
ONLINE PRESENTATIONS OF FINITELY GENERATED

STRUCTURES

NIKOLAY BAZHENOV, ISKANDER KALIMULLIN, ALEXANDER MELNIKOV,
AND KENG MENG NG

Abstract. We systematically investigate into the online content of finitely
generated structures. The online content of a potentially infinite algebraic

or combinatorial structure is perhaps best reflected by its PR-degrees (to be

defined). We confirm a natural conjecture by showing that the PR-degrees
of a finitely generated structure must be dense. Remarkably, we show that

PR-degrees of an f.g. structure do not have to be upwards dense. As an

application of our techniques, we refute a natural conjecture about honestly
generated structures (to be stated).

Keywords: finitely generated structure; isomorphism; primitive recursive

function.

1. Introduction and results

Modern online algorithms are typically dealing with massive, constantly changing
and rapidly expanding databases, such as the World Wide Web. It is thus often nat-
ural to consider online computations with potentially infinite input. Beginning in
the 1980’s there has been quite a lot of work on online infinite combinatorics [Kie81,
Kie98, KPT94, LST89, Rem86] and, rather independently, polynomial time and au-
tomatic infinite algebraic structures [KN95, BG00, KM10, CR91, CR98]. Nonethe-
less, until the recent work of Kalimullin, Melnikov and Ng [KMN17b] there had been
no systematic theoretical framework that would unite these two fairly independent
subjects. The present article contributes to this recently suggested framework which
aims to develop a general theory of online computation on potentially infinite data.

Of course, one naturally seeks to understand the truly efficient online algo-
rithms. Kalimullin, Melnikov and Ng [KMN17b] observed that making an algo-
rithm merely primitive recursive is often sufficient to obtain a polynomial-time
one, or even a finite automatic one [BHTK+]. Removing unbounded search seems
to be a crucial step whenever we try to transform a Turing computable procedure
into a polynomial-time one. When we look at general primitive recursive algo-
rithms – rather than, e.g., polynomial time, automatic, or linear ones – we strip
away much of the irrelevant counting combinatorics. Thus, primitive recursion
serves as a useful abstraction. All that matters is that there is some precomputed
bound on every search and loop. The effects of this seemingly relaxed restric-
tion can be rather significant. This paper contributes to the general program that

2010 Mathematics Subject Classification. Primary 03D45, 03C57. Secondary 03D75, 03D80.
The work of the first two authors was supported by RSF grant no. 18-11-00028. Also the

second author was funded by Russian government as a federal professor in mathematics.The third
author was partially supported by Marsden Fund of New Zealand. The last author is partially
supported by the grant MOE2015-T2-2-055.

1

2 N. BAZHENOV, I. KALIMULLIN, A. MELNIKOV, AND K.M. NG

systematically investigates these effects in computable algebra and combinatorics;
see [KMN17b, Mel17, BDKM19, DHTK+, KMN17a, MN]. See survey [BDKM19]
for the foundations of the surprisingly rich emerging theory of primitive recursive
(“punctual”) structures, and see also Alaev [Ala17, Ala18b] for an alternative and
independent approach. We note that the theory of punctual structures has recently
found an unexpected application in the study of automatic structures; see [BHTK+]
for a solution of a long-standing open problem of Khoussainov and Nerode (e.g.,
Question 4.9 in [KN08]) on the classification of automata-presentable structures.

In this paper we concentrate on the natural case when the input is a finitely gen-
erated structure. For example, any term algebra over a finite alphabet is a finitely
generated structure. From the purely algebraic point of view, finitely generated
structures are often viewed as the structures which are understood best after the
finite ones. For instance, there is a large body of research focused on algorith-
mic and purely algebraic aspects of finitely generated groups [Hig61, Gol64, NA68,
Gro81, Ers12] and rings [AT51, Lew67, Nos83, AKNS]. One pleasant feature of such
structures is that decision procedures in them are intrinsic. For example, if G is a
finitely generated group and it has an algorithmically decidable word or conjugacy
problem, then every H ∼= G will also have the problem decidable. Indeed, fix some
generators ḡ of G and their isomorphic counterparts h̄ in H. Then every element of
G is a word in the alphabet of ḡ, and it can be naturally mapped to the respective
word in the alphabet of h̄. This observation is heavily exploited in combinatorial
group theory [Hig61, LS01].

Notice, however, that the observation above uses a rather general notion of an
algorithmically effective process, namely a Turing computable (or general recursive)
process. For suppose we are given some algorithmic description C of (Z,+), and
furthermore we know that c generates C. Our job is to associate every x ∈ C with
an integer. The naive algorithm would ask for a late enough stage at which we
see cm = x, and then we can define x → m. However, how long will we have
to wait? It is easy to diagonalise against all polynomial time, all exponential, or
even all hyper-exponential (etc.) algorithms. In other words, this procedure uses an
instance of a truly unbounded search; this is the same as to say that the algorithm is
not primitive recursive [Rog87]. It is therefore natural to ask what exactly happens
when we forbid unbounded search. What used to be trivial from the perspective of
general recursion theory now will have some non-trivial and often counterintuitive
subrecursive content. To state our results, we need formal definitions.

1.1. Punctual presentations and punctual degrees. Kalimullin, Melnikov,
and Ng [KMN17b] proposed that an online algebraic structure must (at least)
satisfy the following general definition.

Definition 1.1. A countable structure is fully primitive recursive if its domain
is either N or an initial segment of N, and the operations and predicates of the
structure are (uniformly) primitive recursive.

We informally call fully primitive recursive structures punctually computable or
simply punctual. Although the definition above is not restricted to finite languages,

ONLINE PRESENTATIONS OF FINITELY GENERATED STRUCTURES 3

we intend to keep our languages finite; in particular, will never encounter infinite
languages in the present article1.

Recall that the inverse of a primitive recursive function does not have to be
primitive recursive. Fix a punctual structure A. The collection of all punctual
presentations of A carries a natural reduction, as defined below.

Definition 1.2. Let A be a punctual structure. Then, for punctual C,B isomorphic
to A,

C ≤pr B if there exists a surjective primitive isomorphism f : C →onto B.

This leads to an equivalence relation ≡pr and the degree structure on the classes
which will be denoted PR(A).

What does PR(A) reflect? If C ≤pr B then, in a way, B has more subrecursive
content than C does, in the sense that B enumerates itself more “impatiently”. For
example, the standard copy of (Q, <) punctually embeds any other punctual copy
of the rationals; it has a prompt Skolem function, but some other copies may have
slow intervals. The dense linear order is a canonical example when a computable
back-and-forth method works, the other common (algebraically) homogeneous ex-
amples include the random graph and the Fräısse limit of finite abelian p-groups.
Remarkably, the PR-degrees of the dense linear order, the random graph, and the
universal abelian p-group are pairwise non-isomorphic; see [MN]. From the per-
spective of general Turing computability, the back-and-forth proofs of uniqueness
for these standard homogeneous structures are equally effective. A shallow analy-
sis suggests that all three back-and-forth procedures have exactly one potentially
unbounded delay. Nonetheless, using a highly sensitive primitive recursive invari-
ant – namely, the punctual degrees – we can detect the subtle differences in these
seemingly identical back-and-forth proofs.

In the case of finitely generated structures the situation is somewhat similar to
that for the rationals or the random graph. From the perspective of general Turing
computability, any two computable presentations of a finitely generated structure
are computably isomorphic. In other words, all finitely generated structures are
relatively computably categorical [EG00, AK00]. Computable structure theory is
usually concerned with structures which are not relatively computably categorical;
in particular, not finitely generated.

From the point of view of punctual structure theory, finitely generated structures
are no longer tame. But even we forbid unbounded search, the procedure of build-
ing an isomorphism on x seems to be exactly the same for all finitely generated
structures. Namely, we search for a term over the generators which is equal to a

1It is also natural to ask why we did not choose the domain to be an arbitrary primitive recursive

subset of N. In the primitive recursive world this will give a provably non-equivalent notion of

a primitive recursive structure [CR98, CR91]. The reason is that we can delay elements from
appearing in the domain of such a structure; see [KMN17b] for examples that include undirected

graphs. As has been observed by Alaev, if a primitive recursive structure is not locally finite or
is punctually 1-decidable, then it can be primitively recursively isomorphically mapped onto its

fully primitive recursive presentation ([Ala18a]). For instance, all structures considered in this

paper are not locally finite, and therefore having the domain equal to N is a mere convenience for
the most part. We strongly conjecture that all our results in the present paper hold for primitive

recursive structures as well.

4 N. BAZHENOV, I. KALIMULLIN, A. MELNIKOV, AND K.M. NG

given element x. Nonetheless, there exist finitely generated infinite A and B with
PR(A) 6∼= PR(B); see [KMN17b].

However, the property of being finitely generated seems to put a significant re-
striction on the punctual degrees of a structure. The underlying motivation here is
to find a nontrivial link between the purely algebraic property “A is finitely gener-
ated” and its algorithmic invariant PR(A). This subject naturally splits into two
main themes. In the first theme, one seeks to formulate a general enough property
of PR-degrees of A which is implied by A being finitely generated. The second
theme is concerned with finding finitely generated structures whose PR-degrees
have non-trivial and counterintuitive features, e.g., refuting natural conjectures.
While the two themes clearly complement each other both technically and method-
ologically, the second theme is of some special interest to a computable structure
theorist because finitely generated structures are often completely overlooked in
(Turing) computable structure theory.

The paper at hand contributes to both themes, but the most technically chal-
lenging Theorem 1.4 clearly belongs to the second theme. While we believe that
the “monstrous” counterexample from Theorem 1.4 is of significant independent
interest, the novel techniques developed to construct it have already found appli-
cations which contribute to the first “structural” theme. More specifically, in the
satellite paper [KMZ] Kalimullin, Melnikov and Zubkov have used similar strategies
and intuition to show that, for any finitely generated rigid A with |PR(A)| > 1,
a countable lattice L is embeddable into PR(A) iff L is distributive. Without a
doubt this is a structural result which is yet to be fully understood. We will discuss
one further recent application in due course. Now to the results.

1.2. Results. There are several basic properties of punctual degrees that are shared
among all finitely generated (f.g.) structures. Clearly, each such structure has the
least punctual degree which is the degree of the naturally generated copy of the
structure (i.e., every element at every stage is a term of generators). We will also
show that, for a f.g. A, |PR(A)| = 1 is equivalent to saying that every two punctual
copies of A are isomorphic via a primitive recursive f having primitive recursive
inverse; see Fact 2.1.

Harrison-Trainor, Melnikov and Turetsky have announced that there exists a
punctual structure B for which PR(B) is not dense. The first main result of the
paper says that in the case of finitely generated structures such pathological exam-
ples do not exist.

Theorem 1.3. Suppose a punctual A is finitely generated. Then PR(A) is dense.

Kalimullin, Melnikov, and Ng [KMN17b] constructed a finitely generated punc-
tual structure A with the property |PR(A)| = 1, and therefore the punctual degrees
of a finitely generated structure do not have to be upward dense. However, all nat-
ural examples of finitely generated structures seem to have the punctual degrees
upward dense whenever |PR(A)| > 1. Rather unexpectedly, this natural hypothesis
fails in the strong sense below.

Theorem 1.4. There exists a finitely generated A such that |PR(A)| = ∞ and
PR(A) has a greatest element.

In some way, Theorem 1.4 should be compared with Goncharov’s celebrated
example of a structure having computable dimension two (e.g., [Gon81]), in the

ONLINE PRESENTATIONS OF FINITELY GENERATED STRUCTURES 5

sense that both results are counterintuitive and require significant novel technical
insights. Since a finitely generated structure always has the least PR-degree, our
first main result Theorem 1.3 excludes the possibility of |PR(A)| = 2 for a finitely
generated structure A. The structure from Theorem 1.4 is thus the closest one can
get to punctual dimension two with a finitely generated structure.

We have already mentioned above one (indirect) application of Theorem 1.3. We
also note that Melnikov and Ng have recently announced that there is a (clearly,
not f.g.) structure C with |PR(C)| = 2. The methods that they used are similar
to those in the proof of Theorem 1.4 but have virtually nothing in common with
the above-mentioned proof of Goncharov.

The proof of Theorem 1.4 is combinatorially quite involved. It extends a strategy
introduced in [KMN17b] and blends it with a new technique. While we put much
effort into semi-formal explanation of the argument, a rather solid background in
computable structure theory is perhaps necessary to understand the proof in full
depth.

