Computable Soft Separation Axioms

Authors

January 2022

Abstract

Soft sets were introduced as a means to study objects that are not defined in an absolute way, and have found applications in numerous areas of mathematics, decision theory and in statistical applications. Soft topological spaces were first considered in [21], and soft separation axioms for soft topological spaces were studied in [6, 7, 4].

In this paper we introduce the effective versions of soft separation axioms. Specifically we focus our attention on computable u-soft and computable p-soft separation axioms and investigate various relations between them. We also compare the effective and classical versions of these soft separation axioms.

1 Preliminaries

1.1 Soft sets

Set theory classifies members of a set as whether those members belong to the set or not, but, in some situations we need to classify elements of a set based on some parameters. The need for such a classification motivated Molodtsov to introduce soft set theory in [14]. Soft set theory is considered a mathematical tool that deals with objects that are not defined in a definite way. Such objects can be found in complicated mathematical problems in economics and engineering applications when classical mathematical tools cannot be used due to the uncertainties associated to such problems. There are already existing mathematical tools for dealing with uncertainty in mathematical problems, such as the use of probability theory [10], fuzzy set theory [12] and interval mathematics [9]. However those three mathematical tools have their own shortcomings that the use of soft set theory overcomes as argued in [14].

Due to the unique properties of soft set theory that allow it to be more suitable in certain situations compared to the other mathematical tools mentioned above, it is often a major mathematical tool used in decision making problems as in [13] and [8]. Soft set theory, when combined with fuzzy set theory [12] can be used in decision making as in [28] and [18], and also used in forecasting problems as in [27]. There are also some applications of soft set theory in algebraic structures as in [1], [2] and [11]. When soft set theory is combined with rough set theory [16], we get new approximation spaces with interesting properties [20].

Topological spaces are introduced for soft sets [21], and some of the properties associated with soft topological spaces are explored in [15]. Several soft separation axioms were defined and studied in [6] and the further applications of those soft separation axioms are explored in [7] and [4]. Soft separation axioms are of importance in soft topological spaces as shown in the existing literature, much like how classical separation axioims have played a key role in the classification and the understanding of classical topological spaces. In this paper we will define and explore further soft separation axioms for soft topological spaces. We also define the computable versions of these soft separation axioms and investigate their properties in the effective setting. This paper is intended to investigate how computability interacts with soft topological spaces and soft separation axioms. Hence we will compare the various principles that arise by considering computable separation axioms in the soft setting.

The paper is organised as follows. In section 1.2 we recall some basic notions of soft sets and soft topological spaces as defined in the literature. In section 1.3 we briefly recall some notation and definitions that we will require from computable analysis, including computable topological spaces and computable separation axioms that were studied in the literature. In section 2 we define a new separation axiom for soft topological spaces, called *u-soft separation*, and give some of its basic properties. In section 3 we define and study computable *u-soft separation axioms for computable soft spaces*, and in section 4 we define and study various computable *p-soft separation axioms*. Finally in section 5 we compare the various principles introduced in sections 3 and 4.

1.2 Soft topological spaces

In this section, we recall some definitions and results of soft set theory and soft topological spaces. This section is meant to provide a self-contained introduction to the basics and background of soft set theory. The intitiated reader may skip ahead to section 1.3.

1.2.1 Basics of soft sets

Definition 1.1. [14] A pair (G, E) (usually denoted as G_E) is called a soft set over a universe X if G is map from the parameter set E into 2^X . We usually identify $G_E = \{(e, G(e)) : e \in E \text{ and } G(e) \subseteq X\}$. $S(X_E)$ denotes the set of all soft sets over X with respect to the parameter set E. The relative complement of G_E is denoted by G_E^c , where $G^c : E \to 2^X$ is defined by $G^c(e) = X \setminus G(e)$. Where the context is clear we do not refer to the universe X.

Definition 1.2. [13, 17] Soft union and soft intersection are taken parameterwise. For two soft sets G_{E_1}, H_{E_2} over X, their soft union, $G_{E_1} \bigcup H_{E_2}$, is the soft set $F_{E_1 \cup E_2}$ where $F : E_1 \cup E_2 \to 2^X$ is defined as follows

$$F(e) = \begin{cases} G(e), & \text{if } e \in E_1 - E_2, \\ H(e), & \text{if } e \in E_2 - E_1, \\ G(e) \cup H(e), & \text{if } e \in E_1 \cap E_2. \end{cases}$$

The soft intersection $G_{E_1} \cap H_{E_2}$ is the soft set $I_{E_1 \cap E_2}$ where $I(a) = G(a) \cap H(a)$ for every $a \in E_1 \cap E_2$.

Given $x \in X$ and a soft set G_E there are four ways one can define membership or non-membership:

Definition 1.3. [14, 6] For a soft set $G_E \in S(X_E)$ and $x \in X$, we say that

- $x \in G_E$ if $x \in G(e)$ for each $e \in E$.
- $x \notin G_E$ if $x \notin G(e)$ for some $e \in E$.
- $x \in G_E$ if $x \in G(e)$ for some $e \in E$.
- $x \notin G_E$ if $x \notin G(e)$ for each $e \in E$.

Hence \in and \notin are "strong" membership and non-membership respectively. Depending on the version of membership that one uses, the usual set theoretic operations might or might not be compatible:

Proposition 1.4. [6] For two soft sets G_E and H_E in $S(X_E)$ and $x \in X$, we have the following,

- 1. If $x \in G_E$, then $x \Subset G_E$.
- 2. $x \notin G_E$ if and only if $x \in G_E^c$.
- 3. $x \in G_E \bigcup H_E$ if and only if $x \in G_E$ or $x \in H_E$.
- 4. If $x \in G_E \cap H_E$, then $x \in G_E$ and $x \in H_E$.
- 5. If $x \in G_E$ or $x \in H_E$, then $x \in G_E \bigcup H_E$.
- 6. $x \in G_E \cap H_E$ if and only if $x \in G_E$ and $x \in H_E$.

Definition 1.5. [6, 13] A soft set G_E over X is said to be:

- A null soft set if $G(e) = \emptyset$ for each $e \in E$. It is denoted by \emptyset .
- An absolute soft set if G(e) = X for each $e \in E$. It is denoted by X.
- A stable soft set if for some $M \subseteq X$ we have G(e) = M for each $e \in E$.

There are two different ways one can define a point, either as a soft singleton or as a soft point:

Definition 1.6. [5, 21] The soft set x_E (called a soft singleton) is defined by $x(e) = \{x\}$ for each $e \in E$. A soft point, denoted by p_e^x , is the soft set P_E where $P(e) = \{x\}$ and $P(k) = \emptyset$ for each $k \in E \setminus \{e\}$.

Definition 1.7. [17] A soft set G_{E_1} is a soft subset of a soft set H_{E_2} , denoted by $G_{E_1} \subseteq H_{E_2}$, if

- $E_1 \subseteq E_2$, and
- $\forall e \in E_1, G(e) \subseteq H(e).$

Two soft sets are soft equal if each one of them is a soft subset of the other.

Definition 1.8. [19] The Cartesian product of two soft sets F_A and I_B , denoted by $(F \times I)_{A \times B}$ over universes X and Y, respectively, is defined as $(F \times I)(a, b) = F(a) \times I(b)$, for each $(a, b) \in A \times B$.

1.2.2 Soft topological spaces

The study of soft topological spaces was initiated in [21]. We quickly recall some of the definitions and results of soft topological spaces. **Definition 1.9.** [21, 15] A collection τ of soft sets over a universe X w.r.t. a parameter set E is said to be a soft topology on X if the following conditions are satisfied,

- 1. $\widetilde{X}, \widetilde{\emptyset} \in \tau$.
- 2. τ is closed under finite intersection.
- 3. τ is closed under arbitrary union.

The triple (X, τ, E) is called a *soft topological space*, or STS. Members of τ are called soft open sets. A soft set is soft closed if its complement is soft open. The closure of H_E , denoted by $\overline{H_E}$ is the intersection of all soft closed sets containing H_E . p_e^x is called a soft limit point of G_E if $[F_E \setminus p_e^x] \cap G_E \neq \tilde{\emptyset}$, for each soft open set F_E containing p_e^x .

Let Y be a nonempty soft subset of an STS (X, τ, E) . $\tau_Y = \{ \tilde{Y} \bigcap G_E : G_E \in \tau \}$ is said to a soft relative topology on Y and the triple (Y, τ_Y, E) is a soft subspace of (X, τ, E) .

Fact 1.10. [21] Given an STS (X, τ, E) and $e \in E$, $\tau_e = \{G(e) : G_E \in \tau\}$ forms a topology on X (classically).

Theorem 1.11. [19] Let (X, τ, A) and (Y, θ, B) be two STSs. Let $\Omega = \{G_A \times F_B : G_A \in \tau \text{ and } F_B \in \theta\}$. Then, the family of all arbitrary unions of elements of Ω is a soft topology on $X \times Y$.

We now recall the partial soft separation axioms based on the partial membership (\Subset) and strong non-membership (\notin) relations:

Definition 1.12. [6] An STS (X, τ, E) is said to be:

- p-soft T_0 if for every two distinct $x, y \in X$, there exists a soft open set G_E such that $x \in G_E$ and $y \notin G_E$, or $y \in G_E$ and $x \notin G_E$.
- p-soft T_1 if for every two distinct $x, y \in X$, there exist soft open sets G_E and F_E such that $x \in G_E, y \notin G_E, y \in F_E$ and $x \notin F_E$.
- p-soft T_2 if for every two distinct $x, y \in X$, there exist disjoint soft open sets G_E and F_E such that $x \in G_E$ and $y \in F_E$.
- p-soft regular if for every soft closed set H_E and $x \in X$ such that $x \notin H_E$, there exist disjoint soft open sets G_E and F_E such that $H_E \subseteq G_E$ and $x \in F_E$.

Note that two soft sets are disjoint if their soft intersection is \emptyset .

The following well-know fact about T_1 spaces holds in the p-soft setting:

Theorem 1.13. An STS (X, τ, E) is a p-soft T_1 space if and only if x_E is soft closed, for all $x \in X$.

1.3 Basics of computable analysis

1.3.1 Type-2 theory of computability

Turing provided [22] in his pioneering work in 1936 an abstract model of a Turing machine. This is a central notion in the study of computability theory. In classical computability theory we deal with natural numbers and the domain and co-domain of computable functions are subsets of the natural numbers \mathbb{N} . However, in the study of effective analysis we are often concerned with potentially uncountable objects such as subsets of the real numbers, or sets of functions, etc. In order to apply the tools of classical computability we will need to "encode" these objects by means of *names*. Through systems of notations and representations in which the objects of study are represented as finite or infinite sequences of natural numbers we can make sense of the notion of a computation in which these names can be used as an input or the output of a computation.

Computable analysis has provided us with the formal framework in which we can conduct investigations of computablity in the realm of analysis and topology. We introduce the notations that will be used throughout the paper. The reader is referred to [23, 25] for more details and background. Let Σ be a finite set of symbols that contains 0 and 1. The set of all finite words over Σ is denoted by Σ^* , and the set of all infinite sequences over Σ is denoted by Σ^{ω} where $q \in \Sigma^{\omega}$ means that $q : \mathbb{N} \to \Sigma^{\omega}$ and we write $q = q(0)q(1)\cdots$, and |w|denotes the length of $w \in \Sigma^*$. $q^{\leq i} \in \Sigma^*$ represents the initial segment of length i of $q \in \Sigma^{\omega}$ and $w \sqsubseteq q$ means that w is a prefix of q.

We use the wrapping function $\iota : \Sigma^* \to \Sigma^*$, where for $a, b, c, d, e \in \Sigma$, $\iota(abcde) = 110a0b0c0d0e011$ to encode the concatenation of finite strings in a way which can be effectively decoded. For instance, we cannot recover σ and τ from $\sigma\tau$ but we can do so from $\iota(\sigma)\iota(\tau)$. We fix the pairing function on the set of natural numbers as $\langle i, j \rangle = \frac{(i+j)(i+j+1)}{2} + j$. We also consider the standard tupling function on Σ^* and Σ^{ω} where $\langle v_1, \cdots, v_n \rangle = \iota(v_1) \cdots \iota(v_n)$, $\langle v, q \rangle = \iota(v)q, \langle p, q \rangle = p(0)q(0)p(1)q(1) \cdots$, and $\langle q_0, q_1, \cdots \rangle (\langle i, j \rangle) = q_i(j)$ for $v_1, \dots, v_n, v \in \Sigma^*$ and $p, q \in \Sigma^{\omega}$. For $r \in \Sigma^*$ let r! be the longest subword $s \in 11\Sigma^*11$ of r and then for $u, r_1, r_2 \in \Sigma^*$, $(u \ll r_1 \lor u \ll r_2) \Leftrightarrow u \ll r_1!r_2!$ where $u \ll r$ iff $\iota(u)$ is a subword of r.

For $X_1, X_2 \in {\Sigma^*, \Sigma^\omega}$, a (partial) function $f :\subseteq X_1 \to X_2$ is computable if there is a type-2 machine M that computes f (see [23, 25] for more details if the reader is unfamiliar with the basics of effective type-2 theory). In TTE, we use representations or names to denote objects and type-2 machines can work with them via names. This is formalised through the notion of a represented space: a representation δ of a set S is simply a surjective (partial) function $\delta :\subseteq \Sigma^\omega \to S$, while a notation ν of a countable set S is a surjective (partial) function $\nu :\subseteq \Sigma^* \to S$. Examples include the canonical notations of the natural numbers and the rational numbers $\nu_{\mathbb{N}} : \Sigma^* \to \mathbb{N}, \nu_{\mathbb{Q}} : \Sigma^* \to \mathbb{Q}$, respectively.

