that we want to switch from the pattern $[3 e+1,3 e+2]$ to $[3 e+1,3 e+2,3 e+2]$. Let n be the largest number such that the value $v:=s_{T}^{n}(o)$ is currently defined, and assume that the c-cycle of v has length $3 e+1$. Then we just choose the lengths of fresh c-cycles like this:

$$
3 e+2,3 e+2,3 e+1,3 e+2,3 e+2,3 e+1,3 e+2,3 e+2, \ldots
$$

The pattern-switching will help us to ensure that the strategy R_{e} will always have one of the following two outcomes:
(i) If the pattern-switching happens only finitely many times, then the structure \mathcal{C}_{e} is not isomorphic to \mathcal{T}.
(ii) If the pattern-switching happens infinitely many times, then the constructed function θ is a punctual isomorphism from \mathcal{C}_{e} onto \mathcal{T}.
We build θ step-by-step: the values $\theta(0), \theta(1), \theta(2), \ldots, \theta(n), \theta(n+1), \ldots$ are computed, in turns. While the value $\theta(0)$ is still being computed, the construction propagates the simplest pattern $[3 e+1]$.

The value $\theta(0)$ is defined as follows:
(1) Compute the root $r_{e}(0)$ and find its island tag l^{0}, i.e. the length of the $c_{e^{-}}$ cycle of $r_{e}(0)$. It can be the case that inside \mathcal{C}_{e}, the root $r_{e}(0)$ is a part of an infinite c_{e}-chain and hence, the value l^{0} will be never computed. Clearly, in this case \mathcal{C}_{e} cannot be a copy of \mathcal{T}.
(2) While we are waiting for the value l^{0} to be computed, each of the lower priority strategies $P_{i}, i \geq e$, follows the restrictions set forth by R_{e} : The strategy P_{i} cannot become active until one of the following conditions is satisfied.
(2.1) The tag l^{0} is defined and $l^{0} \in L\left(P_{i}\right)$, i.e. l^{0} is an acceptable tag for P_{i}.
(2.2) l^{0} is defined and l^{0} is strictly less that every element from $L\left(P_{i}\right)$.
(2.3) The current value of l^{0} is greater than every element from $L\left(P_{i}\right)$. Here by the value of l^{0} at a stage s we mean the maximal number $m \leq s$ such that every value $c_{e}^{i}\left(r_{e}(0)\right), i \leq m$, can be computed in s steps of computation. Obviously, here we assume that all $c_{e}^{i}\left(r_{e}(0)\right), i \leq m$, are pairwise different.
In Case (2.1), we will never use the value l^{0} as an island tag for P_{i}, and this will ensure that $\mathcal{C}_{e} \not \approx \mathcal{T}$. In each of Cases (2.2) and (2.3), the value l^{0} is not related in any way to the acceptable island tags of P_{i}.
(3) After l^{0} is computed, there are three possible cases:
(A) l^{0} does not belong to any $L\left(P_{i}\right)$, where $-1 \leq i<\omega$. Recall that we assume that $L\left(P_{-1}\right)=\{3\}$. In this case, it is clear that \mathcal{C}_{e} is not isomorphic to \mathcal{T}. Hence, one can just stop defining the function θ. The pattern $[3 e+1]$ is propagated forever.
(B) l^{0} belongs to some $L\left(P_{i}\right)$, where P_{i} is of lower priority, i.e. $i \geq e$. Then we forbid P_{i} to use l^{0} as its island tag. Hence, by the construction, \mathcal{T} does not possess a c-cycle of size l^{0}, but \mathcal{C}_{e} contains such cycle Therefore, $\mathcal{C}_{e} \not \not \mathcal{T}$. Again, here we stop defining θ, and we iterate $[3 e+1]$ forever.
(C) l^{0} is an acceptable tag for some P_{i} of higher priority, i.e. $i<e$. For now, just continue iterating $[3 e+1]$.
(4) From now on, assume that the case (C) above holds. Wait until (the atomic diagram of) the structure \mathcal{C}_{e} shows computations witnessing one of the following outcomes:

- 0 belongs to the c_{e}-cycle of the root $r_{e}(0)$;
- 0 belongs to the c_{e}-cycle of the element $s_{e}\left(r_{e}(0)\right)$;
- both c_{e}-cycles of 0 and $p_{e}(0)$ have length $3 e+1$.

Essentially, we want to see that either 0 is situated close enough to its root $r_{e}(0)$, or there are two adjacent cycles of size $3 e+1$ in the vicinity of 0 .

Recall that our construction is still propagating [3e+1], so if the structure \mathcal{C}_{e} "wants" to be a copy of \mathcal{T}, then it should provide us with the desired computations. Let u_{0} be the number of steps needed to provide these computations.

When the u_{0}-th step of the construction finishes, we immediately switch from the pattern $[3 e+1]$ to $[3 e+1,3 e+2]$. This action ensures the following fact: If u_{0} is given, then one can promptly find the value of $\theta(0)$.

Indeed, the construction will guarantee that by the end of step u_{0}, the structure $\mathcal{T}\left[u_{0}\right]$ will already contain a root r^{0} with the island tag l^{0}. Hence, in order to find the desired image $\theta(0)$, it is sufficient to consider the following finite structures:

- Inside \mathcal{C}_{e}, we choose elements $r_{e}(0), s_{e}\left(r_{e}(0)\right), s_{e}^{2}\left(r_{e}(0)\right), \ldots, s_{e}^{u_{0}}\left(r_{e}(0)\right)$ and the c_{e}-cycles generated by these elements. Denote this structure by $C[0]$.
- Inside \mathcal{T}, we find elements $r^{0}, s\left(r^{0}\right), s^{2}\left(r^{0}\right), \ldots, s^{u_{0}}\left(r^{0}\right)$ and the c-cycles of these elements. Denote the corresponding structure by $T[0]$.
Recall that after the step u_{0}, we never add adjacent $(3 e+1)$-cycles into \mathcal{T}. Hence, the number 0 must belong to $C[0]$. On the other hand, the island tag of r^{0} is equal to l^{0}. Hence, if $\mathcal{C}_{e} \cong \mathcal{T}$, then the unique isomorphism acting from the (rigid) \mathcal{C}_{e} onto \mathcal{T} must map $C[0]$ onto $T[0]$. Thus, the desired isomorphic image $\theta(0)$ can be recovered by promptly searching inside the structure $T[0]$.
When the value $\theta(0)$ is defined, we start computing $\theta(1)$. First, we compute the root $r_{e}(1)$ and we find its island tag l^{1}. While waiting for l^{1} to be computed, R_{e} restricts each of the strategies $P_{i}, i \geq e+1$. Note that here we do not put restrictions on the strategy P_{e}. A strategy P_{i}, where $i \geq e+1$, cannot become active until one of the following conditions happens to be satisfied:
(2.1) l^{1} is defined and $l^{1} \in L\left(P_{i}\right)$;
(2.2) l^{1} is defined and $l^{1}<\min \left(L\left(P_{i}\right)\right)$;
(2.3) the current value of l^{1} is greater than $\max \left(L\left(P_{i}\right)\right)$.

While l^{1} is being computed, the construction continues iterating the pattern $[3 e+$ $1,3 e+2$].

After l^{1} is computed, we have four alternatives:
(A) l^{1} does not belong to any $L\left(P_{i}\right)$. Then $\mathcal{C}_{e} \not \approx \mathcal{T}$, and we iterate the same pattern forever.
(B) l^{1} belongs to some $L\left(P_{i}\right)$, where $i \geq e+1$. Then we forbid l^{1} to be used as an island tag, and this will guarantee that $\mathcal{C}_{e} \not \equiv \mathcal{T}$.
(C) The case when $l^{1} \in L\left(P_{e}\right)$ is more delicate. Here we have two variants:
(C.1) If the strategy P_{e} is still in one of states S 1 or S 2 , i.e. P_{e} is unsure about its island tag, then we just forbid l^{1} to be used by P_{e}. This action is well-behaved, since R_{e} forbids P_{e} to use only one tag l^{1}, recall that l^{0} has nothing to do with P_{e}. As in (B), this will ensure that $\mathcal{C}_{e} \not \approx \mathcal{T}$.
(C.2) If P_{e} is already in one of states S 3 or S 4 , then we do not want to forbid l^{1}. Here we emphasize the following: By the moment t^{1} when the computations of l^{1} had been finished, our structure $\mathcal{T}\left[t_{1}\right]$ already contained island tag l^{1}.
(D) l^{1} is an element of $L\left(P_{i}\right)$, where $i<e$.

We assume that one of the cases (C.2) or (D) holds. We wait until our structure \mathcal{C}_{e} shows computations witnessing one of the following two outcomes:

- 1 belongs to the c_{e}-cycle of one of the elements $r_{e}(1), s_{e}\left(r_{e}(1)\right), s_{e}^{2}\left(r_{e}(1)\right)$, $s_{e}^{3}\left(r_{e}(1)\right)$;
- among the c_{e}-cycles of the elements $p_{e}^{3}(1), p_{e}^{2}(1), p_{e}(1), 1$, we can find either two adjacent $(3 e+1)$-cycles, or three adjacent cycles of lengths $3 e+1,3 e+2$, and $3 e+1$, respectively.

Recall that the construction is propagating the pattern $[3 e+1,3 e+2]$. If $\mathcal{C}_{e} \cong \mathcal{T}$, then the desired computations will be eventually provided. Let u_{1} be the number of steps needed to finish these computations.