The high combinatorial complexity of our proof of Theorem 1.4 leaves some
hope. More specifically, perhaps the upward density hypothesis will hold for many
general enough natural classes of finitely generated structures.

Problem 1.5. Give a general enough sufficient condition on a finitely generated
A which would imply that PR(A) is upward dense.

We finish the paper with an application of the technique developed in the proof
of Theorem 1.4. But first, we give some intuition.

In computable structure theory, adding prime root extraction to the language of
an abelian group [Khi98] or assuming a factorisation algorithm in a field [Rab60]
have profound effects to the global and local computability-theoretic properties of
the respective structure. For example, adding p-root extraction may effect com-
putable categoricity of an abelian p-group. However, even in Turing computability,
all these augmentations of signatures by Skolem-like functions (to be made precise
in Def. 1.6 below) make little difference when a structure is finitely generated. In
particular, a finitely generated structure is already relatively computably categori-
cal, and – from the perspective of Turing computable structures – it cannot be made
much better than that. To clarify what we mean by a Skolem-like function, consider
the definition below which is a bit weaker than punctual 1-decidability [KMN17b].

Definition 1.6. Let A be a punctual structure in a finite functional language. We
say that A is honestly generated if there is a primitive recursive procedure which,
for every term t and each element x ∈ A:

(1) decides whether ∃ȳ t(ȳ) = x, and
(2) if the answer is “yes”, it gives such a ȳ.

The following conjecture is supported by many natural examples as well as by
the pathological structure from Theorem 1.4.

Hypothesis: Suppose |PR(A)| =∞ for a finitely generated A, then A also has
infinitely many honestly generated copies, up to ≡pr.

Indeed, adding the predecessor unary function P into the language of (ω, S) will
not result in |PR(ω, S, P)| = 1. Adding Skolem function for division or “−” (or
both) into the language of finitely generated abelian groups does not seem to have

6 N. BAZHENOV, I. KALIMULLIN, A. MELNIKOV, AND K.M. NG

any significant effect on their PR-degrees either. Even if we could quickly find the
elements that generate a given element via a given term (if they exist), it would
not give us any extra power. The intuition here is that there could be a general
notion of a “distance” which measures the size of the smallest term that generates
a given element. The ability to honestly generate (Def. 1.6) the subalgebra 〈x〉 of C
should not help us to promptly find the term expressing x via the generators c̄, thus
giving us enough diagonalization witnesses. Nonetheless, we apply our techniques
to refute this conjecture, in particular showing that, in general, there is no well-
behaved notion of a “distance” which would be enough to prove the conjecture.

Theorem 1.7. There exists a finitely generated structure A such that |PR(A)| > 1
(thus, |PR(A)| =∞) and A has a unique honestly generated punctual presentation,
up to ≡pr.

We suspect that the structure constructed in the theorem possesses certain pe-
culiar features related to the speed of growth which could be of some interest to
combinatorial algebraists. The proof is again non-trivial, but the good news is that
it shares one strategy with the proof of Theorem 1.4. This common feature will
allow for a more compact exposition. Also, as before, there is perhaps some general
enough sufficient condition that implies the conjecture. We leave this as an open
problem.

We also leave open if being honestly generated can be replaced by punctual 1-de-
cidability in the theorem above. See [BDKM19, Mel17, KMN17b, Ala18a, Bli19] for
a detailed discussion of punctual 1-decidability. Finally, we leave open whether the
counterexamples constructed in this paper can be witnessed by finitely generated
groups or at least semigroups.

2. The first steps. Proof of Theorem 1.3

All algebraic structures throughout the paper are finitely generated and have a
finite functional language.

It is clear that every finitely generated punctual structure has the least presen-
tation under ≤pr. This least presentation is the naturally generated term algebra
upon some (any) fixed tuple of generators. We usually write B for this smallest
presentation, where B stands for “bottom”. We note that the choice of the genera-
tors does not really matter here, for we could primitively recursively bi-embed two
different naturally generated term algebras onto one another.

Recall that a punctual structure S is punctually categorical if for any punctual A
isomorphic to S, there is an isomorphism f : A → S such that both f and f−1 are
primitive recursive. It is easy to construct an example of a (not finitely generated)
pair of punctual structures A and B such that A ≤pr B and B ≤pr A but B 6'pr A in
the sense that there is no primitive recursive isomorphism with primitive recursive
inverse between them; we omit details. It is not known, however, if |PR(A)| = 1
is equivalent to A being punctually categorical. In [MN], Melnikov and Ng used
a rather non-trivial argument to illustrate that the two notions are equivalent for
undirected graphs. In contrast, the case of finitely generated structures is rather
straightforward.

Fact 2.1 (With Harrison-Trainor). Suppose A is a finitely generated punctual struc-
ture, and suppose |PR(A)| = 1. Then A is punctually categorical.

ONLINE PRESENTATIONS OF FINITELY GENERATED STRUCTURES 7

Proof. Let B be the natural presentation of A which is the term algebra over gen-
erators b̄. Let C be some other punctual copy of A, and let f : B → C be a primitive
recursive isomorphism from B onto C. Write b̄′ for the f -image of b̄ in C. Fix a
primitive recursive surjective isomorphism g : C → B, and let b̄′′ be the g-image
of b̄′ in B. Since b̄′′ generates B, it must generate b̄; fix the finitely many terms
witnessing this fact.

Consider c ∈ C. We explain how to promptly compute f−1(c). Compute g(c) ∈
B. Every element of B is a term in b̄ and, thus, is a term in b̄′′; the latter term can
be quickly computed using the finitely many terms that witness that b̄ is generated
by b̄′′. Recall that b̄′′ = g(b̄′). If g(c) = t(b̄′′) then c = t(b̄′). Recall that b̄′ = f(b̄)
and set f−1(c) = t(b̄). �

2.1. Proof of Theorem 1.3. Let A be a finitely generated punctual structure.
We need to prove that PR(A) is dense.

If |PR(A)| = 1 then there is nothing to prove. Otherwise, let B <pr T be two
punctual presentations of A, where B is not necessarily the “bottom” copy of A.
We build a punctual copy X with the property:

B <pr X <pr T .
We fix a computable listing (pe)e∈ω of all unary primitive recursive functions.

We meet the requirements:

Pe : pe : X → B is not an onto isomorphism;

Rj : pj : T → X is not an onto isomorphism,

and we also construct two surjective primitive recursive isomorphisms f : B → X
and g : X → T . All constructed objects will be build inductively by stages. At
each stage we will extend the previous finite part of the structure Xs to some larger
portion of the structure. Since our objects should be primitive recursive, we cannot
apply an unbounded search before extending the definition of Xs, fs and gs. For
instance, we cannot hope to immediately compute a desired value of pe or pj for
the corresponding strategies of Pe and Rj because the uniform enumeration of all
primitive recursive functions is not uniformly primitive recursive. Thus, we will
have to keep extending the definition of Xs, fs and gs and wait for pe or pj to
converge.

The idea is to build X by copying either B or T , and switch between letting
X copy B and letting X copy T . However, this would not be possible in general
without A being finitely generated. Fix the generators ā of B. Recall that B <pr T ,
and assume h witnesses this reduction. We let ā′′ be the h-image of ā in T . We
will also initially define f to be the identity map naturally copying B into X for
a few stages of the construction. Let ā′ be the image of ā in X . For the benefit
of the uninitiated, recall that the domain of each structure is ω, and we have to
generate the term algebra of Xs and assign elements in the domain to elements of
the term algebra in a primitive recursive way. By letting “X copy B” we mean
that we generate the term algebra for Bs and Xs up to the same number of steps
and define f on these elements appropriately. If there are elements in Bs which are
currently independent from dom(fs) then we introduce new elements into Xs+1 for
the images of these elements. Basically, we want to ensure that when copying B
into X , fs is a finite isomorphism between the two finite substructures (and gs will
be an embedding between Xs and Ts and not necessarily surjective). A similar idea

8 N. BAZHENOV, I. KALIMULLIN, A. MELNIKOV, AND K.M. NG

holds when X is copying T ; in this case, gs will be a finite isomorphism between
Xs and Ts while fs is a non-surjective embedding.

The strategy for Pe. In the construction, we will initially start by waiting until we
see that pe(ā

′) generates ā in B. If this never happens then pe cannot be an onto
isomorphism, and thus the requirement will be met. (Of course we have to continue
extending Xs, fs and gs and attending to other requirements while waiting for Pe).
Suppose we see that pe(ā

′) generates ā in B. Then the strategy is declared ready
for diagonalisation.

Assume that Pe is the highest priority requirement and has been declared ready
for diagonalisation. If X is currently naturally copying B then switch to copying
T (to be explained below). Then wait for a finitary disagreement in pe illustrating
that pe is not an isomorphism. (In the construction, the action of switching will be
decided according to the priority order between Pe and the requirement currently
in control of the construction)

The strategy for Rj. The same as for Pe above, mutatis mutandis.

The switching. There are two substantially different cases that need to be treated
separately.

Switching from B to T . Suppose X is currently copying B via f , and assume we
want to switch to copying T into X . To perform the switch, identify B (and, thus,
X) with h(B) in T . From now onwards, change the interpretation of the currently
computed atomic diagram of X by replacing each natural pre-image of x ∈ X in B
by the respective element in T . This will ensure that h = g ◦ f can be maintained.

In other words after the switch we start to add into X the images of elements of
T which formerly could not be added because they were not yet enumerated into
h(B).

Switching from T to B. Now suppose X is currently copying T , and we need
to switch to B at stage s. Stop copying T but keep producing the term algebra
generated by Xs which is naturally associated with the part Ts of T that had been
copied into X before stage s. In other words, we keep growing X by generating
only the term algebra of existing elements and we do not continue identifying new
independent elements of T inside X . (This is necessary for keeping X punctual, as
we cannot delay extending X while waiting for h(B) to catch up).

Naturally identify these elements with the terms of the respective g-images in T .
Wait for h(B) to catch up with Ts by generating all elements in Ts. Note that this
must eventually happen because the structure is finitely generated and h is onto.

As soon as we see that h(B) has covered all of Ts, pause the enumeration of X
and quickly compute all the terms that we have used in the enumeration of X since
stage s for h−1(Ts) in B. Note that there is a natural bound on the time needed
to make these computations, so this delay in extending Xs is justified. This will
give us a natural pre-image for the currently constructed part of X . Switch to X
copying B by identifying (the currently built part of the diagram of) X with this
natural pre-image in B. From now we can simply copy the structure B into X
almost identically up to a finite permutation of elements.

ONLINE PRESENTATIONS OF FINITELY GENERATED STRUCTURES 9

Construction. We pick some natural priority ordering on the requirements. If
there are no requirements that are ready for diagonalisation then copy B into X .
Otherwise, fix the highest priority requirement which is ready for diagonalisation
and switch X (if necessary) until the requirement is met.

Verification. Much of the verification was incorporated into the description of
the diagonalisation strategies and the switching procedure. We only clarify a few
points which were not explained in detail above. The description of the switching
strategy guarantees that X is primitive recursive and is isomorphic to A. Each
diagonalisation requirement Pe (and Rj) is met because otherwise we would have
a contradiction with B <pr T . It is also crucial that the disagreement will be
discovered at a finite stage and will be finitary in nature. This is because we used
the generators to ensure that if pe (or pj) is an isomorphism then it must be onto;
see the description of Pe.

3. Proof of Theorem 1.4

Proof idea. For simplicity, first suppose we have to merely build A with exactly
one punctual degree using the strategy from [KMN17b] (Proposition 4.2). Then we
will extend this strategy to construct an A with the desired properties. We give
only a very brief global outline of this strategy; see [KMN17b] for further details,
and see survey [BDKM19] for a detailed informal outline of this strategy.

The structure A will consist of an ω-chain constructed using a unary function s:

o→ s(o)→ s2(o)→ · · · ,

where each element of the form x = sk(o) is a part of an m-cycle (for some m):

x→ c(x)→ c2(x)→ · · · cm−1(x)→ x.

All such m-cycles will be disjoint. Also, we fix a third unary function p that maps
each point of the form st(ck(o)) back to the fixed generator o. (We omit some
trivial details of, e.g., how exactly we define s on the new points forming the c-
cycles, etc.) If we choose the sizes m for different k very carefully then we can
guarantee that |PR(A)| = 1. For a higher-level understanding of what will happen
next, the reader may imagine that the ω-chain serves as a “coordinate axis” while
various special patterns of cycles play the role of the “coordinates” along this axis.
We illustrate the basic idea in the example below.