For representations or notations $\gamma :\subseteq \Sigma^{\omega} \cup \Sigma^* \to M$ and $\gamma' :\subseteq \Sigma^{\omega} \cup \Sigma^* \to M'$, a partial function $h :\subseteq \Sigma^{\omega} \cup \Sigma^* \to \Sigma^{\omega} \cup \Sigma^*$ realizes $f :\subseteq M \to M'$ if $f \circ \gamma(p) = \gamma' \circ h(p)$ for every $p \in dom(\gamma)$. The function f is called (γ, γ') -computable if it has a computable realization h. These definitions extend readily to multirepresentations and multi-functions.

We say that γ is reducible to γ' (denoted by $\gamma \leq \gamma'$) if $M \subseteq M'$ and the identity function $id: M \to M'$ is (γ, γ') -computable, i.e. there is a computable function that translates γ -names to γ' -names. Two representations γ and γ' are equivalent iff $\gamma \leq \gamma'$ and $\gamma' \leq \gamma$.

Given a notation $\alpha :\subseteq \Sigma^* \to M$ we can extend it naturally to a notation α^{fs} for the set of finite subsets of M, and a representation α^{cs} for the set of countable subsets of M in the natural way:

$$\alpha^{fs}(w) = W \Leftrightarrow (\forall u \ll w)u \in dom(\alpha), W = \{\alpha(u) : u \ll w\};$$
$$\alpha^{cs}(p) = W \Leftrightarrow (\forall u \ll p)u \in dom(\alpha), W = \{\alpha(u) : u \ll p\}.$$

If $\mu :\subseteq \Sigma^{\omega} \to M'$ is a representation of M', we can also define representations μ^{fs} and μ^{cs} for the set of finite and countable subsets of M' accordingly: $\mu^{fs}(p) = W \Leftrightarrow (\exists n)(\exists q_1, ..., q_n \in dom(\mu)), p = \langle 1^n, q_1, ..., q_n \rangle, W = \{\mu(q_1), ..., \mu(q_n)\}, \text{ and } \mu^{cs}(\langle a_0q_0, a_1q_1, ... \rangle) = W \Leftrightarrow (\forall i)(a_i = 0 \Rightarrow q_i \in dom(\mu)) \text{ and } W = \{\mu(q_i) : a_i = 0\}.$ Here $w \in \Sigma^*, p, q_0, q_1, ... \in \Sigma^{\omega}$ and $a_0, a_1, ...$ are symbols of Σ .

1.3.2 Computable topological spaces

In this section, we define computable topological spaces as introduced in [24, 26] and mention some of the useful results in the literature that are relevant to us.

Definition 1.14 (Weihrauch and Grubba [26]). An effective topological space is defined to be a 4-tuple $\mathbf{X} = (X, \tau, \alpha, \mu)$ such that (X, τ) is a topological T_0 space and $\mu :\subseteq \Sigma^* \to \alpha$ is a notation of a countable base α of τ . **X** is a computable topological space if dom(μ) is recursive and there is some c.e. set S such that for all $u, v \in dom(\mu)$ we have

$$\mu(u)\cap\mu(v)=\bigcup\{\mu(w):(u,v,w)\in S\}.$$

In other words, the intersection of any two basic open sets is effectively open, uniformly in the notation for the basic open sets.

Definition 1.15 (Weihrauch [24]). Let $\mathbf{X} = (X, \tau, \alpha, \mu)$ be a computable topological space. We define the following representations.

1. $\delta :\subseteq \Sigma^{\omega} \to X$ is a representation of the set X, where

$$\delta(p) = x \Leftrightarrow (\forall w \in \Sigma^*) (w \ll p \Leftrightarrow x \in \mu(w)).$$

2. $\vartheta :\subseteq \Sigma^{\omega} \to \tau$ is a representation of the set of open sets where

$$\vartheta(p) = W \Leftrightarrow \forall w \in \Sigma^*(w \ll p \Rightarrow w \in dom(\mu)), \text{ and } W = \bigcup \{\mu(w) : w \ll p\}.$$

3. $\psi :\subseteq \Sigma^{\omega} \to \mathcal{A}$ is a representation of the set of closed sets where

$$\psi(p) = A \Leftrightarrow \forall w \in \Sigma^*(w \ll p \Leftrightarrow A \cap \mu(w) \neq \emptyset).$$

4. $\varkappa :\subseteq \Sigma^{\omega} \rightrightarrows \mathbf{K}$ is a multi-representation of the set of compact subsets of X where

$$\varkappa(p) = K \Leftrightarrow [(\forall w \in \Sigma^*)(w \ll p \Leftrightarrow K \subseteq \cup \mu^{fs}(w))].$$

5. $\overline{\delta} :\subseteq \Sigma^{\omega} \to X$ is a representation of the set X, where

$$\overline{\delta}(p) = x \Leftrightarrow \vartheta(p) = X \setminus \overline{\{x\}}$$

6. $\overline{\vartheta} :\subseteq \Sigma^{\omega} \to \tau$ is a representation of the set of open sets, where

$$\overline{\vartheta}(p) = X \setminus \psi(p)$$

7. $\overline{\psi} :\subseteq \Sigma^{\omega} \to \mathcal{A}$ is a representation of the set of closed sets, where

$$\overline{\psi}(p) = X \setminus \vartheta(p).$$

We introduce some existing results that we will be using implicitly throughout the paper.

Lemma 1.16 (Weihrauch [24]). We have the following:

- 1. $\mu \leq \bigcup \mu^{fs} \leq \vartheta$.
- 2. $\delta(w\Sigma^{\omega}) = \bigcap \mu^{fs}(w)$ for all $w \in dom(\mu^{fs})$.
- 3. The space is SCT_2 (see definition 1.19) iff $\delta \leq \overline{\delta}$.

The following theorem illustrates how we can compute unions and intersections of open and closed sets computably.

Theorem 1.17 (Weihrauch [24]). We have the following:

- 1. Finite intersection on open sets is (μ^{fs}, ϑ) -computable and $(\vartheta^{fs}, \vartheta)$ computable.
- 2. Union on open sets is $(\vartheta^{cs}, \vartheta)$ -computable.
- 3. Finite union on closed sets is $(\overline{\psi}^{fs}, \overline{\psi})$ -computable, and intersection on closed sets is $(\overline{\psi}^{cs}, \overline{\psi})$ -computable.
- 4. Finite union of compact sets is $(\varkappa^{fs},\varkappa)$ -computable.

Lemma 1.18 (Weihrauch and Grubba [26]). Given a point x, an open set W, a closed set A and a compact set K, we have the following:

- 1. " $x \in W$ " is (δ, ϑ) -c.e.
- 2. " $K \subseteq W$ " is (\varkappa, ϑ) -c.e.
- 3. " $A \cap W \neq \emptyset$ " is (ψ, ϑ) -c.e.
- 4. " $K \cap A = \emptyset$ " is $(\varkappa, \overline{\psi})$ -c.e.

1.3.3 Computable separation axioms

Weihrauch [24] introduced effective versions of separation axioms in computable topological spaces and discovered several interesting properties that hold for the computable separation axioms but not for their classical counterparts. For instance, he proved that the computable versions of T_2 and T_1 are equivalent [24] although they are clearly not classically equivalent.

In this section, we recall some of the computable separation axioms defined in [24] and the relationships between them. The main goal of this paper is to further this line of investigation for soft topological spaces. In the subsequent sections, we define different types of computable separation axioms for soft topological spaces and establish the relationships between them. We also show that certain implications are proper.

Definition 1.19 (Weihrauch [24]). We define the following properties for a computable topological space (X, τ, α, μ) :

- CT_0 : The multi-function t_0 is (δ, δ, μ) -computable, where t_0 maps every pair of points $(x, y) \in X^2$ such that $x \neq y$ to some $U \in \alpha$ such that $x \in U$ and $y \notin U$, or $x \notin U$ and $y \in U$.
- CT_1 : The multi-function t_1 is (δ, δ, μ) -computable, where t_1 maps every pair of points $(x, y) \in X^2$ such that $x \neq y$ to some $U \in \alpha$ such that $x \in U$ and $y \notin U$.
- CT_2 : The multi-function t_2 is $(\delta, \delta, [\mu, \mu])$ -computable, where t_2 maps every pair of points $(x, y) \in X^2$ such that $x \neq y$ to some $(U, V) \in \alpha^2$ such that $U \cap V = \emptyset$, $x \in U$ and $y \in V$.
- SCT_2 : There is a c.e. set $H \subseteq \Sigma^* \times \Sigma^*$ such that
 - 1. $\forall x \neq y \ \exists (u, v) \in H \ (x \in \mu(u) \land y \in \mu(v)).$
 - 2. $\forall (u,v) \in H \ (\mu(u) \cap \mu(v) = \emptyset).$
- CT_2^{pc} : The multi-function t^{pc} is $(\delta, \varkappa, [\mu, \bigcup \mu^{fs}])$ -computable, where t^{pc} maps every $x \in X$ and every compact set K such that $x \notin K$ to some pair (U, W) of disjoint open sets such that $x \in U$ and $K \subseteq W$.
- CT_2^{cc} : The multi-function t^{cc} is $(\varkappa, \varkappa, [\bigcup \mu^{fs}, \bigcup \mu^{fs}])$ -computable, where t^{cc} maps every pair (K, L) of non-empty disjoint compact sets to some pair (V, W) of disjoint open sets such that $K \subseteq V$ and $L \subseteq W$.

- SCT_2^{pc} : There is a c.e. set $H \subseteq \Sigma^* \times \Sigma^*$ such that
 - 1. $\forall x \in X \forall \text{ compact } K \text{ such that } x \notin K \exists (u, w) \in H \ (x \in \mu(u) \land K \subseteq \bigcup \mu^{fs}(w)).$
 - 2. $\forall (u, w) \in H \ (\mu(u) \cap \bigcup \mu^{fs}(w) = \emptyset).$
- SCT_2^{cc} : There is a c.e. set $H \subseteq \Sigma^* \times \Sigma^*$ such that
 - 1. \forall compact sets K, L such that $K \cap L = \emptyset \exists (u, v) \in H \ (K \subseteq \bigcup \mu^{fs}(u)$ and $L \subseteq \bigcup \mu^{fs}(v))$.
 - 2. $\forall (u,v) \in H \ (\bigcup \mu^{fs}(u) \cap \bigcup \mu^{fs}(v) = \emptyset).$

2 u-soft separation axioms

In section 1.2.2 we had mentioned soft separation axioms for STS based on strong membership and strong non-membership.

In this section, we define u-soft separation axioms. This type of separation axioms is based on soft points which is the natural way to define separation axioms analogously to the classical separation axioms. We investigate the relations between the u-soft separation axioms and p-soft separation axioms defined in [6]. we will note that some implications between the two different notions of soft separation axioms hold when the set of parameters is finite, however, when the parameter set is infinite those implications do not hold as what will be seen then from the counterexamples. We also answer a question proposed in [3] about whether u-soft T_2 spaces imply p-soft T_2 spaces where we find out that the answer is yes and we give a counterexample to show that the reverse implication is not true in general.

Definition 2.1. An STS (X, τ, E) is called

- u-soft T_0 iff $\forall p_e^x, p_e^y \in \widetilde{X}$, there exists a soft open set G_E such that $p_e^x \in G_E$ and $p_e^y \notin G_E$, or $p_e^x \notin G_E$ and $p_e^y \in G_E$.
- u-soft T_1 iff $\forall p_e^x, p_e^y \in \widetilde{X}$, there exist two soft open sets G_E and F_E such that $p_e^x \in G_E$ and $p_e^y \notin G_E$, and $p_e^x \notin F_E$ and $p_e^y \in F_E$.
- u-soft T_2 iff $\forall p_e^x, p_e^y \in \widetilde{X}$, there exist two soft open sets G_E and F_E such that $p_e^x \in G_E$ and $p_e^y \in F_E$ and $G_E \cap F_E = \widetilde{\emptyset}$.

Immediate implications between u-soft separation axioms are given in the next proposition.

Proposition 2.2. Every u-soft T_i space is u-soft T_{i-1} space for i = 2, 1.

Proof. Straightforward.

Now, we give counterexamples to the above implications.

Example 2.3. Let $X = \{x\}, E = \{e_1, e_2\}$ and $\tau = \{\widetilde{X}, \widetilde{\emptyset}, \{(e_1, \{x\}), (e_2, \widetilde{\emptyset})\}\}.$

It can be easily seen that this space is u-soft T_0 but not u-soft T_1 .

Example 2.4. Let $E = \mathbb{N}, X$ be an infinite set, $\tau = \{\widetilde{X}, \widetilde{\emptyset}, G_E : G_E^c \text{ is finite }\}.$

Clearly, this space is u-soft T_1 but not u-soft T_2 .

Proposition 2.5. : An STS is a u-soft T_1 space iff $\forall p_e^x \in \widetilde{X}, \ \overline{p_e^x} = p_e^x$.

Proof. Straightforward.

The following propositions illustrate the relation between u-soft T_i and psoft T_i spaces for i = 2, 1. Those implications are based on the finiteness of the parameter set and counterexamples are given to show that the implications are proper.

Proposition 2.6. Every u-soft T_2 space is p-soft T_2 space if E is finite.