When the u_{1}-th step of the construction finishes, we switch from iterating $[3 e+$ $1,3 e+2]$ to $[3 e+1,3 e+2,3 e+2]$. We claim that given the value u_{1}, one can punctually compute $\theta(1)$. Indeed, this follows from the following two facts:
(1) By the end of step u_{1}, we will already have a root r^{1}, which has the island $\operatorname{tag} l^{1}$ inside $\mathcal{T}\left[u_{1}\right]$.
(2) After step u_{1}, between any two fresh c_{T}-cycles of size $3 e+1$, there will be at least two c_{T}-cycles of size $3 e+2$.

Now assume that the values $\theta(0), \theta(1), \ldots, \theta(x-1)$ have been already calculated. When we start computing $\theta(x)$, our construction propagates the pattern

$$
\begin{equation*}
[3 e+1, \underbrace{3 e+2, \ldots, 3 e+2}_{x \text { times }}] . \tag{3.1}
\end{equation*}
$$

We find the root $r_{e}(x)$ and its island tag l^{x}. While waiting for l^{x} to be defined, R_{e} restricts each of the strategies $P_{i}, i \geq e+x$: any such P_{i} cannot become active until one of the following conditions is satisfied.
(2.1) l^{x} is defined and $l^{x} \in L\left(P_{i}\right)$;
(2.2) l^{x} is defined and $l^{x}<\min \left(L\left(P_{i}\right)\right)$;
(2.3) the current value of l^{x} is greater than $\max \left(L\left(P_{i}\right)\right)$.

While l^{x} is being computed, the construction iterates the pattern (3.1).
After l^{x} is computed, again, we have four alternatives:
(A) l^{x} does not belong to any $L\left(P_{i}\right)$. Then $\mathcal{C}_{e} \not \approx \mathcal{T}$.
(B) l^{x} belongs to some $L\left(P_{i}\right)$, where $i \geq e+x$. Then we forbid l^{x} to be used as an island tag.
(C) $l^{x} \in L\left(P_{i}\right)$, where $e \leq i<e+x$. Then one of the following two cases holds:
(C.1) If P_{i} is in one of states S 1 or S 2 , then we forbid l^{x} to be used by P_{i}.
(C.2) If P_{i} is in one of states S 3 or S 4 , then we do not forbid l^{x}.
(D) l^{x} is an element of $L\left(P_{i}\right)$, where $i<e$.

Assume that one of the cases (C.2) or (D) holds. We wait until our structure \mathcal{C}_{e} shows computations witnessing one of the following two results:

- x belongs to the c_{e}-cycle of one of the elements $r_{e}(x), s_{e}\left(r_{e}(x)\right), s_{e}^{2}\left(r_{e}(x)\right)$, $\ldots, s_{e}^{2 x+1}\left(r_{e}(x)\right)$;
- among the c_{e}-cycles of the elements $p_{e}^{2 x+1}(x), p_{e}^{2 x}(x), \ldots, p_{e}^{2}(x), p_{e}(x)$, x, one can find adjacent cycles such that their lengths induce one of the
following tuples:

$$
\begin{gathered}
(3 e+1,3 e+1) ;(3 e+1,3 e+2,3 e+1) ;(3 e+1,3 e+2,3 e+2,3 e+1) ; \ldots ; \\
(3 e+1, \underbrace{3 e+2, \ldots, 3 e+2}_{x \text { times }}, 3 e+1)
\end{gathered}
$$

If $\mathcal{C}_{e} \cong \mathcal{T}$, then the required computations eventually will appear. By u_{x} we denote the number of steps needed to finish the computations. When the u_{x}-th step of the construction finishes, we switch from iterating (3.1) to

$$
[3 e+1, \underbrace{3 e+2, \ldots, 3 e+2}_{x+1 \text { times }}]
$$

Again, one can argue that given u_{x}, one can promptly compute the value $\theta(x)$. Hence, in order to establish the existence of the punctual isomorphism θ, it will be sufficient to show that the sequence $\left(u_{x}\right)_{x \in \omega}$ is primitive recursive in x. The reason behind this primitive recursiveness will be elaborated in the construction and verification.

Recall that the described setting is merely a toy situation. Indeed, things becomes more involved, when different strategies $R_{e}, e \in \omega$, mingle with each other. Nevertheless, this is not a very hard obstacle: different strategies R_{e} will use different coding locations.

We give a rough outline of these coding locations: For the sake of simplicity, assume that we build only the main part B^{\prime} of the structure \mathcal{T}, and we do not glue any islands to B^{\prime}. The root of B^{\prime} will be denoted by r.

Clearly, in this case, all information about a given element $x \in \mathcal{T}$ is completely defined by its island coordinates: recall that this is a pair (m, k), where the element $s^{m}(o)$ belongs to the c_{T}-cycle of x, and k is the least with $c^{k}\left(s^{m}(o)\right)=x$.

We use all cycles with coordinates $(2 k, \cdot), k \in \omega$, as coding places for the strategy R_{0}. The strategy R_{1} will use the cycles with coordinates $(4 k+1, \cdot), k \in \omega$. The strategy R_{2} uses $(8 k+3, \cdot)$. In general, a strategy R_{e} employs the coordinates $(\langle e, k\rangle, \cdot)$, where $k \in \omega$.

What does it mean in practice? The actions of our strategy R_{e} should be modified according to its choice of coding places. First, the patterns are propagated only in appropriate places: For example, iteration of a pattern $[3 e+1,3 e+2]$ means that one proceeds as follows:

- the element $s^{\langle e, 0\rangle}(r)$ will be a part of a c-cycle of size $(3 e+1)$;
- the c-cycle of $s^{\langle e, 1\rangle}(r)$ will have size $(3 e+2)$;
- the c-cycle of $s^{\langle e, 2\rangle}(r)$ will be of size $(3 e+1)$;
- the c-cycle of $s^{\langle e, 3\rangle}(r)$ will have size $(3 e+2)$;
- ...

This kind of iteration helps R_{e} to avoid messing with the c-cycles belonging to other strategies $R_{j}, j \neq e$.

Second, the construction of $\theta(x)$ should be also changed: The c-cycles of size $\ell \in\{3 e+1,3 e+2\}$ are much more disperse now, so we have to make a conscious effort even just to find these cycles.

Recall that when we computed $\theta(0)$, we wanted to find two adjacent $(3 e+1)$ cycles. Obviously, this search must be modified. The modification is essentially as follows. If we consider the values $0, p_{e}(0), p_{e}^{2}(0), \ldots, p_{e}^{2^{e+1}}(0)$, then:

- either one of these elements is already the root of the main part of \mathcal{C}_{e}, or
- at least one of these elements must have a c_{e}-cycle of size $3 e+1$ (otherwise, the structure \mathcal{C}_{e} is not a copy of \mathcal{T}, and we can stop caring about building $\theta)$.
If one of the elements is the root, then one can already find $\theta(0)$ (in a prompt way). Otherwise, let y_{0} be the (first found) element such that

$$
y_{0} \in\left\{0, p_{e}(0), p_{e}^{2}(0), \ldots, p_{e}^{2^{e+1}}(0)\right\},
$$

and the c_{e}-cycle of y_{0} has size $3 e+1$. We find the value $y_{1}:=p_{e}^{2^{e+1}}\left(y_{0}\right)$. Again,

- either y_{1} is already the root, or
- y_{1} has a c_{e}-cycle of size $3 e+1$. Indeed, recall that since the start, the construction has been propagating the pattern $[3 e+1]$. Thus, if the size is different from $3 e+1$, then \mathcal{C}_{e} is not a copy of \mathcal{T}.
Now the value u_{0} is defined as the number of steps needed to finish the described search procedure successfully: If $\mathcal{C}_{e} \cong \mathcal{T}$, then we always will have a successful finish - by this we mean that either at some point, we will prematurely reach the root of \mathcal{C}_{e}, or we will witness two desired $(3 e+1)$-cycles.

When u_{0} is successfully computed, we immediately switch to the pattern $[3 e+$ $1,3 e+2$] (again, putting it in appropriate places). An argument, similar to the one dealing with a single R_{e}, shows that given u_{0}, one can promptly find $\theta(0)$.

In general, the procedure of finding $\theta(x)$ looks like this:
(a) Find some $y_{0} \in\left\{x, p_{e}(x), p_{e}^{2}(x), \ldots, p_{e}^{(2 x+1) \cdot 2^{e+1}}(x)\right\}$ such that its c_{e}-cycle has size $3 e+1$.
(b) Find the values $y_{i+1}:=p_{e}^{2^{e+1}}\left(y_{i}\right)$, for $i \leq x$. If among the lengths of the c_{e}-cycles of $y_{x+1}, y_{x}, \ldots, y_{1}, y_{0}$, one can find a consecutive tuple having one of the forms

$$
\begin{gathered}
(3 e+1,3 e+1) ; \quad(3 e+1,3 e+2,3 e+1) ;(3 e+1,3 e+2,3 e+2,3 e+1) ; \ldots ; \\
(3 e+1, \underbrace{3 e+2, \ldots, 3 e+2}_{x \text { times }}, 3 e+1),
\end{gathered}
$$

then declare that the u_{x}-procedure is finished succesfully.
Note that while processing one of the computations above, one can prematurely reach the root, i.e. discover that, say, $p_{e}^{3}\left(y_{2}\right)=r(x)$. In this case, we also say that the u_{x}-procedure finished succesfully.