Example 3.1. For example, suppose in A we start by producing only 1-cycles
(loops):

c(sk(o)) = sk(o) for k = 1, 2,

Given some other punctual C, we wait for C to show us two consequent 1-cycles.
Either we will discover that C is not isomorphic to A or C will give us two consequent
1-cycles. Once this happens we can switch in A to a sequence of 1-cycles and 2-
cycles:

. . .− 1− 2− 1− 2− 1− 2− 1−
We will then use the speed of enumeration of C and the unary functions p, c, s to
locate the exact position of the revealed two consequent cycles of C relative to its
version of the origin o. With some care this idea can be extended to handle all
primitive recursive structures C0, C1,

10 N. BAZHENOV, I. KALIMULLIN, A. MELNIKOV, AND K.M. NG

Now, based on this intuition, we will give an informal overview of the proof of
the theorem. Imagine for a moment that the structure A constructed above did not
have any cycles and was simply the successor structure (ω, s). To produce a copy
T of A not punctually isomorphic to the standard term-presentation B of (ω, s), we
could do the following naive diagonalization. In T , introduce a new fresh element
v but keep it disconnected from the generator o. We do not have to punctually
declare k such that sk(o) = v, so we will opt to pick such a k very late. We
wait until p0(v) ↓= sj(o) in B, and then make sure k > j. Then we repeat with
new witnesses v′, v′′, . . . for p1, p2, . . . to diagonalise against all potential primitive
recursive isomorphisms. Note that each pi has to be total, and also that there is
no delay in building T , for we can freely define st(v) even though we do not know
the term for v itself. The intuition here is that x may look “non-standard” for as
long as we wish.

Of course, our structure is not simply (ω, s) (and it cannot be, for the punctual
degrees of (ω, s) are upwards dense). Indeed, we are dealing with a chain of cycles.
Imagine that we wish to put a fresh v into T for the sake of diagonalization. Not
only we have to start promptly producing elements of the form si(v) in T , but also
we must punctually decide on the sizes of c-cycles around these elements. Recall
that the purpose of these cycles was to press (Ce)e≤t to reveal themselves in a
predictable way, where t depends on the current stage (and is slowly increasing
with time). To punctually reconstruct the unique isomorphism from a fixed Ce
onto T we could try to use the unary function p to go back to the generator o of
Ce and then work from there to find the “coordinates” of the revealed pattern, but
this p will no longer help.

Clearly, there is a conflict between the naive diagonalization strategy and the
pressing strategy, for we intend to keep parts of the chain disconnected from o.
In particular, we cannot possibly hope to use the generator o to reconstruct the
“coordinates” of the revealed pattern, because it may well be corresponding to one
of the “non-standard” elements generated by the current diagonalization witness v.
There will be no uniformly primitive recursive bound on how long it will take for v
to be declared a term of o. This time non-uniformity tricks will not help.

Instead, whenever we introduce a fresh diagonalization witness v, the s-chain
generated by v will be associated with some fresh array of admissible cycles distinct
from those used so far in the chain si(o), i ≤ t, seen so far in B. For example, in the
term subalgebra 〈o〉 we will be operating with 1-cycles, 2-cycles, and 3-cycles, while
in the term subalgebra 〈v〉 we will be using exclusively 7-, 9- and 11-cycles. Using
p, we will map each such cm(sk(v)) back to v (not to o as before). Otherwise the
strategies restricted to cm(sk(v)) will be roughly similar to those outlined above for
pressing Ce.

Now, when Ce reveals a part of itself, we will be checking on the sizes of the
c-cycles which are revealed. If the sizes correspond to those currently built in the
“standard” chain, we will act (roughly) as before. If the sizes look too large, then we
may have an opportunity to ensure Ce 6∼= A by keeping all our currently admissible
c-cycles smaller than the longest c-chain Ce; this is the same as before. Finally, if
these cycles have sizes which belong to the chain generated by v, we will find the
position of these elements relative to v. This will allow us to map these revealed
elements of Ce to the respective elements in T without knowing the term for v.

ONLINE PRESENTATIONS OF FINITELY GENERATED STRUCTURES 11

Unfortunately, the strategy described above is not easy to formally implement.
Apart from the evident priority conflicts, there will also be rather subtle timing
issues. For example, what if Ce responds almost at the same stage as when we
decide to declare sk(o) = v? Whenever we declare sk(o) = v we must also make
further alterations in the way we build T , and this will potentially result in a delay
in the definition of the isomorphism. The underlying idea is, of course, to produce
a uniform bound on whatever delays that may occur in T . Furthermore, each
isomorphism-building strategy will typically have to deal with a finite non-uniform
parameter which will depend on injury and on the actions of the higher priority
diagonalization and pressing strategies. All these subtleties will be handled in the
formal proof below. Although this is just a Π0

2-argument and the injury will be
merely finite, there will be much combinatorics to sort out.

Proof. The language of the structure A contains the following symbols:

• a constant o, and
• unary functions s, c, p, and r.

The structure A (see Figure 1) will have the following properties:

(1) The domain of A is a disjoint union of finite c-cycles. For any c-cycle C,
the function s maps every element from C to a fixed element from another
c-cycle C ′. The function s is arranged in such a way that the values o, s(o),
s(s(o)), . . . , sn(o), sn+1(o), . . . form an ω-chain, and every c-cycle from A
contains exactly one element of the form sk(o), k ∈ ω.

(2) For x ∈ ω, consider the unique number n such that sn(o) belongs to the
c-cycle of x. Then p(x) satisfies one of the following two cases:
(a) p(x) = sn−1(o), or
(b) p(x) = sn(o).

Furthermore, p(ck(x)) = p(x), for any k ∈ ω.
Consider the greatest m ≤ n such that p(sm(o)) = sm(o). Such a number

m exists, since p(o) = o. Then we have r(x) = sm(o).
(3) The element y ∈ A is called a root if r(y) = y or, equivalently, if p(y) = y.

Notice that for every root y, there is a natural number n such that y =
sn(o). For an element x, the island coordinates (m, k) of x are defined as
follows: m is the number such that sm(r(x)) belongs to the c-cycle of x;
and k is the least number such that x = ck(sm(r(x))).

Note that the first property above ensures that A is rigid and 1-generated. The
canonical presentation of A is built as the term algebra generated by o. The
canonical fpr presentation of A will be denoted by B (“bottom”). We will also
build an fpr copy T (“top”) of A.

We use the pairing function 〈n,m〉 = 2n · (2m+ 1)− 1.

We fix a uniformly computable list of all primitive recursive unary functions
{he}e∈ω. We also choose a uniformly computable list of all fpr structures in the
language of our structure A:

Cn = (ω; on, sn, cn, pn, rn), n ∈ ω.

The functions sn, cn, pn, rn are treated as “partial” computable functions with
corresponding primitive recursive time functions tn: we assume that the value
f(x)[tn(x)] converges, for any n, x ∈ ω and f ∈ {sn, cn, pn, rn}.

12 N. BAZHENOV, I. KALIMULLIN, A. MELNIKOV, AND K.M. NG

o . . .

c-cycles of different length

s s

p p

s

v

p(o) = r(o) = o; p(v) = r(v) = v

s

p

Figure 1. The structure A with two roots o and v shown.

We will satisfy the following series of requirements:

Pe: he is not an isomorphism from T onto B.
Rn: If Cn ∼= T , then there is a primitive recursive isomorphism from Cn onto T .

For a functional symbol f ∈ {s, c, p, r}, we use notations fB and fT to denote
the interpretation of the symbol f inside B and T , respectively.

An overview. The structures B and T are constructed with the following
agreement in mind. One may think of T as a version of B which runs a little bit
faster than B. At the beginning of each stage s, T [s] consists of two disjoint parts
B′ and I, where B′ is isomorphic to B[s], and I is a (possibly empty) substructure
of T [s] such that (for now) I does not contain elements of the form skT (o), k ∈ ω.
Informally speaking, B′ is copying B, and I is an island. The island I will be
eventually attached to B′ with the help of the function sT (to be explained below).

The priority ordering of the strategies is arranged as per usual: R0 < P0 < R1 <
P1 < Every strategy Pe will be in one of the following states:

(S1) unstarted;
(S2) calculating the island tag;
(S3) active;
(S4) finished.

An unstarted strategy Pe wants to begin building the Pe-island inside T . First,
Pe goes into state S2 and (slowly) calculates the length le of the c-cycle for the
root of the Pe-island. We call this le the island tag of Pe. These calculations will
involve evaluating various things inside structures Ci, i ≤ e. When the island tag
is computed, Pe goes into state S3.

When Pe is active, it builds its own island while looking for an opportunity to
diagonalise against he. When this opportunity is seized, Pe becomes finished.

Note that at a stage s, each of the strategies Ri, i ≤ s, can construct something
in B and T .

In order to ensure that both B and T are punctual, at each stage s of the
construction we proceed as follows:

• pick the least k such that skB(o) is still undefined, and define it as the next
element in the domain;
• introduce the cB-cycle of skB(o) according to the description of the strategies

(see below);

ONLINE PRESENTATIONS OF FINITELY GENERATED STRUCTURES 13

• the functions pB and rB on the new elements are defined right away;
• the structure T copies the new elements from B.

Beforehand, we assign to each Pe, e ∈ ω, the set of acceptable tags

L(Pe) = {m0(e),m1(e), . . . ,me(e),me+1(e)}.

We ensure that for i 6= j, L(Pi) and L(Pj) are disjoint: e.g., one can define

mk(e) := 3〈e+ 1, k〉+ 3.

A strategy Pe will always choose its island tag as one of the elements from L(Pe).
We assume that o belongs to a c-cycle of size 3, and we set L(P−1) := {3}. Thus,

one can say that the main part of T is tagged by the length 3.

The description of Pe in isolation. We note that the strategy will have to
be slightly modified in the construction.

Recall that Pe has the finite set of acceptable tags L(Pe). Each higher priority
strategy Rn, n ≤ e, can forbid to use at most one tag l from L(Pe). Therefore, the
choice of the cardinality of L(Pe) ensures that at any stage s, the strategy Pe has
at least one non-forbidden tag.

First, we pick the next element we in the domain of T and the least non-forbidden
tag le ∈ L(Pe). The length le is declared the island tag of Pe.

While the value he(we)[t] either is undefined or does not belong to B[t], build
the Pe-island inside T as follows (note that we always use next elements from the
domain to build islands):

• Put we in a c-cycle of size le. The element we will be the root of the
Pe-island: for any element x from the island, we will have r(x) = we.

• Continue constructing the island as follows. Suppose that sk(we) is already
defined. Then we put a fresh c-cycle C (its length is decided by the Ri-stra-
tegies) and connect it in a natural way with our island, i.e. we declare some
element from C as sk+1(we), and for each x ∈ C, define p(x) = sk(we) and
r(x) = we.

Suppose that t0 is the first stage such that he(we)[t0]↓ ∈ B[t0]. Then we attach
the island to the main part of T [t0] and extend B[t0] to an isomorphic copy of T .
More formally, let k be the least number such that the value skB(o) is still undefined
at stage t0. We define:

(i) skT (o) := we;
(ii) skB(o) is the least unused element in B, and we grow the main part of B by

attaching a copy of the constructed Pe-island.

Then requirement Pe is declared satisfied : Indeed, our construction will be orga-
nized in such a way that before stage t0, the structure B[t] does not contain c-cycles
of size le. Therefore, the element he(we) cannot belong to a cB-cycle of size le, and
he cannot be an isomorphism from T onto B.

After that, every new c-cycle inside B will be attached to the “end” of the “glued”
copy of the Pe-island.

The description of Re in isolation. We build a (partial) function θ from ω
to ω. Our goal is the following: If the structure Ce is isomorphic to T , then θ will
be a primitive recursive isomorphism acting from Ce onto T .

14 N. BAZHENOV, I. KALIMULLIN, A. MELNIKOV, AND K.M. NG

The basic idea behind the construction of θ is pattern-switching. For the sake
of simplicity, first we consider a toy situation: assume that Re does not care at all
about other strategies Rl, where l 6= e. Then every c-cycle, which is not an island
tag, will have length equal to either 3e+ 1 or 3e+ 2.