Proof. Let $x \neq y$ and E has m parameters. $\forall p_{e_i}^x \forall p_{e_j}^y \in \widetilde{X} \setminus p_{e_i}^x$, there exist two disjoint soft open sets $G_{E_{i_j}}$ and $F_{E_{i_j}}$ such that $p_{e_i}^x \in G_{E_{i_j}}$ and $p_{e_j}^y \in F_{E_{i_j}}$. Then, $p_{e_i}^x \in \bigcap_{j=1}^m G_{E_{i_j}}$ and $y \notin G_{E_{i_j}} \forall i \leq m$, also, $y \in \bigcup_{j=1}^m F_{E_{i_j}}$ and $p_{e_i}^x \notin \bigcup_{j=1}^m F_{E_{i_j}}$. Thus,

$$x \in \bigcup_{i=1} [\bigcap_{j=1} G_{E_{i_j}}] and y \in \bigcap_{i=1} [\bigcup_{j=1} F_{E_{i_j}}],$$

and

$$\bigcup_{i=1}^{m} [\bigcap_{j=1}^{m} G_{E_{i_j}}]] \bigcap [\bigcap_{i=1}^{m} [\bigcup_{j=1}^{m} F_{E_{i_j}}]] = \widetilde{\emptyset}.$$

Therefore, the space is p-soft T_2 .

Proposition 2.7. : Every u-soft T_1 space is p-soft T_1 space if E is finite.

Proof. Let $x \neq y$ and E has m parameters. $\forall p_{e_i}^x \forall p_{e_j}^y \in \widetilde{X} \setminus p_{e_i}^x$, there exists an open set $G_{E_{i_j}}$ such that $p_{e_i}^x \in G_{E_{i_j}}$ and $p_{e_j}^y \notin G_{E_{i_j}}$. Then, $p_{e_i}^x \in \bigcap_{j=1}^m G_{E_{i_j}}$, $\forall i \leq m$. Therefore,

$$x \in \bigcup_{i=1}^{m} [\bigcap_{j=1}^{m} G_{E_{i_j}}] and y \notin \bigcup_{i=1}^{m} [\bigcap_{j=1}^{m} G_{E_{i_j}}].$$

Similarly, if we switch y and x we will get soft open sets $G_{E_{i_j}}$ such that

$$y \in \bigcup_{i=1}^{m} [\bigcap_{j=1}^{m} F_{E_{i_j}}] and x \notin \bigcup_{i=1}^{m} [\bigcap_{j=1}^{m} F_{E_{i_j}}].$$

Therefore, the space is p-soft T_1 .

The converse of the above propositions is not true in general as shown in the following example.

Example 2.8. Let
$$X = \{x, y\}, E = \{e_1, e_2\}$$
 and
 $\tau = \{\widetilde{X}, \widetilde{\emptyset}, \{(e_1, \{x\}), (e_2, \{x\})\}, \{(e_1, \{y\}), (e_2, \{y\})\}, \{(e_1, \emptyset), (e_2, \{x\})\}, \{(e_1, \{x\}), (e_2, \emptyset)\}, \{(e_1, \{y\}), (e_2, \emptyset)\}, \{(e_1, X), (e_2, \{x\})\}, \{(e_1, X), (e_2, \{y\})\}, \{(e_1, \{y\}), (e_2, X)\}, \{(e_1, X), (e_2, \emptyset)\}, \{(e_1, \{y\}), (e_2, \{x\})\}\}.$ This space is p-soft T_2 but not u-soft T_1 .

When the parameter set is infinite, the above inclusions do not hold in general as shown in the following examples.

Example 2.9. Let $X = \{x, y\}$, $E = \{e_1, e_2, \cdots\}$. We define a STS τ on X with respect to E as follows, $\tau = \{\widetilde{X}, \widetilde{\emptyset}, G_k^{a_{i_1}a_{i_2}\cdots a_{i_k}} : G_k^{a_{i_1}a_{i_2}\cdots a_{i_k}} = \{(e_1, f(a_{i_1}), (e_2, f(a_{i_2}), \cdots, (e_k, f(a_{i_k}), (e_{k+1}, X), \cdots); i_1, \cdots, i_k \in \{0, 1, 2, 3\}; f(a_0) = \emptyset, f(a_1) = \{x\}, f(a_2) = \{y\}, f(a_3) = X\}.$ Clearly, this space is u-soft T_1 but it is not p-soft T_1 or even p-soft T_0 .

Example 2.10. Let $X = \{a, b\}$, $E = \{e_1, e_2, \dots\}$. We partition \mathbb{N} into infinitely many infinite partitions $\mathbb{N} = F_1 \bigcup F_2 \bigcup \dots$ we define a STS on X with respect to E where its basic open sets are defined as follows, for each finite set $G \subseteq \mathbb{N}$ we have $\{p_{e_i}^a : i \in G\}$ and for each finite set $G \subseteq \mathbb{N}$, $n \in \mathbb{N}$ we have $\{p_{e_i}^a : i \in F_n - G\}$. Clearly, this space is u-soft T_2 but it is not p-soft T_2 .

The following two examples show that u-soft T_0 and p-soft T_0 spaces are incomparable.

Example 2.11. Let $X = \{x, y\}, E = \{e_1, e_2\}$ and $\tau = \{\tilde{X}, \tilde{\emptyset}, \{(e_1, \{y\}), (e_2, \{x\})\}, \{(e_1, \tilde{\emptyset}), (e_2, \{y\})\}, \{(e_1, \{y\}), (e_2, X)\}, \{(e_1, \tilde{\emptyset}), (e_2, \{x\})\}, \{(e_1, \tilde{\emptyset}), (e_2, X)\}\}.$

This space is u-soft T_0 but not p-soft T_0 .

Example 2.12. Let $X = \{x, y\}$, $E = \{e_1, e_2\}$ and $\tau = \{\widetilde{X}, \widetilde{\emptyset}, \{(e_1, \{x\}), (e_2, \{x\})\}\}.$

This space is p-soft T_0 but not u-soft T_0 .

3 Computable u-soft separation axioms

In this section, we define the new notions of computable soft topological spaces and computable u-soft separation axioms that are based on soft points. We investigate some properties and implications of those newly defined computable u-soft separation axioms. We also introduce some counterexamples to prove that some implications are not true in general.

Definition 3.1. A computable STS is a tuple (X, τ, A, β, ν) such that

- 1. (X, τ, A) is a u-soft T_0 space,
- 2. $\nu: \Sigma^* \to \beta$ is a notation of a base of τ with respect to soft points with recursive domain,
- 3. There is a computable function $h : \Sigma^* \times \Sigma^* \to \Sigma^\omega$ such that for all $u, v \in dom(\nu)$,

$$\nu(u) \bigcap \nu(v) = \cup \{\nu(w) : w \in dom(\nu) \text{ and } \iota(w) \ll h(u,v)\}.$$

Note. In computable soft topological spaces when we encode soft points we need to consider the parameter of the soft point so that it is encoded as well in the name. That is, $\delta^u(p) = p_e^x$ where p is a list of all basic soft open sets containing p_e^x and the first bit of p encodes the parameter of the soft point, which is e in this case. When the parameter set E is infinite, we require it to be computable and countable, and to be given of the form $E = \{e_1, e_2, \dots\}$.

The following are the computable u-soft separation axioms where they are based on separating soft points by basic soft open sets. **Definition 3.2.** A computable STS (X, τ, A, β, ν) is computable u-soft T_0 $(CuT_0, \text{ for short })$ if (X, τ, A) is a u-soft T_0 and the multifunction ut_0 is $(\delta^u, \delta^u, \nu)$ -computable where ut_0 maps every $(p_e^x, p_\alpha^y) \in \widetilde{X} \times \widetilde{X}$ such that $p_e^x \neq p_\alpha^y$ to some $U_A \in \beta$ such that

$$(p_e^x \in U_A \text{ and } p_\alpha^y \notin U_A) \text{ or } (p_e^x \notin U_A \text{ and } p_\alpha^y \in U_A).$$

Definition 3.3. A computable STS (X, τ, A, β, ν) is computable u-soft T_1 (CuT_1 , for short) if (X, τ, A) is a u-soft T_0 and the multifunction ut_1 is $(\delta^u, \delta^u, \nu)$ -computable where ut_1 maps every $(p_e^x, p_\alpha^y) \in \widetilde{X} \times \widetilde{X}$ such that $p_e^x \neq p_\alpha^y$ to some $U_A \in \beta$ such that

$$(p_e^x \in U_A \text{ and } p_\alpha^y \notin U_A).$$

Definition 3.4. A computable STS (X, τ, A, β, ν) is computable u-soft T_2 $(CuT_2, \text{ for short })$ if (X, τ, A) is a u-soft T_0 and the multifunction ut_2 is $(\delta^u, \delta^u, \nu)$ -computable where ut_2 maps every $(p_e^x, p_\alpha^y) \in \widetilde{X} \times \widetilde{X}$ such that $p_e^x \neq p_\alpha^y$ to some $U_A, V_A \in \beta$ such that

$$(p_e^x \in U_A \text{ and } p_\alpha^y \in V_A \text{ and } U_A \bigcap V_A = \widetilde{\emptyset}).$$

The next lemma gives the obvious implications between the computable usoft separation axioms that are defined so far. The proof is Straightforward by definition.

Lemma 3.5. $CuT_i \Rightarrow u$ -soft T_i for $i \in \{0, 1, 2\}$.

Proof. Straightforward.

Lemma 3.6. $CuT_i \Rightarrow CuT_{i-1}$ for $i \in \{1, 2\}$.

Proof. Straightforward.

We give a counterexample that is CuT_0 but not CuT_1 .

Example 3.7. Let $X = \{x\}$ be the universe set, $E = \{e_1, e_2\}$ be a set of parameters and τ is a STS generated by the following base,

$$\nu(01) = \{(e_1, \{x\}), (e_2, \emptyset)\}, \nu(001) = X, where \beta = range(\nu).$$

We define now some more computable u-soft separation axioms to help us establish the relation between CuT_1 and CuT_2 . At the end of this section we will see that some of the following notions are equivalent.

Definition 3.8. A computable STS is:

 $WCuT_0$: If there is a c.e. set $H \subseteq dom(\nu) \times dom(\nu)$ such that

1. $(\forall p_e^x \neq p_\alpha^y)(\exists (u, v) \in H)(p_e^x \in \nu(u) \text{ and } p_\alpha^y \in \nu(v)),$ 2. $(\forall (u, v) \in H):$ $(\nu(u) \bigcap \nu(v) = \widetilde{\emptyset}),$ $\vee((\exists p_e^x)\nu(u) = \{p_e^x\} \subseteq \nu(v)),$ $\vee((\exists p_\alpha^y)\nu(v) = \{p_\alpha^y\} \subseteq \nu(u)).$

 $SCuT_0$: If The multifunction ut_0^s is $(\delta^u, \delta^u, [\nu_N, \nu])$ -computable where ut_0^s maps every $(p_e^x, p_\alpha^y) \in \widetilde{X} \times \widetilde{X}$ such that $(p_e^x \neq p_\alpha^y)$ to some $(k, U_E) \in \mathbb{N} \times \beta$ such that

$$(k = 1, p_e^x \in U_E \text{ and } p_\alpha^y \notin U_E) \lor (k = 2, p_e^x \notin U_E \text{ and } p_\alpha^y \in U_E)$$

 CuT_0' : If there is a c.e. set $H \subseteq dom(\nu_N) \times dom(\nu) \times dom(\nu)$ such that

$$\begin{split} 1. \ (\forall p_e^x \neq p_\alpha^y)(\exists (w, u, v) \in H)(p_e^x \in \nu(u) \ and \ p_\alpha^y \in \nu(v)), \\ 2. \ (\forall (w, u, v) \in H): \\ (\nu(u) \bigcap \nu(v) = \widetilde{\emptyset}), \\ \lor (\nu_N(w) = 1(\exists p_e^x)\nu(u) = \{p_e^x\} \subseteq \nu(v)), \\ \lor (\nu_N(w) = 2(\exists p_\alpha^y)\nu(v) = \{p_\alpha^y\} \subseteq \nu(u)). \end{split}$$

 CuT_1' : If there is a c.e. set $H\subseteq dom(\nu)\times dom(\nu)$ such that

1. $(\forall p_e^x \neq p_\alpha^y)(\exists (u, v) \in H)(p_e^x \in \nu(u) \text{ and } p_\alpha^y \in \nu(v)),$ 2. $(\forall (u, v) \in H):$ $(\nu(u) \bigcap \nu(v) = \widetilde{\emptyset}),$ $\lor((\exists p_e^x)\nu(u) = \{p_e^x\} \subseteq \nu(v)).$

 CuT_2' : If there is a c.e. set $H \subseteq dom(\nu) \times dom(\nu)$ such that

1. $(\forall p_e^x \neq p_\alpha^y)(\exists (u, v) \in H)(p_e^x \in \nu(u) \text{ and } p_\alpha^y \in \nu(v)),$

2.
$$(\forall (u, v) \in H)$$
:
 $(\nu(u) \bigcap \nu(v) = \widetilde{\emptyset}),$
 $\vee((\exists p_e^x)\nu(u) = \{p_e^x\} = \nu(v)).$

SCuT₂: If there is a c.e. set $H \subseteq dom(\nu) \times dom(\nu)$ such that

- 1. $(\forall p_e^x \neq p_\alpha^y)(\exists (u, v) \in H)(p_e^x \in \nu(u) \text{ and } p_\alpha^y \in \nu(v)),$
- 2. $(\forall (u, v) \in H)$:

$$(\nu(u) \bigcap \nu(v) = \emptyset)$$

Now we investigate the relations between those separation axioms.

Proposition 3.9. $CuT_0 \Leftrightarrow SCuT_0 \Leftrightarrow CuT_0'$.

Proof. $SCuT_0 \Rightarrow CuT_0$: Straightforward.

 $CuT_0 \Rightarrow SCuT_0$: There is a machine M on input $(p,q) \in dom(\delta^u) \times dom(\delta^u)$, it first runs ut_0 on (p,q) that outputs u. Then M outputs (1,u) if $u \ll p$, and outputs (2,u) if $u \ll q$.

