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Abstract

Soft sets were introduced as a means to study objects that are not

defined in an absolute way, and have found applications in numerous ar-

eas of mathematics, decision theory and in statistical applications. Soft

topological spaces were first considered in [21], and soft separation axioms

for soft topological spaces were studied in [6, 7, 4].

In this paper we introduce the effective versions of soft separation

axioms. Specifically we focus our attention on computable u-soft and

computable p-soft separation axioms and investigate various relations be-

tween them. We also compare the effective and classical versions of these

soft separation axioms.

1 Preliminaries

1.1 Soft sets

Set theory classifies members of a set as whether those members belong to the

set or not, but, in some situations we need to classify elements of a set based on

some parameters. The need for such a classification motivated Molodtsov to in-

troduce soft set theory in [14]. Soft set theory is considered a mathematical tool

that deals with objects that are not defined in a definite way. Such objects can

be found in complicated mathematical problems in economics and engineering

applications when classical mathematical tools cannot be used due to the uncer-

tainties associated to such problems. There are already existing mathematical

tools for dealing with uncertainty in mathematical problems, such as the use

of probability theory [10], fuzzy set theory [12] and interval mathematics [9].

However those three mathematical tools have their own shortcomings that the

use of soft set theory overcomes as argued in [14].
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Due to the unique properties of soft set theory that allow it to be more suit-

able in certain situations compared to the other mathematical tools mentioned

above, it is often a major mathematical tool used in decision making problems

as in [13] and [8]. Soft set theory, when combined with fuzzy set theory [12]

can be used in decision making as in [28] and [18], and also used in forecast-

ing problems as in [27]. There are also some applications of soft set theory in

algebraic structures as in [1], [2] and [11]. When soft set theory is combined

with rough set theory [16], we get new approximation spaces with interesting

properties [20].

Topological spaces are introduced for soft sets [21], and some of the prop-

erties associated with soft topological spaces are explored in [15]. Several soft

separation axioms were defined and studied in [6] and the further applications of

those soft separation axioms are explored in [7] and [4]. Soft separation axioms

are of importance in soft topological spaces as shown in the existing literature,

much like how classical separation axioims have played a key role in the clas-

sification and the understanding of classical topological spaces. In this paper

we will define and explore further soft separation axioms for soft topological

spaces. We also define the computable versions of these soft separation axioms

and investigate their properties in the effective setting. This paper is intended

to investigate how computability interacts with soft topological spaces and soft

separation axioms. Hence we will compare the various principles that arise by

considering computable separation axioms in the soft setting.

The paper is organised as follows. In section 1.2 we recall some basic notions

of soft sets and soft topological spaces as defined in the literature. In section

1.3 we briefly recall some notation and definitions that we will require from

computable analysis, including computable topological spaces and computable

separation axioms that were studied in the literature. In section 2 we define a

new separation axiom for soft topological spaces, called u-soft separation, and

give some of its basic properties. In section 3 we define and study computable

u-soft separation axioms for computable soft spaces, and in section 4 we define

and study various computable p-soft separation axioms. Finally in section 5 we

compare the various principles introduced in sections 3 and 4.

1.2 Soft topological spaces

In this section, we recall some definitions and results of soft set theory and soft

topological spaces. This section is meant to provide a self-contained introduction
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to the basics and background of soft set theory. The intitiated reader may skip

ahead to section 1.3.

1.2.1 Basics of soft sets

Definition 1.1. [14] A pair (G,E) (usually denoted as GE) is called a soft set

over a universe X if G is map from the parameter set E into 2X . We usually

identify GE = {(e,G(e)) : e ∈ E and G(e) ⊆ X}. S(XE) denotes the set of all

soft sets over X with respect to the parameter set E. The relative complement

of GE is denoted by GcE , where Gc : E → 2X is defined by Gc(e) = X \ G(e).

Where the context is clear we do not refer to the universe X.

Definition 1.2. [13, 17] Soft union and soft intersection are taken parameter-

wise. For two soft sets GE1
, HE2

over X, their soft union, GE1

⋃
HE2

, is the

soft set FE1∪E2
where F : E1 ∪ E2 → 2X is defined as follows

F (e) =


G(e), if e ∈ E1 − E2,

H(e), if e ∈ E2 − E1,

G(e) ∪H(e), if e ∈ E1 ∩ E2.

The soft intersection GE1

⋂
HE2 is the soft set IE1∩E2 where I(a) = G(a)∩H(a)

for every a ∈ E1 ∩ E2.

Given x ∈ X and a soft set GE there are four ways one can define member-

ship or non-membership:

Definition 1.3. [14, 6] For a soft set GE ∈ S(XE) and x ∈ X, we say that

� x ∈ GE if x ∈ G(e) for each e ∈ E.

� x /∈ GE if x /∈ G(e) for some e ∈ E.

� x b GE if x ∈ G(e) for some e ∈ E.

� x 6b GE if x /∈ G(e) for each e ∈ E.

Hence ∈ and 6b are “strong” membership and non-membership respectively.

Depending on the version of membership that one uses, the usual set theoretic

operations might or might not be compatible:

Proposition 1.4. [6] For two soft sets GE and HE in S(XE) and x ∈ X, we

have the following,
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1. If x ∈ GE, then x b GE.

2. x 6b GE if and only if x ∈ GcE.

3. x b GE
⋃
HE if and only if x b GE or x b HE.

4. If x b GE
⋂
HE, then x b GE and x b HE.

5. If x ∈ GE or x ∈ HE, then x ∈ GE
⋃
HE.

6. x ∈ GE
⋂
HE if and only if x ∈ GE and x ∈ HE.

Definition 1.5. [6, 13] A soft set GE over X is said to be:

� A null soft set if G(e) = ∅ for each e ∈ E. It is denoted by ∅̃.

� An absolute soft set if G(e) = X for each e ∈ E. It is denoted by X̃.

� A stable soft set if for some M ⊆ X we have G(e) = M for each e ∈ E.

There are two different ways one can define a point, either as a soft singleton

or as a soft point:

Definition 1.6. [5, 21] The soft set xE (called a soft singleton) is defined by

x(e) = {x} for each e ∈ E. A soft point, denoted by pxe , is the soft set PE where

P (e) = {x} and P (k) = ∅ for each k ∈ E \ {e}.

Definition 1.7. [17] A soft set GE1
is a soft subset of a soft set HE2

, denoted

by GE1
⊆ HE2

, if

� E1 ⊆ E2, and

� ∀e ∈ E1, G(e) ⊆ H(e).

Two soft sets are soft equal if each one of them is a soft subset of the other.

Definition 1.8. [19] The Cartesian product of two soft sets FA and IB , denoted

by (F×I)A×B over universes X and Y , respectively, is defined as (F×I)(a, b) =

F (a)× I(b), for each (a, b) ∈ A×B.

1.2.2 Soft topological spaces

The study of soft topological spaces was initiated in [21]. We quickly recall some

of the definitions and results of soft topological spaces.
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Definition 1.9. [21, 15] A collection τ of soft sets over a universe X w.r.t. a

parameter set E is said to be a soft topology on X if the following conditions

are satisfied,

1. X̃, ∅̃ ∈ τ.

2. τ is closed under finite intersection.

3. τ is closed under arbitrary union.

The triple (X, τ,E) is called a soft topological space, or STS. Members of τ are

called soft open sets. A soft set is soft closed if its complement is soft open. The

closure of HE , denoted by HE is the intersection of all soft closed sets containing

HE . pxe is called a soft limit point of GE if [FE \ pxe ]
⋂
GE 6= ∅̃, for each soft

open set FE containing pxe .

Let Y be a nonempty soft subset of an STS (X, τ,E). τY = {Ỹ
⋂
GE :

GE ∈ τ} is said to a soft relative topology on Y and the triple (Y, τY , E) is a

soft subspace of (X, τ,E).

Fact 1.10. [21] Given an STS (X, τ,E) and e ∈ E, τe = {G(e) : GE ∈ τ}
forms a topology on X (classically).

Theorem 1.11. [19] Let (X, τ,A) and (Y, θ,B) be two STSs. Let Ω = {GA ×
FB : GA ∈ τ and FB ∈ θ}. Then, the family of all arbitrary unions of elements

of Ω is a soft topology on X × Y .

We now recall the partial soft separation axioms based on the partial mem-

bership (b) and strong non-membership ( 6b) relations:

Definition 1.12. [6] An STS (X, τ,E) is said to be:

� p-soft T0 if for every two distinct x, y ∈ X, there exists a soft open set GE

such that x ∈ GE and y 6b GE , or y ∈ GE and x 6b GE .

� p-soft T1 if for every two distinct x, y ∈ X, there exist soft open sets GE

and FE such that x ∈ GE , y 6b GE , y ∈ FE and x 6b FE .

� p-soft T2 if for every two distinct x, y ∈ X, there exist disjoint soft open

sets GE and FE such that x ∈ GE and y ∈ FE .

� p-soft regular if for every soft closed set HE and x ∈ X such that x 6b HE ,

there exist disjoint soft open sets GE and FE such that HE ⊆ GE and

x ∈ FE .
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Note that two soft sets are disjoint if their soft intersection is ∅̃.

The following well-know fact about T1 spaces holds in the p-soft setting:

Theorem 1.13. An STS (X, τ,E) is a p-soft T1 space if and only if xE is soft

closed, for all x ∈ X.

1.3 Basics of computable analysis

1.3.1 Type-2 theory of computability

Turing provided [22] in his pioneering work in 1936 an abstract model of a

Turing machine. This is a central notion in the study of computability the-

ory. In classical computability theory we deal with natural numbers and the

domain and co-domain of computable functions are subsets of the natural num-

bers N. However, in the study of effective analysis we are often concerned with

potentially uncountable objects such as subsets of the real numbers, or sets of

functions, etc. In order to apply the tools of classical computability we will

need to “encode” these objects by means of names. Through systems of nota-

tions and representations in which the objects of study are represented as finite

or infinite sequences of natural numbers we can make sense of the notion of a

computation in which these names can be used as an input or the output of a

computation.

Computable analysis has provided us with the formal framework in which

we can conduct investigations of computablity in the realm of analysis and

topology. We introduce the notations that will be used throughout the paper.