We use the following patterns:

• The simplest pattern is denoted by [3e + 1]. When we say that we iterate
(or produce, or propagate) the pattern [3e+ 1], this means that whenever
we add a fresh c-cycle C (which is not an island tag) into B or T , the cycle
C has length 3e+ 1.
• A little bit more complicated pattern is denoted by [3e+ 1, 3e+ 2]. When

we write that we iterate the pattern [3e + 1, 3e + 2], then this means the
following: when we attach fresh c-cycles either to the main part B′ of T , or
to the current island I inside T , we alternate lengths between 3e + 1 and
3e+ 2. For example, attaching cycles to B′ looks like this:

– Assume that n is the largest number such that snT (o) is currently de-
fined, and the length of the cT -cycle of snT (o) is equal to 3e+ 2. Then

choose sn+1
T (o) as an element of a fresh c-cycle of size 3e+ 1.

– Pick sn+2
T (o) as an element of a fresh cycle of size 3e+ 2.

– Pick sn+3
T (o) as an element of a cycle of size 3e+ 1.

– Pick sn+4
T (o) as an element of a cycle of size 3e+ 2; etc.

Surely, a similar construction proceeds inside the structure B.
• Iterating the pattern [3e+1, 3e+2, 3e+2] means the following: Inside both

the main part B′ and the island I, we choose the lengths of fresh c-cycles
as follows:

3e+ 1, 3e+ 2, 3e+ 2, 3e+ 1, 3e+ 2, 3e+ 2, 3e+ 1, 3e+ 2, 3e+ 2,

Again, similar actions are taken for B.
• In a similar way, one can define what does it mean to produce the pattern

[3e+ 1, 3e+ 2, . . . , 3e+ 2︸ ︷︷ ︸
k times

],

where k is an arbitrary natural number.

When we talk about a pattern-switching, we always mean that we switch from a
pattern

[3e+ 1, 3e+ 2, . . . , 3e+ 2︸ ︷︷ ︸
k times

],

which is currently propagated, to the pattern

[3e+ 1, 3e+ 2, . . . , 3e+ 2︸ ︷︷ ︸
(k+1) times

].

The switching can be done pretty straightforwardly: For example, suppose that we
want to switch from the pattern [3e+ 1, 3e+ 2] to [3e+ 1, 3e+ 2, 3e+ 2]. Let n be
the largest number such that the value v := snT (o) is currently defined, and assume
that the c-cycle of v has length 3e + 1. Then we just choose the lengths of fresh
c-cycles like this:

3e+ 2, 3e+ 2, 3e+ 1, 3e+ 2, 3e+ 2, 3e+ 1, 3e+ 2, 3e+ 2,

ONLINE PRESENTATIONS OF FINITELY GENERATED STRUCTURES 15

The pattern-switching will help us to ensure that the strategy Re will always
have one of the following two outcomes:

(i) If the pattern-switching happens only finitely many times, then the struc-
ture Ce is not isomorphic to T .

(ii) If the pattern-switching happens infinitely many times, then the constructed
function θ is a punctual isomorphism from Ce onto T .

We build θ step-by-step: the values θ(0), θ(1), θ(2), . . . , θ(n), θ(n+ 1), . . . are
computed, in turns. While the value θ(0) is still being computed, the construction
propagates the simplest pattern [3e+ 1].

The value θ(0) is defined as follows:

(1) Compute the root re(0) and find its island tag l0, i.e. the length of the ce-
cycle of re(0). It can be the case that inside Ce, the root re(0) is a part of
an infinite ce-chain and hence, the value l0 will be never computed. Clearly,
in this case Ce cannot be a copy of T .

(2) While we are waiting for the value l0 to be computed, each of the lower
priority strategies Pi, i ≥ e, follows the restrictions set forth by Re: The
strategy Pi cannot become active until one of the following conditions is
satisfied.

(2.1) The tag l0 is defined and l0 ∈ L(Pi), i.e. l0 is an acceptable tag for Pi.
(2.2) l0 is defined and l0 is strictly less that every element from L(Pi).
(2.3) The current value of l0 is greater than every element from L(Pi). Here

by the value of l0 at a stage s we mean the maximal number m ≤ s
such that every value cie(re(0)), i ≤ m, can be computed in s steps of
computation. Obviously, here we assume that all cie(re(0)), i ≤ m, are
pairwise different.

In Case (2.1), we will never use the value l0 as an island tag for Pi, and
this will ensure that Ce 6∼= T . In each of Cases (2.2) and (2.3), the value l0

is not related in any way to the acceptable island tags of Pi.
(3) After l0 is computed, there are three possible cases:

(A) l0 does not belong to any L(Pi), where −1 ≤ i < ω. Recall that we
assume that L(P−1) = {3}. In this case, it is clear that Ce is not
isomorphic to T . Hence, one can just stop defining the function θ.
The pattern [3e+ 1] is propagated forever.

(B) l0 belongs to some L(Pi), where Pi is of lower priority, i.e. i ≥ e. Then
we forbid Pi to use l0 as its island tag. Hence, by the construction,
T does not possess a c-cycle of size l0, but Ce contains such cycle.
Therefore, Ce 6∼= T . Again, here we stop defining θ, and we iterate
[3e+ 1] forever.

(C) l0 is an acceptable tag for some Pi of higher priority, i.e. i < e. For
now, just continue iterating [3e+ 1].

(4) From now on, assume that the case (C) above holds. Wait until (the atomic
diagram of) the structure Ce shows computations witnessing one of the
following outcomes:
• 0 belongs to the ce-cycle of the root re(0);
• 0 belongs to the ce-cycle of the element se(re(0));
• both ce-cycles of 0 and pe(0) have length 3e+ 1.

Essentially, we want to see that either 0 is situated close enough to its root
re(0), or there are two adjacent cycles of size 3e+ 1 in the vicinity of 0.

16 N. BAZHENOV, I. KALIMULLIN, A. MELNIKOV, AND K.M. NG

Recall that our construction is still propagating [3e+1], so if the structure
Ce “wants” to be a copy of T , then it should provide us with the desired
computations. Let u0 be the number of steps needed to provide these
computations.

When the u0-th step of the construction finishes, we immediately switch
from the pattern [3e+1] to [3e+1, 3e+2]. This action ensures the following
fact: If u0 is given, then one can promptly find the value of θ(0).

Indeed, the construction will guarantee that by the end of step u0, the
structure T [u0] will already contain a root r0 with the island tag l0. Hence,
in order to find the desired image θ(0), it is sufficient to consider the fol-
lowing finite structures:
• Inside Ce, we choose elements re(0), se(re(0)), s2e(re(0)), . . . , su0

e (re(0))
and the ce-cycles generated by these elements. Denote this structure
by C[0].

• Inside T , we find elements r0, s(r0), s2(r0), . . . , su0(r0) and the c-cycles
of these elements. Denote the corresponding structure by T [0].

Recall that after the step u0, we never add adjacent (3e+ 1)-cycles into T .
Hence, the number 0 must belong to C[0]. On the other hand, the island tag
of r0 is equal to l0. Hence, if Ce ∼= T , then the unique isomorphism acting
from the (rigid) Ce onto T must map C[0] onto T [0]. Thus, the desired
isomorphic image θ(0) can be recovered by promptly searching inside the
structure T [0].

When the value θ(0) is defined, we start computing θ(1). First, we compute
the root re(1) and we find its island tag l1. While waiting for l1 to be computed,
Re restricts each of the strategies Pi, i ≥ e + 1. Note that here we do not put
restrictions on the strategy Pe. A strategy Pi, where i ≥ e + 1, cannot become
active until one of the following conditions happens to be satisfied:

(2.1) l1 is defined and l1 ∈ L(Pi);
(2.2) l1 is defined and l1 < min(L(Pi));
(2.3) the current value of l1 is greater than max(L(Pi)).

While l1 is being computed, the construction continues iterating the pattern [3e+
1, 3e+ 2].

After l1 is computed, we have four alternatives:

(A) l1 does not belong to any L(Pi). Then Ce 6∼= T , and we iterate the same
pattern forever.

(B) l1 belongs to some L(Pi), where i ≥ e+ 1. Then we forbid l1 to be used as
an island tag, and this will guarantee that Ce 6∼= T .

(C) The case when l1 ∈ L(Pe) is more delicate. Here we have two variants:
(C.1) If the strategy Pe is still in one of states S1 or S2, i.e. Pe is unsure

about its island tag, then we just forbid l1 to be used by Pe. This
action is well-behaved, since Re forbids Pe to use only one tag l1,
recall that l0 has nothing to do with Pe. As in (B), this will ensure
that Ce 6∼= T .

(C.2) If Pe is already in one of states S3 or S4, then we do not want to
forbid l1. Here we emphasize the following: By the moment t1 when
the computations of l1 had been finished, our structure T [t1] already
contained island tag l1.

(D) l1 is an element of L(Pi), where i < e.

ONLINE PRESENTATIONS OF FINITELY GENERATED STRUCTURES 17

We assume that one of the cases (C.2) or (D) holds. We wait until our structure
Ce shows computations witnessing one of the following two outcomes:

• 1 belongs to the ce-cycle of one of the elements re(1), se(re(1)), s2e(re(1)),
s3e(re(1));
• among the ce-cycles of the elements p3e(1), p2e(1), pe(1), 1, we can find either

two adjacent (3e+1)-cycles, or three adjacent cycles of lengths 3e+1, 3e+2,
and 3e+ 1, respectively.

Recall that the construction is propagating the pattern [3e+1, 3e+2]. If Ce ∼= T ,
then the desired computations will be eventually provided. Let u1 be the number
of steps needed to finish these computations.

When the u1-th step of the construction finishes, we switch from iterating [3e+
1, 3e + 2] to [3e + 1, 3e + 2, 3e + 2]. We claim that given the value u1, one can
punctually compute θ(1). Indeed, this follows from the following two facts:

(1) By the end of step u1, we will already have a root r1, which has the island
tag l1 inside T [u1].

(2) After step u1, between any two fresh cT -cycles of size 3e+ 1, there will be
at least two cT -cycles of size 3e+ 2.

Now assume that the values θ(0), θ(1), . . . , θ(x−1) have been already calculated.
When we start computing θ(x), our construction propagates the pattern

(3.1) [3e+ 1, 3e+ 2, . . . , 3e+ 2︸ ︷︷ ︸
x times

].

We find the root re(x) and its island tag lx. While waiting for lx to be defined,
Re restricts each of the strategies Pi, i ≥ e+ x: any such Pi cannot become active
until one of the following conditions is satisfied.

(2.1) lx is defined and lx ∈ L(Pi);
(2.2) lx is defined and lx < min(L(Pi));
(2.3) the current value of lx is greater than max(L(Pi)).

While lx is being computed, the construction iterates the pattern (3.1).
After lx is computed, again, we have four alternatives:

(A) lx does not belong to any L(Pi). Then Ce 6∼= T .
(B) lx belongs to some L(Pi), where i ≥ e+x. Then we forbid lx to be used as

an island tag.
(C) lx ∈ L(Pi), where e ≤ i < e+x. Then one of the following two cases holds:

(C.1) If Pi is in one of states S1 or S2, then we forbid lx to be used by Pi.
(C.2) If Pi is in one of states S3 or S4, then we do not forbid lx.

(D) lx is an element of L(Pi), where i < e.

Assume that one of the cases (C.2) or (D) holds. We wait until our structure Ce
shows computations witnessing one of the following two results:

• x belongs to the ce-cycle of one of the elements re(x), se(re(x)), s2e(re(x)),
. . . , s2x+1

e (re(x));
• among the ce-cycles of the elements p2x+1

e (x), p2xe (x), . . . , p2e(x), pe(x),
x, one can find adjacent cycles such that their lengths induce one of the

18 N. BAZHENOV, I. KALIMULLIN, A. MELNIKOV, AND K.M. NG

following tuples:

(3e+ 1, 3e+ 1); (3e+ 1, 3e+ 2, 3e+ 1); (3e+ 1, 3e+ 2, 3e+ 2, 3e+ 1); . . . ;

(3e+ 1, 3e+ 2, . . . , 3e+ 2,︸ ︷︷ ︸
x times

3e+ 1).

If Ce ∼= T , then the required computations eventually will appear. By ux we denote
the number of steps needed to finish the computations. When the ux-th step of the
construction finishes, we switch from iterating (3.1) to

[3e+ 1, 3e+ 2, . . . , 3e+ 2︸ ︷︷ ︸
x+1 times

].