 $CuT_0' \Rightarrow SCuT_0$: There is a machine M on input $(p,q) \in \Sigma^{\omega} \times \Sigma^{\omega}$, it first searches for $(w, u, v) \in H$ such that $u \ll p$ and $v \ll q$ and then it outputs (w, u)if $\nu_N(w) = 1$ and (w, v), otherwise.

 $SCuT_0 \Rightarrow CuT_0'$: Let M be a machine that realizes ut_0^s . There is another machine M' that on input $(w, u, v) \in (\Sigma^*)^3$ halts iff we can find words $u' \in dom(\nu)$, $f, h \in dom(\nu^{fs})$ and $t \leq min(|f|, |h|)$ such that M on $(f1^{\omega}, h1^{\omega})$ halts in t steps outputting (w, u') and

$$u \ll g(f\iota(u')) \text{ and } v \ll g(h) \text{ if } \nu_N(w) = 1,$$
$$u \ll g(h) \text{ and } v \ll g(f\iota(u')) \text{ if } \nu_N(w) = 2.$$

Now, let $H = dom(f_{M'})$.

We need now to show the two conditions of H. For the first condition: Let $\delta^u(p) = p_e^x \neq p_\alpha^y = \delta^u$. Then M on (p,q) halts and outputs (w,u') in t steps where $\nu_N(w) = 1, p_e^x \in \nu(u')$ and $p_\alpha^y \notin \nu(u')$ (when $\nu_N(w) = 2$, same argument follows). Then, M also halts on $(f1^\omega, h1^\omega)$ outputting (w, u') where $f = p^{<t}$ and $h = q^{<t}$. Thus, $p_e^x \in \bigcap \nu^{fs}(f\iota(u'))$ and $p_\alpha^y \in \bigcap \nu^{fs}(h)$ and hence there are u, v such that $u \ll \nu^{fs}(f\iota(u')), u \ll p$ and $v \ll \nu^{fs}(h), v \ll q$. Therefore, there exists some $(w, u, v) \in H$ such that $p_e^x \in \nu(u)$ and $p_\alpha^y \in \nu(v)$. For the second condition of H: Let $(w, u, v) \in H$, $\nu_N(w) = 1$, $p_e^x \in \nu(u)$, $p_{\alpha}^y \in \nu(u) \bigcap \nu(v)$ and $p_e^x \neq p_{\alpha}^y$. Then, there are f, h, u' and t such that $t \leq \min(|f|, |h|)$ and M halts on $(f1^{\omega}, h1^{\omega})$ in t steps outputting (w, u') and $u \ll g(f\iota(u'))$ and $v \ll g(h)$. Therefore, $p_e^x \in \nu(u) \subseteq \delta^u[f\Sigma^{\omega}] \bigcap \nu(u')$ and $p_{\alpha}^y \in \nu(v) \subseteq \delta^u[h\Sigma^{\omega}]$. We know that $p_e^x \in \nu(u')$ and $p_{\alpha}^y \notin \nu(u')$. But, $p_{\alpha}^y \in \nu(u) \subseteq \nu(u')$), which a contradiction. Therefore, it must be the case that $p_e^x = p_{\alpha}^y$, hence,

$$((w, u, v) \in H, \nu_N(w) = 1 \text{ and } \nu(u \bigcap \nu(v) \neq \widetilde{\emptyset}) \Rightarrow (\exists p_e^x)\nu(u) = \{p_e^x\} \subseteq \nu(v).$$

Same argument follows when $\nu_N(w) = 2$.

Proposition 3.10. $SCuT_2 \Rightarrow CuT_2 \Rightarrow CuT_0 \Rightarrow WCuT_0$.

Proof. Straightforward.

Proposition 3.11. $CuT_2 \Leftrightarrow CuT_2' \Leftrightarrow CuT_1 \Leftrightarrow CuT_1'$.

Proof. $CuT_1 \Leftrightarrow CuT_1'$: Straightforward as it is a special case of $SCuT_0 \Leftrightarrow CuT_0'$.

 $CuT_2' \Rightarrow CuT_1'$: Straightforward.

 $CuT_1' \Rightarrow CuT_2':$ Let H be the c.e. set from $CuT_1'.$ Now, let

$$H' = \{(r,s) : r \ll g(u,v'), s \ll g(u',v) \text{ for some } (u,v), (u',v') \in H\}.$$

We prove now the two conditions of H' as the c.e. set of CuT_2' .

Suppose $p_e^x \neq p_\alpha^y$. By the first condition of H there are $(u, v), (u', v') \in H$ such that $p_e^x \in \nu(u), p_\alpha^y \in \nu(v), p_\alpha^y \in \nu(u'), and p_e^x \in \nu(v')$. Then, $p_e^x \in \nu(u) \cap \nu(v')$ and $p_\alpha^y \in \nu(u') \cap \nu(v)$, and hence there is $(r, s) \in H'$ such that $p_e^x \in \nu(r)$ and $p_\alpha^y \in \nu(s)$. Thus the first condition of H' holds.

Now, we prove the second condition of H'. Suppose $(r,s) \in H'$ and $\nu(r) \bigcap \nu(s) \neq \widetilde{\emptyset}$. Thus, by definition of H' there are $(u,v), (u',v') \in H$ such that $\nu(r) \subseteq \nu(u) \bigcap \nu(v')$ and $\nu(s) \subseteq \nu(u') \bigcap \nu(v)$. Hence, $\nu(u) \bigcap \nu(v) \neq \widetilde{\emptyset}$ and $\nu(u') \bigcap \nu(v') \neq \widetilde{\emptyset}$. Now, by the second condition of H, $\nu(u) = \{p_e^x\} \subseteq \nu(v)$ and $\nu(u') = \{p_{\alpha}^y\} \subseteq \nu(v')$. Therefore, $\nu(r) = \{p_e^x\} = \nu(s)$ which shows that the second condition of H' holds.

 $CuT_2' \Rightarrow CuT_2$: There is a machine M that on input (p,q) searches for $(u,v) \in H$ such that $u \ll p$ and $v \ll q$ and prints (u,v) if the search is successful and diverges, otherwise.

18

 $CuT_2 \Rightarrow CuT_2'$: By transitivity, which completes the proof.

Now, we give counterexample to the above implications.

Proposition 3.12. There is a STS that is $WCuT_0$ but not CuT_0 .

Proof. Follows immediately from the next example.

Example 3.13. Let $X = \{x_i, y_i : i \in \mathbb{N}\}, E = \{e\}$ be a set of parameters, and τ be the soft discrete topology defined on X w.r.t E. We will define A, B, C, and D as a partition of \mathbb{N} where A is a non c.e. set. We define a notation ν of a basis of τ as follows:

	$0^{i}1$	$0^{i}2$	$0^i 3$	$0^{i}12$	$0^{i}13$	$0^{i}23$
$i \in A \cup D$	$\{p_e^{x_i}\}$	$\{p_e^{y_i}\}$	ø	ø	ø	ø
$i \in B$	$\{p_e^{x_i}\}$	$\{p_e^{x_i}, p_e^{y_i}\}$	$\{p_e^{y_i}\}$	$\{p_e^{x_i}\}$	ø	$\{p_e^{y_i}\}$
$i \in C$	$\left\{p_e^{x_i}, p_e^{y_i}\right\}$	$\{p_e^{y_i}\}$	$\{p_e^{x_i}\}$	$\{p_e^{y_i}\}$	$\{p_e^{x_i}\}$	õ

We define now the intersection of soft basic open sets computably, $\nu(0^im) \bigcap \nu(0^in) = \nu(0^imn)$ for $m \neq n$. Thus, (X, τ, E, β, ν) is a computable STS. Let $H = \{(0^im, 0^jn) : i, j \in \mathbb{N}; m, n \in \{1, 2\}; (i \neq j \text{ or } m \neq n)\}$. Then H satisfies the two conditions of $WuCT_0$. We show now that this space is not $SCuT_0$. Let $r, s \in \Sigma^8$ such that $\nu_N(r) = 1$ and $\nu_N(r) = 2$. W.L.O.G. assume that ν_N is injective. For $i \in \mathbb{N}$ let

$$\begin{split} S_i &= \{ \langle r, 0^i 1 \rangle, \langle s, 0^i 3 \rangle, \langle r, 0^i 12 \rangle, \langle s, 0^i 23 \rangle \}, \\ T_i &= \{ \langle s, 0^i 2 \rangle, \langle r, 0^i 3 \rangle, \langle s, 0^i 12 \rangle, \langle r, 0^i 13 \rangle \}. \end{split}$$

Suppose that ut_0^s is realized by $f: \Sigma^{\omega} \times \Sigma^{\omega} \to \Sigma^*$. If $\delta^u(p) = p_e^{x_i}$ and $\delta^u(q) = p_e^{y_i}$, then

$$f(p,q) \in \begin{cases} S_i & \text{if } i \in B\\ T_i & \text{if } i \in C. \end{cases}$$
(1)

 $\forall i \in \mathbb{N} \text{ we define } p_i = \iota(0^i 1)\iota(0^i 1)..., \text{ and } q_i = \iota(0^i 2)\iota(0^i 2)..., \text{ where } p_i, q_i \in \Sigma^{\omega}.$ Let $F = \{f : f : \Sigma^{\omega} \times \Sigma^{\omega} \to \Sigma^* \text{ such that } f(p_i, q_i) \text{ exists for all } i \in A\}.$ Consider $f \in F$. Then, $f' : i \to f(p_i, q_i)$ is computable such that $A \subseteq \operatorname{dom}(f')$. Since F is countable, there is a bijective function $g : E \to F$ for some $E \subseteq \mathbb{N}$ such that $i \in dom(g'_i) \setminus A$ for all $i \in E$. Then, $A \cap E = \emptyset$. Let

$$B = \{i \in E : g_i(p_i, q_i) \notin S_i\}, C = \{i \in E : g_i(p_i, q_i) \in S_i\},$$
(2)

and $D = \mathbb{N} \setminus (A \cup B \cup C)$. Since $A \cap E = \emptyset$, $E = B \cup C$ and $B \cap C = \emptyset$, $\{A, B, C, D\}$ is a partition of \mathbb{N} .

Suppose some computable function f realizes ut_0^s . Since $\delta^u(p_i) = p_e^{x_i}$ and $\delta^u(q_i) = p_e^{y_i}$ for all $i \in A$, $f(p_i, q_i)$ exists for all $i \in A$, hence $f = g_i$ for some $i \in E$. Since g_i realizes ut_0^s , $g_i(p_i, q_i) \in S_i \Leftrightarrow i \in B$ by (3.1). On the other hand, $g_i(p_i, q_i) \in S_i \Leftrightarrow i \notin B$ by 3.2. Thus, the space is not CuT_0 .

Example 3.14. Let $X = \{x\}$, $E = \{e_1, e_2\}$ be a set of parameters, and τ be a STS defined on X w.r.t. E where $\tau = \{\widetilde{X}, \widetilde{\emptyset}, \{(e_1, \{x\}), (e_2, \emptyset)\}\}$ which is generated by the following basis:

$$\nu(01) = \{(e_1, \{x\}), (e_2, \emptyset)\},\$$
$$\nu(001) = \widetilde{X},$$

Where $\beta = range(\nu)$. Thus, (X, τ, E, ν, β) is a computable STS and it is CuT_0 nut not CuT_1 .

Example 3.15. Let $A \subseteq \mathbb{N}$ be a c.e. set with non-c.e. complement. Define a notation ν by

$$\begin{split} \nu(0^{i}1) &= \{p_{e}^{x_{i}}\}, \nu(0^{i}2) = \{p_{e}^{x_{i}}\} \text{ for } i \in A, \\ \nu(0^{i}1) &= \{p_{e}^{x_{i}}\}, \nu(0^{i}2) = \{p_{e}^{y_{i}}\} \text{ for } i \notin A, \end{split}$$

for all $i \in \mathbb{N}$. Then, ν is a notation of a base β of a STS on a subset $X \subseteq \mathbb{N}$ w.r.t. a parameter set $E = \{e\}$ such that (X, τ, E, β, ν) is a computable STS.

This space is CuT'_2 as we have a c.e. set $H = \{(0^i m, 0^i n) : i, j \in \mathbb{N}, m, n \in \{1, 2\}\}$ that satisfies CuT'_2 . Let H be the c.e. set for $SCuT_2$. Thus, by the two conditions of $SCuT_2$

$$i \notin A \Rightarrow (0^{i}1, 0^{i}2) \in H,$$

 $i \in A \Rightarrow (o^{i}1, 0^{i}2) \notin H,$

since H is c.e., the complement of A must be c.e., which is a contradiction.

In the figure below, we summarize the all implications of the computable u-soft separation axioms. Those implications based on what we investigated above and the non implications are based on the counterexamples introduced in this section above. These implications are actually the same as those of the classical computable separations axioms corresponding to the ones defined in the computable soft setting.

cu.png

Figure 1: Relations between computable u-soft separation axioms

From the equivalences in figure 1, we can see that we have exactly four different notions of computable u-soft separation axioms.

In the next section, we will define computable p-soft separation axioms as the computable versions to those defined in [6]. Then, we define more variations of computable p-soft separations axioms and investigate the relations between them.

4 Computable p-soft separation axioms

In this section, we define the computable versions of partial soft separation axioms defined in [6] and then introduce some of the notions corresponding to those defined for computable u-soft separation axioms.

We define first δ^p names for $x_E \subseteq \widetilde{X}$ in a computable STS (X, τ, E, β, ν) , where a δ^p name of $x_E \subseteq \widetilde{X}$ contains all soft basic open sets that contain $p_{e_i}^x$ for all $e_i \in E$ where E is the parameter set associated with the given STS.