Recall that before the value $\theta(x)$ is computed, the iterated pattern is

$$
[3 e+1, \underbrace{3 e+2, \ldots, 3 e+2}_{x \text { times }}] .
$$

Hence, if $\mathcal{C}_{e} \cong \mathcal{T}$, then the u_{x}-procedure must finish successfully, and one can define u_{x} as the number of steps needed to finish the procedure. When the u_{x}-procedure finishes successfully, we immediately switch to the pattern

$$
[3 e+1, \underbrace{3 e+2, \ldots, 3 e+2}_{x+1 \text { times }}] .
$$

Again, given u_{x}, one can quickly compute the value $\theta(x)$.
This finishes the description of a strategy R_{e} in isolation. The details considering the prompt computations of $u_{x}, x \in \omega$, will be given in the formal construction and the verification.
(In the construction below, we view every primitive recursive function as a partial computable function $\varphi_{e}(x)$ such that the computation of $\varphi_{e}(x)$ converges in $p(x)$ many steps for some primitive recursive p.)

Construction.

The structure $\mathcal{C}_{e}[s]$ evaluated at stage s refers to a finite substructure of \mathcal{C}_{e} on the domain $\{0,1, \ldots, s\}$ with all functions evaluated up to s steps. At stage s we are allowed to use only structures $\mathcal{C}_{e}[s], e \leq s$.

Our construction defines partial computable functions s, c, p, r for \mathcal{B} and for \mathcal{T} and ensures that all the values $s(x), c(x), p(x), r(x)$ converge within x many steps of the construction. Therefore, both \mathcal{B} and \mathcal{T} are punctual.

At stage s we assume that every strategy P_{j}, where $j>s$, is still unstarted.
Phase 0: Dealing with the strategies P_{e}.
(0.1) Declare the strategy P_{s} calculating the island tag, i.e. P_{s} goes from state S1 into S2.
(0.2) Let P_{i} be the least strategy which is currently in state $S 2$. Suppose that M is the maximal element from $L\left(P_{i}\right)$.

We want our strategy P_{i} to move on, and to enter state S 3 (i.e. to choose its own island tag). In order to proceed in a safe way, we have to respect all restrictions which are set forth by the higher priority strategies $R_{j}, j \leq i$. Recall that the informal description of R_{e} given above tells us the following:

- A strategy $R_{j}, j \leq i$, can forbid P_{i} to use some tag $l \in L\left(P_{i}\right)$ only while R_{j} is computing the values $\theta_{j}(0), \theta_{j}(1), \ldots, \theta_{j}(i-j)$. Here θ_{j} is a (potential) isomorphism from \mathcal{C}_{j} onto \mathcal{T}. After the value $\theta_{j}(i-j)$ is computed, R_{j} does not impose any restrictions on P_{i}.
- Assume that by a stage t, the strategy R_{j} has already computed, say, $\theta_{j}(0)$ and $\theta_{j}(1)$, and the corresponding island tags (denoted by l^{0} and l^{1} in the description of R_{e}) have nothing to do with P_{i} : more formally, this means $l^{0}, l^{1} \notin L\left(P_{i}\right)$. If by the stage t, we have already witnessed that the island tag l^{2} inside \mathcal{C}_{j} is very large, then it is safe to assume that R_{j} will not put any future restrictions on us, and hence, P_{i} can choose its island tag.

Here the tag l^{2} is very large if the following holds: After t steps of computation, all the values

$$
r_{j}(2), c_{j}\left(r_{j}(2)\right), c_{j}^{2}\left(r_{j}(2)\right), \ldots, c_{j}^{M}\left(r_{j}(2)\right)
$$

have been computed, and they are pairwise different. Informally, this means that the island tag of $r_{e}(2)$ is already too big to be acceptable for the strategy P_{i}.

Note that here we discussed a simplified version of the argument: In reality, P_{i} needs to obtain some information about each higher priority R_{j} (not only one R_{j}), before P_{i} will be able to safely choose its island tag.

So, in order to help P_{i} to move on, we make $(s+1)$ steps of the following computations.
(\star) For each $j \leq i$ and each $x \leq i-j$, compute the values

$$
r_{j}(x), c_{j}\left(r_{j}(x)\right), c_{j}^{2}\left(r_{j}(x)\right), \ldots, c_{j}^{M}\left(r_{j}(x)\right)
$$

After the values have been computed, find a finite set F of forbidden tags as follows:

$$
v_{j}:= \begin{cases}\text { the least } l \in L\left(P_{i}\right) \text { such that for some } x \leq i-j & \\ \text { the } c_{j} \text {-cycle of } r_{j}(x) \text { has length } l, & \text { if such } l \text { exists; } \\ -1, & \text { otherwise. } \\ F:=\left\{v_{j}: j \leq i, v_{j} \neq-1\right\} & \end{cases}
$$

Note that clearly, the set F (when computed) contains at most $i+1$ elements.
If the computation (\star) does not finish in $(s+1)$ steps, then P_{i} stays in state S2. Otherwise, it seems that P_{i} is ready to choose its island tag, but this choice still requires a little bit of polishing. This polishing will prove to be useful in the verification (see Lemma 3.4. We illustrate the necessity of polishing by the following example.

Example 3.2. Consider the strategy P_{1}. In order to find the set F for P_{1}, we need to wait for the following values to be computed:
(i) $r_{0}(0), c_{0}\left(r_{0}(0)\right), \ldots, c_{0}^{M}\left(r_{0}(0)\right)$;
(ii) $r_{0}(1), c_{0}\left(r_{0}(1)\right), \ldots, c_{0}^{M}\left(r_{0}(1)\right)$;
(iii) $r_{1}(0), c_{1}\left(r_{1}(0)\right), \ldots, c_{1}^{M}\left(r_{1}(0)\right)$.

It can be the case that both computations (i) and (ii) are pretty quick: say, in 100 steps they show that inside \mathcal{C}_{0}, the island tags for both 0 and 1 are too big for $L\left(P_{1}\right)$; in other words, 100 steps of computation already witness that $v_{0}=-1$. On the other hand, the computations (iii) could be very slow: say, only in 10^{10} steps, we will see that inside \mathcal{C}_{1}, the number $r_{1}(0)$ is a part of a c-cycle of size M (i.e., witnessing the equality $v_{1}=M$ requires a lot of time).

Hence, in 10^{10} steps, we are happy to declare that $F=\{M\}$. Furthermore, we can already conclude that \mathcal{C}_{1} cannot be a copy of \mathcal{T}, since \mathcal{C}_{1} contains a cycle of size M, but P_{1} will never use this size (recall that P_{1} is the only strategy which can use the tag M). Summarising, we successfully diagonalised against \mathcal{C}_{1}, but we did not obtain any conclusive evidence against \mathcal{C}_{0}.

Nevertheless, it is possible that this evidence against \mathcal{C}_{0} was really close to us: Say, in just 10^{3} steps, one could have witnessed that the c_{0}-cycle of $r_{0}(2)$ had size $\ell \neq M$ such that $\ell \in L\left(P_{1}\right)$. Therefore, using pretty much the same 10^{10} steps, we could have forbidden P_{1} to use ℓ, and successfully diagonalise against \mathcal{C}_{0}.

So, in order to avoid situations similar to that of Example 3.2 we proceed as follows. If the computation (\star) finishes in $(s+1)$ steps, then we make an additional tag-prohibition routine: Consider each $j \leq i$ with $v_{j}=-1$. For each $y \leq s$, make $(s+1)$ steps of computing

$$
r_{j}(y), c_{j}\left(r_{j}(y)\right), c_{j}^{2}\left(r_{j}(y)\right), \ldots, c_{j}^{M}\left(r_{j}(y)\right)
$$

Find the least y, for which these bounded computations witness that $r_{j}(y)$ has c_{j} cycle of a size $\ell_{y} \in L\left(P_{i}\right)$. If such y exists, then put ℓ_{y} into the set F of forbidden tags. It is clear that the cardinality of (the modified) F is still at most $i+1$.

At last, after the routine, P_{i} is allowed to choose its tag. Find the least tag $l \in L\left(P_{i}\right) \backslash F$. We declare l the island tag of P_{i}, and say that P_{i} is now in state S3 (i.e. active). We initialise P_{i} by building the P_{i}-island $I\left[P_{i} ; s\right]$ (inside $\mathcal{T}[s]$) as a c_{T}-cycle of size l. We choose an element w from the cycle and declare it the P_{i}-witness.
(0.3) If there is at least one active strategy P_{i}, then proceed to Phase 1. Otherwise, proceed straight to Phase 2.

Phase 1: Satisfying active strategies.
Consider each active strategy P_{e}, in turn. Suppose that w is the P_{e}-witness.
If the value $h_{e}(w)$ is calculated in $(s+1)$ steps of computation and $h_{e}(w)$ belongs to $\mathcal{B}[s]$, then declare P_{e} satisfied and finished. Attach the P_{e}-island to the main part of $\mathcal{T}[s]$ as follows: Let k be the least number such that $s_{B}^{k}(o)$ is still undefined. Declare $s_{T}^{k}(o):=w$ and define the other values of s_{T} appropriately. After that, extend the structure $\mathcal{B}[s]$ in such a way that the resulting structure is isomorphic to the current $\mathcal{T}[s]$.

Otherwise, let m be the least number such that $s_{T}^{m}(w)$ is still undefined. Define $s_{T}^{m}(w)$ as the next element of the domain. Grow the c_{T}-cycle of the element according to the current working patterns (to be elaborated in Phase 2, this is essentially the pattern-switching introduced in the description of the strategy R_{e}).