Again, one can argue that given ux, one can promptly compute the value θ(x).
Hence, in order to establish the existence of the punctual isomorphism θ, it will
be sufficient to show that the sequence (ux)x∈ω is primitive recursive in x. The
reason behind this primitive recursiveness will be elaborated in the construction
and verification.

Recall that the described setting is merely a toy situation. Indeed, things be-
comes more involved, when different strategies Re, e ∈ ω, mingle with each other.
Nevertheless, this is not a very hard obstacle: different strategies Re will use dif-
ferent coding locations.

We give a rough outline of these coding locations: For the sake of simplicity,
assume that we build only the main part B′ of the structure T , and we do not glue
any islands to B′. The root of B′ will be denoted by r.

Clearly, in this case, all information about a given element x ∈ T is completely
defined by its island coordinates: recall that this is a pair (m, k), where the element
sm(o) belongs to the cT -cycle of x, and k is the least with ck(sm(o)) = x.

We use all cycles with coordinates (2k, ·), k ∈ ω, as coding places for the strategy
R0. The strategy R1 will use the cycles with coordinates (4k + 1, ·), k ∈ ω. The
strategy R2 uses (8k + 3, ·). In general, a strategy Re employs the coordinates
(〈e, k〉, ·), where k ∈ ω.

What does it mean in practice? The actions of our strategy Re should be mod-
ified according to its choice of coding places. First, the patterns are propagated
only in appropriate places: For example, iteration of a pattern [3e+1, 3e+2] means
that one proceeds as follows:

• the element s〈e,0〉(r) will be a part of a c-cycle of size (3e+ 1);
• the c-cycle of s〈e,1〉(r) will have size (3e+ 2);
• the c-cycle of s〈e,2〉(r) will be of size (3e+ 1);
• the c-cycle of s〈e,3〉(r) will have size (3e+ 2);
• . . .

This kind of iteration helps Re to avoid messing with the c-cycles belonging to other
strategies Rj , j 6= e.

Second, the construction of θ(x) should be also changed: The c-cycles of size
` ∈ {3e + 1, 3e + 2} are much more disperse now, so we have to make a conscious
effort even just to find these cycles.

Recall that when we computed θ(0), we wanted to find two adjacent (3e + 1)-
cycles. Obviously, this search must be modified. The modification is essentially as

follows. If we consider the values 0, pe(0), p2e(0), . . . , p2
e+1

e (0), then:

• either one of these elements is already the root of the main part of Ce, or

ONLINE PRESENTATIONS OF FINITELY GENERATED STRUCTURES 19

• at least one of these elements must have a ce-cycle of size 3e+1 (otherwise,
the structure Ce is not a copy of T , and we can stop caring about building
θ).

If one of the elements is the root, then one can already find θ(0) (in a prompt way).
Otherwise, let y0 be the (first found) element such that

y0 ∈ {0, pe(0), p2e(0), . . . , p2
e+1

e (0)},

and the ce-cycle of y0 has size 3e+ 1. We find the value y1 := p2
e+1

e (y0). Again,

• either y1 is already the root, or
• y1 has a ce-cycle of size 3e + 1. Indeed, recall that since the start, the

construction has been propagating the pattern [3e+ 1]. Thus, if the size is
different from 3e+ 1, then Ce is not a copy of T .

Now the value u0 is defined as the number of steps needed to finish the described
search procedure successfully : If Ce ∼= T , then we always will have a successful
finish — by this we mean that either at some point, we will prematurely reach the
root of Ce, or we will witness two desired (3e+ 1)-cycles.

When u0 is successfully computed, we immediately switch to the pattern [3e +
1, 3e+ 2] (again, putting it in appropriate places). An argument, similar to the one
dealing with a single Re, shows that given u0, one can promptly find θ(0).

In general, the procedure of finding θ(x) looks like this:

(a) Find some y0 ∈ {x, pe(x), p2e(x), . . . , p
(2x+1)·2e+1

e (x)} such that its ce-cycle
has size 3e+ 1.

(b) Find the values yi+1 := p2
e+1

e (yi), for i ≤ x. If among the lengths of the
ce-cycles of yx+1, yx, . . . , y1, y0, one can find a consecutive tuple having one
of the forms

(3e+ 1, 3e+ 1); (3e+ 1, 3e+ 2, 3e+ 1); (3e+ 1, 3e+ 2, 3e+ 2, 3e+ 1); . . . ;

(3e+ 1, 3e+ 2, . . . , 3e+ 2,︸ ︷︷ ︸
x times

3e+ 1),

then declare that the ux-procedure is finished succesfully.

Note that while processing one of the computations above, one can prematurely
reach the root, i.e. discover that, say, p3e(y2) = r(x). In this case, we also say that
the ux-procedure finished succesfully.

Recall that before the value θ(x) is computed, the iterated pattern is

[3e+ 1, 3e+ 2, . . . , 3e+ 2︸ ︷︷ ︸
x times

].

Hence, if Ce ∼= T , then the ux-procedure must finish successfully, and one can define
ux as the number of steps needed to finish the procedure. When the ux-procedure
finishes successfully, we immediately switch to the pattern

[3e+ 1, 3e+ 2, . . . , 3e+ 2︸ ︷︷ ︸
x+1 times

].

Again, given ux, one can quickly compute the value θ(x).
This finishes the description of a strategy Re in isolation. The details considering

the prompt computations of ux, x ∈ ω, will be given in the formal construction and
the verification.

20 N. BAZHENOV, I. KALIMULLIN, A. MELNIKOV, AND K.M. NG

(In the construction below, we view every primitive recursive function as a partial
computable function ϕe(x) such that the computation of ϕe(x) converges in p(x)
many steps for some primitive recursive p.)

Construction.
The structure Ce[s] evaluated at stage s refers to a finite substructure of Ce on

the domain {0, 1, . . . , s} with all functions evaluated up to s steps. At stage s we
are allowed to use only structures Ce[s], e ≤ s.

Our construction defines partial computable functions s, c, p, r for B and for T
and ensures that all the values s(x), c(x), p(x), r(x) converge within x many steps
of the construction. Therefore, both B and T are punctual.

At stage s we assume that every strategy Pj , where j > s, is still unstarted.

Phase 0: Dealing with the strategies Pe.
(0.1) Declare the strategy Ps calculating the island tag, i.e. Ps goes from state

S1 into S2.

(0.2) Let Pi be the least strategy which is currently in state S2. Suppose that
M is the maximal element from L(Pi).

We want our strategy Pi to move on, and to enter state S3 (i.e. to choose its own
island tag). In order to proceed in a safe way, we have to respect all restrictions
which are set forth by the higher priority strategies Rj , j ≤ i. Recall that the
informal description of Re given above tells us the following:

• A strategy Rj , j ≤ i, can forbid Pi to use some tag l ∈ L(Pi) only while Rj

is computing the values θj(0), θj(1), . . . , θj(i− j). Here θj is a (potential)
isomorphism from Cj onto T . After the value θj(i − j) is computed, Rj

does not impose any restrictions on Pi.
• Assume that by a stage t, the strategy Rj has already computed, say, θj(0)

and θj(1), and the corresponding island tags (denoted by l0 and l1 in the
description of Re) have nothing to do with Pi: more formally, this means
l0, l1 6∈ L(Pi). If by the stage t, we have already witnessed that the island
tag l2 inside Cj is very large, then it is safe to assume that Rj will not put
any future restrictions on us, and hence, Pi can choose its island tag.

Here the tag l2 is very large if the following holds: After t steps of
computation, all the values

rj(2), cj(rj(2)), c2j (rj(2)), . . . , cMj (rj(2))

have been computed, and they are pairwise different. Informally, this means
that the island tag of re(2) is already too big to be acceptable for the
strategy Pi.

Note that here we discussed a simplified version of the argument: In
reality, Pi needs to obtain some information about each higher priority Rj

(not only one Rj), before Pi will be able to safely choose its island tag.

So, in order to help Pi to move on, we make (s + 1) steps of the following
computations.

(?) For each j ≤ i and each x ≤ i− j, compute the values

rj(x), cj(rj(x)), c2j (rj(x)), . . . , cMj (rj(x)).

ONLINE PRESENTATIONS OF FINITELY GENERATED STRUCTURES 21

After the values have been computed, find a finite set F of forbidden tags
as follows:

vj :=


the least l ∈ L(Pi) such that for some x ≤ i− j
the cj-cycle of rj(x) has length l, if such l exists;

−1, otherwise.

F := {vj : j ≤ i, vj 6= −1}.

Note that clearly, the set F (when computed) contains at most i+ 1 elements.
If the computation (?) does not finish in (s + 1) steps, then Pi stays in state

S2. Otherwise, it seems that Pi is ready to choose its island tag, but this choice
still requires a little bit of polishing. This polishing will prove to be useful in
the verification (see Lemma 3.4). We illustrate the necessity of polishing by the
following example.

Example 3.2. Consider the strategy P1. In order to find the set F for P1, we need
to wait for the following values to be computed:

(i) r0(0), c0(r0(0)), . . . , cM0 (r0(0));
(ii) r0(1), c0(r0(1)), . . . , cM0 (r0(1));

(iii) r1(0), c1(r1(0)), . . . , cM1 (r1(0)).

It can be the case that both computations (i) and (ii) are pretty quick: say, in
100 steps they show that inside C0, the island tags for both 0 and 1 are too big for
L(P1); in other words, 100 steps of computation already witness that v0 = −1. On
the other hand, the computations (iii) could be very slow: say, only in 1010 steps,
we will see that inside C1, the number r1(0) is a part of a c-cycle of size M (i.e.,
witnessing the equality v1 = M requires a lot of time).

Hence, in 1010 steps, we are happy to declare that F = {M}. Furthermore, we
can already conclude that C1 cannot be a copy of T , since C1 contains a cycle of
size M , but P1 will never use this size (recall that P1 is the only strategy which
can use the tag M). Summarising, we successfully diagonalised against C1, but we
did not obtain any conclusive evidence against C0.

Nevertheless, it is possible that this evidence against C0 was really close to us:
Say, in just 103 steps, one could have witnessed that the c0-cycle of r0(2) had size
` 6= M such that ` ∈ L(P1). Therefore, using pretty much the same 1010 steps, we
could have forbidden P1 to use `, and successfully diagonalise against C0.

So, in order to avoid situations similar to that of Example 3.2, we proceed as
follows. If the computation (?) finishes in (s+1) steps, then we make an additional
tag-prohibition routine: Consider each j ≤ i with vj = −1. For each y ≤ s, make
(s+ 1) steps of computing

rj(y), cj(rj(y)), c2j (rj(y)), . . . , cMj (rj(y)).

Find the least y, for which these bounded computations witness that rj(y) has cj-
cycle of a size `y ∈ L(Pi). If such y exists, then put `y into the set F of forbidden
tags. It is clear that the cardinality of (the modified) F is still at most i+ 1.

At last, after the routine, Pi is allowed to choose its tag. Find the least tag
l ∈ L(Pi) \ F . We declare l the island tag of Pi, and say that Pi is now in state
S3 (i.e. active). We initialise Pi by building the Pi-island I[Pi; s] (inside T [s]) as
a cT -cycle of size l. We choose an element w from the cycle and declare it the
Pi-witness.

22 N. BAZHENOV, I. KALIMULLIN, A. MELNIKOV, AND K.M. NG

(0.3) If there is at least one active strategy Pi, then proceed to Phase 1. Other-
wise, proceed straight to Phase 2.

Phase 1: Satisfying active strategies.
Consider each active strategy Pe, in turn. Suppose that w is the Pe-witness.
If the value he(w) is calculated in (s+1) steps of computation and he(w) belongs

to B[s], then declare Pe satisfied and finished. Attach the Pe-island to the main
part of T [s] as follows: Let k be the least number such that skB(o) is still undefined.
Declare skT (o) := w and define the other values of sT appropriately. After that,
extend the structure B[s] in such a way that the resulting structure is isomorphic
to the current T [s].

Otherwise, let m be the least number such that smT (w) is still undefined. Define
smT (w) as the next element of the domain. Grow the cT -cycle of the element accord-
ing to the current working patterns (to be elaborated in Phase 2, this is essentially
the pattern-switching introduced in the description of the strategy Re).

After that proceed to Phase 2.

Phase 2: Growing the structure B.
First, we explain how we define our working patterns. The patterns will help us

to prove that the sequence (ux)x∈ω from the description of Re can be computed in
a prompt way.