We will define also p-soft separation axioms based on $x_E \subseteq \tilde{X}$ and then compare those separation axioms to the u-soft separation axioms defined in the previous section. **Definition 4.1.** Let *E* be a finite set of parameters, σ be a function defined as follows $\sigma :\subseteq \Sigma^* \setminus \{0\} \to E$ where $\sigma(s_i) = e_i$. Now, $\delta^p(p) = x_E$ where $p = s_i \iota(w_j)$, and $p_{e_i}^x \in \nu(w_j)$. In other words, *p* is a list of all soft basic open sets that contain $p_{e_i}^x$ for all $e_i \in E$, and s_i tells us what parameter of *E* is represented.

Now, we define the p-soft separation axioms.

Definition 4.2. A computable STS (X, τ, E, β, ν) is

• computable p-soft T_0 (CpT_0 , for short) if (X, τ, E) is a u-soft T_0 and the multifunction pt_0 is $(\delta^p, \delta^p, \theta)$ -computable where pt_0 maps every $x_E, y_E \subseteq \widetilde{X}$ such that $x_E \neq y_E$ to some $U_E \in \tau$ such that

 $(x \in U_E \text{ and } y \notin U_E) \text{ or } (x \notin U_E \text{ and } y \in U_E).$

• computable p-soft T_1 (CpT_1 , for short) if (X, τ, E) is a u-soft T_0 and the multifunction pt_1 is $(\delta^p, \delta^p, \theta)$ -computable where pt_1 maps every $x_E, y_E \subseteq \widetilde{X}$ such that $x_E \neq y_E$ to some $U_E \in \tau$ such that

$$(x \in U_E \text{ and } y \notin U_E).$$

• computable p-soft T_2 (CpT_2 , for short) if (X, τ, E) is a u-soft T_0 and the multifunction pt_2 is $(\delta^p, \delta^p, \theta)$ -computable where pt_2 maps every $x_E, y_E \subseteq \widetilde{X}$ such that $x_E \neq y_E$ to some $U_E, V_E \in \tau$ such that

$$(x \in U_E \text{ and } y \in V_E, \text{, and } U_E \bigcap V_E = \widetilde{\emptyset}).$$

We can see that $CpT_i \Rightarrow CpT_{i-1}$ for $i \in \{1, 2\}$.

Based on the above definitions, we can see that the following implications hold,

$$CpT_2 \Rightarrow CpT_1 \Rightarrow CpT_0$$

The converses of the above implications are not true in general as shown from the following examples.

Example 4.3. Let $X = \{x, y\}$, $E = \{e_1, e_2\}$ be a set of parameters and τ is a STS defined on X w.r.t. E generated by the following basis,

$$\nu(01) = \{(e_1, \{x\}), (e_2, \emptyset)\}, \nu(001) = \{(e_1, \emptyset), (e_2, \{x\})\}, \nu(0001) = \widetilde{X}, \nu(0001) = \widetilde$$

and $\beta = range(\nu)$. Thus, (X, τ, E, β, ν) is a computable STS and it is CpT_0 since there is a machine M that realizes CpT_0 where M on input $(p,q) \in \Sigma^{\omega} \times \Sigma^{\omega}$, prints $\iota(01)\iota(001)$. The space is not CpT_1 as it is not even pT_1 .

Example 4.4. Let $X = \{a_i : i \in \mathbb{N}\}$, $E = \{e_1, e_2\}$ be a parameter set, and τ be a STS defined on X w.r.t. E generated by the following basis notation,

$$\nu(o^{i}1^{j}) = \{(e_1, G_i), (e_2, F_j)\},\$$

where i and j are the canonical indices of G_i and F_j , respectively. We define the intersection of finitely many basic open sets by $\nu(0^{i}1^{j}) \cap \nu(0^{k}1^{l}) = \nu(0^{m}1^{n})$, where m is the canonical index of $G_i^c \cap G_k^c$ and n is the canonical index of $F_j \cap F_l$. Thus, the space is computable STS. The space is CpT_1 as there is a machine M that on input $(p,q) \in \Sigma^{\omega} \times \Sigma^{\omega}$, searches for $\iota(0^{i}1^{j})$ and $\iota(0^{m}1^{n})$ such that $\iota(0^{i}1^{j}) \ll p$ and $\iota(0^{m}1^{n}) \ll q$, and j and n are canonical indices of singletons of X, and $i, m \in \mathbb{N}$. If the search is successful, it prints $\angle 0^{n}1^{j}, 0^{j}1^{n} \rangle$. Hence, machine M realizes CpT_1 . However, the space is not CpT_2 as it is not pT_2 .

Now, we give some more p-soft separation axioms and investigate the relations between them.

Definition 4.5. A computable STS (X, τ, E, β, ν) is: $WCpT_0$: if there is a c.e. set $H \subseteq dom(\nu^{fs}) \times dom(\nu^{fs})$ such that

- 1. $(\forall x_E \neq y_E)(\exists (u, v) \in H)(x \in \cup \nu^{fs}(u) \text{ and } y \in \cup \nu^{fs}(v)),$
- 2. $(\forall (u, v) \in H)$:

$$(\cup \nu^{fs}(u) \bigcap \cup \nu^{fs}(v) = \emptyset),$$
$$\lor ((\exists x_E) \cup \nu^{fs}(u) = x_E \subseteq \cup \nu^{fs}(v)),$$
$$\lor ((\exists y_E) \cup \nu^{fs}(v) = y_E \subseteq \cup \nu^{fs}(u)).$$

 $SCpT_0$: if the multifunction pt_0^s is $(\delta^p, \delta^p, [\nu_N, \theta])$ -computable where pt_0^s maps every $x_E, y_E \subseteq \widetilde{X}$ such that $(x_E \neq y_E)$ to some $(k, U_E) \in \mathbb{N} \times \tau$ such that

$$(k = 1, x \in U_E \text{ and } y \notin U_E) \lor (k = 2, y \in U_E \text{ and } x \notin U_E)$$

 CpT'_0 : if there is a c.e. set $H \subseteq dom(\nu_N) \times dom(\nu^{fs}) \times dom(\nu^{fs})$ such that

1. $(\forall x_E \neq y_E)(\exists (w, u, v) \in H)(x \in \cup \nu^{fs}(u) \text{ and } y \in \cup \nu^{fs}(v)),$

2.
$$(\forall (w, u, v) \in H)$$
:
 $(\cup \nu^{fs}(u) \bigcap \cup \nu^{fs}(v) = \widetilde{\emptyset}),$
 $\vee (\nu_N(w) = 1(\exists x_E) \cup \nu^{fs}(u) = x_E \subseteq \cup \nu^{fs}(v)),$
 $\vee (\nu_N(w) = 2(\exists y_E) \cup \nu^{fs}(v) = y_E \subseteq \cup \nu^{fs}(u)).$

 CpT'_1 : if there is a c.e. set $H \subseteq dom(\nu^{fs}) \times dom(\nu^{fs})$ such that

- 1. $(\forall x_E \neq y_E)(\exists (u, v) \in H)(x \in \cup \nu^{fs}(u) \text{ and } y \in \cup \nu^{fs}(v)),$
- 2. $(\forall (u, v) \in H)$: $(\cup \nu^{fs}(u) \bigcap \cup \nu^{fs}(v) = \widetilde{\emptyset}),$ $\vee ((\exists x_E) \cup \nu^{fs}(u) = x_E \subseteq \cup \nu^{fs}(v)).$

 $CpT_2':$ if there is a c.e. set $H\subseteq dom(\nu^{fs})\times dom(\nu^{fs})$ such that

1. $(\forall x_E \neq y_E)(\exists (u, v) \in H)(x \in \cup \nu^{fs}(u) \text{ and } y \in \cup \nu^{fs}(v)),$

2.
$$(\forall (u, v) \in H)$$
:
 $(\cup \nu^{fs}(u) \bigcap \cup \nu^{fs}(v) = \widetilde{\emptyset}),$
 $\vee ((\exists x_E) \cup \nu^{fs}(u) = x_E = \cup \nu^{fs}(v)).$

 $SCpT_2$: if there is a c.e. set $H \subseteq dom(\nu^{fs}) \times dom(\nu^{fs})$ such that

1. $(\forall x_E \neq y_E)(\exists (u, v) \in H)(x \in \cup \nu^{fs}(u) \text{ and } y \in \cup \nu^{fs}(v)),$ 2. $(\forall (u, v) \in H):$ $(\cup \nu^{fs}(u) \bigcap \cup \nu^{fs}(v) = \widetilde{\emptyset}).$

Proposition 4.6. Let $\overline{CpT_i}$ and $\overline{SCpT_0}$ be the conditions obtained from CpT_i and $SCpT_0$, respectively, by replacing θ by $\cup \nu^{fs}$. Then, $\overline{CpT_i} \Leftrightarrow CpT_i$ for $i \in \{0, 1, 2\}$, and $\overline{SCpT_0} \Leftrightarrow SCpT_0$, when the parameter set is finite.

Proof. $\overline{CpT_i} \Rightarrow CpT_i$: since $\cup \nu^{fs} \leq \theta$.

 $CpT_i \Rightarrow \overline{CpT_i}$: There is a machine M that on input $(p,q) \in dom(\delta^p) \times dom(\theta)$ where $\delta^p(p) \in \theta(q)$ searches for $u_1, ..., u_n$ where $u_i \ll p_i$ and $u_i \ll q$ for all iwhere p_i is a δ^u name obtained from p. Then, machine M prints u if the search is successful where $u = \iota(u_1)\iota(u_2)$ and diverges, otherwise. Following the same argument, we can prove $\overline{SCpT_0} \Leftrightarrow SCpT_0$, which completes the proof. \Box

We now introduce some implications between the p-soft spaces defined above.

Proposition 4.7. $CpT_0 \Leftrightarrow SCpT_0 \leftarrow CpT'_0 \Rightarrow WCpT_0.$

Proof. $SCpT_0 \Rightarrow CpT_0$: Obvious.

 $CpT_0 \Rightarrow SCpT_0$: There is a machine M that on input $(p,q) \in dom(\delta^p) \times dom(\delta^p)$ searches for $u_1, ..., u_n \in dom(\nu)$ such that $u_i \ll r$ for all $i \in \{1, ..., n\}$ where $pt_0(p,q) = r$, and outputs $\langle 1, r \rangle$ if for all $i \ u_i \ll p_i$ where p_i is a δ^u -name obtained from p, and outputs $\langle 2, r \rangle$ if for all $i \ u_i \ll q_i$ where q_i is a δ^u -name obtained from q. We can see easily the M realizes pt_0^s , which completes the proof.

 $CpT'_0 \Rightarrow SCpT_0$: There is a machine M that on input $(p,q) \in dom(\delta^p) \times dom(\delta^p)$ searches for $(w,r,s) \in H$ -The c.e. set of CpT'_0 - such that there are for all $i \in \{1, ..., n\}$ $u_i, v_i \in dom(\nu)$ where $u_i \ll r$, $v_i \ll s$ and $u_i \ll p_i, v_i \ll q_i$ where p_i, q_i are δ^u -names obtained from p, q, respectively. Then, machine Mprints $\angle w, r \rangle$ if $\nu_N(w) = 1$ and $\langle w, s \rangle$, otherwise. Thus M realizes pt^s_0 , which completes the proof.

 $CpT'_0 \Rightarrow SCpT_0$: Obvious.

We now show that the second and third implications are not reversed in general as shown from the next two examples.

Example 4.8. Let $X = \{a_i, b_i : i \in \mathbb{N}\}$, $E = \{e_1, e_2\}$ be a parameter set, and τ be a STS defined on X w.r.t. E generated by the following basis where A is a non c.e. set,

	$0^{i}11$	$0^{i}12$	$0^{i}51$	$0^{i}52$	$0^{i}5211$
$i \in A$	$p_{e_1}^{x_i}$	$p_{e_2}^{x_i}$	$p_{e_1}^{y_i}$	$p_{e_2}^{y_i}$	ø
$i \notin A$	$p_{e_1}^{y_i}$	$p_{e_2}^{y_i}$	$p_{e_1}^{x_i}$	$p_{e_1}^{y_i} \cup p_{e_2}^{x_i}$	$p_{e_1}^{y_i}$

The finite intersections are all empty except for $\nu(0^i 11) \bigcap \nu(0^i 52) = \nu(0^i 5211)$. Thus, the space (X, τ, E, β, ν) is computable STS. Let H be the c.e. set of WCpT₀, then

$$\begin{split} i &\in A \Rightarrow (\iota(0^{i}11)\iota(0^{i}12), \iota(0^{i}51)\iota(0^{i}52)) \in H, \\ i &\notin A \Rightarrow (\iota(0^{i}11)\iota(0^{i}12), \iota(0^{i}51)\iota(0^{i}52)) \notin H. \end{split}$$

Thus, A must be an r.e, set which is a contradiction. Hence, the space is not $WCpT_0$ and then not CpT'_0 , however, It is CpT_0 as there is a machine M that

realizes pt_0 where M on (p,q) prints $\iota(0i11)\iota(0^i12)$.

Proposition 4.9. There is a computable STS that is $WCpT_0$ but not CpT_0 .

Proof. Follows immediately from the following example.

Example 4.10. Let $A \subseteq \mathbb{N}$ be some non c.e. set. Let $X = \{x_i, y_i\}, E = \{e_1, e_2\}$ be a parameter set and τ be a STS defined on X w.r.t. E generated by the following basis given in the table below.