After that proceed to Phase 2.
Phase 2: Growing the structure \mathcal{B}.
First, we explain how we define our working patterns. The patterns will help us to prove that the sequence $\left(u_{x}\right)_{x \in \omega}$ from the description of R_{e} can be computed in a prompt way.

Let $u_{q, l, e}(x)$ be the number of steps needed to perform the following effective procedure inside the structure \mathcal{C}_{e} :
(i) Find the value $r_{e}(x)$. If $r_{e}(x) \neq q$, then we stop successfully.
(ii) Otherwise $r_{e}(x)=q$. Compute the values $c_{e}^{k}(q)$, for $k \leq l$. If $c_{e}^{l}(q) \neq q$ or there is a non-zero number $k<l$ with $c_{e}^{k}(q)=q$, then we stop successfully.
(iii) Otherwise q lies in a c_{e}-cycle of size l. Apply p_{e} to x to search for some non-zero $i \leq(2 x+1) \cdot 2^{e+1}$ such that $p_{e}^{i}(x)$ lies in a c_{e}-cycle of size $3 e+1$. We call this element y_{0}. If y_{0} is not found, then we stop unsuccessfully. If we reach the root q before $(2 x+1) \cdot 2^{e+1}$ applications of p_{e}, then we stop successfully.
(iv) Assume that y_{0} is found. Compute the values $y_{j}=p^{2^{e+1}}\left(y_{j-1}\right)$ for $1 \leq j \leq$ $x+1$. If we reach the root q before finding y_{x+1}, then we stop successfully. If there is at least one y_{j} such that $1 \leq j \leq x+1$ and it lies in a c_{e}-cycle of size $3 e+1$, then we stop successfully. Otherwise, we stop unsuccessfully.

The procedure always stops, either successfully or unsuccessfully. Informally speaking, if the described procedure stops unsuccessfully, then we can ensure that \mathcal{C}_{e} is not a copy of \mathcal{T}. For a fixed e, the function $(q, l, x) \mapsto u_{q, l, e}(x)$ is primitive recursive, since all searches are bounded. On the other hand, the function $(e, q, l, x) \mapsto u_{q, l, e}(x)$ is not primitive recursive. Nevertheless, the graph

$$
\left\{(e, q, l, x, z): u_{q, l, e}(x)=z\right\}
$$

is a primitive recursive set.
We define the function $\alpha(l,\langle e, m\rangle)$. The intended use of the parameters is as follows: The position of any element x from the structure \mathcal{T} is uniquely determined by the root $r_{T}(x)$ and the island coordinates (i, j) of x. Thus, the output of
$\alpha(l,\langle e, m\rangle)$ will be the length of the c_{T}-cycle of the element x such that the root $r_{T}(x)$ lies in a cycle of size l and x has island coordinates $(\langle e, m\rangle, 0)$.

The function α is defined by primitive recursion on m. Suppose that l and e are fixed.

- We set $\alpha(l,\langle e, m\rangle)=3 e+1$ for all m such that $\mathcal{C}_{e}[m]$ does not yet have a c_{e}-cycle C of size l and an element $q \in C$ with $r_{e}(q)=q$.
- Suppose that m_{0} is the first number such that $\mathcal{C}_{e}\left[m_{0}\right]$ has a c_{e}-cycle of size l with root q. Note that if there is no such m_{0}, then simply $\alpha(l,\langle e, m\rangle)=$ $3 e+1$ for all m.
- For every $m_{0} \leq m \leq u_{q, l, e}(0)$ we set $\alpha(l,\langle e, m\rangle)=3 e+1$. If (the procedure) $u_{q, l, e}(0)$ stops unsuccessfully, then define $\alpha(l,\langle e, m\rangle)=3 e+1$ for all $m>$ $u_{q, l, e}(0)$.
- Otherwise, $u_{q, l, e}(0)$ stops successfully. Then for m with $u_{q, l, e}(0)<m \leq$ $u_{q, l, e}(1)$ we propagate the pattern $[3 e+1,3 e+2]$. More formally, we define:

$$
\begin{gathered}
\alpha\left(l,\left\langle e, u_{q, l, e}(0)+2 j+1\right\rangle\right):=3 e+1 \\
\alpha\left(l,\left\langle e, u_{q, l, e}(0)+2 j+2\right\rangle\right):=3 e+2
\end{gathered}
$$

for appropriate j. In other words, we alternate between the cycles of size $3 e+1$ and $3 e+2$.

In order to complete the pattern correctly, we assume that $\left(u_{q, l, e}(1)-\right.$ $\left.u_{q, l, e}(0)\right)$ is an even number. If $u_{q, l, e}(1)$ stops unsuccessfully, then we iterate the pattern $[3 e+1,3 e+2]$ forever, i.e. for all $m>u_{q, l, e}(1)$.

- Otherwise, $u_{q, l, e}(1)$ stops successfully. In general, if some $u_{q, l, e}(k)$ stops unsuccessfully, then we end up repeating the pattern

$$
[3 e+1, \underbrace{3 e+2, \ldots, 3 e+2}_{k \text { times }}]
$$

forever. If every $u_{q, l, e}(k)$ stops successfully, then the pattern 3.2 is propagated for $u_{q, l, e}(k-1)<m \leq u_{q, l, e}(k)$. In order to do this correctly, we assume that $\left(u_{q, l, e}(k)-u_{q, l, e}(k-1)\right)$ is divisible by $k+1$.
Since the approximation $\mathcal{C}_{e}[s]$ is evaluated in bounded many steps and the graph of u is primitive recursive, the function α is also primitive recursive: Indeed, in the definition of α, we only need to decide whether $u_{q, l, e}(k)$ is equal to m or not.

The working patterns in our construction work as follows:
In Phase 1: Recall that w is the witness of an active strategy. Suppose that l is the length of the c_{T}-cycle of w. Let m be the least number such that $s_{T}^{m}(w)$ is still undefined. Then the length of the c-cycle of the newly added element $s_{T}^{m}(w)$ is defined as $\alpha(l, m)$. Define p and r for the new cycle appropriately.

In Phase 2: We grow \mathcal{B} as follows. Suppose that v is the latest element with $r_{B}(v)=v$ which was added to \mathcal{B} (i.e. v is the latest root inside $\left.\mathcal{B}[s]\right)$. Let l be the length of the c_{B}-cycle of v. Find the least m such that $s_{B}^{m}(v)$ is still undefined. Then define $s_{B}^{m}(v)$ as the next element a from the domain, and set the length of the c_{B}-cycle of a equal to $\alpha(l, m)$. Define p and r appropriately. Copy the newly added cycle into the structure \mathcal{T}.

Verification. In both \mathcal{B} and \mathcal{T} there is no delay unbounded in the definition of the finitely many unary functions in the language of \mathcal{A}. Therefore, both structures \mathcal{B} and \mathcal{T} are punctual.

Before giving the formal lemmas, we emphasise an important feature of the described construction: Without loss of generality, one may assume that a strategy R_{e} starts working only after all strategies $P_{i}, i<e$, moved to state S3. In other words, we start considering the structure \mathcal{C}_{e} (and building an isomorphism θ_{e} from \mathcal{C}_{e} onto \mathcal{T}) only after each $P_{i}, i<e$, chose its island tag. This assumption essentially slows down the "data stream" describing \mathcal{C}_{e}, but this process does not injure the primitive recursiveness of the function α : roughly speaking, one introduces sufficiently many initial idle steps t, at which the object $\mathcal{C}_{e}[t]$ is treated as an empty structure; and these steps t propagate the simplest pattern $[3 e+1]$ inside both \mathcal{B} and \mathcal{T}.

Lemma 3.3. Every requirement P_{e} is satisfied.
Proof. First, we show the following: If there is a stage s_{0} at which the P_{e}-strategy is active, then P_{e} is satisfied.

Let w be the P_{e}-witness, and l be the size of the c_{T}-cycle of w. Consider the least stage $s_{1} \geq s_{0}$ such that $h_{e}(w)\left[s_{1}\right] \downarrow \in \mathcal{B}\left[s_{1}\right]$. The construction guarantees that $\mathcal{B}\left[s_{1}\right]$ contains no cycles of size l. Therefore, h_{e} is not an isomorphism from \mathcal{T} onto \mathcal{B}, and P_{e} will be satisfied at stage s_{1}.

Now suppose that $s^{*}>e$ is the least stage such that:

- every $P_{i}, i<e$, is in state S 4 (i.e. finished) at the beginning of the stage s^{*}; and
- the calculation (\star) of the set F of forbidden tags for P_{e} can be finished in $\left(s^{*}+1\right)$ steps.
If P_{e} has never been active before the stage s^{*}, then it will become active at s^{*}. Thus, P_{e} will be satisfied.

Now we can deduce that the structures \mathcal{B} and \mathcal{T} are isomorphic: This is ensured by copying \mathcal{B} from \mathcal{T} at Phase 1 (this happens infinitely often by Lemma 3.3) and by copying \mathcal{T} from \mathcal{B} at Phase 2 .

Lemma 3.4. Every requirement R_{e} is satisfied.
Proof. Suppose that \mathcal{C}_{e} is isomorphic to \mathcal{T} and θ is the unique isomorphism from \mathcal{C}_{e} onto \mathcal{T}.