The reader is referred to [23, 25] for more details and background. Let Σ be a

finite set of symbols that contains 0 and 1. The set of all finite words over Σ

is denoted by Σ∗, and the set of all infinite sequences over Σ is denoted by Σω

where q ∈ Σω means that q : N → Σω and we write q = q(0)q(1) · · · , and |w|
denotes the length of w ∈ Σ∗. q<i ∈ Σ∗ represents the initial segment of length

i of q ∈ Σω and w v q means that w is a prefix of q.

We use the wrapping function ι : Σ∗ → Σ∗, where for a, b, c, d, e ∈ Σ,

ι(abcde) = 110a0b0c0d0e011 to encode the concatenation of finite strings in a

way which can be effectively decoded. For instance, we cannot recover σ and

τ from στ but we can do so from ι(σ)ι(τ). We fix the pairing function on

the set of natural numbers as 〈i, j〉 = (i+j)(i+j+1)
2 + j. We also consider the

standard tupling function on Σ∗ and Σω where 〈v1, · · · , vn〉 = ι(v1) · · · ι(vn),

〈v, q〉 = ι(v)q, 〈p, q〉 = p(0)q(0)p(1)q(1) · · · , and 〈q0, q1, · · · 〉 (〈i, j〉) = qi(j) for

6



v1, · · · , vn, v ∈ Σ∗ and p, q ∈ Σω. For r ∈ Σ∗ let r! be the longest subword

s ∈ 11Σ∗11 of r and then for u, r1, r2 ∈ Σ∗, (u � r1 ∨ u � r2) ⇔ u � r!1r
!
2

where u� r iff ι(u) is a subword of r.

For X1, X2 ∈ {Σ∗,Σω}, a (partial) function f :⊆ X1 → X2 is computable if

there is a type-2 machine M that computes f (see [23, 25] for more details if

the reader is unfamiliar with the basics of effective type-2 theory). In TTE, we

use representations or names to denote objects and type-2 machines can work

with them via names. This is formalised through the notion of a represented

space: a representation δ of a set S is simply a surjective (partial) function

δ :⊆ Σω → S, while a notation ν of a countable set S is a surjective (partial)

function ν :⊆ Σ∗ → S. Examples include the canonical notations of the natural

numbers and the rational numbers νN : Σ∗ → N, νQ : Σ∗ → Q, respectively.

For representations or notations γ :⊆ Σω∪Σ∗ →M and γ′ :⊆ Σω∪Σ∗ →M ′,

a partial function h :⊆ Σω ∪Σ∗ → Σω ∪Σ∗ realizes f :⊆M →M ′ if f ◦ γ(p) =

γ′ ◦ h(p) for every p ∈ dom(γ). The function f is called (γ, γ′)-computable if

it has a computable realization h. These definitions extend readily to multi-

representations and multi-functions.

We say that γ is reducible to γ′ (denoted by γ ≤ γ′) if M ⊆ M ′ and the

identity function id : M →M ′ is (γ, γ′)-computable, i.e. there is a computable

function that translates γ-names to γ′-names. Two representations γ and γ′ are

equivalent iff γ ≤ γ′ and γ′ ≤ γ.

Given a notation α :⊆ Σ∗ → M we can extend it naturally to a notation

αfs for the set of finite subsets of M , and a representation αcs for the set of

countable subsets of M in the natural way:

αfs(w) = W ⇔ (∀u� w)u ∈ dom(α),W = {α(u) : u� w};

αcs(p) = W ⇔ (∀u� p)u ∈ dom(α),W = {α(u) : u� p}.

If µ :⊆ Σω → M ′ is a representation of M ′, we can also define representa-

tions µfs and µcs for the set of finite and countable subsets of M ′ accord-

ingly: µfs(p) = W ⇔ (∃n)(∃q1, ...., qn ∈ dom(µ)), p = 〈1n, q1, ...., qn〉,W =

{µ(q1), ..., µ(qn)}, and µcs(〈a0q0, a1q1, ...〉) = W ⇔ (∀i)(ai = 0 ⇒ qi ∈
dom(µ)) and W = {µ(qi) : ai = 0}. Here w ∈ Σ∗, p, q0, q1, .... ∈ Σω and

a0, a1, ...are symbols of Σ.
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1.3.2 Computable topological spaces

In this section, we define computable topological spaces as introduced in [24, 26]

and mention some of the useful results in the literature that are relevant to us.

Definition 1.14 (Weihrauch and Grubba [26]). An effective topological space

is defined to be a 4-tuple X = (X, τ, α, µ) such that (X, τ) is a topological

T0 space and µ :⊆ Σ∗ → α is a notation of a countable base α of τ . X is a

computable topological space if dom(µ) is recursive and there is some c.e. set

S such that for all u, v ∈ dom(µ) we have

µ(u) ∩ µ(v) =
⋃
{µ(w) : (u, v, w) ∈ S}.

In other words, the intersection of any two basic open sets is effectively open,

uniformly in the notation for the basic open sets.

Definition 1.15 (Weihrauch [24]). Let X = (X, τ, α, µ) be a computable topo-

logical space. We define the following representations.

1. δ :⊆ Σω → X is a representation of the set X, where

δ(p) = x⇔ (∀w ∈ Σ∗)(w � p⇔ x ∈ µ(w)).

2. ϑ :⊆ Σω → τ is a representation of the set of open sets where

ϑ(p) = W ⇔ ∀w ∈ Σ∗(w � p⇒ w ∈ dom(µ)), and W =
⋃
{µ(w) : w � p}.

3. ψ :⊆ Σω → A is a representation of the set of closed sets where

ψ(p) = A⇔ ∀w ∈ Σ∗(w � p⇔ A ∩ µ(w) 6= ∅).

4. κ :⊆ Σω ⇒ K is a multi-representation of the set of compact subsets of

X where

κ(p) = K ⇔ [(∀w ∈ Σ∗)(w � p⇔ K ⊆ ∪µfs(w))].

5. δ :⊆ Σω → X is a representation of the set X, where

δ(p) = x⇔ ϑ(p) = X \ {x}.
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6. ϑ :⊆ Σω → τ is a representation of the set of open sets, where

ϑ(p) = X \ ψ(p).

7. ψ :⊆ Σω → A is a representation of the set of closed sets, where

ψ(p) = X \ ϑ(p).

We introduce some existing results that we will be using implicitly through-

out the paper.

Lemma 1.16 (Weihrauch [24]). We have the following:

1. µ ≤
⋃
µfs ≤ ϑ.

2. δ(wΣω) =
⋂
µfs(w) for all w ∈ dom(µfs).

3. The space is SCT2 (see definition 1.19) iff δ ≤ δ.

The following theorem illustrates how we can compute unions and intersec-

tions of open and closed sets computably.

Theorem 1.17 (Weihrauch [24]). We have the following:

1. Finite intersection on open sets is (µfs, ϑ)-computable and (ϑfs, ϑ)-

computable.

2. Union on open sets is (ϑcs, ϑ)-computable.

3. Finite union on closed sets is (ψ
fs
, ψ)-computable, and intersection on

closed sets is (ψ
cs
, ψ)-computable.

4. Finite union of compact sets is (κfs,κ)-computable.

Lemma 1.18 (Weihrauch and Grubba [26]). Given a point x, an open set W ,

a closed set A and a compact set K, we have the following:

1. “x ∈W” is (δ, ϑ)-c.e.

2. “K ⊆W” is (κ, ϑ)-c.e.

3. “A ∩W 6= ∅” is (ψ, ϑ)-c.e.

4. “K ∩A = ∅” is (κ, ψ)-c.e.
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1.3.3 Computable separation axioms

Weihrauch [24] introduced effective versions of separation axioms in computable

topological spaces and discovered several interesting properties that hold for

the computable separation axioms but not for their classical counterparts. For

instance, he proved that the computable versions of T2 and T1 are equivalent

[24] although they are clearly not classically equivalent.

In this section, we recall some of the computable separation axioms defined

in [24] and the relationships between them. The main goal of this paper is to

further this line of investigation for soft topological spaces. In the subsequent

sections, we define different types of computable separation axioms for soft

topological spaces and establish the relationships between them. We also show

that certain implications are proper.

Definition 1.19 (Weihrauch [24]). We define the following properties for a

computable topological space (X, τ, α, µ):

� CT0: The multi-function t0 is (δ, δ, µ)-computable, where t0 maps every

pair of points (x, y) ∈ X2 such that x 6= y to some U ∈ α such that x ∈ U
and y /∈ U , or x /∈ U and y ∈ U .

� CT1: The multi-function t1 is (δ, δ, µ)-computable, where t1 maps every

pair of points (x, y) ∈ X2 such that x 6= y to some U ∈ α such that x ∈ U
and y /∈ U .

� CT2: The multi-function t2 is (δ, δ, [µ, µ])-computable, where t2 maps ev-

ery pair of points (x, y) ∈ X2 such that x 6= y to some (U, V ) ∈ α2 such

that U ∩ V = ∅, x ∈ U and y ∈ V .

� SCT2: There is a c.e. set H ⊆ Σ∗ × Σ∗ such that

1. ∀x 6= y ∃(u, v) ∈ H (x ∈ µ(u) ∧ y ∈ µ(v)).

2. ∀(u, v) ∈ H (µ(u) ∩ µ(v) = ∅).

� CT pc2 : The multi-function tpc is (δ,κ, [µ,
⋃
µfs])-computable, where tpc

maps every x ∈ X and every compact set K such that x /∈ K to some pair

(U,W ) of disjoint open sets such that x ∈ U and K ⊆W .

� CT cc2 : The multi-function tcc is (κ,κ, [
⋃
µfs,

⋃
µfs])-computable, where

tcc maps every pair (K,L) of non-empty disjoint compact sets to some

pair (V,W ) of disjoint open sets such that K ⊆ V and L ⊆W .

10



� SCT pc2 : There is a c.e. set H ⊆ Σ∗ × Σ∗ such that

1. ∀x ∈ X ∀ compact K such that x /∈ K ∃(u,w) ∈ H (x ∈ µ(u)∧K ⊆⋃
µfs(w)).

2. ∀(u,w) ∈ H (µ(u) ∩
⋃
µfs(w) = ∅).