	$0^{i}11$	$0^{i}12$	$0^{i}21$	$0^{i}22$	$0^{i}31$	$0^{i}32$
$i \in A \cup D$	$p_{e_1}^{x_i}$	$p_{e_2}^{x_i}$	$p_{e_1}^{y_i}$	$p_{e_2}^{y_i}$	ø	õ
$i \in B$	$p_{e_1}^{x_i}$	$p_{e_2}^{x_i}$	$p_{e_1}^{x_i} \cup p_{e_1}^{y_i}$	$p_{e_2}^{x_i} \cup p_{e_2}^{y_i}$	$p_{e_1}^{y_i}$	$p_{e_2}^{y_i}$
$i \in C$	$p_{e_1}^{x_i} \cup p_{e_1}^{y_i}$	$p_{e_2}^{x_i} \cup p_{e_2}^{y_i}$	$p_{e_1}^{y_i}$	$p_{e_2}^{y_i}$	$p_{e_1}^{x_i}$	$p_{e_2}^{x_i}$

We define $\{A, B, C, D\}$ to be a partition of \mathbb{N} . We define the intersection of soft basic open sets as follows, $\nu(0^i kl) \cap \nu(0^i mn) = \nu(0^i klmn)$ for $k \neq m \lor l \neq n$. Therefore, (X, τ, E, β, ν) is a computable STS. We can see that the space is $WCpT_0$ as we can have a c.e. set $H = \{(\iota(0^i r1)\iota(0^i r2, \iota(0^j s1)\iota(0^j s2) : i, j \in \mathbb{N}; r, s \in \{1, 2\}; (i \neq j \lor r \neq s)\}$ that satisfies the two conditions of $WCpT_0$. Now, we define B and C in a way that makes the space not $SCpT_0$. Let $w_1, w_2 \in \Sigma^8$ such that $\nu_N(w_1) = 1$ and $\nu_N(w_2) = 2$, and W.L.O.G. we assume that ν_N is injective. For $i \in \mathbb{N}$ let $S_i = \{\langle w_1, \iota(0^i 11)\iota(0^i 122) \rangle, \langle w_1, \iota(0^i 11)\iota(0^i 1222) \rangle, \langle w_1, \iota(0^i 1121)\iota(0^i 122) \rangle, \langle w_2, \iota(0^i 31)\iota(0^i 2232) \rangle\},$ $\langle w_2, \iota(0^i 2131)\iota(0^i 32) \rangle, \langle w_2, \iota(0^i 21)\iota(0^i 223) \rangle, \langle w_1, \iota(0^i 1131)\iota(0^i 32) \rangle, \langle w_2, \iota(0^i 2131)\iota(0^i 223) \rangle, \langle w_2, \iota(0^i 21)\iota(0^i 223) \rangle, \langle w_2, \iota(0^i 1121)\iota(0^i 1232) \rangle, \langle w_2, \iota(0^i 1121)\iota(0^i 1232) \rangle, \langle w_2, \iota(0^i 1121)\iota(0^i 1222) \rangle, \langle w_2, \iota(0^i 1121)\iota(0^i 1232) \rangle, \langle w_2, \iota(0^i 1121)\iota(0^i 1222) \rangle, \langle w_2, \iota(0^i 1121)\iota(0^i 1222) \rangle, \langle w_2, \iota(0^i 1121)\iota(0^i 1232) \rangle, \langle w_2, \iota(0^i 1121)\iota(0^i 1222) \rangle, \langle w_2, \iota(0^i 1121)\iota(0^i 1232) \rangle \}$

Suppose the function $f :\subseteq \Sigma^{\omega} \times \Sigma^{\omega} \to \Sigma^*$ realizes pt_0^s . If $\delta^p(p) = a_{E_i}$ and $\delta^p(q) = b_{E_i}$, then

$$f(p,q) \in \begin{cases} S_i & \text{if } i \in B \\ T_i & \text{if } i \in C. \end{cases}$$

$$(3)$$

 $\forall i \in \mathbb{N} \text{ we define } p_i = \iota(0^i 11) \iota(0^i 12) \iota(0^i 11) \iota(0^i 12) \cdots,$

and $q_i = \iota(0^i 21)\iota(0^i 22)\iota(0^i 21)\iota(0^i 22)\cdots$, where $p_i, q_i \in \Sigma^{\omega}$. Let $F = \{f : f : \Sigma^{\omega} \times \Sigma^{\omega} \to \Sigma^*$ such that f is computable and $f(p_i, q_i)$ exists for all $i \in A\}$. Consider $f \in F$. Then, $f' : i \to f(p_i, q_i)$ is computable such that $A \subseteq dom(f')$. Since F is countable, there is a bijective function $g : E \to F$ for some $E \subseteq \mathbb{N}$ such that $i \in dom(g'_i) \setminus A$ for all $i \in E$. Then, $A \cap E = \emptyset$. Let

$$B = \{i \in E : g_i(p_i, q_i) \notin S_i\}, C = \{i \in E : g_i(p_i, q_i) \in S_i\},$$
(4)

and $D = \mathbb{N} \setminus (A \cup B \cup C)$. Since $A \cap E = \emptyset$, $E = B \cup C$ and $B \cap C = \emptyset$, $\{A, B, C, D\}$ is a partition of \mathbb{N} .

Suppose some computable function f realizes pt_0^s . Since $\delta^p(p_i) = x_{E_i}$ and $\delta^p(q_i) = y_{E_i}$ for all $i \in A$, $f(p_i, q_i)$ exists for all $i \in A$, hence $f = g_i$ for some $i \in E$. Since g_i realizes pt_0^s , $g_i(p_i, q_i) \in S_i \Leftrightarrow i \in B$ by (3.3). On the other hand, $g_i(p_i, q_i) \in S_i \Leftrightarrow i \notin B$ by 3.4. Thus, the space is not CpT_0 .

Proposition 4.11. $SCpT_2 \Rightarrow CpT_2 \Leftarrow CpT'_2 \Leftrightarrow CpT'_1 \Rightarrow CpT_1$.

Proof. $SCpT_2 \Rightarrow CpT_2$: There is a machine M that on input $(p,q) \in \Sigma^{\omega} \times \Sigma^{\omega}$ searches for $(r,s) \in H$ such that $\forall i$ there are $u_i, v_i \in dom(\nu)$ for $i \in \{0, 1, ..., n\}$ where $u_i \ll r, v_i \ll s$ and $u_i \ll p_i, v_i \ll q_i$, where p_i, q_i are δ^u -names obtained from p, q, respectively. Machine M prints $\langle r, s \rangle$ if the search successful and diverges, otherwise.

Thus, let $\delta^p(p) = x_E \neq y_E = \delta^p(q)$. When we apply M on (p, q), the machine searches for $(r, s) \in H$ as described above and the search must be successful since by definition of H there must exist $(r, s) \in H$ such that $x \in \cup \nu^{fs}(r)$ and $y \in \cup \nu^{fs}(s)$ and $\cup \nu^{fs}(r) \cap \cup \nu^{fs}(s) = \widetilde{\emptyset}$, and thus, $\forall i \in \{1, 2, \dots, n\}$ there exists $u_i \ll r, v_i \ll s$ such that $p_{e_i}^x \in \nu(u_i)$ and $p_{e_i}^y \in \nu(v_i)$. Therefore, the space is CpT_2 .

 $CpT'_{2} \Rightarrow CpT_{2}$: There is a machine M on input $(p,q) \in \Sigma^{\omega} \times \Sigma^{\omega}$ searches for $(r,s) \in H$ such that $\forall i \in \{1, 2, ..., n\}$ there are $u_{i}, v_{i} \in dom(\nu)$ and $u_{i} \ll p_{i}$, $v_{i} \ll q_{i}$. The machine prints $\langle r, s \rangle$ if the search is successful and diverges, otherwise. Thus, machine M realizes pt_{2} .

 $CpT'_2 \Rightarrow CpT'_1$: Obvious.

 $CpT'_1 \Rightarrow CpT'_2$: We define the c.e. set of CpT'_2 to be $H_2 = \{(\overline{r}, \overline{s}) : u_i \ll \overline{r} \Rightarrow u_i \ll g(r, s'), v_i \ll \overline{s} \Rightarrow g(r', s)$ for some $(r, s), (r', s') \in H\}$ where H is the c.e. set of CpT'_1 .

We check now the two conditions of H_2 . Let $x_E \neq y_E$. There are

 $(r,s), (r',s') \in H$ such that $x \in \cup \nu^{fs}(r) \cap \cup \nu^{fs}(s'), y \in \cup \nu^{fs}(s) \cap \cup \nu^{fs}(r')$. Then, $x \in \theta(r'') = \cup \nu^{fs}(r) \cap \cup \nu^{fs}(s'), y \in \theta(s'') = \cup \nu^{fs}(s) \cap \cup \nu^{fs}(r')$ and hence $\forall i \in \{1, 2, ..., n\}$ there are $u_i \ll r''$ and $v_i \ll s''$ where $p_{e_i}^x \in \nu(u_i)$ and $p_{e_i}^y$. Thus, there is (\bar{r}, \bar{s}) where $\bar{r} = \iota(u_1)...\iota(u_n), \bar{s} = \iota(v_1)...\iota(v_n)$ and $x \in \cup \nu^{fs}(\bar{r}), y \in \cup \nu^{fs}(\bar{s})$.

Now, we prove the second condition of H_2 . Suppose $(\bar{r}, \bar{s}) \in H_2$ and $\cup \nu^{fs}(\bar{r}) \bigcap \cup \nu^{fs}(\bar{s}) \neq \tilde{\emptyset}$. Thus, there are $(r, s), (r', s') \in H$ such that $\cup \nu^{fs}(\bar{r}) \subseteq \cup \nu^{fs}(r) \bigcap \cup \nu^{fs}(s')$, and $\cup \nu^{fs}(\bar{s}) \subseteq \cup \nu^{fs}(r') \bigcap \cup \nu^{fs}(s)$, and then $\cup \nu^{fs}(r) \bigcap \cup \nu^{fs}(s) \neq \tilde{\emptyset}$, and $\cup \nu^{fs}(r') \bigcap \cup \nu^{fs}(s') \neq \tilde{\emptyset}$. Hence, there are x_E and y_E such that $\cup \nu^{fs}(r) = x_E \subseteq \cup \nu^{fs}(s)$, and $\cup \nu^{fs}(r') = y_E \subseteq \cup \nu^{fs}(s')$. Therefore, $\cup \nu^{fs}(\bar{r}) \subseteq x_E$ and $\cup \nu^{fs}(\bar{s}) \subseteq y_E$, which means that $x_E = y_E$. Thus, the second condition of H_2 is satisfied.

 $CpT'_1 \Rightarrow CpT_1$: This is a special case of $CpT'_0 \Rightarrow SCpT_0$, which completes the proof.

We introduce now counterexamples to show that the implications of the previous proposition are not reversed in general.

The next example shows a space which is CpT_2 but not $SCpT_2$.

Remark 4.12. $CpT_2' \Rightarrow CpT_0'$

Proof. Straightforward.

Example 4.13. Let $A \subseteq \mathbb{N}$ be a c.e. set with non c.e. complement. We define a notation of a basis of a topology τ on a subset $X \subseteq \mathbb{N}$ as follows,

	$0^{i}11$	$0^{i}12$	$0^{i}21$	$0^{i}22$
$i \in A$	$p_{e_1}^{x_i}$	$p_{e_2}^{x_i}$	$p_{e_1}^{x_i}$	$p_{e_2}^{x_i}$
$i \notin A$	$p_{e_1}^{x_i}$	$p_{e_2}^{x_i}$	$p_{e_1}^{y_i}$	$p_{e_2}^{y_i}$

Thus, (X, τ, E, β, ν) is a computable STS. The space is CpT'_2 as we have a c.e. set that satisfies the two conditions of it, namely,

$$\begin{split} H \ &= \ \{(\iota(0^{i}kl)\iota(0^{i}mn)), (\iota(0^{j}k'l')\iota(0^{j}m'n')) \ : \ i,j \ \in \ \mathbb{N}; k,l,m,n,k',l',m',n' \ \in \ \{1,2\}; ((k=m \ and \ k'=m') \ and \ (k\neq l \lor m\neq n) \ and \ (k\neq l \lor m'\neq n'))\}. \end{split}$$

Now, we show that the space is not $SCpT_2$. Let H' be the c.e. set of $SCpT_2$. then by the first condition of H',

 $i \notin A \Rightarrow (u, v) \in H'$ where $0^i 11, 0^i 12 \ll u$ and $0^i 21, 0^i 22 \ll v$,

and by the second condition of H',

 $i \in A \Rightarrow (u, v) \notin H'$ where $0^{i}11, 0^{i}12 \ll u$ and $0^{i}21, 0^{i}22 \ll v$.

Since H' c.e., the complement of A must be c.e. which a contradiction.

The next example shows that there is a space which is CpT_2 but not CpT'_1 .