First, we show that for every $x \in \mathcal{C}_{e}$, the length l^{x} of the c_{e}-cycle of the root $r_{e}(x)$ can be calculated primitively recursively. Suppose that l^{x} is a tag from the set $L\left(P_{i}\right)$ for some i.

Assume that $e \leq i$ and $x \leq i-e$. Recall that the strategy P_{i} becomes active only after the computations (\star) are finished. Since $l^{x} \in L\left(P_{i}\right)$, there exists the least length $l \in L\left(P_{i}\right)$ such that for some $x^{\prime} \leq i-e$, the c_{e}-cycle of $r_{e}\left(x^{\prime}\right)$ has length l. This length l belongs to the set of forbidden tags F for the strategy P_{i}. Thus, \mathcal{T} does not have cycles of size l, but \mathcal{C}_{e} contains a cycle of size l. Hence, $\mathcal{C}_{e} \neq \mathcal{T}$, and we obtained a contradiction.

Therefore, we have $i<e+x$. This implies that the island tag l^{x} can be found by evaluating the elements

$$
r_{e}(x), c_{e}\left(r_{e}(x)\right), c_{e}^{2}\left(r_{e}(x)\right), \ldots, c_{e}^{\max L\left(P_{e+x}\right)}\left(r_{e}(x)\right)
$$

where the function $k \mapsto \max L\left(P_{k}\right)$ is primitive recursive. Hence, the function $x \mapsto l^{x}$ is also primitive recursive.

Now we describe how to compute the image $\theta(q)$ of a root q from \mathcal{C}_{e}. First, find the corresponding island tag l^{q} and the index i_{q} such that $l^{q} \in L\left(P_{i_{q}}\right)$. Suppose that t^{*} is the number of steps needed to see that q belongs to a c_{e}-cycle of size l^{q} inside \mathcal{C}_{e}. Without loss of generality, one may assume that $t^{*}>e+q>i_{q}$. We argue that the element $\theta(q)$ must already belong to $\mathcal{T}\left[t^{*}\right]$.

Towards contradiction, assume that $\theta(q) \notin \mathcal{T}\left[t^{*}\right]$. Consider Phase 0.2 of the stage t^{*}. Since $\theta(q) \notin \mathcal{T}\left[t^{*}\right]$, at the beginning of this phase, the strategy $P_{i_{q}}$ must be in state S2: indeed, this is ensured by the description of Phase 0.

If $e>i_{q}$, then without loss of generality, one may assume that t^{*} is strictly greater than the number of steps needed to compute, using the procedure (\star), the set of forbidden tags F for the strategy $P_{i_{q}}$. Indeed, this assumption can be achieved by "slowing down" discussed at the beginning of verification: one starts considering the structure \mathcal{C}_{e} only after each strategy $P_{i}, i<e$, already chose its island tag. Hence, in this case, $\theta(q)$ already belongs to $\mathcal{T}\left[t^{*}\right]$.

Thus, here we need to consider only the case when $e \leq i_{q}$. Recall that at the beginning of Phase 0.2 of t^{*}, the strategy $P_{i_{q}}$ was in state S2. This implies that the computations (\star) for $P_{i_{q}}$ require at least $\left(t^{*}+1\right)$ steps to finish. Let denote this particular number of steps by $\left(t^{\prime}+1\right)$. At the stage t^{\prime} of the construction, the strategy $P_{i_{q}}$ finishes its computations (\star). Before $P_{i_{q}}$ defines its island tag, it makes additional tag-prohibition routine: Since $t^{\prime} \geq t^{*}>q$, in t^{\prime} steps of computation, one can witness that the element $r_{e}(q)$ already has a c_{e}-cycle of size l^{q}. This ensures that R_{e} forbids $P_{i_{q}}$ to use some island tag $l^{\prime} \in L\left(P_{i_{q}}\right)$, and hence, \mathcal{C}_{e} cannot be isomorphic to \mathcal{T} - a contradiction.

Therefore, $\theta(q)$ belongs to $\mathcal{T}\left[t^{*}\right]$, and we can compute the image $\theta(q)$ by proceeding with t^{*} stages of our construction of \mathcal{T}. Hence, $\theta(q)$ is calculated in a primitive recursive way.

Finally, for an arbitrary natural number x, we show how to compute its image $\theta(x)$ in a primitive recursive way. First, we calculate the values $q:=r_{e}(x)$ and $l:=l^{q}$.

It is not hard to prove that the following two conditions are equivalent:

- x belongs to the c_{e}-cycle of its root $r_{e}(x)$;
- $p_{e}\left(s_{e}(x)\right)=r_{e}(x)$.

Hence, if $p_{e}\left(s_{e}(x)\right)=q$, then we can find the number $k \leq l$ with $x=c_{e}^{k}(q)$, and set $\theta(x):=c_{T}^{k}(\theta(q))$.

Suppose that $p_{e}\left(s_{e}(x)\right) \neq q$. Let (m, k) be the island coordinates of the element x. In order to compute $\theta(x)$, it is sufficient to describe a fast procedure for calculating the first island coordinate m : Indeed, if we know that $m=\langle i, j\rangle$ for some i and j, then the size of the c_{e}-cycle of x is equal to either $3 i+1$ or $3 i+2$. Hence, we deduce that $k \leq 3 i+2$, and after finding $\theta(q)$, one can determine the image $\theta(x)$ in a straightforward way.

Recall that for a fixed e, the function $u_{q, l, e}(z)$ is primitive recursive. We show that $u_{q, l, e}(z)$ stops successfully for all z. Assume that there is the least z such that $u_{q, l, e}(z)$ stops unsuccessfully. Then for all elements from \mathcal{T} with island coordinates
$\langle e, j\rangle$, where $j>u_{q, l, e}(z-1)$, the R_{e}-strategy will iterate the pattern

$$
[3 e+1, \underbrace{3 e+2,3 e+2, \ldots, 3 e+2}_{z \text { times }}] .
$$

This implies that z is the maximal possible number such that there are z many consecutive j-s such that $s_{e}^{\langle e, j\rangle}(q)$ has a c_{e}-cycle of size $3 e+2$.

The procedure $u_{q, l, e}(z)$ can stop unsuccessfully because of two reasons:
(1) either y_{0} is not found, or
(2) each of the elements $y_{1}, y_{2}, \ldots, y_{z+1}$ belongs to a c_{e}-cycle of size $3 e+2$.

Each of these cases contradicts the condition $\mathcal{C}_{e} \cong \mathcal{T}$. Therefore, $u_{q, l, e}(z)$ must stop successfully for all z.

We claim that the first island coordinate m of the element x is at most

$$
u_{q, l, e}(x)+(3 x+2) \cdot 2^{e+1} .
$$

Here the additional summand $(3 x+2) \cdot 2^{e+1}$ appears because of the following (a little bit informal) considerations:

- In the procedure of calculating $u_{q, l, e}(x)$, one has to apply p_{e} at most $(2 x+$ 1) $\cdot 2^{e+1}$ times before finding y_{0}.
- Recall that $y_{1}=p_{e}^{2^{e+1}}\left(y_{0}\right), y_{2}=p_{e}^{2^{e+1}}\left(y_{1}\right), \ldots, y_{x+1}=p_{e}^{2^{e+1}}\left(y_{x}\right)$. Each of these equalities provides precisely 2^{e+1} applications of the function p_{e}.
Towards contradiction, assume that $m>u_{q, l, e}(x)+(3 x+2) \cdot 2^{e+1}$. Since $u_{q, l, e}(x)$ stops successfully, the procedure $u_{q, l, e}(x)$ will find a sequence

$$
y_{z+1}=s_{e}^{\langle e, j\rangle}(q), y_{z}=s_{e}^{\langle e, j+1\rangle}(q), y_{z-1}=s_{e}^{\langle e, j+2\rangle}(q), \ldots, y_{0}=s_{e}^{\langle e, j+z+1\rangle}(q)
$$

which satisfies the following conditions:

- $z \leq x$;
- each of y_{0} and y_{z+1} belong to a c_{e}-cycle of size $3 e+1$;
- each $y_{u}, 1 \leq u \leq z$, has a c_{e}-cycle of size $3 e+2$; and
- the number $\langle e, j\rangle$, i.e. the first island coordinate of y_{z+1}, is strictly greater than $u_{q, l, e}(x)$.
This contradicts the following: after $u_{q, l, e}(x)$, our construction propagates only patterns

$$
[3 e+1, \underbrace{3 e+2,3 e+2, \ldots, 3 e+2}_{v \text { times }}]
$$

where $v \geq x+1$. Hence, $m \leq u_{q, l, e}(x)+(3 x+2) \cdot 2^{e+1}$, and the island coordinates of x can be computed in a primitive recursive way. Lemma 3.4 is proved.

Theorem 1.4 is proved.

4. Proof of Theorem 1.7

Proof idea. To understand and appreciate this proof idea the reader must first familiarise themselves with the proof of the previous theorem. This time, the structure will consist of two ω-chains, one generated by a function s and the other one by \widehat{s}. The chain generated by s will be similar to the one used in the previous theorem but without the extra"island tags". It will be playing the role of the coordinate axis in the structure, with patterns of cycles playing the role of the coordinates. It will be also used to press only the honestly generated punctual copies of the structure rather than all of its punctual copies.

The other ω-chain which is generated by \widehat{s} will have no loops attached to it. We will also have another unary function f mapping points of the s-chain to points of the \widehat{s}-chain. See Fig. 2 below.