� SCT cc2 : There is a c.e. set H ⊆ Σ∗ × Σ∗ such that

1. ∀ compact sets K,L such that K∩L = ∅ ∃(u, v) ∈ H (K ⊆
⋃
µfs(u)

and L ⊆
⋃
µfs(v)).

2. ∀(u, v) ∈ H
(⋃

µfs(u) ∩
⋃
µfs(v) = ∅

)
.

2 u-soft separation axioms

In section 1.2.2 we had mentioned soft separation axioms for STS based on

strong membership and strong non-membership.

In this section, we define u-soft separation axioms. This type of separation

axioms is based on soft points which is the natural way to define separation

axioms analogously to the classical separation axioms. We investigate the rela-

tions between the u-soft separation axioms and p-soft separation axioms defined

in [6]. we will note that some implications between the two different notions

of soft separation axioms hold when the set of parameters is finite, however,

when the parameter set is infinite those implications do not hold as what will

be seen then from the counterexamples. We also answer a question proposed

in [3] about whether u-soft T2 spaces imply p-soft T2 spaces where we find out

that the answer is yes and we give a counterexample to show that the reverse

implication is not true in general.

Definition 2.1. An STS (X, τ,E) is called

� u-soft T0 iff ∀ pxe , pye ∈ X̃, there exists a soft open set GE such that pxe ∈ GE
and pye /∈ GE , or pxe /∈ GE and pye ∈ GE .

� u-soft T1 iff ∀ pxe , pye ∈ X̃, there exist two soft open sets GE and FE such

that pxe ∈ GE and pye /∈ GE , and pxe /∈ FE and pye ∈ FE .

� u-soft T2 iff ∀ pxe , pye ∈ X̃, there exist two soft open sets GE and FE such

that pxe ∈ GE and pye ∈ FE and GE
⋂
FE = ∅̃.

Immediate implications between u-soft separation axioms are given in the

next proposition.
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Proposition 2.2. Every u-soft Ti space is u-soft Ti−1 space for i = 2, 1.

Proof. Straightforward.

Now, we give counterexamples to the above implications.

Example 2.3. Let X = {x}, E = {e1, e2} and τ = {X̃, ∅̃, {(e1, {x}), (e2, ∅̃}}.

It can be easily seen that this space is u-soft T0 but not u-soft T1.

Example 2.4. Let E = N, X be an infinite set, τ = {X̃, ∅̃, GE : GcE is finite }.

Clearly, this space is u-soft T1 but not u-soft T2.

Proposition 2.5. : An STS is a u-soft T1 space iff ∀ pxe ∈ X̃, pxe = pxe .

Proof. Straightforward.

The following propositions illustrate the relation between u-soft Ti and p-

soft Ti spaces for i = 2, 1. Those implications are based on the finiteness of the

parameter set and counterexamples are given to show that the implications are

proper.

Proposition 2.6. Every u-soft T2 space is p-soft T2 space if E is finite.

Proof. Let x 6= y and E has m parameters. ∀ pxei ∀ p
y
ej ∈ X̃ \p

x
ei , there exist two

disjoint soft open sets GEij
and FEij

such that pxei ∈ GEij
and pyej ∈ FEij

.Then,

pxei ∈
m⋂
j=1

GEij
and y 6b GEij

∀i ≤ m, also, y ∈
m⋃
j=1

FEij
and pxei /∈

m⋃
j=1

FEij
.

Thus,

x ∈
m⋃
i=1

[

m⋂
j=1

GEij
] and y ∈

m⋂
i=1

[

m⋃
j=1

FEij
],

and

[

m⋃
i=1

[

m⋂
j=1

GEij
]]
⋂

[

m⋂
i=1

[

m⋃
j=1

FEij
]] = ∅̃.

Therefore, the space is p-soft T2.

Proposition 2.7. : Every u-soft T1 space is p-soft T1 space if E is finite.

Proof. Let x 6= y and E has m parameters.∀ pxei ∀ p
y
ej ∈ X̃ \ p

x
ei , there exists

an open set GEij
such that pxei ∈ GEij

and pyej /∈ GEij
. Then, pxei ∈

m⋂
j=1

GEij
,
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∀i ≤ m. Therefore,

x ∈
m⋃
i=1

[

m⋂
j=1

GEij
] and y 6b

m⋃
i=1

[

m⋂
j=1

GEij
].

Similarly, if we switch y and x we will get soft open sets GEij
such that

y ∈
m⋃
i=1

[

m⋂
j=1

FEij
] andx 6b

m⋃
i=1

[

m⋂
j=1

FEij
].

Therefore, the space is p-soft T1.

The converse of the above propositions is not true in general as shown in the

following example.

Example 2.8. Let X = {x, y}, E = {e1, e2} and

τ = {X̃, ∅̃, {(e1, {x}), (e2, {x})}, {(e1, {y}), (e2, {y})}, {(e1, ∅), (e2, {x})},
{(e1, {x}), (e2, ∅)}, {(e1, {y}), (e2, ∅)}, {(e1, X), (e2, {x})}, {(e1, X), (e2, {y})},
{(e1, {y}), (e2, X)}, {(e1, X), (e2, ∅)}, {(e1, {y}), (e2, {x})}}. This space is p-soft

T2 but not u-soft T1.

When the parameter set is infinite, the above inclusions do not hold in

general as shown in the following examples.

Example 2.9. Let X = {x, y}, E = {e1, e2, · · · }. We define a STS τ on

X with respect to E as follows, τ = {X̃, ∅̃, Gai1ai2 ···aikk : G
ai1ai2 ···aik
k =

{(e1, f(ai1), (e2, f(ai2), · · · , (ek, f(aik), (ek+1, X), · · · }; i1, · · · , ik ∈
{0, 1, 2, 3}; f(a0) = ∅, f(a1) = {x}, f(a2) = {y}, f(a3) = X}. Clearly,

this space is u-soft T1 but it is not p-soft T1 or even p-soft T0.

Example 2.10. Let X = {a, b}, E = {e1, e2, · · · }. We partition N into in-

finitely many infinite partitions N = F1

⋃
F2

⋃
· · · . we define a STS on X with

respect to E where its basic open sets are defined as follows, for each finite set

G ⊆ N we have {paei : i ∈ G} and for each finite set G ⊆ N, n ∈ N we have

{pben}
⋃
{paei : i ∈ Fn − G}. Clearly, this space is u-soft T2 but it is not p-soft

T2.

The following two examples show that u-soft T0 and p-soft T0 spaces are

incomparable.
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Example 2.11. Let X = {x, y}, E = {e1, e2} and

τ = {X̃, ∅̃, {(e1, {y}), (e2, {x})}, {(e1, ∅̃), (e2, {y})}, {(e1, {y}), (e2, X)},
{(e1, ∅̃), (e2, {x})}, {(e1, ∅̃), (e2, X)}}.

This space is u-soft T0 but not p-soft T0.

Example 2.12. Let X = {x, y}, E = {e1, e2}
and τ = {X̃, ∅̃, {(e1, {x}), (e2, {x})}}.

This space is p-soft T0 but not u-soft T0.

3 Computable u-soft separation axioms

In this section, we define the new notions of computable soft topological spaces

and computable u-soft separation axioms that are based on soft points. We

investigate some properties and implications of those newly defined computable

u-soft separation axioms. We also introduce some counterexamples to prove

that some implications are not true in general.

Definition 3.1. A computable STS is a tuple (X, τ,A, β, ν) such that

1. (X, τ,A) is a u-soft T0 space,

2. ν : Σ∗ → β is a notation of a base of τ with respect to soft points with

recursive domain,

3. There is a computable function h : Σ∗ × Σ∗ → Σω such that for all

u, v ∈ dom(ν),

ν(u)
⋂
ν(v) = ∪{ν(w) : w ∈ dom(ν) and ι(w)� h(u, v)}.

Note. In computable soft topological spaces when we encode soft points we

need to consider the parameter of the soft point so that it is encoded as well

in the name. That is, δu(p) = pxe where p is a list of all basic soft open sets

containing pxe and the first bit of p encodes the parameter of the soft point,

which is e in this case. When the parameter set E is infinite, we require it to

be computable and countable, and to be given of the form E = {e1, e2, · · · }.
The following are the computable u-soft separation axioms where they are

based on separating soft points by basic soft open sets.
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Definition 3.2. A computable STS (X, τ,A, β, ν) is computable u-soft T0

(CuT0, for short ) if (X, τ,A) is a u-soft T0 and the multifunction ut0 is

(δu, δu, ν)-computable where ut0 maps every (pxe , p
y
α) ∈ X̃×X̃ such that pxe 6= pyα

to some UA ∈ β such that

(pxe ∈ UA and pyα /∈ UA) or (pxe /∈ UA and pyα ∈ UA).

Definition 3.3. A computable STS (X, τ,A, β, ν) is computable u-soft T1

(CuT1, for short ) if (X, τ,A) is a u-soft T0 and the multifunction ut1 is

(δu, δu, ν)-computable where ut1 maps every (pxe , p
y
α) ∈ X̃×X̃ such that pxe 6= pyα

to some UA ∈ β such that

(pxe ∈ UA and pyα /∈ UA).

Definition 3.4. A computable STS (X, τ,A, β, ν) is computable u-soft T2

(CuT2, for short ) if (X, τ,A) is a u-soft T0 and the multifunction ut2 is

(δu, δu, ν)-computable where ut2 maps every (pxe , p
y
α) ∈ X̃×X̃ such that pxe 6= pyα

to some UA, VA ∈ β such that

(pxe ∈ UA and pyα ∈ VA and UA
⋂
VA = ∅̃).

The next lemma gives the obvious implications between the computable u-

soft separation axioms that are defined so far. The proof is Straightforward by

definition.

Lemma 3.5. CuTi ⇒ u-softTi for i ∈ {0, 1, 2}.

Proof. Straightforward.

Lemma 3.6. CuTi ⇒ CuTi−1 for i ∈ {1, 2}.

Proof. Straightforward.

We give a counterexample that is CuT0 but not CuT1.