Example 4.14. Let $A \subseteq \mathbb{N}$ be a non c.e. set, $E = \{e_1, e_2\}$ be a parameter set and $X = \{x_i, y_i : i \in \mathbb{N}\}$ be a set on which a STS τ is defined where τ is generated by the following basis which is given by the the following notation,

_	$0^{i}11$	$0^{i}12$	$0^{i}13$	$0^{i}14$	$0^{i}1112$	$0^{i}1113$	$0^{i}1114$
$i \in A$	x_{E_i}	y_{E_i}	$p_{e_1}^{x_i}$	õ	õ	$p_{e_1}^{x_i}$	õ
$i \notin A$	$x_{E_i} \cup p_{e_1}^{y_i}$	$x_{E_i} \cup p_{e_2}^{y_i}$	ø	$p_{e_2}^{y_i}$	x_{E_i}	Ø	Ø

	$0^{i}1213$	$0^{i}1214$	$0^{i}1314$	$0^{i}61$	$0^{i}6111$	$0^{i}6112$	$0^{i}6113$	$0^{i}6114$
$i \in A$	ø	ø	$\widetilde{\emptyset}$	Ø	ø	$\widetilde{\emptyset}$	$\widetilde{\emptyset}$	$\widetilde{\emptyset}$
$i \notin A$	õ	$p_{e_2}^{y_i}$	$\widetilde{\emptyset}$	$p_{e_1}^{y_i}$	$p_{e_1}^{y_i}$	õ	$\widetilde{\emptyset}$	$\widetilde{\emptyset}$

Thus, (X, τ, E, β, ν) is a computable STS. The space is CpT_2 as there is a machine M that on input $(p,q) \in \Sigma^{\omega} \times \Sigma^{\omega}$ searches for $0^i 13$ and $0^i 14$ where on of the following cases hold:

- 1. $0^{i}13 \ll p$ and:
 - (a) $0^i 12 \ll q$, the machine prints $\langle 0^i 11, 0^i 12 \rangle$,
 - (b) $0^j 12 \vee 0^j 11 \ll q$ for some $j \neq i$, the machine prints $\langle 0^j 11, \iota(0^j 11\iota(0^j 12)) \rangle$

2. $0^i 13 \ll q$ and:

- (a) $0^i 12 \ll p$, the machine prints $\langle 0^i 12, 0^i 11 \rangle$,
- (b) $0^j 12 \lor 0^j 11 \ll p$ for some $j \neq i$, the machine prints $\langle \iota(0^j 11\iota(0^j 12), 0^j 11) \rangle$

3. $0^{i}14 \ll p$ and:

- (a) $0^{i}1112 \ll q$, the machine print $\langle \iota(0^{i}14)\iota(0^{i}61), 0^{i}1112 \rangle$
- (b) $0^j 12 \vee 0^j 11 \ll q$ for $j \neq i$, the machine prints $\langle \iota(0^i 11) \iota(0^i 12), 0^i 1112 \rangle$

4. $0^{i}14 \ll q$ and:

- (a) $0^{i}1112 \ll p$, the machine print $(0^{i}1112, \iota(0^{i}14)\iota(0^{i}61))$
- (b) $0^j 12 \vee 0^j 11 \ll p \text{ for } j \neq i$, the machine prints $\langle 0^i 1112, \iota(0^i 11)\iota(0^i 12) \rangle$

Hence, M realizes CpT_2 . Now, we prove that the space is not CpT'_1 . Let H be the c.e. set of CpT'_1 , then

 $i \in A \Rightarrow (u, v) \in H$ where $0^i 11 \ll u, 0^i 12 \ll v$,

 $i \notin A \Rightarrow (u, v) \notin H$ where $0^i 11 \ll u, 0^i 12 \ll v$.

Since H is a c.e. set, A must be a c.e. set which is a contradiction. Therefore, the space is not CpT'_1 .

In the following figure, we represent all implications between the computable p-soft separation axioms we defined so far. The implications are based on the results that we got in this section and the non implications come from the counterexamples that we introduced above.

cp.png

Figure 2: Relations between computable p-soft separation axioms

We can see from fig 2 that we have exactly seven different notions of psoft separation axioms compared to four different notions of u-soft separation axioms. In the next section, we study the relation between computable u-soft separation axioms and computable p-soft separation axioms.

5 Relations between u-soft and p-soft separation axioms

In this section, we investigate how computable u-soft separation axioms are related to their counterparts computable p-soft separation axioms. We just consider the case when the set of parameters is finite.

At the end of this section, we will be able to compare the four different notions of u-soft separation axioms to the seven different notions of the p-soft separation axioms.

Proposition 5.1. Computable u-soft $T_i \Rightarrow$ computable p-soft T_i , for i = 1, 2.

Proof. Case 1: i = 1. Assume u-soft T_1 . Let $\delta^p(p) = x_E \neq y_E = \delta^p(q)$. There are n machines M_i such that machine M_i translates p into a δ^u -name p_i for $p_{e_i}^x$. Similarly, there are n machines N_i where N_i translates q into a δ^u -name for $p_{e_i}^y$. Now, $\forall i \forall j \ ut_1$ on input (p_i, q_i) outputs w_{i_j} where $\nu(w_{i_j}) = U_{E_{i_j}} \in \beta$ and $p_{e_i}^x \in U_{E_{i_j}}$ and $p_{e_j} \notin U_{E_{i_j}}$. $\forall i$, let $w_i = \iota(w_{i_1})....\iota(w_{i_n})$ and since $\nu \leq \theta$ and the intersection of a finite set of open sets is (θ^{fs}, θ) -computable, there is a computable function f such that $\bigcap \nu^{fs}(w_i) == \theta \circ f(w_i)$. Thus, $\forall i \forall j, p_{e_i} \in \theta(r_i) \ and p_{e_j} \notin \theta(r_i)$ where $r_i = f(w_i)$. Also, since the union of a finite set of open sets is open, there is a computable function g such that $\cup \theta^{fs}(\langle 1^n, r_1, ..., r_n \rangle) = \theta \circ g(\langle 1^n, r_1, ..., r_n \rangle)$ and hence $x \in \theta(r) \ and y \notin \theta(r)$ where $r = \langle 1^n, r_1, ..., r_n \rangle$. Therefore, the space is p-soft T_1 .

Case 2: i = 2. Assume u-soft T_2 . Let $\delta^p(p) = x_E \neq y_E = \delta^p(q)$. There are n machines M_i such that machine M_i translates p into a δ^u -name p_i for $p_{e_i}^x$. Similarly, there are n machines N_i where N_i translates q into a δ^u -name for $p_{e_i}^y$. $\forall i \forall j \ ut_2$ on input (p_i, q_j) outputs (u_{i_j}, v_{i_j}) where $\nu(u_{i_j}) = G_{E_{i_j}} \in \beta$ and $\nu(v_{i_j}) = H_{E_{i_j}} \in \beta$ such that $p_{e_i}^x \in G_{E_{i_j}}$ and $p_{e_j}^y \in H_{E_{i_j}}$ and $G_{E_{i_j}} \cap H_{E_{i_j}} = \widetilde{\emptyset}$. $\forall i$, let $u_i = \iota(u_{i_1})....\iota(u_{i_n})$ and $v_i = \iota(v_{i_1})....\iota(v_{i_n})$. By functions f and g from case 1, $\forall i$ we have $f(u_i) = r_i$ and $g(v_i) = s_i$ where $p_{e_i} \in \theta(r_i)$ and $y \in \theta(s_i)$ and $\theta(r_i) \cap \theta(s_i) = \widetilde{\emptyset}$. Now, we use g and f again, where $g(\langle 1^n, r_1, ..., r_n \rangle) = r$ and $f(\langle 1^n, s_1, ..., s_n \rangle) = s$. Thus, $x \in \theta(r)$ and $y \in \theta(s)$ and $\theta(r) \cap \theta(s) = \widetilde{\emptyset}$. Therefore, the space is $p - soft T_2$ which completes the proof. We give a counter example that the converse of the above implications is not true in general.

Example 5.2. Let $X = \{x, y\}$, $E = \{e_1, e_2\}$ be a parameter set, and τ be a STS defined on X w.r.t. E and generated by the following base $\nu(01) = \{(e_1, \{x\}), (e_2.\{x\})\}, \nu(001) = \{(e_1, \{y\}), (e_2.\{y\})\}. \nu(001) = \{(e_1, \{x\}), (e_2.\{y\})\}.$ The space is computable STS and it is CpT_1 as we have a machine M on $(p,q) \in \Sigma^{\omega} \times \Sigma^{\omega}$ outputs $\iota(01)$ if $01 \ll p$ and outputs $\iota(001)$ if $01 \ll q$. Thus, M realizes pt_1 but the space is not CuT_1 as it is not u-soft T_1 . We can see also that this space is CpT_2 but not CuT_2 .

In the next example, we show that the above result does not hold when the set of parameters is infinite.

Example 5.3. Let $X = \{a, b\}$, $E = \{e_1, e_2, \cdots\}$. We partition \mathbb{N} into infinitely many infinite partitions $\mathbb{N} = F_1 \cup F_2 \cup \cdots$. we define a STS on X with respect to E where its basic open sets are defined as follows, for each finite set $G \subseteq$ \mathbb{N} we have $\{p_{e_i}^a : i \in G\}$ and for each finite set $G \subseteq \mathbb{N}$, $n \in \mathbb{N}$ we have $\{p_{e_n}^b\} \cup \{p_{e_i}^a : i \in F_n - G\}$. Clearly, this space is u-soft T_2 but it is not p-soft T_2 . We effectivize this space by introducing a notation ν for the set of basic open sets β as follows, $\nu(0^k 1) = G$ where k is the canonical index of G, and $\nu(0^m 10^n 1) = \{p_{e_m}^b\} \cup \{p_{e_m}^a : i \in F_m - G\}$ where m is the index of F_m and n is the canonical index of G. We define the finite intersection of basic open sets as follows,

- $\nu(0^k 1) \bigcap \nu(0^l 1) = \nu(0^r 1)$ where r is the canonical index of the intersection of two sets, the canonical index of the first set is k while the canonical index of the other one is l.
- $\nu(0^m 10^n 1) \bigcap \nu(0^r 10^s 1) = \widetilde{\emptyset}$ for $m \neq n$.
- $\nu(0^m 10^n 1) \bigcap \nu(0^r 10^s 1) = \nu(0^m 10^t 1)$ for m = n, where t is the canonical index of the set resulting from the union of two sets whose canonical indices are s and n.
- $\nu(0^k 1) \bigcap \nu(0^m 10^n 1) = \nu(o^s 1)$ where s is the canonical index of H where $H = G \bigcap F_m I$ and k, n are the canonical indices of G, I, respectively, and m is the index of F_m .

Finite intersections can be obtained directly from the cases above. Thus, the space (X, τ, E, ν, β) is a computable STS.

Now, we show that the space is CuT_2 . There is a machine M that on input $(p,q) \in \Sigma^{\omega} \times \Sigma^{\omega}$ scans the first words u, v of p, q respectively, until it finds one of the following,

- u, v of the form 0ⁱ1 for some i, then the machine scans through p, q until it finds 0^r1 ≪ p and 0^s1 ≪ q where r, s are canonical indices of singletons. Then, it outputs (0^r1, 0^s1).
- u, v of the form 0ⁱ10^j1, 0^m10ⁿ1, respectively. If i = m, then the machine scans through p, q until it finds 0^r1 ≪ p and 0^s1 ≪ q where r, s are canonical indices of singletons and outputs (0^r1, 0^s1). It outputs (u, v), otherwise.
- u is of the form 0ⁱ1 and v is of the form 0^m10ⁿ1, then M scans through p,q until it finds 0^j1 ≪ p and 0^m10^j1 ≪ q where j is the canonical index of a singleton. Then, it outputs (0^j1,0^m10^j1).

Thus, machine M realizes ut_2 and hence the space is CuT_2 . However, the space is not even p-soft T_1 .

The following two examples show that CuT_0 and CpT_0 are incomparable.

Example 5.4. Let $X = \{x_i, y_i : i \in \mathbb{N}\}$, $E = \{e_1, e_2\}$ be a parameter set, and τ be a STS defined on X w.r.t. E and generated by the following base notation where A is a non c.e. set,

	$0^{i}11$	$0^{i}12$	$0^{i}21$	$0^{i}22$	$0^{i}31$	$0^{i}1131$	$0^{i}2131$	$0^{i}1112$	$0^{i}1231$
$i \in A$	$p_{e_1}^{x_i}$	$p_{e_2}^{x_i}$	$p_{e_1}^{y_i}$	$p_{e_2}^{y_i}$	$\widetilde{\emptyset}$	ø	ø	$\widetilde{\emptyset}$	õ
$i \notin A$	x_{E_i}	x_{E_i}	y_{E_i}	$\widetilde{\emptyset}$	$p_{e_1}^{x_i} \cup p_{e_2}^{y_i}$	$p_{e_1}^{x_i}$	$p_{e_2}^{y_i}$	x_{E_i}	$p_{e_1}^{x_i}$

We extend names to the finite intersections as follows $\nu(0^imn) \cap \nu(0^ikl) = \nu(0^imnkl)$ and the intersection of more than two basic open sets is empty except for $\nu(0^i11) \cap \nu(0^i12) \cap \nu(0^i31) = \nu(0^i111231)$. Thus, the space is computable STS. The space is CpT_2 and hence CpT_0 as we have the following c.e. set,

$$H = \{ (\iota(0^{i}m1)\iota(0^{i}m2), \iota(0^{i}n1)\iota(0^{i}n2)) : m, n \in \{1, 2\}; i, j \in \mathbb{N} \}.$$

Assume now that the space is $WCuT_0$. Thus, there is a c.e. set H' that satisfies

the two conditions of $WCuT_0$ which means the following,

$$\begin{split} i \in A \Rightarrow (0^{i}11, 0^{i}12) \in H', \\ i \notin A \Rightarrow (0^{i}11, 0^{i}12) \notin H'. \end{split}$$

Hence, A must be a c.e. set which is a contradiction. Therefore the space is not $WCuT_0$ (Thus not CuT_0 as well).

Example 5.5. Let $X = \{x, y\}$, $E = \{e_1, e_2\}$ be a parameter set, and τ be a STS defined on X w.r.t. E and generated by the following base notation,

$$\begin{split} \nu(01) &= \{(e_1, \{x\}), (e_2, \emptyset)\}, \\ \nu(02) &= \{(e_1, \{y\}), (e_2, \emptyset)\}, \\ \nu(03) &= \{(e_1, \{x\}), (e_2, \{y\})\}, \\ \nu(04) &= \{(e_1, \{y\}), (e_2, \{x\})\}, \end{split}$$

We give names to the finite intersections of basic open sets as follows, $\nu(0m) \bigcap \nu(0n) = \nu(0mn)$ for $m, n \in \{1, ..., 4\}$ and the intersection of any three basic open sets is empty.