Let uq,l,e(x) be the number of steps needed to perform the following effective
procedure inside the structure Ce:

(i) Find the value re(x). If re(x) 6= q, then we stop successfully.
(ii) Otherwise re(x) = q. Compute the values cke(q), for k ≤ l. If cle(q) 6= q or

there is a non-zero number k < l with cke(q) = q, then we stop successfully.
(iii) Otherwise q lies in a ce-cycle of size l. Apply pe to x to search for some

non-zero i ≤ (2x+ 1) · 2e+1 such that pie(x) lies in a ce-cycle of size 3e+ 1.
We call this element y0. If y0 is not found, then we stop unsuccessfully. If
we reach the root q before (2x + 1) · 2e+1 applications of pe, then we stop
successfully.

(iv) Assume that y0 is found. Compute the values yj = p2
e+1

(yj−1) for 1 ≤ j ≤
x+ 1. If we reach the root q before finding yx+1, then we stop successfully.
If there is at least one yj such that 1 ≤ j ≤ x+ 1 and it lies in a ce-cycle of
size 3e+ 1, then we stop successfully. Otherwise, we stop unsuccessfully.

The procedure always stops, either successfully or unsuccessfully. Informally
speaking, if the described procedure stops unsuccessfully, then we can ensure that
Ce is not a copy of T . For a fixed e, the function (q, l, x) 7→ uq,l,e(x) is primi-
tive recursive, since all searches are bounded. On the other hand, the function
(e, q, l, x) 7→ uq,l,e(x) is not primitive recursive. Nevertheless, the graph

{(e, q, l, x, z) : uq,l,e(x) = z}

is a primitive recursive set.
We define the function α(l, 〈e,m〉). The intended use of the parameters is as

follows: The position of any element x from the structure T is uniquely determined
by the root rT (x) and the island coordinates (i, j) of x. Thus, the output of

ONLINE PRESENTATIONS OF FINITELY GENERATED STRUCTURES 23

α(l, 〈e,m〉) will be the length of the cT -cycle of the element x such that the root
rT (x) lies in a cycle of size l and x has island coordinates (〈e,m〉, 0).

The function α is defined by primitive recursion on m. Suppose that l and e are
fixed.

• We set α(l, 〈e,m〉) = 3e + 1 for all m such that Ce[m] does not yet have a
ce-cycle C of size l and an element q ∈ C with re(q) = q.
• Suppose that m0 is the first number such that Ce[m0] has a ce-cycle of size
l with root q. Note that if there is no such m0, then simply α(l, 〈e,m〉) =
3e+ 1 for all m.
• For every m0 ≤ m ≤ uq,l,e(0) we set α(l, 〈e,m〉) = 3e+1. If (the procedure)
uq,l,e(0) stops unsuccessfully, then define α(l, 〈e,m〉) = 3e + 1 for all m >
uq,l,e(0).
• Otherwise, uq,l,e(0) stops successfully. Then for m with uq,l,e(0) < m ≤
uq,l,e(1) we propagate the pattern [3e+1, 3e+2]. More formally, we define:

α(l, 〈e, uq,l,e(0) + 2j + 1〉) := 3e+ 1,

α(l, 〈e, uq,l,e(0) + 2j + 2〉) := 3e+ 2

for appropriate j. In other words, we alternate between the cycles of size
3e+ 1 and 3e+ 2.

In order to complete the pattern correctly, we assume that (uq,l,e(1) −
uq,l,e(0)) is an even number. If uq,l,e(1) stops unsuccessfully, then we iterate
the pattern [3e+ 1, 3e+ 2] forever, i.e. for all m > uq,l,e(1).
• Otherwise, uq,l,e(1) stops successfully. In general, if some uq,l,e(k) stops

unsuccessfully, then we end up repeating the pattern

(3.2) [3e+ 1, 3e+ 2, . . . , 3e+ 2︸ ︷︷ ︸
k times

]

forever. If every uq,l,e(k) stops successfully, then the pattern (3.2) is prop-
agated for uq,l,e(k − 1) < m ≤ uq,l,e(k). In order to do this correctly, we
assume that (uq,l,e(k)− uq,l,e(k − 1)) is divisible by k + 1.

Since the approximation Ce[s] is evaluated in bounded many steps and the graph
of u is primitive recursive, the function α is also primitive recursive: Indeed, in the
definition of α, we only need to decide whether uq,l,e(k) is equal to m or not.

The working patterns in our construction work as follows:
In Phase 1: Recall that w is the witness of an active strategy. Suppose that l

is the length of the cT -cycle of w. Let m be the least number such that smT (w) is
still undefined. Then the length of the c-cycle of the newly added element smT (w)
is defined as α(l,m). Define p and r for the new cycle appropriately.

In Phase 2: We grow B as follows. Suppose that v is the latest element with
rB(v) = v which was added to B (i.e. v is the latest root inside B[s]). Let l be
the length of the cB-cycle of v. Find the least m such that smB (v) is still undefined.
Then define smB (v) as the next element a from the domain, and set the length of
the cB-cycle of a equal to α(l,m). Define p and r appropriately. Copy the newly
added cycle into the structure T .

24 N. BAZHENOV, I. KALIMULLIN, A. MELNIKOV, AND K.M. NG

Verification. In both B and T there is no delay unbounded in the definition of
the finitely many unary functions in the language of A. Therefore, both structures
B and T are punctual.

Before giving the formal lemmas, we emphasise an important feature of the de-
scribed construction: Without loss of generality, one may assume that a strategy
Re starts working only after all strategies Pi, i < e, moved to state S3. In other
words, we start considering the structure Ce (and building an isomorphism θe from
Ce onto T) only after each Pi, i < e, chose its island tag. This assumption essen-
tially slows down the “data stream” describing Ce, but this process does not injure
the primitive recursiveness of the function α: roughly speaking, one introduces suf-
ficiently many initial idle steps t, at which the object Ce[t] is treated as an empty
structure; and these steps t propagate the simplest pattern [3e + 1] inside both B
and T .

Lemma 3.3. Every requirement Pe is satisfied.

Proof. First, we show the following: If there is a stage s0 at which the Pe-strategy
is active, then Pe is satisfied.

Let w be the Pe-witness, and l be the size of the cT -cycle of w. Consider the
least stage s1 ≥ s0 such that he(w)[s1]↓ ∈ B[s1]. The construction guarantees that
B[s1] contains no cycles of size l. Therefore, he is not an isomorphism from T onto
B, and Pe will be satisfied at stage s1.

Now suppose that s∗ > e is the least stage such that:

• every Pi, i < e, is in state S4 (i.e. finished) at the beginning of the stage
s∗; and
• the calculation (?) of the set F of forbidden tags for Pe can be finished in

(s∗ + 1) steps.

If Pe has never been active before the stage s∗, then it will become active at s∗.
Thus, Pe will be satisfied. �

Now we can deduce that the structures B and T are isomorphic: This is ensured
by copying B from T at Phase 1 (this happens infinitely often by Lemma 3.3) and
by copying T from B at Phase 2.

Lemma 3.4. Every requirement Re is satisfied.

Proof. Suppose that Ce is isomorphic to T and θ is the unique isomorphism from
Ce onto T .

First, we show that for every x ∈ Ce, the length lx of the ce-cycle of the root
re(x) can be calculated primitively recursively. Suppose that lx is a tag from the
set L(Pi) for some i.

Assume that e ≤ i and x ≤ i − e. Recall that the strategy Pi becomes active
only after the computations (?) are finished. Since lx ∈ L(Pi), there exists the least
length l ∈ L(Pi) such that for some x′ ≤ i − e, the ce-cycle of re(x

′) has length l.
This length l belongs to the set of forbidden tags F for the strategy Pi. Thus, T
does not have cycles of size l, but Ce contains a cycle of size l. Hence, Ce 6∼= T , and
we obtained a contradiction.

Therefore, we have i < e + x. This implies that the island tag lx can be found
by evaluating the elements

re(x), ce(re(x)), c2e(re(x)), . . . , cmaxL(Pe+x)
e (re(x)),

ONLINE PRESENTATIONS OF FINITELY GENERATED STRUCTURES 25

where the function k 7→ maxL(Pk) is primitive recursive. Hence, the function
x 7→ lx is also primitive recursive.

Now we describe how to compute the image θ(q) of a root q from Ce. First, find
the corresponding island tag lq and the index iq such that lq ∈ L(Piq). Suppose
that t∗ is the number of steps needed to see that q belongs to a ce-cycle of size lq

inside Ce. Without loss of generality, one may assume that t∗ > e + q > iq. We
argue that the element θ(q) must already belong to T [t∗].

Towards contradiction, assume that θ(q) 6∈ T [t∗]. Consider Phase 0.2 of the
stage t∗. Since θ(q) 6∈ T [t∗], at the beginning of this phase, the strategy Piq must
be in state S2: indeed, this is ensured by the description of Phase 0.

If e > iq, then without loss of generality, one may assume that t∗ is strictly
greater than the number of steps needed to compute, using the procedure (?),
the set of forbidden tags F for the strategy Piq . Indeed, this assumption can be
achieved by “slowing down” discussed at the beginning of verification: one starts
considering the structure Ce only after each strategy Pi, i < e, already chose its
island tag. Hence, in this case, θ(q) already belongs to T [t∗].

Thus, here we need to consider only the case when e ≤ iq. Recall that at the
beginning of Phase 0.2 of t∗, the strategy Piq was in state S2. This implies that
the computations (?) for Piq require at least (t∗ + 1) steps to finish. Let denote
this particular number of steps by (t′ + 1). At the stage t′ of the construction, the
strategy Piq finishes its computations (?). Before Piq defines its island tag, it makes
additional tag-prohibition routine: Since t′ ≥ t∗ > q, in t′ steps of computation,
one can witness that the element re(q) already has a ce-cycle of size lq. This ensures
that Re forbids Piq to use some island tag l′ ∈ L(Piq), and hence, Ce cannot be
isomorphic to T — a contradiction.

Therefore, θ(q) belongs to T [t∗], and we can compute the image θ(q) by proceed-
ing with t∗ stages of our construction of T . Hence, θ(q) is calculated in a primitive
recursive way.

Finally, for an arbitrary natural number x, we show how to compute its image
θ(x) in a primitive recursive way. First, we calculate the values q := re(x) and
l := lq.

It is not hard to prove that the following two conditions are equivalent:

• x belongs to the ce-cycle of its root re(x);
• pe(se(x)) = re(x).

Hence, if pe(se(x)) = q, then we can find the number k ≤ l with x = cke(q), and set
θ(x) := ckT (θ(q)).

Suppose that pe(se(x)) 6= q. Let (m, k) be the island coordinates of the element x.
In order to compute θ(x), it is sufficient to describe a fast procedure for calculating
the first island coordinate m: Indeed, if we know that m = 〈i, j〉 for some i and
j, then the size of the ce-cycle of x is equal to either 3i + 1 or 3i + 2. Hence, we
deduce that k ≤ 3i + 2, and after finding θ(q), one can determine the image θ(x)
in a straightforward way.

Recall that for a fixed e, the function uq,l,e(z) is primitive recursive. We show
that uq,l,e(z) stops successfully for all z. Assume that there is the least z such that
uq,l,e(z) stops unsuccessfully. Then for all elements from T with island coordinates

26 N. BAZHENOV, I. KALIMULLIN, A. MELNIKOV, AND K.M. NG

〈e, j〉, where j > uq,l,e(z − 1), the Re-strategy will iterate the pattern

[3e+ 1, 3e+ 2, 3e+ 2, . . . , 3e+ 2︸ ︷︷ ︸
z times

].

This implies that z is the maximal possible number such that there are z many

consecutive j-s such that s
〈e,j〉
e (q) has a ce-cycle of size 3e+ 2.

The procedure uq,l,e(z) can stop unsuccessfully because of two reasons:

(1) either y0 is not found, or
(2) each of the elements y1, y2, . . . , yz+1 belongs to a ce-cycle of size 3e+ 2.

Each of these cases contradicts the condition Ce ∼= T . Therefore, uq,l,e(z) must stop
successfully for all z.

We claim that the first island coordinate m of the element x is at most

uq,l,e(x) + (3x+ 2) · 2e+1.

Here the additional summand (3x + 2) · 2e+1 appears because of the following (a
little bit informal) considerations:

• In the procedure of calculating uq,l,e(x), one has to apply pe at most (2x+
1) · 2e+1 times before finding y0.

• Recall that y1 = p2
e+1

e (y0), y2 = p2
e+1

e (y1), . . . , yx+1 = p2
e+1

e (yx). Each of
these equalities provides precisely 2e+1 applications of the function pe.