Example 3.7. Let X = {x} be the universe set, E = {e1, e2} be a set of

parameters and τ is a STS generated by the following base,

ν(01) = {(e1, {x}), (e2, ∅)} , ν(001) = X̃ , where β = range(ν).
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We define now some more computable u-soft separation axioms to help us

establish the relation between CuT1 and CuT2. At the end of this section we

will see that some of the following notions are equivalent.

Definition 3.8. A computable STS is:

WCuT0: If there is a c.e. set H ⊆ dom(ν)× dom(ν) such that

1. (∀pxe 6= pyα)(∃(u, v) ∈ H)(pxe ∈ ν(u) and pyα ∈ ν(v)),

2. (∀(u, v) ∈ H):

(ν(u)
⋂
ν(v) = ∅̃),

∨((∃pxe )ν(u) = {pxe} ⊆ ν(v)),

∨((∃pyα)ν(v) = {pyα} ⊆ ν(u)).

SCuT0: If The multifunction uts0 is (δu, δu, [νN , ν])-computable where uts0 maps

every (pxe , p
y
α) ∈ X̃ × X̃ such that (pxe 6= pyα) to some (k, UE) ∈ N× β such that

(k = 1, pxe ∈ UE and pyα /∈ UE) ∨ (k = 2, pxe /∈ UE and pyα ∈ UE).

CuT0
′: If there is a c.e. set H ⊆ dom(νN )× dom(ν)× dom(ν) such that

1. (∀pxe 6= pyα)(∃(w, u, v) ∈ H)(pxe ∈ ν(u) and pyα ∈ ν(v)),

2. (∀(w, u, v) ∈ H):

(ν(u)
⋂
ν(v) = ∅̃),

∨(νN (w) = 1(∃pxe )ν(u) = {pxe} ⊆ ν(v)),

∨(νN (w) = 2(∃pyα)ν(v) = {pyα} ⊆ ν(u)).

CuT1
′: If there is a c.e. set H ⊆ dom(ν)× dom(ν) such that

1. (∀pxe 6= pyα)(∃(u, v) ∈ H)(pxe ∈ ν(u) and pyα ∈ ν(v)),

2. (∀(u, v) ∈ H):

(ν(u)
⋂
ν(v) = ∅̃),

∨((∃pxe )ν(u) = {pxe} ⊆ ν(v)).

CuT2
′: If there is a c.e. set H ⊆ dom(ν)× dom(ν) such that

1. (∀pxe 6= pyα)(∃(u, v) ∈ H)(pxe ∈ ν(u) and pyα ∈ ν(v)),
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2. (∀(u, v) ∈ H):

(ν(u)
⋂
ν(v) = ∅̃),

∨((∃pxe )ν(u) = {pxe} = ν(v)).

SCuT2: If there is a c.e. set H ⊆ dom(ν)× dom(ν) such that

1. (∀pxe 6= pyα)(∃(u, v) ∈ H)(pxe ∈ ν(u) and pyα ∈ ν(v)),

2. (∀(u, v) ∈ H):

(ν(u)
⋂
ν(v) = ∅̃).

Now we investigate the relations between those separation axioms.

Proposition 3.9. CuT0 ⇔ SCuT0 ⇔ CuT0
′.

Proof. SCuT0 ⇒ CuT0: Straightforward.

CuT0 ⇒ SCuT0: There is a machine M on input (p, q) ∈ dom(δu) × dom(δu),

it first runs ut0 on (p, q) that outputs u. Then M outputs (1, u) if u � p, and

outputs (2, u) if u� q.

CuT0
′ ⇒ SCuT0: There is a machine M on input (p, q) ∈ Σω × Σω, it first

searches for (w, u, v) ∈ H such that u� p and v � q and then it outputs (w, u)

if νN (w) = 1 and (w, v), otherwise.

SCuT0 ⇒ CuT0
′: Let M be a machine that realizes ut0

s. There is another

machine M ′ that on input (w, u, v) ∈ (Σ∗)3 halts iff we can find words u′ ∈
dom(ν), f, h ∈ dom(νfs) and t ≤ min(|f |, |h|) such that M on (f1ω, h1ω) halts

in t steps outputting (w, u′) and

u� g(fι(u′)) and v � g(h) if νN (w) = 1,

u� g(h) and v � g(fι(u′)) if νN (w) = 2.

Now, let H = dom(fM ′).

We need now to show the two conditions of H. For the first condi-

tion: Let δu(p) = pxe 6= pyα = δu. Then M on (p, q) halts and outputs

(w, u′) in t steps where νN (w) = 1, pxe ∈ ν(u′) and pyα /∈ ν(u′)(when νN (w) =

2, same argument follows). Then, M also halts on (f1ω, h1ω) outputting (w,

u’) where f = p<t andh = q<t. Thus, pxe ∈
⋂
νfs(fι(u′)) and pyα ∈

⋂
νfs(h) and

hence there are u, v such that u � νfs(fι(u′)), u � p and v � νfs(h), v � q.

Therefore, there exists some (w, u, v) ∈ H such that pxe ∈ ν(u) and pyα ∈ ν(v).
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For the second condition of H: Let (w, u, v) ∈ H, νN (w) = 1, pxe ∈ ν(u),

pyα ∈ ν(u)
⋂
ν(v) and pxe 6= pyα. Then, there are f, h, u′ and t such that t ≤

min(|f |, |h|) and M halts on (f1ω, h1ω) in t steps outputting (w, u′) and u �
g(fι(u′)) and v � g(h). Therefore, pxe ∈ ν(u) ⊆ δu[fΣω]

⋂
ν(u′) and pyα ∈

ν(v) ⊆ δu[hΣω]. We know that pxe ∈ ν(u′) and pyα /∈ ν(u′). But, pyα ∈ ν(u) ⊆
ν(u′)), which a contradiction. Therefore, it must be the case that pxe = pyα,

hence,

((w, u, v) ∈ H, νN (w) = 1 and ν(u
⋂
ν(v) 6= ∅̃)⇒ (∃pxe )ν(u) = {pxe} ⊆ ν(v).

Same argument follows when νN (w) = 2.

Proposition 3.10. SCuT2 ⇒ CuT2 ⇒ CuT0 ⇒WCuT0.

Proof. Straightforward.

Proposition 3.11. CuT2 ⇔ CuT2
′ ⇔ CuT1 ⇔ CuT1

′.

Proof. CuT1 ⇔ CuT1
′: Straightforward as it is a special case of SCuT0 ⇔

CuT0
′.

CuT2
′ ⇒ CuT1

′: Straightforward.

CuT1
′ ⇒ CuT2

′: Let H be the c.e. set from CuT1
′. Now, let

H ′ = {(r, s) : r � g(u, v′), s� g(u′, v) for some (u, v), (u′, v′) ∈ H}.

We prove now the two conditions of H ′ as the c.e. set of CuT2
′.

Suppose pxe 6= pyα. By the first condition of H there are (u, v), (u′, v′) ∈
H such that pxe ∈ ν(u), pyα ∈ ν(v), pyα ∈ ν(u′), andpxe ∈ ν(v′). Then, pxe ∈
ν(u)

⋂
ν(v′) and pyα ∈ ν(u′)

⋂
ν(v), and hence there is (r, s) ∈ H ′ such that

pxe ∈ ν(r) and pyα ∈ ν(s). Thus the first condition of H ′ holds.

Now, we prove the second condition of H ′. Suppose (r, s) ∈ H ′ and

ν(r)
⋂
ν(s) 6= ∅̃. Thus, by definition of H ′ there are (u, v), (u′, v′) ∈ H such

that ν(r) ⊆ ν(u)
⋂
ν(v′) and ν(s) ⊆ ν(u′)

⋂
ν(v). Hence, ν(u)

⋂
ν(v) 6= ∅̃ and

ν(u′)
⋂
ν(v′) 6= ∅̃. Now, by the second condition of H, ν(u) = {pxe} ⊆ ν(v) and

ν(u′) = {pyα} ⊆ ν(v′). Therefore, ν(r) = {pxe} = ν(s) which shows that the

second condition of H ′ holds.

CuT2
′ ⇒ CuT2: There is a machine M that on input (p, q) searches for

(u, v) ∈ H such that u� p and v � q and prints (u, v) if the search is successful

and diverges, otherwise.

CuT2 ⇒ CuT2
′: By transitivity, which completes the proof.
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Now, we give counterexample to the above implications.

Proposition 3.12. There is a STS that is WCuT0 but not CuT0.

Proof. Follows immediately from the next example.

Example 3.13. Let X = {xi, yi : i ∈ N}, E = {e} be a set of parameters, and τ

be the soft discrete topology defined on X w.r.t E. We will define A, B, C, andD

as a partition of N where A is a non c.e. set. We define a notation ν of a basis

of τ as follows:

0i1 0i2 0i3 0i12 0i13 0i23

i ∈ A ∪D {pxi
e } {pyie } ∅̃ ∅̃ ∅̃ ∅̃

i ∈ B {pxi
e } {pxi

e , p
yi
e } {pyie } {pxi

e } ∅̃ {pyie }

i ∈ C {pxi
e , p

yi
e } {pyie } {pxi

e } {pyie } {pxi
e } ∅̃

We define now the intersection of soft basic open sets computably,

ν(0im)
⋂
ν(0in) = ν(0imn) for m 6= n. Thus, (X, τ,E, β, ν) is a computable

STS. Let H = {(0im, 0jn) : i, j ∈ N;m,n ∈ {1, 2}; (i 6= j orm 6= n)}. Then

H satisfies the two conditions of WuCT0. We show now that this space is not

SCuT0. Let r, s ∈ Σ8 such that νN (r) = 1 and νN (r) = 2. W.L.O.G. assume

that νN is injective. For i ∈ N let

Si = {〈r, 0i1〉, 〈s, 0i3〉, 〈r, 0i12〉, 〈s, 0i23〉},

Ti = {〈s, 0i2〉, 〈r, 0i3〉, 〈s, 0i12〉, 〈r, 0i13〉}.

Suppose that uts0 is realized by f : Σω×Σω → Σ∗. If δu(p) = pxi
e and δu(q) = pyie ,

then

f(p, q) ∈

Si if i ∈ B

Ti if i ∈ C.
(1)

∀i ∈ N we define pi = ι(0i1)ι(0i1)..., and qi = ι(0i2)ι(0i2)..., where pi, qi ∈ Σω.