Now, we show that this space is u-soft T_0 . There is a machine M that on input $(p,q) \in \Sigma^{\omega} \times \Sigma^{\omega}$, scans p and q and prints $\iota(u)$ whenever it scans first $u \ll p$ or $u \ll q$ such that $u \in \{01, 02\}$ at any point of the computation. If M scans first $0m \ll p$ or $0m \ll q$ for $m \in \{3, 4\}$, then it prints the first word v of the other name if $v \neq 0m$, otherwise, it prints $\iota(01)$ if m = 3 and prints $\iota(02)$ if m = 4.

Therefore, machine M realizes ut_0 and hence the space is CuT_0 . However, it is not CpT_0 as it is not pT_0 .

Proposition 5.6. $SCuT_2 \Rightarrow SCpT_2$.

Proof. Let H be the c.e. set of $SCuT_2$, and n be the number of parameters. Let $H' \subseteq \Sigma^* \times \Sigma^*$ be the set of all pairs (u, v) of words for which there are some n such that $u = \iota(u_1)...\iota(u_n)$ and $v \ll \theta \circ f(\iota(v_1)...\iota(v_n))$, where f is the computable function that computes the finite intersection of soft open set and $u_1, ..., u_2 \in dom(\nu)$ and $v_1, ..., v_n \in dom(\nu^{fs})$, and $\forall i(u_i \ll \bigcap \nu^{fs}(w_i) where \nu^{fs}(w_i) = Pr_1(N) and \nu^{fs}(v_i) = Pr_2(N)$ for some finite set $N \subseteq H$.

Let $x_E \neq y_E$. Then, $\forall p_{e_i}^x \in x_E \forall p_{e_j}^y \in y_E$ there are pairs $(r_{i_1}, s_{i_1}), \dots, (r_{i_n}, s_{i_n}) \in H$ such that $p_{e_i}^x \in \nu(r_{i_j})$ and $p_{e_j}^y \in \nu(s_{i_j})$, and $\nu(r_{i_j}) \cap \nu(s_{i_j}) = \widetilde{\emptyset}$. Then, $p_{e_i}^x \in \bigcap \nu^{fs}(w_i)$ where $w_i = \iota(r_{i_1}) \dots \iota(r_{i_n})$ and

hence there is some $u_i \ll \nu^{fs}(w_i)$ where $p_{e_i}^x \in \nu(u_i)$, and $y \in \cup \nu^{fs}(v_i)$ where $v_i = \iota(v_{i_1})...\iota(v_{i_n})$. Thus, there are some $u \in \nu^{fs}$ and $v \in \nu^{fs}$ where $u = \iota(u_1....\iota(u_n))$ and $x \in \cup \nu^{fs}(u)$, and $v \ll \theta \circ f(\iota(v_1)....\iota(v_n))$ where $y \in \cup \nu^{fs}(v)$. It is obvious that $\cup \nu^{fs}(u) \cap \cup \nu_{fs}(v) = \widetilde{\emptyset}$. Therefore, H' is the c.e. set for $SCpT_2$.

Example 5.7. Let $X = \{x_i, y_i : i \in \mathbb{N}\}$, $E = \{e_1, e_2\}$ be a parameter set, and τ be a STS defined on X w.r.t. E and generated by the following base notation where A is a non c.e. set,

	$0^{i}11$	$0^{i}12$	$0^{i}21$	$0^{i}22$	$0^{i}2122$
$i \in A$	$p_{e_1}^{x_i}$	$p_{e_2}^{x_i}$	$p_{e_1}^{y_i}$	$p_{e_2}^{y_i}$	ø
$i \notin A$	$p_{e_1}^{x_i}$	$p_{e_2}^{x_i}$	y_{E_i}	y_{E_i}	y_{E_i}

We extend names to the finite intersections as follows $\nu(0^imn) \cap \nu(0^ikl) = \nu(0^imnkl)$ and the intersection of two basic open sets is empty except for $\nu(0^i21) \cap \nu(0^i22) = \nu(0^i2122)$. Thus, the space is computable STS. This space is $SCpT_2$ as we have a c.e. set H_1 where

 $H_1 = \{(\iota(0^i m 1)\iota(0^i m 2), \iota(0^i n 1)\iota(0^i n 2)) : i \in \mathbb{N}; m, n \in \{1, 2\}; m \neq n\}. Let H_2$ be the c.e. set for SCuT₂, then for

$$i \in A \Rightarrow (0^i 21, 0^i 22) \in H_2,$$

 $i \notin A \Rightarrow (0^i 21, 0^i 22) \notin H_2.$

Thus, A must be a c.e. set which is a contradiction. Therefore, the space is not $SCuT_2$.

We now give a counterexample for a space that is CuT'_1 but not CpT'_1 .

Example 5.8. Let $X = \{x_i, y_i : i \in \mathbb{N}\}$, $E = \{e_1, e_2\}$ be a parameter set, and τ be a STS defined on X w.r.t. E and generated by the following base notation where A is a non c.e. set,

We define names to the finite intersections as follows $\nu(0^i m) \bigcap \nu(0^i n) = \nu(0^i m n)$ and the intersection of more than two basic open sets is empty except for $\nu(0^i 3) \bigcap \nu(0^i 4) \bigcap \nu(0^i 6) = \nu(0^i 346)$.

	$0^{i}1$	$0^{i}2$	$0^i 3$	$0^{i}4$	$0^{i}5$	$0^{i}6$
$i \in A$	$p_{e_1}^{x_i}$	$p_{e_2}^{x_i}$	$p_{e_1}^{y_i}$	$p_{e_2}^{y_i}$	ø	$p_{e_2}^{y_i}$
$i \notin A$	$p_{e_1}^{y_i}$	$p_{e_2}^{y_i}$	$p_{e_1}^{x_i}$	$x_{E_i} \cup p_{e_1}^{y_i}$	$p_{e_2}^{x_i}$	$p_{e_1}^{x_i} \cup p_{e_2}^{y_i}$

Thus, the space is computable STS. This space is CuT'_1 as we have the following c.e. set that satisfies the conditions of CuT'_1 ,

$$H = \{ (0^{i}m, 0^{i}n) \land (0^{i}46, 0^{i}m) : i, j \in \mathbb{N}; m \in \{1, 2, 3, 5\}; n \in \{1, 2, 3, 4\} \}.$$

However, it is not CpT'_1 , as if it was, there would exist a c.e. set H' that satisfies the conditions of CpT'_1 and hence for,

$$i \in A \Rightarrow (r, s) \in H',$$

 $i \notin A \Rightarrow (r, s) \notin H',$

where

$$\iota(0^{i}1), \iota(0^{i}2) \ll r \wedge \iota(0^{i}3), \iota(0^{i}t) \ll s \text{ for } s \in \{4, 6, 46\}.$$

Thus, A must be a c.e. set which is a contradiction. Therefore, the space is not CpT'_1 .

Remark 5.9. $SCuT_0$ and $SCpT_0$ are incomparable.

Proof. This follows directly from propositions 3.9, 4.7 and examples 5.3 and 5.4. $\hfill \Box$

Remark 5.10. CuT'_i and CpT'_i are incomparable for $i \in \{0, 1, 2\}$.

Proof. For i = 0: Use example 5.5 where in which the space is not $WCuT_0$ and example 5.4, and propositions 3.9, 3.10.

For i = 1, 2: Use examples 5.5, 5.7, and propositions 3.11, 4.11.

Remark 5.11. $WCuT_0$ and $WCpT_0$ are incomparable.

Proof. Use examples 5.5, 4.8 where in the latter example the space is $WCuT_0$ as we have the following c.e. set,

$$H = \{ (0^{i}mk, 0^{i}nl) : i, j \in \mathbb{N}; m, n \in \{1, 5\}; k, l \in \{1, 2\} \}.$$

However, it is not $WCpT_0$ as shown earlier.

So far we have defined nine computable separation axioms based on soft points and another nine separation axioms based on soft singletons. We also investigated how the ones based on soft points are related and how the other ones that based on soft singletons are related. Counter examples have been provided to show the non-implications between them. Some of them turned out to be equivalent and others turned out to be incomparable. Equivalences between the ones based on soft points exists, however, these equivalences do not exist for their counterparts that based on soft singletons.

In the following figure all relations between computable u-soft and p-soft separation axioms are represented. As seen form the figure, there are some implications between some separation axioms and some other separation axioms turn out to be incomparable.

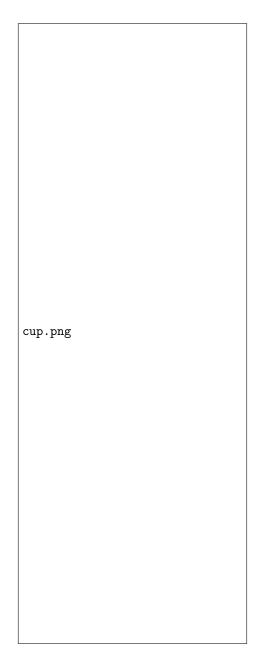


Figure 3: Relations between computable u-soft and computable p-soft separation axioms.

References

- ACAR, U., KOYUNCU, F., AND TANAY, B. Soft sets and soft rings. Computers & Mathematics with Applications 59, 11 (2010), 3458–3463.
- [2] AKTAŞ, H., AND ÇAĞMAN, N. Soft sets and soft groups. Information sciences 177, 13 (2007), 2726–2735.
- [3] AL-SHAMI, T. Comments on some results related to soft separation axioms. *Afrika Matematika 31*, 7 (2020), 1105–1119.
- [4] AL-SHAMI, T. On soft separation axioms and their applications on decisionmaking problem. *Mathematical Problems in Engineering 2021* (2021).
- [5] ALI, M. I., FENG, F., LIU, X., MIN, W. K., AND SHABIR, M. On some new operations in soft set theory. *Computers & Mathematics with Applications* 57, 9 (2009), 1547–1553.
- [6] EL-SHAFEI, M., ABO-ELHAMAYEL, M., AND AL-SHAMI, T. Partial soft separation axioms and soft compact spaces. *Filomat 32*, 13 (2018), 4755– 4771.
- [7] EL-SHAFEI, M., AND AL-SHAMI, T. Applications of partial belong and total non-belong relations on soft separation axioms and decision-making problem. *Computational and Applied Mathematics* 39, 3 (2020), 1–17.
- [8] FENG, F., LI, Y., AND LEOREANU-FOTEA, V. Application of level soft sets in decision making based on interval-valued fuzzy soft sets. *Computers & Mathematics with Applications 60*, 6 (2010), 1756–1767.
- [9] GORZAŁCZANY, M. B. A method of inference in approximate reasoning based on interval-valued fuzzy sets. *Fuzzy sets and systems 21*, 1 (1987), 1–17.
- [10] JAYNES, E. T. *Probability theory: The logic of science*. Cambridge university press, 2003.
- [11] JUN, Y. B., AND PARK, C. H. Applications of soft sets in ideal theory of bck/bci-algebras. *Information sciences* 178, 11 (2008), 2466–2475.
- [12] L. A., Z. Fuzzy sets. Information and Control 8 (1965), 338–353.

- [13] MAJI, P., ROY, A. R., AND BISWAS, R. An application of soft sets in a decision making problem. *Computers & Mathematics with Applications* 44, 8-9 (2002), 1077–1083.
- [14] MOLODTSOV, D. Soft set theory—first results. Computers & Mathematics with Applications 37, 4-5 (1999), 19–31.
- [15] NAZMUL, S., AND SAMANTA, S. Neighbourhood properties of soft topological spaces. Ann. Fuzzy Math. Inform 6, 1 (2013), 1–15.
- [16] PAWLAK, Z. Rough sets. International journal of computer & information sciences 11, 5 (1982), 341–356.
- [17] PEI, D., AND MIAO, D. From soft sets to information systems. In 2005 IEEE international conference on granular computing (2005), vol. 2, IEEE, pp. 617–621.
- [18] PENG, X., YANG, Y., SONG, J., AND JIANG, Y. Pythagorean fuzzy soft set and its application. *Computer Engineering* 41, 7 (2015), 224–229.
- [19] PEYGHAN, E. About soft topological spaces. Journal of New Results in Science 2, 2 (2013), 60–75.
- [20] SHABIR, M., ALI, M. I., AND SHAHEEN, T. Another approach to soft rough sets. *Knowledge-Based Systems* 40 (2013), 72–80.
- [21] SHABIR, M., AND NAZ, M. On soft topological spaces. Computers & Mathematics with Applications 61, 7 (2011), 1786–1799.
- [22] TURING, A. M., ET AL. On computable numbers, with an application to the entscheidungsproblem. J. of Math 58, 345-363 (1936), 5.
- [23] WEIHRAUCH, K. Computable analysis: an introduction. Springer Science & Business Media, 2000.
- [24] WEIHRAUCH, K. Computable separation in topology, from t0 to t2. J. Univers. Comput. Sci. 16, 18 (2010), 2733–2753.
- [25] WEIHRAUCH, K. Computability, vol. 9. Springer Science & Business Media, 2012.
- [26] WEIHRAUCH, K., AND GRUBBA, T. Elementary computable topology. J. Univers. Comput. Sci. 15, 6 (2009), 1381–1422.

- [27] XIAO, Z., GONG, K., AND ZOU, Y. A combined forecasting approach based on fuzzy soft sets. Journal of Computational and Applied Mathematics 228, 1 (2009), 326–333.
- [28] YANG, Y., TAN, X., AND MENG, C. The multi-fuzzy soft set and its application in decision making. *Applied Mathematical Modelling* 37, 7 (2013), 4915–4923.