Figure 2. The structure \mathcal{A} from Theorem 1.7

Since f^{-1} does not have to be primitive recursive, we can use the \widehat{s}-chain to diagonalise against isomorphisms to other punctual copies. However, in an honestly generated copy f^{-1} is primitive recursive, and therefore we are able to quickly find its s-chain coordinate. This feature will also allow us to press the honestly generated structures using the s-chain.

Proof. The language of our structure \mathcal{A} consists of the following symbols:

- two constants o and \widehat{o}, and
- unary functions $s, c, \widehat{s}, \widehat{r}$, and f.

The (isomorphism type of the) structure \mathcal{A} satisfies the following:
(a) The domain of \mathcal{A} consists of two infinite disjoint parts D and \widehat{D}. We put $o \in D$ and $\widehat{o} \in \widehat{D}$. For any $x \in D$, we have $\widehat{r}(x)=o$. For $y \in \widehat{D}$, set $\widehat{r}(y)=\widehat{o}$. Note that, in particular, we will be able to promptly compute whether a given z belongs to D or \widehat{D}.
(b) If $x \in D$, then we define $\widehat{s}(x)=x$. If $y \in \widehat{D}$, then set $s(y)=c(y)=y$ and $f(y)=o$.
(c) The set \widehat{D} forms an ω-chain relative to the function \widehat{s} : more formally,

$$
\widehat{D}=\left\{\widehat{s}^{n}(\widehat{o}): n \in \omega\right\}
$$

and $\widehat{s} \upharpoonright \widehat{D}$ is injective.
(d) The substructure $(D ; s, c)$ satisfies the same properties as the structure $\tilde{\mathcal{A}}:=$ $(\operatorname{dom}(\mathcal{A}) ; s, c)$ from the proof of Theorem 1.4. Informally speaking, $(D ; s, c)$ is a version of the structure from Theorem 1.4, but with the predecessor and the root functions omitted.
(e) If $x=s^{n}(o)$ for some n, then $f(x) \in \widehat{D}$. Furthermore, if $m \neq n$, then $f\left(s^{n}(o)\right) \neq f\left(s^{m}(o)\right)$. We assume that $f(o)=\widehat{o}$.
(f) If $x \in D$ and $x \neq s^{n}(o)$ for all n, then $f(x)=o$. We emphasize that $\operatorname{range}(f) \subseteq \widehat{D} \cup\{o\}$.

It is not difficult to show that these properties ensure that the structure \mathcal{A} is rigid and 1-generated (see Figure 22. As in Theorem 1.4 by \mathcal{B} we denote the canonical presentation of \mathcal{A}.

Consider a language L_{g}, which is obtained from the language of the structure \mathcal{A} by adding a new unary function g. The intuition behind g is the following: We want to treat g as the "inverse" of the function f. More formally, we define a structure \mathcal{A}_{g} in the language L_{g} as follows:
(1) the $L(\mathcal{A})$-reduct of \mathcal{A}_{g} is equal to \mathcal{A}, and
(2) we set

$$
g(x)= \begin{cases}s^{n}(o), & \text { if } x \in \widehat{D} \text { and } x=f\left(s^{n}(o)\right) \\ \widehat{o}, & \text { otherwise }\end{cases}
$$

Note that the properties of \mathcal{A} imply that the function g is well-defined (indeed, there is at most one number n with $\left.f\left(s^{n}(o)\right)=x\right)$. If \mathcal{U} is a copy of \mathcal{A}, then the structure \mathcal{U}_{g} (in the language L_{g}) is defined in a natural way.
Remark 4.1. If \mathcal{U} is an honestly generated copy of \mathcal{A}, then the structure \mathcal{U}_{g} is fpr.
As in Theorem 1.4, fix a uniformly computable list of all primitive recursive unary functions $\left\{h_{e}\right\}_{e \in \omega}$. Also choose a uniformly computable list of all fpr structures in the language L_{g} :

$$
\mathcal{C}_{n}=\left(\omega ; o_{n}, \widehat{o}_{n}, s_{n}, c_{n}, \widehat{s}_{n}, \widehat{r}_{n}, f_{n}, g_{n}\right), n \in \omega
$$

We will build an fpr copy \mathcal{T} of \mathcal{B}, and satisfy the following series of requirements:
$P_{e}: h_{e}$ is not an isomorphism from \mathcal{T} onto \mathcal{B}.
$Q_{n}:$ If $\mathcal{C}_{n} \cong \mathcal{B}_{g}$, then there is a primitive recursive isomorphism from \mathcal{C}_{n} onto \mathcal{B}_{g}.
Furthermore, the construction will ensure that the structure \mathcal{B} is honestly generated (see the verification). This fact and the requirements above are enough to prove the theorem:
(1) The P_{e}-requirements guarantee that $|\mathbf{P R}(\mathcal{A})|>1$.
(2) If \mathcal{U} is an honestly generated copy of \mathcal{A}, then there is an index n such that $\mathcal{C}_{n}=\mathcal{U}_{g}$. The Q_{n}-requirement implies that the unique isomorphism F from \mathcal{U} onto \mathcal{B} is primitive recursive. Since \mathcal{B} is the canonical copy of \mathcal{A}, the (unique) isomorphism $\theta=F^{-1}$ from \mathcal{B} onto \mathcal{U} is also primitive recursive.

An overview. As in Theorem 1.4 at a stage s, the finite structure $\mathcal{T}[s]$ will have a part that copies \mathcal{B} and an island part $I[s]$. The island part contains no elements from D, i.e. for every $x \in I[s]$, we have $\widehat{r}_{T}(x)=\widehat{o}$.

Since we do not use the predecessor and the root functions as before (see Theorem 1.4), the machinery of island tags is completely omitted. Every strategy P_{e} can be in one of the following states:
(S1) unstarted;
(S2) active;
(S3) finished.
While P_{e} is active, it is building its own P_{e}-island. This island is just a finite piece of a \mathbb{Z}-chain, with respect to the function \widehat{s}_{T}. Since \mathcal{T} does not have to be honestly generated, we heavily exploit this fact, and we delay connecting the P_{e}-island I to the non-island part of $\mathcal{T}[s]$: in particular, this includes not putting elements from
I into $\operatorname{range}\left(f_{T}\right)[s]$. Only when P_{e} is finished, we will put the elements of I into range $\left(f_{T}\right)$.

In order to ensure that \mathcal{B} is honestly generated, we will guarantee that:
(a) If $\xi \in\{s, c, \widehat{s}\}$, then for any $x \in \omega$, the set $\xi_{B}^{-1}(x)$ is finite. Moreover, given x, one can promptly compute the Gödel index of the finite set $\xi_{B}^{-1}(x)$.
(b) The set $\operatorname{range}\left(f_{B}\right)$ is equal to $\widehat{D}(\mathcal{B}) \cup\left\{o_{B}\right\}$, and given $y \in \widehat{D}(\mathcal{B})$, we can quickly find the unique x such that $f_{B}(x)=y$.

The item (b) above can be obtained via a careful working with the function f_{B} : At the end of each stage s, we find all $y \in \widehat{D}(\mathcal{B})[s]$ such that $y \notin \operatorname{range}\left(f_{B}\right)[s]$. For each such y, we attach a fresh c_{B}-cycle C_{y} to \mathcal{B}. Suppose that $x=s_{B}^{n}(o)$ lies in C_{y}. Then we set $f_{B}(x):=y$, and all for other elements x^{\prime} of the cycle we set $f_{B}\left(x^{\prime}\right)=o$. After that, we extend the non-island part of \mathcal{T} to match the current \mathcal{B}, with the corresponding extension to the definition of f_{T}. The described action ensures that every $y \in \widehat{D}$ belongs to range (f).

The strategy P_{e} in isolation. Pick the least unused element w_{e} and put it into $\widehat{D}(\mathcal{T})$. Declare w_{e} the P_{e}-witness. While the value $h_{e}\left(w_{e}\right)[t]$ is either undefined or does not belong to $\mathcal{B}[t]$, proceed with constructing the P_{e}-island inside \mathcal{T} as follows.

Recall that the function $\widehat{s} \upharpoonright \widehat{D}$ is injective, hence, for a number $z \in \widehat{D}-\{\widehat{o}\}$, one can consider its unique preimage $\widehat{s}^{-1}(z)$. Assume that at a stage t, the elements $\widehat{s}^{k}\left(w_{e}\right)$ and $\widehat{s}^{-k}\left(w_{e}\right)$ are the latest values that have been already defined. Then we pick next elements y and z from the domain of \mathcal{T}, and set $\widehat{s}^{k+1}\left(w_{e}\right):=y$ and $\widehat{s}^{-k-1}\left(w_{e}\right):=z$. The other functions (from the language of \mathcal{T}) are defined in an appropriate way: e.g., $\widehat{s}(z)=\widehat{s}^{-k}\left(w_{e}\right), s(z)=c(z)=z, \widehat{r}(z)=\widehat{o}$, and $f(z)=o$. While the P_{e}-island is growing, we do not put w_{e} into $\operatorname{range}\left(f_{T}\right)$.

We emphasize the following feature of the construction: The elements

$$
s^{2}(o), s^{4}(o), s^{6}(o), \ldots, s^{2 k}(o), \ldots
$$

will be used to satisfy the strategies $P_{i}, i \in \omega$, - for each of these elements, its c_{T}-cycle will have an even length. Odd lengths of c-cycles will be used to satisfy $Q_{j}, j \in \omega$.