Let F = {f : f : Σω ×Σω → Σ∗such that f(pi, qi) exists for all i ∈ A}. Consider

f ∈ F . Then, f ′ : i → f(pi, qi) is computable such that A ⊆ dom(f ′). Since F

is countable, there is a bijective function g : E → F for some E ⊆ N such that
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i ∈ dom(g′i) \A for all i ∈ E. Then, A
⋂
E = ∅. Let

B = {i ∈ E : gi(pi, qi) /∈ Si}, C = {i ∈ E : gi(pi, qi) ∈ Si}, (2)

and D = N \ (A ∪ B ∪ C). Since A
⋂
E = ∅, E = B ∪ C and B

⋂
C = ∅,

{A,B,C,D} is a partition of N.

Suppose some computable function f realizes uts0. Since δu(pi) = pxi
e and

δu(qi) = pyie for all i ∈ A, f(pi, qi) exists for all i ∈ A, hence f = gi for some

i ∈ E. Since gi realizes uts0, gi(pi, qi) ∈ Si ⇔ i ∈ B by (3.1). On the other

hand, gi(pi, qi) ∈ Si ⇔ i /∈ B by 3.2. Thus, the space is not CuT0.

Example 3.14. Let X = {x}, E = {e1, e2} be a set of parameters, and τ be

a STS defined on X w.r.t. E where τ = {X̃, ∅̃, {(e1, {x}), (e2, ∅)}} which is

generated by the following basis:

ν(01) = {(e1, {x}), (e2, ∅)},

ν(001) = X̃,

Where β = range(ν). Thus, (X, τ,E, ν, β) is a computable STS and it is CuT0

nut not CuT1.

Example 3.15. Let A ⊆ N be a c.e. set with non-c.e. complement. Define a

notation ν by

ν(0i1) = {pxi
e }, ν(0i2) = {pxi

e } for i ∈ A,

ν(0i1) = {pxi
e }, ν(0i2) = {pyie } for i /∈ A,

for all i ∈ N. Then, ν is a notation of a base β of a STS on a subset X ⊆ N
w.r.t. a parameter set E = {e} such that (X, τ,E, β, ν) is a computable STS.

This space is CuT ′2 as we have a c.e. set H = {(0im, 0in) : i, j ∈ N,m, n ∈
{1, 2}} that satisfies CuT ′2. Let H be the c.e. set for SCuT2. Thus, by the two

conditions of SCuT2

i /∈ A⇒ (0i1, 0i2) ∈ H,

i ∈ A⇒ (oi1, 0i2) /∈ H,

since H is c.e., the complement of A must be c.e., which is a contradiction.

In the figure below, we summarize the all implications of the computable

u-soft separation axioms. Those implications based on what we investigated

above and the non implications are based on the counterexamples introduced
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in this section above. These implications are actually the same as those of the

classical computable separations axioms corresponding to the ones defined in

the computable soft setting.

cu.png

Figure 1: Relations between computable u-soft separation axioms

From the equivalences in figure 1, we can see that we have exactly four

different notions of computable u-soft separation axioms.

In the next section, we will define computable p-soft separation axioms as

the computable versions to those defined in [6]. Then, we define more variations

of computable p-soft separations axioms and investigate the relations between

them.

4 Computable p-soft separation axioms

In this section, we define the computable versions of partial soft separation

axioms defined in [6] and then introduce some of the notions corresponding to

those defined for computable u-soft separation axioms.

We define first δp names for xE ⊆ X̃ in a computable STS (X, τ,E, β, ν),

where a δp name of xE ⊆ X̃ contains all soft basic open sets that contain pxei
for all ei ∈ E where E is the parameter set associated with the given STS.

We will define also p-soft separation axioms based on xE ⊆ X̃ and then

compare those separation axioms to the u-soft separation axioms defined in the

previous section.
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Definition 4.1. Let E be a finite set of parameters, σ be a function defined

as follows σ :⊆ Σ∗ \ {0} → E where σ(si) = ei. Now, δp(p) = xE where

p = siι(wj)......., and pxei ∈ ν(wj). In other words, p is a list of all soft basic

open sets that contain pxei for all ei ∈ E, and si tells us what parameter of E is

represented.

Now, we define the p-soft separation axioms.

Definition 4.2. A computable STS (X, τ,E, β, ν) is

� computable p-soft T0 (CpT0, for short) if (X, τ,E) is a u-soft T0 and the

multifunction pt0 is (δp, δp, θ)-computable where pt0 maps every xE , yE ⊆
X̃ such that xE 6= yE to some UE ∈ τ such that

(x ∈ UE and y 6b UE) or (x 6b UE and y ∈ UE).

� computable p-soft T1 (CpT1, for short) if (X, τ,E) is a u-soft T0 and the

multifunction pt1 is (δp, δp, θ)-computable where pt1 maps every xE , yE ⊆
X̃ such that xE 6= yE to some UE ∈ τ such that

(x ∈ UE and y 6b UE).

� computable p-soft T2 (CpT2, for short) if (X, τ,E) is a u-soft T0 and the

multifunction pt2 is (δp, δp, θ)-computable where pt2 maps every xE , yE ⊆
X̃ such that xE 6= yE to some UE , VE ∈ τ such that

(x ∈ UE and y ∈ VE , , and UE
⋂
VE = ∅̃).

We can see that CpTi ⇒ CpTi−1 for i ∈ {1, 2}.
Based on the above definitions, we can see that the following implications

hold,

CpT2 ⇒ CpT1 ⇒ CpT0

The converses of the above implications are not true in general as shown from

the following examples.

Example 4.3. Let X = {x, y}, E = {e1, e2} be a set of parameters and τ is a

STS defined on X w.r.t. E generated by the following basis,

ν(01) = {(e1, {x}), (e2, ∅)}, ν(001) = {(e1, ∅), (e2, {x})}, ν(0001) = X̃,
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and β = range(ν). Thus, (X, τ,E, β, ν) is a computable STS and it is CpT0 since

there is a machine M that realizes CpT0 where M on input (p, q) ∈ Σω × Σω,

prints ι(01)ι(001). The space is not CpT1 as it is not even pT1.

Example 4.4. Let X = {ai : i ∈ N}, E = {e1, e2} be a parameter set, and τ

be a STS defined on X w.r.t. E generated by the following basis notation,

ν(oi1j) = {(e1, Gi), (e2, Fj)},

where i and j are the canonical indices of Gi and Fj, respectively. We define

the intersection of finitely many basic open sets by ν(0i1j)
⋂
ν(0k1l) = ν(0m1n),

where m is the canonical index of Gci
⋂
Gck and n is the canonical index of

Fj
⋂
Fl. Thus, the space is computable STS. The space is CpT1 as there is a

machine M that on input (p, q) ∈ Σω × Σω, searches for ι(0i1j) and ι(0m1n)

such that ι(0i1j) � p and ι(0m1n) � q, and j and n are canonical indices of

singletons of X, and i,m ∈ N. If the search is successful, it prints ∠0n1j , 0j1n〉.
Hence, machine M realizes CpT1. However, the space is not CpT2 as it is not

pT2.

Now, we give some more p-soft separation axioms and investigate the rela-

tions between them.

Definition 4.5. A computable STS (X, τ,E, β, ν) is:

WCpT0: if there is a c.e. set H ⊆ dom(νfs)× dom(νfs) such that

1. (∀xE 6= yE)(∃(u, v) ∈ H)(x ∈ ∪νfs(u) and y ∈ ∪νfs(v)),

2. (∀(u, v) ∈ H):

(∪νfs(u)
⋂
∪νfs(v) = ∅̃),

∨((∃xE) ∪ νfs(u) = xE ⊆ ∪νfs(v)),

∨((∃yE) ∪ νfs(v) = yE ⊆ ∪νfs(u)).

SCpT0: if the multifunction pts0 is (δp, δp, [νN , θ])-computable where pts0 maps

every xE , yE ⊆ X̃ such that (xE 6= yE) to some (k, UE) ∈ N× τ such that

(k = 1, x ∈ UE and y 6b UE) ∨ (k = 2, y ∈ UE and x 6b UE).

CpT ′0: if there is a c.e. set H ⊆ dom(νN )× dom(νfs)× dom(νfs) such that

1. (∀xE 6= yE)(∃(w, u, v) ∈ H)(x ∈ ∪νfs(u) and y ∈ ∪νfs(v)),
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2. (∀(w, u, v) ∈ H):

(∪νfs(u)
⋂
∪νfs(v) = ∅̃),

∨(νN (w) = 1(∃xE) ∪ νfs(u) = xE ⊆ ∪νfs(v)),

∨(νN (w) = 2(∃yE) ∪ νfs(v) = yE ⊆ ∪νfs(u)).

CpT ′1: if there is a c.e. set H ⊆ dom(νfs)× dom(νfs) such that

1. (∀xE 6= yE)(∃(u, v) ∈ H)(x ∈ ∪νfs(u) and y ∈ ∪νfs(v)),

2. (∀(u, v) ∈ H):

(∪νfs(u)
⋂
∪νfs(v) = ∅̃),

∨((∃xE) ∪ νfs(u) = xE ⊆ ∪νfs(v)).

CpT ′2: if there is a c.e. set H ⊆ dom(νfs)× dom(νfs) such that

1. (∀xE 6= yE)(∃(u, v) ∈ H)(x ∈ ∪νfs(u) and y ∈ ∪νfs(v)),

2. (∀(u, v) ∈ H):

(∪νfs(u)
⋂
∪νfs(v) = ∅̃),

∨((∃xE) ∪ νfs(u) = xE = ∪νfs(v)).

SCpT2: if there is a c.e. set H ⊆ dom(νfs)× dom(νfs) such that

1. (∀xE 6= yE)(∃(u, v) ∈ H)(x ∈ ∪νfs(u) and y ∈ ∪νfs(v)),

2. (∀(u, v) ∈ H):

(∪νfs(u)
⋂
∪νfs(v) = ∅̃).

Proposition 4.6. Let CpTi and SCpT0 be the conditions obtained from CpTi

and SCpT0, respectively, by replacing θ by ∪νfs. Then, CpTi ⇔ CpTi for

i ∈ {0, 1, 2}, and SCpT0 ⇔ SCpT0, when the parameter set is finite.