Towards contradiction, assume that m > uq,l,e(x)+(3x+2) ·2e+1. Since uq,l,e(x)
stops successfully, the procedure uq,l,e(x) will find a sequence

yz+1 = s〈e,j〉e (q), yz = s〈e,j+1〉
e (q), yz−1 = s〈e,j+2〉

e (q), . . . , y0 = s〈e,j+z+1〉
e (q),

which satisfies the following conditions:

• z ≤ x;
• each of y0 and yz+1 belong to a ce-cycle of size 3e+ 1;
• each yu, 1 ≤ u ≤ z, has a ce-cycle of size 3e+ 2; and
• the number 〈e, j〉, i.e. the first island coordinate of yz+1, is strictly greater

than uq,l,e(x).

This contradicts the following: after uq,l,e(x), our construction propagates only
patterns

[3e+ 1, 3e+ 2, 3e+ 2, . . . , 3e+ 2︸ ︷︷ ︸
v times

],

where v ≥ x+ 1. Hence, m ≤ uq,l,e(x) + (3x+ 2) · 2e+1, and the island coordinates
of x can be computed in a primitive recursive way. Lemma 3.4 is proved. �

Theorem 1.4 is proved. �

4. Proof of Theorem 1.7

Proof idea. To understand and appreciate this proof idea the reader must first
familiarise themselves with the proof of the previous theorem. This time, the
structure will consist of two ω-chains, one generated by a function s and the other
one by ŝ. The chain generated by s will be similar to the one used in the previous
theorem but without the extra “island tags”. It will be playing the role of the
coordinate axis in the structure, with patterns of cycles playing the role of the
coordinates. It will be also used to press only the honestly generated punctual
copies of the structure rather than all of its punctual copies.

ONLINE PRESENTATIONS OF FINITELY GENERATED STRUCTURES 27

The other ω-chain which is generated by ŝ will have no loops attached to it. We
will also have another unary function f mapping points of the s-chain to points of
the ŝ-chain. See Fig. 2 below.

ô
ŝ ŝ ŝ

. . .

o
s s s

. . .

f f
ff

D̂-part

c-cycles of different length

D-part

Figure 2. The structure A from Theorem 1.7

Since f−1 does not have to be primitive recursive, we can use the ŝ-chain to
diagonalise against isomorphisms to other punctual copies. However, in an honestly
generated copy f−1 is primitive recursive, and therefore we are able to quickly find
its s-chain coordinate. This feature will also allow us to press the honestly generated
structures using the s-chain.

Proof. The language of our structure A consists of the following symbols:

• two constants o and ô, and
• unary functions s, c, ŝ, r̂, and f .

The (isomorphism type of the) structure A satisfies the following:

(a) The domain of A consists of two infinite disjoint parts D and D̂. We put

o ∈ D and ô ∈ D̂. For any x ∈ D, we have r̂(x) = o. For y ∈ D̂, set
r̂(y) = ô. Note that, in particular, we will be able to promptly compute

whether a given z belongs to D or D̂.

(b) If x ∈ D, then we define ŝ(x) = x. If y ∈ D̂, then set s(y) = c(y) = y and
f(y) = o.

(c) The set D̂ forms an ω-chain relative to the function ŝ: more formally,

D̂ = {ŝn(ô) : n ∈ ω},

and ŝ � D̂ is injective.
(d) The substructure (D; s, c) satisfies the same properties as the structure Ã :=

(dom(A); s, c) from the proof of Theorem 1.4. Informally speaking, (D; s, c)
is a version of the structure from Theorem 1.4, but with the predecessor
and the root functions omitted.

(e) If x = sn(o) for some n, then f(x) ∈ D̂. Furthermore, if m 6= n, then
f(sn(o)) 6= f(sm(o)). We assume that f(o) = ô.

(f) If x ∈ D and x 6= sn(o) for all n, then f(x) = o. We emphasize that

range(f) ⊆ D̂ ∪ {o}.

28 N. BAZHENOV, I. KALIMULLIN, A. MELNIKOV, AND K.M. NG

It is not difficult to show that these properties ensure that the structure A is rigid
and 1-generated (see Figure 2). As in Theorem 1.4, by B we denote the canonical
presentation of A.

Consider a language Lg, which is obtained from the language of the structure A
by adding a new unary function g. The intuition behind g is the following: We want
to treat g as the “inverse” of the function f . More formally, we define a structure
Ag in the language Lg as follows:

(1) the L(A)-reduct of Ag is equal to A, and
(2) we set

g(x) =

{
sn(o), if x ∈ D̂ and x = f(sn(o)),
ô, otherwise.

Note that the properties of A imply that the function g is well-defined (indeed,
there is at most one number n with f(sn(o)) = x). If U is a copy of A, then the
structure Ug (in the language Lg) is defined in a natural way.

Remark 4.1. If U is an honestly generated copy of A, then the structure Ug is fpr.

As in Theorem 1.4, fix a uniformly computable list of all primitive recursive unary
functions {he}e∈ω. Also choose a uniformly computable list of all fpr structures in
the language Lg:

Cn = (ω; on, ôn, sn, cn, ŝn, r̂n, fn, gn), n ∈ ω.
We will build an fpr copy T of B, and satisfy the following series of requirements:

Pe: he is not an isomorphism from T onto B.
Qn: If Cn ∼= Bg, then there is a primitive recursive isomorphism from Cn onto

Bg.

Furthermore, the construction will ensure that the structure B is honestly gen-
erated (see the verification). This fact and the requirements above are enough to
prove the theorem:

(1) The Pe-requirements guarantee that |PR(A)| > 1.
(2) If U is an honestly generated copy of A, then there is an index n such that
Cn = Ug. The Qn-requirement implies that the unique isomorphism F from
U onto B is primitive recursive. Since B is the canonical copy of A, the
(unique) isomorphism θ = F−1 from B onto U is also primitive recursive.

An overview. As in Theorem 1.4, at a stage s, the finite structure T [s] will
have a part that copies B and an island part I[s]. The island part contains no
elements from D, i.e. for every x ∈ I[s], we have r̂T (x) = ô.

Since we do not use the predecessor and the root functions as before (see The-
orem 1.4), the machinery of island tags is completely omitted. Every strategy Pe

can be in one of the following states:

(S1) unstarted;
(S2) active;
(S3) finished.

While Pe is active, it is building its own Pe-island. This island is just a finite piece
of a Z-chain, with respect to the function ŝT . Since T does not have to be honestly
generated, we heavily exploit this fact, and we delay connecting the Pe-island I to
the non-island part of T [s]: in particular, this includes not putting elements from

ONLINE PRESENTATIONS OF FINITELY GENERATED STRUCTURES 29

I into range(fT)[s]. Only when Pe is finished, we will put the elements of I into
range(fT).

In order to ensure that B is honestly generated, we will guarantee that:

(a) If ξ ∈ {s, c, ŝ}, then for any x ∈ ω, the set ξ−1B (x) is finite. Moreover, given

x, one can promptly compute the Gödel index of the finite set ξ−1B (x).

(b) The set range(fB) is equal to D̂(B) ∪ {oB}, and given y ∈ D̂(B), we can
quickly find the unique x such that fB(x) = y.

The item (b) above can be obtained via a careful working with the function fB :

At the end of each stage s, we find all y ∈ D̂(B)[s] such that y 6∈ range(fB)[s].
For each such y, we attach a fresh cB-cycle Cy to B. Suppose that x = snB(o) lies
in Cy. Then we set fB(x) := y, and all for other elements x′ of the cycle we set
fB(x′) = o. After that, we extend the non-island part of T to match the current
B, with the corresponding extension to the definition of fT . The described action

ensures that every y ∈ D̂ belongs to range(f).

The strategy Pe in isolation. Pick the least unused element we and put it into

D̂(T). Declare we the Pe-witness. While the value he(we)[t] is either undefined or
does not belong to B[t], proceed with constructing the Pe-island inside T as follows.

Recall that the function ŝ � D̂ is injective, hence, for a number z ∈ D̂−{ô}, one
can consider its unique preimage ŝ−1(z). Assume that at a stage t, the elements
ŝk(we) and ŝ−k(we) are the latest values that have been already defined. Then
we pick next elements y and z from the domain of T , and set ŝk+1(we) := y and
ŝ−k−1(we) := z. The other functions (from the language of T) are defined in an
appropriate way: e.g., ŝ(z) = ŝ−k(we), s(z) = c(z) = z, r̂(z) = ô, and f(z) = o.
While the Pe-island is growing, we do not put we into range(fT).

We emphasize the following feature of the construction: The elements

s2(o), s4(o), s6(o), . . . , s2k(o), . . .

will be used to satisfy the strategies Pi, i ∈ ω, — for each of these elements, its
cT -cycle will have an even length. Odd lengths of c-cycles will be used to satisfy
Qj , j ∈ ω.

Suppose that t0 is the first stage such that he(we)[t0] ↓ ∈ B[t0]. Then find the
least even length le > 0 such that we have never used c-cycles of size le before. We
attach the Pe-island to the main part of T [t0] and extend B to an isomorphic copy
of T . More formally, proceed as follows:

(1) Let k be the least number such that ŝkT (ô) is still undefined. Find the
greatest number m such that ŝ−mT (we) is already defined. Set ŝkT (ô) :=

ŝ−mT (we).
(2) Let n be the least number such that snT (o) is undefined. Without loss of

generality, we may assume that n is even and n 6= 0. Then we form a fresh
cT -cycle C of size le inside T , in such a way that snT (o) ∈ C. We define
fT (snT (o)) := we.

(3) Grow the main part of B by attaching copies of the Pe-island and C, in a
natural way.

30 N. BAZHENOV, I. KALIMULLIN, A. MELNIKOV, AND K.M. NG

After that, the requirement Pe is declared satisfied : Indeed, either the element
he(we) does not belong to range(fB), or the preimage f−1B (he(we)) lies in a cB-
cycle of length l′ 6= le (recall that the length le, which we used inside T , was chosen
fresh). Therefore, he cannot be an isomorphism from T onto B.

The strategy Qe in isolation. This is similar to Theorem 1.4, but presses
only honestly generated structures.

Again, the idea behind building a (potential) isomorphism F : Ce →∼= Bg is
pattern-switching. We use the patterns

[4e+ 1, 4e+ 3, 4e+ 3, . . . , 4e+ 3︸ ︷︷ ︸
k times

],

where k ∈ ω (recall that c-cycles of even length are already reserved for satisfying
the strategies Pi). Before the value F (0) is computed, we propagate the simplest
pattern [4e+ 1].

Consider the element 0 from Ce. Calculate the value r̂e(0). If r̂e(0) 6∈ {oe, ôe},
then trivially Ce cannot be a copy of Bg. Therefore, without loss of generality, we
may assume that r̂e(0) ∈ {oe, ôe}, and one can quickly determine whether 0 belongs

to D(Ce) or to D̂(Ce).
We want to quickly compute the value F (0). Note that one can promptly find a

new value x#, which is defined as follows:

(1) If 0 ∈ D(Ce), then set x# := 0.

(2) If 0 ∈ D̂(Ce), then define x# := ge(0). In this case, if Ce ∼= Bg, then 0
should belong to range(fe) (see the discussion at the end of the overview),
and fe(x

#) must be equal to 0.

The element x# always belongs to D(Ce) (if it is not the case, then Ce 6∼= Bg).
Furthermore, it is not hard to show the following: if one can promptly find the value
F (x#), then it is also possible to quickly compute the desired F (0). Therefore, for
the sake of simplicity, we will assume that x# = 0 ∈ D(Ce).

Apply se to 0 at most 2e+2 times to find an element y0 belonging to a ce-cycle
of size 4e + 1. If one compares this action with the corresponding action of the
strategy Re in Theorem 1.4, one can immediately see some subtle differences:

• The strategy Re applied the predecessor function pe, while here the suc-
cessor function se is used. Informally speaking, the reason behind this is
as follows: Here we do not use the island tags “glued” to the roots, so we
do not care much about the distance from x to its root. Hence, in order
to “catch” the (currently propagating) pattern, it is sufficient just to go
forward, along se.
• Re applied pe at most 2e+1 times, but here we use the number 2e+2 instead.

The reason behind this is pretty simple: recall that all even coordinates are
already reserved by Pi, i ∈ ω, for their own needs.

When y0 is found, compute y1 := s2
e+2

e (y0). Check whether y1 belongs to a ce-cycle
of size 4e+ 1.