Suppose that t_{0} is the first stage such that $h_{e}\left(w_{e}\right)\left[t_{0}\right] \downarrow \in \mathcal{B}\left[t_{0}\right]$. Then find the least even length $l_{e}>0$ such that we have never used c-cycles of size l_{e} before. We attach the P_{e}-island to the main part of $\mathcal{T}\left[t_{0}\right]$ and extend \mathcal{B} to an isomorphic copy of \mathcal{T}. More formally, proceed as follows:
(1) Let k be the least number such that $\widehat{s}_{T}^{k}(\widehat{o})$ is still undefined. Find the greatest number m such that $\widehat{s}_{T}^{-m}\left(w_{e}\right)$ is already defined. Set $\widehat{s}_{T}^{k}(\widehat{o}):=$ $\widehat{s}_{T}^{m}\left(w_{e}\right)$.
(2) Let n be the least number such that $s_{T}^{n}(o)$ is undefined. Without loss of generality, we may assume that n is even and $n \neq 0$. Then we form a fresh c_{T}-cycle C of size l_{e} inside \mathcal{T}, in such a way that $s_{T}^{n}(o) \in C$. We define $f_{T}\left(s_{T}^{n}(o)\right):=w_{e}$.
(3) Grow the main part of \mathcal{B} by attaching copies of the P_{e}-island and C, in a natural way.

After that, the requirement P_{e} is declared satisfied: Indeed, either the element $h_{e}\left(w_{e}\right)$ does not belong to range $\left(f_{B}\right)$, or the preimage $f_{B}^{-1}\left(h_{e}\left(w_{e}\right)\right)$ lies in a $c_{B^{-}}$ cycle of length $l^{\prime} \neq l_{e}$ (recall that the length l_{e}, which we used inside \mathcal{T}, was chosen fresh). Therefore, h_{e} cannot be an isomorphism from \mathcal{T} onto \mathcal{B}.

The strategy Q_{e} in isolation. This is similar to Theorem 1.4 but presses only honestly generated structures.

Again, the idea behind building a (potential) isomorphism $F: \mathcal{C}_{e} \rightarrow \cong \mathcal{B}_{g}$ is pattern-switching. We use the patterns

$$
[4 e+1, \underbrace{4 e+3,4 e+3, \ldots, 4 e+3}_{k \text { times }}],
$$

where $k \in \omega$ (recall that c-cycles of even length are already reserved for satisfying the strategies P_{i}). Before the value $F(0)$ is computed, we propagate the simplest pattern $[4 e+1]$.

Consider the element 0 from \mathcal{C}_{e}. Calculate the value $\widehat{r}_{e}(0)$. If $\widehat{r}_{e}(0) \notin\left\{o_{e}, \widehat{o}_{e}\right\}$, then trivially \mathcal{C}_{e} cannot be a copy of \mathcal{B}_{g}. Therefore, without loss of generality, we may assume that $\widehat{r}_{e}(0) \in\left\{o_{e}, \widehat{o}_{e}\right\}$, and one can quickly determine whether 0 belongs to $D\left(\mathcal{C}_{e}\right)$ or to $\widehat{D}\left(\mathcal{C}_{e}\right)$.

We want to quickly compute the value $F(0)$. Note that one can promptly find a new value $x^{\#}$, which is defined as follows:
(1) If $0 \in D\left(\mathcal{C}_{e}\right)$, then set $x^{\#}:=0$.
(2) If $0 \in \widehat{D}\left(\mathcal{C}_{e}\right)$, then define $x^{\#}:=g_{e}(0)$. In this case, if $\mathcal{C}_{e} \cong \mathcal{B}_{g}$, then 0 should belong to range $\left(f_{e}\right)$ (see the discussion at the end of the overview), and $f_{e}\left(x^{\#}\right)$ must be equal to 0 .
The element $x^{\#}$ always belongs to $D\left(\mathcal{C}_{e}\right)$ (if it is not the case, then $\mathcal{C}_{e} \not \approx \mathcal{B}_{g}$). Furthermore, it is not hard to show the following: if one can promptly find the value $F\left(x^{\#}\right)$, then it is also possible to quickly compute the desired $F(0)$. Therefore, for the sake of simplicity, we will assume that $x^{\#}=0 \in D\left(\mathcal{C}_{e}\right)$.

Apply s_{e} to 0 at most 2^{e+2} times to find an element y_{0} belonging to a c_{e}-cycle of size $4 e+1$. If one compares this action with the corresponding action of the strategy R_{e} in Theorem 1.4, one can immediately see some subtle differences:

- The strategy R_{e} applied the predecessor function p_{e}, while here the successor function s_{e} is used. Informally speaking, the reason behind this is as follows: Here we do not use the island tags "glued" to the roots, so we do not care much about the distance from x to its root. Hence, in order to "catch" the (currently propagating) pattern, it is sufficient just to go forward, along s_{e}.
- R_{e} applied p_{e} at most 2^{e+1} times, but here we use the number 2^{e+2} instead. The reason behind this is pretty simple: recall that all even coordinates are already reserved by $P_{i}, i \in \omega$, for their own needs.
When y_{0} is found, compute $y_{1}:=s_{e}^{2^{e+2}}\left(y_{0}\right)$. Check whether y_{1} belongs to a c_{e}-cycle of size $4 e+1$.

Suppose that the described procedure takes u_{0} steps to finish. The procedure finishes successfully if we found both numbers y_{0} and y_{1}, and each of them is a part of a c_{e}-cycle of size $4 e+1$. Otherwise, the procedure finishes unsuccessfully. In case of unsuccessful finish, it is clear that $\mathcal{C}_{e} \not \neq \mathcal{B}_{g}$, and one just continues iterating the pattern $[4 e+1]$ forever.

While we are waiting for the number u_{0} to be calculated, (as per usual) we do not delay the construction of \mathcal{B} and \mathcal{T} :

- One by one, we add new c_{B}-cycles C into \mathcal{B}. Let n be the (unique) number such that the element $s_{B}^{n}(o)$ is a part of C. The length l of this C is defined as follows:
- If n is even (or in other words, $n=\langle 0, m\rangle$ for some m), then $l:=2$.
- If $n=\langle e+1, m\rangle$ for some m, then $l:=4 e+1$.

Informally speaking, we iterate the pattern $[4 e+1]$ in appropriate coding places. In general, if $n=\langle j+1, m\rangle$, then the corresponding length l will be dictated by the current behavior of the strategy Q_{j}.

- For each cycle C from above, we put a fresh element z_{C} inside (the growing ω-chain) $\widehat{D}(\mathcal{B})$ and set $f_{B}\left(s_{B}^{n}(o)\right):=z_{C}$.
- We extend the non-island part of \mathcal{T} to an isomorphic copy of the current \mathcal{B}.

If the u_{0}-procedure finishes successfully, say, at stage t, then we immediately switch to iterating the pattern $[4 e+1,4 e+3]$. This ensures that \mathcal{B} will not get fresh adjacent c-cycles of size $4 e+1$. Thus, given the value u_{0}, one can quickly compute $F(0)$: Indeed, the argument similar to that of the strategy R_{e} (in Theorem 1.4) shows that $F(0)$ can be found by promptly searching inside the finite structure $\mathcal{B}\left[u_{0}\right]$.

After $F(0)$ has been computed, we want to find $F(1)$. Again, for simplicity, we deal with the case $1 \in D\left(\mathcal{C}_{e}\right)$. Apply s_{e} to 1 at most $3 \cdot 2^{e+2}$ times to find an element y_{0} belonging to a c_{e}-cycle of size $4 e+1$. When y_{0} is found, compute $y_{1}=s_{e}^{2^{e+2}}\left(y_{0}\right)$ and $y_{2}=s^{2^{e+2}}\left(y_{1}\right)$. Check whether at least one of y_{1} or y_{2} belongs to a c_{e}-cycle of size $4 e+1$. If it is the case, then the procedure is finished successfully. The number u_{1} is defined as the number of steps needed to finish this procedure (either successfully or unsuccessfully).

While waiting for the u_{1}-procedure to finish, grow \mathcal{B} and \mathcal{T} as above, modulo the following modification: We alternate between c_{B}-cycles of size $4 e+1$ and $4 e+3$ for elements $s_{B}^{\langle e+1, m\rangle}(o)$:

$$
4 e+1,4 e+3,4 e+1,4 e+3, \ldots
$$

In other words, the pattern $[4 e+1,4 e+3]$ is being propagated.
Again, if the u_{1}-procedure finishes unsuccessully, then we continue putting the pattern $[4 e+1,4 e+3]$, and \mathcal{C}_{e} is not a copy of our structure. If u_{1} is finished successfully, then we switch to the pattern $[4 e+1,4 e+3,4 e+3]$. The value $F(1)$ can be promptly recovered via considering $\mathcal{B}\left[u_{1}\right]$. After $F(1)$ is found, we start computing $F(2)$.

We describe the general procedure of computing $F(x)$. Consider $x>1$. Apply s_{e} to x at most $(2 x+1) \cdot 2^{e+2}$ times to find y_{0} which belongs to a c_{e}-cycle of size $4 e+1$. When y_{0} is found, compute $y_{i+1}=s_{e}^{2^{e+2}}\left(y_{i}\right)$, for $0 \leq i \leq x$. Check whether one of the elements $y_{1}, y_{2}, \ldots, y_{x+1}$ belongs to a c_{e}-cycle of size $4 e+1$. If it is the case, then we say that the u_{x}-procedure finishes successfully.