Proof. CpTi ⇒ CpTi: since ∪νfs ≤ θ.
CpTi ⇒ CpTi: There is a machine M that on input (p, q) ∈ dom(δp)× dom(θ)

where δp(p) ∈ θ(q) searches for u1, ...., un where ui � pi and ui � q for all i

where pi is a δu name obtained from p. Then, machine M prints u if the search

is successful where u = ι(u1)ι(u2)....... and diverges, otherwise. Following the

same argument, we can prove SCpT0 ⇔ SCpT0, which completes the proof.

We now introduce some implications between the p-soft spaces defined above.
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Proposition 4.7. CpT0 ⇔ SCpT0 ⇐ CpT ′0 ⇒WCpT0.

Proof. SCpT0 ⇒ CpT0: Obvious.

CpT0 ⇒ SCpT0: There is a machine M that on input (p, q) ∈ dom(δp)×dom(δp)

searches for u1, ..., un ∈ dom(ν) such that ui � r for all i ∈ {1, ..., n} where

pt0(p, q) = r, and outputs 〈1, r〉 if for all i ui � pi where pi is a δu-name

obtained from p, and outputs ∠2, r〉 if for all i ui � qi where qi is a δu-name

obtained from q. We can see easily the M realizes pts0, which completes the

proof.

CpT ′0 ⇒ SCpT0: There is a machine M that on input (p, q) ∈ dom(δp)×dom(δp)

searches for (w, r, s) ∈ H-The c.e. set of CpT ′0- such that there are for all

i ∈ {1, ...., n} ui, vi ∈ dom(ν) where ui � r, vi � s and ui � pi, vi � qi

where pi, qi are δu-names obtained from p, q, respectively. Then, machine M

prints ∠w, r〉 if νN (w) = 1 and 〈w, s〉, otherwise. Thus M realizes pts0, which

completes the proof.

CpT ′0 ⇒ SCpT0: Obvious.

We now show that the second and third implications are not reversed in

general as shown from the next two examples.

Example 4.8. Let X = {ai, bi : i ∈ N}, E = {e1, e2} be a parameter set, and

τ be a STS defined on X w.r.t. E generated by the following basis where A is a

non c.e. set,

0i11 0i12 0i51 0i52 0i5211

i ∈ A pxi
e1 pxi

e2 pyie1 pyie2 ∅̃

i /∈ A pyie1 pyie2 pxi
e1 pyie1 ∪ p

xi
e2 pyie1

The finite intersections are all empty except for ν(0i11)
⋂
ν(0i52) =

ν(0i5211). Thus, the space (X, τ,E, β, ν) is computable STS. Let H be the

c.e. set of WCpT0, then

i ∈ A⇒ (ι(0i11)ι(0i12), ι(0i51)ι(0i52)) ∈ H,

i /∈ A⇒ (ι(0i11)ι(0i12), ι(0i51)ι(0i52)) /∈ H.

Thus, A must be an r.e, set which is a contradiction. Hence, the space is not

WCpT0 and then not CpT ′0, however, It is CpT0 as there is a machine M that
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realizes pt0 where M on (p, q) prints ι(0i11)ι(0i12).

Proposition 4.9. There is a computable STS that is WCpT0 but not CpT0.

Proof. Follows immediately from the following example.

Example 4.10. Let A ⊆ N be some non c.e. set. Let X = {xi, yi},
E = {e1, e2} be a parameter set and τ be a STS defined on X w.r.t. E

generated by the following basis given in the table below.

0i11 0i12 0i21 0i22 0i31 0i32

i ∈ A ∪D pxi
e1 pxi

e2 pyie1 pyie2 ∅̃ ∅̃

i ∈ B pxi
e1 pxi

e2 pxi
e1 ∪ p

yi
e1 pxi

e2 ∪ p
yi
e2 pyie1 pyie2

i ∈ C pxi
e1 ∪ p

yi
e1 pxi

e2 ∪ p
yi
e2 pyie1 pyie2 pxi

e1 pxi
e2

We define {A,B,C,D} to be a partition of N. We define the intersec-

tion of soft basic open sets as follows, ν(0ikl)
⋂
ν(0imn) = ν(0iklmn)

for k 6= m ∨ l 6= n. Therefore, (X, τ,E, β, ν) is a computable STS.

We can see that the space is WCpT0 as we can have a c.e. set

H = {(ι(0ir1)ι(0ir2, ι(0js1)ι(0js2) : i, j ∈ N; r, s ∈ {1, 2}; (i 6= j ∨ r 6= s)} that

satisfies the two conditions of WCpT0. Now, we define B and C in a way

that makes the space not SCpT0. Let w1, w2 ∈ Σ8 such that νN (w1) = 1 and

νN (w2) = 2, and W.L.O.G. we assume that νN is injective. For i ∈ N let

Si = {〈w1, ι(0
i11)ι(0i12)〉, 〈w1, ι(0

i11)ι(0i1222)〉, 〈w1, ι(0
i1121)ι(0i12)〉,

〈w1, ι(0
i1121)ι(0i1222)〉, 〈w2, ι(0

i31)ι(0i32)〉, 〈w2, ι(0
i31)ι(0i2232)〉,

〈w2, ι(0
i2131)ι(0i32)〉, 〈w2, ι(0

i2131)ι(0i2232)〉},
Ti = {〈w1, ι(0

i31)ι(0i32)〉, 〈w1, ι(0
i31)ι(0i1232)〉, 〈w1, ι(0

i1131)ι(0i32)〉,
〈w1, ι(0

i1131)ι(0i1232)〉, 〈w2, ι(0
i21)ι(0i22)〉, 〈w2, ι(0

i21)ι(0i1222)〉,
〈w2, ι(0

i1121)ι(0i22)〉, 〈w2, ι(0
i1121)ι(0i1222)〉}

Suppose the function f :⊆ Σω × Σω → Σ∗ realizes pts0. If δp(p) = aEi

and δp(q) = bEi
, then

f(p, q) ∈

Si if i ∈ B

Ti if i ∈ C.
(3)
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∀i ∈ N we define pi = ι(0i11)ι(0i12)ι(0i11)ι(0i12) · · · ,
and qi = ι(0i21)ι(0i22)ι(0i21)ι(0i22) · · · , where pi, qi ∈ Σω. Let F = {f :

f : Σω × Σω → Σ∗such that f is computable and f(pi, qi) exists for all i ∈ A}.
Consider f ∈ F . Then, f ′ : i→ f(pi, qi) is computable such that A ⊆ dom(f ′).

Since F is countable, there is a bijective function g : E → F for some E ⊆ N
such that i ∈ dom(g′i) \A for all i ∈ E. Then, A

⋂
E = ∅. Let

B = {i ∈ E : gi(pi, qi) /∈ Si}, C = {i ∈ E : gi(pi, qi) ∈ Si}, (4)

and D = N \ (A ∪ B ∪ C). Since A
⋂
E = ∅, E = B ∪ C and B

⋂
C = ∅,

{A,B,C,D} is a partition of N.

Suppose some computable function f realizes pts0. Since δp(pi) = xEi
and

δp(qi) = yEi
for all i ∈ A, f(pi, qi) exists for all i ∈ A, hence f = gi for some

i ∈ E. Since gi realizes pts0, gi(pi, qi) ∈ Si ⇔ i ∈ B by (3.3). On the other hand,

gi(pi, qi) ∈ Si ⇔ i /∈ B by 3.4. Thus, the space is not CpT0.

Proposition 4.11. SCpT2 ⇒ CpT2 ⇐ CpT ′2 ⇔ CpT ′1 ⇒ CpT1.

Proof. SCpT2 ⇒ CpT2: There is a machine M that on input (p, q) ∈ Σω × Σω

searches for (r, s) ∈ H such that ∀i there are ui, vi ∈ dom(ν) for i ∈ {0, 1, ......, n}
where ui � r, vi � s and ui � pi, vi � qi, where pi, qi are δu-names obtained

from p, q, respectively. Machine M prints 〈r, s〉 if the search successful and

diverges, otherwise.

Thus, let δp(p) = xE 6= yE = δp(q). When we apply M on (p, q), the machine

searches for (r, s) ∈ H as described above and the search must be successful

since by definition of H there must exist (r, s) ∈ H such that x ∈ ∪νfs(r) and

y ∈ ∪νfs(s) and ∪νfs(r)
⋂
∪νfs(s) = ∅̃, and thus, ∀i ∈ {1, 2, ....., n} there exists

ui � r, vi � s such that pxei ∈ ν(ui) and pyei ∈ ν(vi). Therefore, the space is

CpT2.

CpT ′2 ⇒ CpT2: There is a machine M on input (p, q) ∈ Σω × Σω searches for

(r, s) ∈ H such that ∀i ∈ {1, 2, ......, n} there are ui, vi ∈ dom(ν) and ui � pi,

vi � qi. The machine prints 〈r, s〉 if the search is successful and diverges,

otherwise. Thus, machine M realizes pt2.

CpT ′2 ⇒ CpT ′1: Obvious.

CpT ′1 ⇒ CpT ′2: We define the c.e. set of CpT ′2 to be H2 = {(r, s) : ui � r ⇒
ui � g(r, s′), vi � s ⇒ g(r′, s) for some (r, s), (r′, s′) ∈ H} where H is the c.e.

set of CpT ′1.

We check now the two conditions of H2. Let xE 6= yE . There are
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(r, s), (r′, s′) ∈ H such that x ∈ ∪νfs(r)
⋂
∪νfs(s′), y ∈ ∪νfs(s)

⋂
∪νfs(r′).