Suppose that the described procedure takes u0 steps to finish. The procedure
finishes successfully if we found both numbers y0 and y1, and each of them is a part
of a ce-cycle of size 4e+1. Otherwise, the procedure finishes unsuccessfully. In case
of unsuccessful finish, it is clear that Ce 6∼= Bg, and one just continues iterating the
pattern [4e+ 1] forever.

ONLINE PRESENTATIONS OF FINITELY GENERATED STRUCTURES 31

While we are waiting for the number u0 to be calculated, (as per usual) we do
not delay the construction of B and T :

• One by one, we add new cB-cycles C into B. Let n be the (unique) number
such that the element snB(o) is a part of C. The length l of this C is defined
as follows:

– If n is even (or in other words, n = 〈0,m〉 for some m), then l := 2.
– If n = 〈e+ 1,m〉 for some m, then l := 4e+ 1.

Informally speaking, we iterate the pattern [4e + 1] in appropriate coding
places. In general, if n = 〈j + 1,m〉, then the corresponding length l will
be dictated by the current behavior of the strategy Qj .

• For each cycle C from above, we put a fresh element zC inside (the growing

ω-chain) D̂(B) and set fB(snB(o)) := zC .
• We extend the non-island part of T to an isomorphic copy of the current
B.

If the u0-procedure finishes successfully, say, at stage t, then we immediately
switch to iterating the pattern [4e+1, 4e+3]. This ensures that B will not get fresh
adjacent c-cycles of size 4e+ 1. Thus, given the value u0, one can quickly compute
F (0): Indeed, the argument similar to that of the strategy Re (in Theorem 1.4)
shows that F (0) can be found by promptly searching inside the finite structure
B[u0].

After F (0) has been computed, we want to find F (1). Again, for simplicity, we
deal with the case 1 ∈ D(Ce). Apply se to 1 at most 3·2e+2 times to find an element

y0 belonging to a ce-cycle of size 4e+ 1. When y0 is found, compute y1 = s2
e+2

e (y0)

and y2 = s2
e+2

(y1). Check whether at least one of y1 or y2 belongs to a ce-cycle
of size 4e + 1. If it is the case, then the procedure is finished successfully. The
number u1 is defined as the number of steps needed to finish this procedure (either
successfully or unsuccessfully).

While waiting for the u1-procedure to finish, grow B and T as above, modulo
the following modification: We alternate between cB-cycles of size 4e+1 and 4e+3

for elements s
〈e+1,m〉
B (o):

4e+ 1, 4e+ 3, 4e+ 1, 4e+ 3,

In other words, the pattern [4e+ 1, 4e+ 3] is being propagated.
Again, if the u1-procedure finishes unsuccessully, then we continue putting the

pattern [4e + 1, 4e + 3], and Ce is not a copy of our structure. If u1 is finished
successfully, then we switch to the pattern [4e+ 1, 4e+ 3, 4e+ 3]. The value F (1)
can be promptly recovered via considering B[u1]. After F (1) is found, we start
computing F (2).

We describe the general procedure of computing F (x). Consider x > 1. Apply
se to x at most (2x + 1) · 2e+2 times to find y0 which belongs to a ce-cycle of size

4e+ 1. When y0 is found, compute yi+1 = s2
e+2

e (yi), for 0 ≤ i ≤ x. Check whether
one of the elements y1, y2, . . . , yx+1 belongs to a ce-cycle of size 4e+ 1. If it is the
case, then we say that the ux-procedure finishes successfully.

Let ux be the number of steps needed to finish the procedure. While ux is being
computed, we propagate the pattern

[4e+ 1, 4e+ 3, . . . , 4e+ 3︸ ︷︷ ︸
x times

]

32 N. BAZHENOV, I. KALIMULLIN, A. MELNIKOV, AND K.M. NG

in appropriate coding places. If the ux-procedure finishes unsuccessfully, then we
continue iterating this pattern forever. If ux is computed successfully, then we
switch to the next pattern

[4e+ 1, 4e+ 3, . . . , 4e+ 3︸ ︷︷ ︸
x+1 times

].

Given ux, one can recover F (x) in a punctual way.
Summarizing, the calculations of ux, x ∈ ω, will allow us to quickly compute the

isomorphism F : Ce →∼= Bg.

Construction. Similar to Theorem 1.4, but instead of pressing more punctual
structures at later stages we press more honestly generated structures. The actions
of the diagonalisation P -requirements are finitary.

Verification. It should be clear from the description of Pe that the diago-
nalisation is always successful. The verification of the Q-strategies is similar to
Theorem 1.4. In fact, we do not really need the full power of being honestly gener-
ated here. All we need is having g (which plays the role of f−1) primitive recursive
in the opponent’s structure. Using g we can punctually compute the coordinates
of any point in the ŝ-chain of the opponent’s structure and then promptly match
it with the respective point in our structure. Otherwise, the verification of the
Q-strategies is the same as the verification of Theorem 1.4. �

References

[AK00] C. Ash and J. Knight. Computable structures and the hyperarithmetical hierarchy,

volume 144 of Studies in Logic and the Foundations of Mathematics. North-Holland
Publishing Co., Amsterdam, 2000.

[AKNS] M. Aschenbrenner, A. Khélif, E. Naziazeno, and T. Scanlon. The logical complexity of

finitely generated commutative rings. Int. Math. Res. Not. doi: 10.1093/imrn/rny023.
[Ala17] P. E. Alaev. Structures computable in polynomial time. I. Algebra Logic, 55(6):421–

435, 2017.

[Ala18a] P. E. Alaev. Categoricity for primitive recursive and polynomial Boolean algebras.
Algebra Logic, 57(4):251–274, 2018.

[Ala18b] P. E. Alaev. Structures computable in polynomial time. II. Algebra Logic, 56(6):429–

442, 2018.
[AT51] E. Artin and J. Tate. A note on finite ring extensions. J. Math. Soc. Japan, 3:74–77,

1951.

[BDKM19] N. Bazhenov, R. Downey, I. Kalimullin, and A. Melnikov. Foundations of online struc-
ture theory. Bull. Symb. Log., 25(2):141–181, 2019.

[BG00] Achim Blumensath and Erich Grädel. Automatic structures. In 15th Annual IEEE
Symposium on Logic in Computer Science (Santa Barbara, CA, 2000), pages 51–62.

IEEE Comput. Soc. Press, Los Alamitos, CA, 2000.
[BHTK+] Nikolay Bazhenov, Matthew Harrison-Trainor, Iskander Kalimullin, Alexander Mel-

nikov, and Keng Meng Ng. Automatic and polynomial-time algebraic structures. J.
Symb. Log. to appear.

[Bli19] K. V. Blinov. Primitively recursively categorical linear orderings. Sib. Math. J.,
60(1):20–26, 2019.

[CR91] Douglas A. Cenzer and Jeffrey B. Remmel. Polynomial-time versus recursive models.
Ann. Pure Appl. Logic, 54(1):17–58, 1991.

[CR98] D. Cenzer and J. B. Remmel. Complexity theoretic model theory and algebra. In
Yu. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel, editors, Handbook

of recursive mathematics, Vol. 1, volume 138 of Stud. Logic Found. Math., pages
381–513. North-Holland, Amsterdam, 1998.

ONLINE PRESENTATIONS OF FINITELY GENERATED STRUCTURES 33

[DHTK+] R. Downey, M. Harrison-Trainor, I. Kalimullin, A. Melnikov, and D. Turetsky. Graphs

are not universal for online computablility. Preprint.

[EG00] Y. Ershov and S. Goncharov. Constructive models. Siberian School of Algebra and
Logic. Consultants Bureau, New York, 2000.

[Ers12] M. Ershov. Golod–Shafarevich groups: A survey. Int. J. Algebra Comput.,

22(5):1230001, 2012.
[Gol64] E. S. Golod. On nil-algebras and finitely approximable p-groups. Izv. Akad. Nauk

SSSR Ser. Mat., 28(2):273–276, 1964.

[Gon81] S. Goncharov. Groups with a finite number of constructivizations. Dokl. Akad. Nauk
SSSR, 256(2):269–272, 1981.

[Gro81] M. Gromov. Groups of polynomial growth and expanding maps. Publications

Mathématiques de L’Institut des Hautes Études Scientifiques, 53(1):53–78, 1981.

[Hig61] G. Higman. Subgroups of finitely presented groups. Proc. Roy. Soc. Ser. A, 262:455–
475, 1961.

[Khi98] N. Khisamiev. Constructive abelian groups. In Handbook of recursive mathematics,

Vol. 2, volume 139 of Stud. Logic Found. Math., pages 1177–1231. North-Holland,
Amsterdam, 1998.

[Kie81] H. A. Kierstead. An effective version of Dilworth’s theorem. Trans. Am. Math. Soc.,

268:63–77, 1981.
[Kie98] H. A. Kierstead. On line coloring k-colorable graphs. Israel J. Math., 105(1):93–104,

1998.

[KM10] Bakhadyr Khoussainov and Mia Minnes. Three lectures on automatic structures. In
Logic Colloquium 2007, volume 35 of Lect. Notes Log., pages 132–176. Assoc. Symbol.

Logic, La Jolla, CA, 2010.
[KMN17a] I. Sh. Kalimullin, A. G. Melnikov, and K. M. Ng. The diversity of categoricity without

delay. Algebra Logic, 56(2):171–177, 2017.

[KMN17b] Iskander Kalimullin, Alexander Melnikov, and Keng Meng Ng. Algebraic structures
computable without delay. Theoret. Comput. Sci., 674:73–98, 2017.

[KMZ] I. Kalimullin, A. Melnikov, and M Zubkov. Punctual degrees and lattice embeddings.

Submitted.
[KN95] Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures. In

Logic and Computational Complexity (Indianapolis, IN, 1994), volume 960 of Lecture

Notes in Comput. Sci., pages 367–392. Springer, Berlin, 1995.
[KN08] Bakhadyr Khoussainov and Anil Nerode. Open questions in the theory of automatic

structures. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, (94):181–204, 2008.

[KPT94] H. A. Kierstead, S. G. Penrice, and W. T. Trotter Jr. On-line coloring and recursive
graph theory. SIAM J. Discrete Math., 7:72–89, 1994.

[Lew67] J. Lewin. Subrings of finite index in finitely generated rings. J. Algebra, 5(1):84–88,

1967.
[LS01] Roger C. Lyndon and Paul E. Schupp. Combinatorial group theory. Classics in Math-

ematics. Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition.
[LST89] L. Lovász, M. Saks, and W. T. Trotter Jr. An on-line graph coloring algorithm with

sublinear performance ratio. Discrete Math., 75:319–325, 1989.

[Mel17] Alexander G. Melnikov. Eliminating unbounded search in computable algebra. In
Unveiling dynamics and complexity, volume 10307 of Lecture Notes in Comput. Sci.,

pages 77–87. Springer, Cham, 2017.
[MN] A. G. Melnikov and K. M. Ng. The back-and-forth method and computability without

delay. Israel J.Math, to appear.

[NA68] P. S. Novikov and S. I. Adjan. Infinite periodic groups. I. Math. USSR Izv., 2(1):209–

236, 1968.
[Nos83] G. A. Noskov. Elementary theory of a finitely generated commutative ring. Math.

Notes, 33(1):12–15, 1983.
[Rab60] M. Rabin. Computable algebra, general theory and theory of computable fields. Trans.

Amer. Math. Soc., 95:341–360, 1960.

[Rem86] J. B. Remmel. Graph colorings and recursively bounded Π0
1-classes. Ann. Pure Appl.

Logic, 32:185–194, 1986.

[Rog87] H. Rogers. Theory of recursive functions and effective computability. MIT Press, Cam-

bridge, MA, second edition, 1987.

34 N. BAZHENOV, I. KALIMULLIN, A. MELNIKOV, AND K.M. NG

Sobolev Institute of Mathematics

Email address: bazhenov@math.nsc.ru

Kazan Federal University
Email address: ikalimul@gmail.com

Massey University & Kazan Federal University
Email address: alexander.g.melnikov@gmail.com

Nanyang Technological University
Email address: selwyn.km.ng@gmail.com

	1. Introduction and results
	1.1. Punctual presentations and punctual degrees
	1.2. Results

	2. The first steps. Proof of Theorem 1.3
	2.1. Proof of Theorem 1.3

	3. Proof of Theorem 1.4
	4. Proof of Theorem 1.7
	References