Let u_{x} be the number of steps needed to finish the procedure. While u_{x} is being computed, we propagate the pattern

$$
[4 e+1, \underbrace{4 e+3, \ldots, 4 e+3}_{x \text { times }}]
$$

in appropriate coding places. If the u_{x}-procedure finishes unsuccessfully, then we continue iterating this pattern forever. If u_{x} is computed successfully, then we switch to the next pattern

$$
[4 e+1, \underbrace{4 e+3, \ldots, 4 e+3}_{x+1 \text { times }}] .
$$

Given u_{x}, one can recover $F(x)$ in a punctual way.
Summarizing, the calculations of $u_{x}, x \in \omega$, will allow us to quickly compute the isomorphism $F: \mathcal{C}_{e} \rightarrow \cong \mathcal{B}_{g}$.

Construction. Similar to Theorem 1.4, but instead of pressing more punctual structures at later stages we press more honestly generated structures. The actions of the diagonalisation P-requirements are finitary.

Verification. It should be clear from the description of P_{e} that the diagonalisation is always successful. The verification of the Q-strategies is similar to Theorem 1.4 In fact, we do not really need the full power of being honestly generated here. All we need is having g (which plays the role of f^{-1}) primitive recursive in the opponent's structure. Using g we can punctually compute the coordinates of any point in the \widehat{s}-chain of the opponent's structure and then promptly match it with the respective point in our structure. Otherwise, the verification of the Q-strategies is the same as the verification of Theorem 1.4

References

[AK00] C. Ash and J. Knight. Computable structures and the hyperarithmetical hierarchy, volume 144 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 2000.
[AKNS] M. Aschenbrenner, A. Khélif, E. Naziazeno, and T. Scanlon. The logical complexity of finitely generated commutative rings. Int. Math. Res. Not. doi: 10.1093/imrn/rny023.
[Ala17] P. E. Alaev. Structures computable in polynomial time. I. Algebra Logic, 55(6):421435, 2017.
[Ala18a] P. E. Alaev. Categoricity for primitive recursive and polynomial Boolean algebras. Algebra Logic, 57(4):251-274, 2018.
[Ala18b] P. E. Alaev. Structures computable in polynomial time. II. Algebra Logic, 56(6):429442, 2018.
[AT51] E. Artin and J. Tate. A note on finite ring extensions. J. Math. Soc. Japan, 3:74-77, 1951.
[BDKM19] N. Bazhenov, R. Downey, I. Kalimullin, and A. Melnikov. Foundations of online structure theory. Bull. Symb. Log., 25(2):141-181, 2019.
[BG00] Achim Blumensath and Erich Grädel. Automatic structures. In 15th Annual IEEE Symposium on Logic in Computer Science (Santa Barbara, CA, 2000), pages 51-62. IEEE Comput. Soc. Press, Los Alamitos, CA, 2000.
$\left[\mathrm{BHTK}^{+}\right]$Nikolay Bazhenov, Matthew Harrison-Trainor, Iskander Kalimullin, Alexander Melnikov, and Keng Meng Ng. Automatic and polynomial-time algebraic structures. J. Symb. Log. to appear.
[Bli19] K. V. Blinov. Primitively recursively categorical linear orderings. Sib. Math. J., 60(1):20-26, 2019.
[CR91] Douglas A. Cenzer and Jeffrey B. Remmel. Polynomial-time versus recursive models. Ann. Pure Appl. Logic, 54(1):17-58, 1991.
[CR98] D. Cenzer and J. B. Remmel. Complexity theoretic model theory and algebra. In Yu. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel, editors, Handbook of recursive mathematics, Vol. 1, volume 138 of Stud. Logic Found. Math., pages 381-513. North-Holland, Amsterdam, 1998.
$\left[\mathrm{DHTK}^{+}\right]$R. Downey, M. Harrison-Trainor, I. Kalimullin, A. Melnikov, and D. Turetsky. Graphs are not universal for online computablility. Preprint.
[EG00] Y. Ershov and S. Goncharov. Constructive models. Siberian School of Algebra and Logic. Consultants Bureau, New York, 2000.
[Ers12] M. Ershov. Golod-Shafarevich groups: A survey. Int. J. Algebra Comput., 22(5):1230001, 2012.
[Gol64] E. S. Golod. On nil-algebras and finitely approximable p-groups. Izv. Akad. Nauk SSSR Ser. Mat., 28(2):273-276, 1964.
[Gon81] S. Goncharov. Groups with a finite number of constructivizations. Dokl. Akad. Nauk SSSR, 256(2):269-272, 1981.
[Gro81] M. Gromov. Groups of polynomial growth and expanding maps. Publications Mathématiques de L’Institut des Hautes Études Scientifiques, 53(1):53-78, 1981.
[Hig61] G. Higman. Subgroups of finitely presented groups. Proc. Roy. Soc. Ser. A, 262:455475, 1961.
[Khi98] N. Khisamiev. Constructive abelian groups. In Handbook of recursive mathematics, Vol. 2, volume 139 of Stud. Logic Found. Math., pages 1177-1231. North-Holland, Amsterdam, 1998.
[Kie81] H. A. Kierstead. An effective version of Dilworth's theorem. Trans. Am. Math. Soc., 268:63-77, 1981.
[Kie98] H. A. Kierstead. On line coloring k-colorable graphs. Israel J. Math., 105(1):93-104, 1998.
[KM10] Bakhadyr Khoussainov and Mia Minnes. Three lectures on automatic structures. In Logic Colloquium 2007, volume 35 of Lect. Notes Log., pages 132-176. Assoc. Symbol. Logic, La Jolla, CA, 2010.
[KMN17a] I. Sh. Kalimullin, A. G. Melnikov, and K. M. Ng. The diversity of categoricity without delay. Algebra Logic, 56(2):171-177, 2017.
[KMN17b] Iskander Kalimullin, Alexander Melnikov, and Keng Meng Ng. Algebraic structures computable without delay. Theoret. Comput. Sci., 674:73-98, 2017.
[KMZ] I. Kalimullin, A. Melnikov, and M Zubkov. Punctual degrees and lattice embeddings. Submitted.
[KN95] Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures. In Logic and Computational Complexity (Indianapolis, IN, 1994), volume 960 of Lecture Notes in Comput. Sci., pages 367-392. Springer, Berlin, 1995.
[KN08] Bakhadyr Khoussainov and Anil Nerode. Open questions in the theory of automatic structures. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, (94):181-204, 2008.
[KPT94] H. A. Kierstead, S. G. Penrice, and W. T. Trotter Jr. On-line coloring and recursive graph theory. SIAM J. Discrete Math., 7:72-89, 1994.
[Lew67] J. Lewin. Subrings of finite index in finitely generated rings. J. Algebra, 5(1):84-88, 1967.
[LS01] Roger C. Lyndon and Paul E. Schupp. Combinatorial group theory. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition.
[LST89] L. Lovász, M. Saks, and W. T. Trotter Jr. An on-line graph coloring algorithm with sublinear performance ratio. Discrete Math., 75:319-325, 1989.
[Mel17] Alexander G. Melnikov. Eliminating unbounded search in computable algebra. In Unveiling dynamics and complexity, volume 10307 of Lecture Notes in Comput. Sci., pages 77-87. Springer, Cham, 2017.
[MN] A. G. Melnikov and K. M. Ng. The back-and-forth method and computability without delay. Israel J.Math, to appear.
[NA68] P. S. Novikov and S. I. Adjan. Infinite periodic groups. I. Math. USSR Izv., 2(1):209236, 1968.
[Nos83] G. A. Noskov. Elementary theory of a finitely generated commutative ring. Math. Notes, 33(1):12-15, 1983.
[Rab60] M. Rabin. Computable algebra, general theory and theory of computable fields. Trans. Amer. Math. Soc., 95:341-360, 1960.
[Rem86] J. B. Remmel. Graph colorings and recursively bounded Π_{1}^{0}-classes. Ann. Pure Appl. Logic, 32:185-194, 1986.
[Rog87] H. Rogers. Theory of recursive functions and effective computability. MIT Press, Cambridge, MA, second edition, 1987.

Sobolev Institute of Mathematics
Email address: bazhenov@math.nsc.ru
Kazan Federal University
Email address: ikalimul@gmail.com
Massey University \& Kazan Federal University
Email address: alexander.g.melnikov@gmail.com
Nanyang Technological University
Email address: selwyn.km.ng@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 03D45, 03C57. Secondary 03D75, 03D80.
 The work of the first two authors was supported by RSF grant no. 18-11-00028. Also the second author was funded by Russian government as a federal professor in mathematics. The third author was partially supported by Marsden Fund of New Zealand. The last author is partially supported by the grant MOE2015-T2-2-055.

[^1]: ${ }^{1}$ It is also natural to ask why we did not choose the domain to be an arbitrary primitive recursive subset of \mathbb{N}. In the primitive recursive world this will give a provably non-equivalent notion of a primitive recursive structure CR98, CR91. The reason is that we can delay elements from appearing in the domain of such a structure; see KMN17b for examples that include undirected graphs. As has been observed by Alaev, if a primitive recursive structure is not locally finite or is punctually 1-decidable, then it can be primitively recursively isomorphically mapped onto its fully primitive recursive presentation (Ala18a]). For instance, all structures considered in this paper are not locally finite, and therefore having the domain equal to \mathbb{N} is a mere convenience for the most part. We strongly conjecture that all our results in the present paper hold for primitive recursive structures as well.