Then, x ∈ θ(r′′) = ∪νfs(r)
⋂
∪νfs(s′), y ∈ θ(s′′) = ∪νfs(s)

⋂
∪νfs(r′) and

hence ∀i ∈ {1, 2, ....., n} there are ui � r′′ and vi � s′′ where pxei ∈ ν(ui)

and pyei . Thus, there is (r, s) where r = ι(u1)....ι(un), s = ι(v1)....ι(vn) and

x ∈ ∪νfs(r), y ∈ ∪νfs(s).
Now, we prove the second condition of H2. Suppose (r, s) ∈ H2 and

∪νfs(r)
⋂
∪νfs(s) 6= ∅̃. Thus, there are (r, s), (r′, s′) ∈ H such that

∪νfs(r) ⊆ ∪νfs(r)
⋂
∪νfs(s′), and ∪νfs(s) ⊆ ∪νfs(r′)

⋂
∪νfs(s), and then

∪νfs(r)
⋂
∪νfs(s) 6= ∅̃, and ∪νfs(r′)

⋂
∪νfs(s′) 6= ∅̃. Hence, there are xE and

yE such that ∪νfs(r) = xE ⊆ ∪νfs(s), and ∪νfs(r′) = yE ⊆ ∪νfs(s′). There-

fore, ∪νfs(r) ⊆ xE and ∪νfs(s) ⊆ yE , which means that xE = yE . Thus, the

second condition of H2 is satisfied.

CpT ′1 ⇒ CpT1: This is a special case of CpT ′0 ⇒ SCpT0, which completes the

proof.

We introduce now counterexamples to show that the implications of the

previous proposition are not reversed in general.

The next example shows a space which is CpT2 but not SCpT2.

Remark 4.12. CpT
′

2 ⇒ CpT
′

0

Proof. Straightforward.

Example 4.13. Let A ⊆ N be a c.e. set with non c.e. complement. We define

a notation of a basis of a topology τ on a subset X ⊆ N as follows,

0i11 0i12 0i21 0i22

i ∈ A pxi
e1 pxi

e2 pxi
e1 pxi

e2

i /∈ A pxi
e1 pxi

e2 pyie1 pyie2

Thus, (X, τ,E, β, ν) is a computable STS. The space is CpT ′2 as we have a

c.e. set that satisfies the two conditions of it, namely,

H = {(ι(0ikl)ι(0imn)), (ι(0jk′l′)ι(0jm′n′)) : i, j ∈ N; k, l,m, n, k′, l′,m′, n′ ∈
{1, 2}; ((k = mandk′ = m′) and (k 6= l ∨m 6= n) and (k 6= l ∨m′ 6= n′))}.

Now, we show that the space is not SCpT2. Let H ′ be the c.e. set of SCpT2.

then by the first condition of H ′,

i /∈ A⇒ (u, v) ∈ H ′ where 0i11, 0i12� u and 0i21, 0i22� v,
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and by the second condition of H ′,

i ∈ A⇒ (u, v) /∈ H ′ where 0i11, 0i12� u and 0i21, 0i22� v.

Since H ′ c.e., the complement of A must be c.e. which a contradiction.

The next example shows that there is a space which is CpT2 but not CpT ′1.

Example 4.14. Let A ⊆ N be a non c.e. set, E = {e1, e2} be a parameter

set and X = {xi, yi : i ∈ N} be a set on which a STS τ is defined where τ is

generated by the following basis which is given by the the following notation,

0i11 0i12 0i13 0i14 0i1112 0i1113 0i1114

i ∈ A xEi
yEi

pxi
e1 ∅̃ ∅̃ pxi

e1 ∅̃

i /∈ A xEi
∪ pyie1 xEi

∪ pyie2 ∅̃ pyie2 xEi
∅̃ ∅̃

0i1213 0i1214 0i1314 0i61 0i6111 0i6112 0i6113 0i6114

i ∈ A ∅̃ ∅̃ ∅̃ ∅̃ ∅̃ ∅̃ ∅̃ ∅̃

i /∈ A ∅̃ pyie2 ∅̃ pyie1 pyie1 ∅̃ ∅̃ ∅̃

Thus, (X, τ,E, β, ν) is a computable STS. The space is CpT2 as there is a

machine M that on input (p, q) ∈ Σω ×Σω searches for 0i13 and 0i14 where on

of the following cases hold:

1. 0i13� p and:

(a) 0i12� q, the machine prints 〈0i11, 0i12〉,

(b) 0j12 ∨ 0j11 � q for some j 6= i, the machine prints

〈0j11, ι(0j11ι(0j12))〉

2. 0i13� q and:

(a) 0i12� p, the machine prints 〈0i12, 0i11〉,

(b) 0j12 ∨ 0j11 � p for some j 6= i, the machine prints

〈ι(0j11ι(0j12), 0j11)〉
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3. 0i14� p and:

(a) 0i1112� q, the machine print〈ι(0i14)ι(0i61), 0i1112〉

(b) 0j12 ∨ 0j11� q for j 6= i, the machine prints 〈ι(0i11)ι(0i12), 0i1112〉

4. 0i14� q and:

(a) 0i1112� p, the machine print〈0i1112, ι(0i14)ι(0i61)〉

(b) 0j12 ∨ 0j11� p for j 6= i, the machine prints 〈0i1112, ι(0i11)ι(0i12)〉

Hence, M realizes CpT2. Now, we prove that the space is not CpT ′1. Let H be

the c.e. set of CpT ′1, then

i ∈ A⇒ (u, v) ∈ H where 0i11� u, 0i12� v,

i /∈ A⇒ (u, v) /∈ H where 0i11� u, 0i12� v.

Since H is a c.e. set, A must be a c.e. set which is a contradiction. Therefore,

the space is not CpT ′1.

In the following figure, we represent all implications between the computable

p-soft separation axioms we defined so far. The implications are based on the

results that we got in this section and the non implications come from the

counterexamples that we introduced above.

cp.png

Figure 2: Relations between computable p-soft separation axioms

We can see from fig 2 that we have exactly seven different notions of p-

soft separation axioms compared to four different notions of u-soft separation

axioms.
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In the next section, we study the relation between computable u-soft sepa-

ration axioms and computable p-soft separation axioms.

5 Relations between u-soft and p-soft separa-

tion axioms

In this section, we investigate how computable u-soft separation axioms are

related to their counterparts computable p-soft separation axioms. We just

consider the case when the set of parameters is finite.

At the end of this section, we will be able to compare the four different

notions of u-soft separation axioms to the seven different notions of the p-soft

separation axioms.

Proposition 5.1. Computable u-soft Ti ⇒ computable p-soft Ti, for i = 1, 2.

Proof. Case 1: i = 1. Assume u-soft T1. Let δp(p) = xE 6= yE = δp(q). There

are n machines Mi such that machine Mi translates p into a δu-name pi for

pxei . Similarly, there are n machines Ni where Ni translates q into a δu-name

for pyei . Now, ∀i∀j ut1 on input (pi, qi) outputs wij where ν(wij ) = UEij
∈

β and pxei ∈ UEij
and pej /∈ UEij

. ∀i, let wi = ι(wi1).....ι(win) and since

ν ≤ θ and the intersection of a finite set of open sets is (θfs, θ)-computable,

there is a computable function f such that
⋂
νfs(wi) == θ ◦ f(wi). Thus,

∀i∀j , pei ∈ θ(ri) and pej /∈ θ(ri) where ri = f(wi). Also, since the union of

a finite set of open sets is open, there is a computable function g such that

∪θfs(〈1n, r1, ....., rn〉) = θ ◦ g(〈1n, r1, ....., rn〉) and hence x ∈ θ(r) and y 6b θ(r)

where r = 〈1n, r1, ....., rn〉. Therefore, the space is p-soft T1.

Case 2: i = 2. Assume u-soft T2. Let δp(p) = xE 6= yE = δp(q). There

are n machines Mi such that machine Mi translates p into a δu-name pi for pxei .

Similarly, there are n machines Ni where Ni translates q into a δu-name for

pyei . ∀i∀j ut2 on input (pi, qj) outputs (uij , vij ) where ν(uij ) = GEij
∈ β and

ν(vij ) = HEij
∈ β such that pxei ∈ GEij

and pyej ∈ HEij
and GEij

⋂
HEij

= ∅̃.
∀i, let ui = ι(ui1)....ι(uin) and vi = ι(vi1)....ι(vin). By functions f and g from

case 1, ∀i we have f(ui) = ri and g(vi) = si where pei ∈ θ(ri) and y ∈ θ(si)
and θ(ri)

⋂
θ(si) = ∅̃. Now, we use g and f again, where g(〈1n, r1, ...., rn〉) = r

and f(〈1n, s1, ....., sn〉) = s. Thus, x ∈ θ(r) and y ∈ θ(s) and θ(r)
⋂
θ(s) = ∅̃.

Therefore, the space is p− soft T2 which completes the proof.
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We give a counter example that the converse of the above implications is not

true in general.

Example 5.2. Let X = {x, y}, E = {e1, e2} be a parameter set, and

τ be a STS defined on X w.r.t. E and generated by the following base

ν(01) = {(e1, {x}), (e2.{x})}, ν(001) = {(e1, {y}), (e2.{y})}. ν(001) =

{(e1, {x}), (e2.{y})}. The space is computable STS and it is CpT1 as we have a

machine M on (p, q) ∈ Σω × Σω outputs ι(01) if 01 � p and outputs ι(001) if

01 � q. Thus, M realizes pt1 but the space is not CuT1 as it is not u-soft T1.

We can see also that this space is CpT2 but not CuT2.

In the next example, we show that the above result does not hold when the

set of parameters is infinite.

Example 5.3. Let X = {a, b}, E = {e1, e2, · · · }. We partition N into infinitely

many infinite partitions N = F1 ∪ F2 ∪ · · · . we define a STS on X with respect

to E where its basic open sets are defined as follows, for each finite set G ⊆
N we have {paei : i ∈ G} and for each finite set G ⊆ N, n ∈ N we have

{pben} ∪ {p
a
ei : i ∈ Fn − G}. Clearly, this space is u-soft T2 but it is not p-soft

T2. We effectivize this space by introducing a notation ν for the set of basic

open sets β as follows, ν(0k1) = G where k is the canonical index of G, and

ν(0m10n1) = {pbem} ∪ {p
a
em : i ∈ Fm −G} where m is the index of Fm and n is

the canonical index of G. We define the finite intersection of basic open sets as

follows,

� ν(0k1)
⋂
ν(0l1) = ν(0r1) where r is the canonical index of the intersection

of two sets, the canonical index of the first set is k while the canonical index

of the other one is l.

� ν(0m10n1)
⋂
ν(0r10s1) = ∅̃ for m 6= n.

� ν(0m10n1)
⋂
ν(0r10s1) = ν(0m10t1) for m = n, where t is the canonical

index of the set resulting from the union of two sets whose canonical indices

are s and n.

� ν(0k1)
⋂
ν(0m10n1) = ν(os1) where s is the canonical index of H where

H = G
⋂
Fm − I and k, n are the canonical indices of G, I, respectively,

and m is the index of Fm.

Finite intersections can be obtained directly from the cases above. Thus, the

space (X, τ,E, ν, β) is a computable STS.
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Now, we show that the space is CuT2. There is a machine M that on input

(p, q) ∈ Σω × Σω scans the first words u, v of p, q respectively, until it finds one

of the following,

� u, v of the form 0i1 for some i, then the machine scans through p, q until it

finds 0r1 � p and 0s1 � q where r, s are canonical indices of singletons.

Then, it outputs 〈0r1, 0s1〉.

� u, v of the form 0i10j1, 0m10n1, respectively. If i = m, then the machine

scans through p, q until it finds 0r1 � p and 0s1 � q where r, s are

canonical indices of singletons and outputs 〈0r1, 0s1〉. It outputs 〈u, v〉,
otherwise.

� u is of the form 0i1 and v is of the form 0m10n1, then M scans through

p, q until it finds 0j1� p and 0m10j1� q where j is the canonical index

of a singleton. Then, it outputs 〈0j1, 0m10j1〉.

Thus, machine M realizes ut2 and hence the space is CuT2. However, the space

is not even p-soft T1.

The following two examples show that CuT0 and CpT0 are incomparable.

Example 5.4. Let X = {xi, yi : i ∈ N}, E = {e1, e2} be a parameter set, and

τ be a STS defined on X w.r.t. E and generated by the following base notation

where A is a non c.e. set,

0i11 0i12 0i21 0i22 0i31 0i1131 0i2131 0i1112 0i1231

i ∈ A pxi
e1 pxi

e2 pyie1 pyie2 ∅̃ ∅̃ ∅̃ ∅̃ ∅̃

i /∈ A xEi
xEi

yEi
∅̃ pxi

e1 ∪ p
yi
e2 pxi

e1 pyie2 xEi
pxi
e1

We extend names to the finite intersections as follows ν(0imn)
⋂
ν(0ikl) =

ν(0imnkl) and the intersection of more than two basic open sets is empty except

for ν(0i11)
⋂
ν(0i12)

⋂
ν(0i31) = ν(0i111231). Thus, the space is computable

STS. The space is CpT2 -and hence CpT0- as we have the following c.e. set,

H = {(ι(0im1)ι(0im2), ι(0in1)ι(0in2)) : m,n ∈ {1, 2}; i, j ∈ N}.

Assume now that the space is WCuT0. Thus, there is a c.e. set H ′ that satisfies
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the two conditions of WCuT0 which means the follwoing,

i ∈ A⇒ (0i11, 0i12) ∈ H ′,

i /∈ A⇒ (0i11, 0i12) /∈ H ′.

Hence, A must be a c.e. set which is a contradiction. Therefore the space is not

WCuT0 (Thus not CuT0 as well).

Example 5.5. Let X = {x, y}, E = {e1, e2} be a parameter set, and τ be a

STS defined on X w.r.t. E and generated by the following base notation,

ν(01) = {(e1, {x}), (e2, ∅)},
ν(02) = {(e1, {y}), (e2, ∅)},
ν(03) = {(e1, {x}), (e2, {y})},
ν(04) = {(e1, {y}), (e2, {x})},

We give names to the finite intersections of basic open sets as follows,

ν(0m)
⋂
ν(0n) = ν(0mn) for m,n ∈ {1, ...., 4} and the intersection of any three

basic open sets is empty.

Now, we show that this space is u-soft T0. There is a machine M that on input

(p, q) ∈ Σω×Σω, scans p and q and prints ι(u) whenever it scans first u� p or

u � q such that u ∈ {01, 02} at any point of the computation. If M scans first

0m � p or 0m � q for m ∈ {3, 4}, then it prints the first word v of the other

name if v 6= 0m, otherwise, it prints ι(01) if m = 3 and prints ι(02) if m = 4.

Therefore, machine M realizes ut0 and hence the space is CuT0. However,

it is not CpT0 as it is not pT0.

Proposition 5.6. SCuT2 ⇒ SCpT2.

Proof. Let H be the c.e. set of SCuT2, and n be the number of parameters. Let

H ′ ⊆ Σ∗×Σ∗ be the set of all pairs (u, v) of words for which there are some n such

that u = ι(u1)....ι(un) and v � θ ◦ f(ι(v1)....ι(vn)), where f is the computable

function that computes the finite intersection of soft open set and u1, .., u2 ∈
dom(ν) and v1, ..., vn ∈ dom(νfs), and ∀i(ui �

⋂
νfs(wi)where ν

fs(wi) =

Pr1(N) and νfs(vi) = Pr2(N) for some finite set N ⊆ H.

Let xE 6= yE . Then, ∀pxei ∈ xE∀pyej ∈ yE there are pairs

(ri1 , si1), ...., (rin , sin) ∈ H such that pxei ∈ ν(rij )and pyej ∈ ν(sij ), and

ν(rij )
⋂
ν(sij ) = ∅̃. Then, pxei ∈

⋂
νfs(wi) where wi = ι(ri1)...ι(rin) and
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hence there is some ui � νfs(wi) where pxei ∈ ν(ui), and y ∈ ∪νfs(vi)
where vi = ι(vi1)...ι(vin). Thus, there are some u ∈ νfs and v ∈ νfs where

u = ι(u1....ι(un)) and x ∈ ∪νfs(u), and v � θ ◦ f(ι(v1)....ι(vn)) where

y ∈ ∪νfs(v). It is obvious that ∪νfs(u)
⋂
∪νfs(v) = ∅̃. Therefore, H ′ is the c.e.

set for SCpT2.

Example 5.7. Let X = {xi, yi : i ∈ N}, E = {e1, e2} be a parameter set, and

τ be a STS defined on X w.r.t. E and generated by the following base notation

where A is a non c.e. set,

0i11 0i12 0i21 0i22 0i2122

i ∈ A pxi
e1 pxi

e2 pyie1 pyie2 ∅̃

i /∈ A pxi
e1 pxi

e2 yEi yEi yEi

We extend names to the finite intersections as follows ν(0imn)
⋂
ν(0ikl) =

ν(0imnkl) and the intersection of two basic open sets is empty except for

ν(0i21)
⋂
ν(0i22) = ν(0i2122). Thus, the space is computable STS. This space

is SCpT2 as we have a c.e. set H1 where

H1 = {(ι(0im1)ι(0im2), ι(0in1)ι(0in2)) : i ∈ N;m,n ∈ {1, 2};m 6= n}. Let H2

be the c.e. set for SCuT2, then for

i ∈ A⇒ (0i21, 0i22) ∈ H2,

i /∈ A⇒ (0i21, 0i22) /∈ H2.

Thus, A must be a c.e. set which is a contradiction. Therefore, the space is not

SCuT2.

We now give a counterexample for a space that is CuT ′1 but not CpT ′1.

Example 5.8. Let X = {xi, yi : i ∈ N}, E = {e1, e2} be a parameter set, and

τ be a STS defined on X w.r.t. E and generated by the following base notation

where A is a non c.e. set,

We define names to the finite intersections as follows ν(0im)
⋂
ν(0in) =

ν(0imn) and the intersection of more than two basic open sets is empty except

for ν(0i3)
⋂
ν(0i4)

⋂
ν(0i6) = ν(0i346).
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0i1 0i2 0i3 0i4 0i5 0i6

i ∈ A pxi
e1 pxi

e2 pyie1 pyie2 ∅̃ pyie2

i /∈ A pyie1 pyie2 pxi
e1 xEi

∪ pyie1 pxi
e2 pxi

e1 ∪ p
yi
e2

Thus, the space is computable STS. This space is CuT ′1 as we have the fol-

lowing c.e. set that satisfies the conditions of CuT ′1,

H = {(0im, 0in) ∧ (0i46, 0im) : i, j ∈ N;m ∈ {1, 2, 3, 5};n ∈ {1, 2, 3, 4}}.

However, it is not CpT ′1, as if it was, there would exist a c.e. set H ′ that satisfies

the conditions of CpT ′1 and hence for,

i ∈ A⇒ (r, s) ∈ H ′,

i /∈ A⇒ (r, s) /∈ H ′,

where

ι(0i1), ι(0i2)� r ∧ ι(0i3), ι(0it)� s for s ∈ {4, 6, 46}.

Thus, A must be a c.e. set which is a contradiction. Therefore, the space is not

CpT ′1.

Remark 5.9. SCuT0 and SCpT0 are incomparable.

Proof. This follows directly from propositions 3.9, 4.7 and examples 5.3 and

5.4.

Remark 5.10. CuT ′i and CpT ′i are incomparable for i ∈ {0, 1, 2}.

Proof. For i = 0: Use example 5.5 where in which the space is not WCuT0 and

example 5.4, and propositions 3.9, 3.10.

For i = 1, 2: Use examples 5.5, 5.7, and propositions 3.11, 4.11.

Remark 5.11. WCuT0 and WCpT0 are incomparable.

Proof. Use examples 5.5, 4.8 where in the latter example the space is WCuT0

as we have the following c.e. set,

H = {(0imk, 0inl) : i, j ∈ N;m,n ∈ {1, 5}; k, l ∈ {1, 2}}.
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However, it is not WCpT0 as shown earlier.

So far we have defined nine computable separation axioms based on soft

points and another nine separation axioms based on soft singletons. We also

investigated how the ones based on soft points are related and how the other

ones that based on soft singletons are related. Counter examples have been

provided to show the non-implications between them. Some of them turned

out to be equivalent and others turned out to be incomparable. Equivalences

between the ones based on soft points exists, however, these equivalences do not

exist for their counterparts that based on soft singletons.

In the following figure all relations between computable u-soft and p-soft

separation axioms are represented. As seen form the figure, there are some

implications between some separation axioms and some other separation axioms

turn out to be incomparable.
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Figure 3: Relations between computable u-soft and computable p-soft separa-
tion axioms.
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