ON KIERSTEAD'S CONJECTURE

KENG MENG NG AND MAXIM ZUBKOV

Abstract

We settle the longstanding Kierstead's Conjecture in the negative. We do this by constructing a computable linear order with no rational subintervals, where every block has order type finite or ζ, and where every computable copy has a strongly nontrivial Π_{1}^{0} automorphism. We also construct a strongly η-like linear order where every block has size at most 4 with no rational subinterval such that every Δ_{2}^{0} isomorphic computable copy has a nontrivial Π_{1}^{0} automorphism.

1. Introduction

This paper is concerned with the longstanding Kierstead's conjecture. In this paper, we settle the conjecture by showing that the conjecture is false. This conjecture is about the problem of characterizing the order types of Π_{1}^{0}-rigid computable linear orders. Downey's survey paper [1] provides an extensive exposition and describes the motivation for this problem. As usual, we let ω, ζ, η denote the order types of the natural numbers, the integers and the rational numbers respectively. We write \mathbb{N}, \mathbb{Q} for the set of natural numbers and the set of rational numbers respectively.
L. Hay and J. Rosenstein proved that the effective version of the well-known Dushnik-Miller theorem ([4]), which says that an infinite countable linear order has a nontrivial self-embedding is false:

Theorem 1.1 (L. Hay, J. Rosenstein (in [11])). There is a computable copy of ω with no nontrivial computable self-embedding.

By using a standard back-and-forth argument, it is easy to see that if a linear order \mathcal{L} has a subinterval of type η then every computable copy of \mathcal{L} has a nontrivial computable automorphism. S. Schwarz gave a characterization of linear orders with nontrivial computable automorphisms.

Theorem 1.2 (S. Schwarz [12, 13]). Let \mathcal{L} be a non-rigid computable linear order. Then \mathcal{L} has a computably rigid computable copy if and only if it contains no interval of order type η. Here a linear order is computably rigid if it has no nontrivial computable automorphism.

The investigation into η-like linear orders was initiated by H. Kierstead in his paper [10]. Recall that a linear order \mathcal{L} is η-like if \mathcal{L} is isomorphic to $\sum_{q \in \mathbb{Q}} F(q)$

Received by the editors March 29, 2019.
2010 Mathematics Subject Classification. Primary 03C57, 03D45.
Key words and phrases. Computable linear order, automorphism, Kierstead's Conjecture .
The first author is partially supported by the grants MOE-RG131/17 and MOE2015-T2-2-055.
The second author is supported by the RSF grant (project No. 18-11-00028).
for some function $F: \mathbb{Q} \rightarrow \mathbb{N}$, and we say that the order type of \mathcal{L} is defined by function F, and \mathcal{L} is strongly η-like if F is bounded. Kierstead considered $2 \cdot \eta$, the simplest nontrivial instance of an η-like computable linear order, where he used an infinite injury argument to construct a computable copy of $2 \cdot \eta$ with no nontrivial Π_{1}^{0} automorphism. A total function f is called Π_{1}^{0} if $\operatorname{Graph}(f)=\{(x, y) \mid$ $f(x)=y\}$ is Π_{1}^{0}. Note that a total function having a c.e. graph is equivalent to being computable, so Π_{1}^{0}-rigidity is the next level of effective rigidity for which the classification of rigid computable linear orders is open.

Theorem 1.3 (H. Kierstead [10]). There is a computable linear order of order type $2 \cdot \eta$ which has no nontrivial Π_{1}^{0} automorphism.

Kierstead [10] called an automorphism f is fairly trivial if for all $x \in L$, there are only finitely many elements between x and $f(x)$. A nontrivial automorphism f is called strongly nontrivial, if it is not fairly trivial, i.e. there exists some $x \in L$ where x and $f(x)$ are in different blocks. H. Kierstead's paper [10] concluded with three conjectures, with the main one as follows.
Conjecture 1.4 (H. Kierstead [10]). Every computable copy of a linear order \mathcal{L} has a strongly nontrivial Π_{1}^{0} automorphism if and only if \mathcal{L} contains an interval of order type η.

By Theorem 1.3, this conjecture is true for the order type $2 \cdot \eta$. Later, R . Downey and M. Moses proved that Kierstead's conjecture also holds for discrete linear orders. Recall that a linear order is discrete if every element has an immediate predecessor and an immediate successor, except for possibly the greatest and least elements.

Theorem 1.5 (R. Downey, M. Moses [3]). Every computable discrete linear order has a computable copy with no strongly nontrivial Π_{1}^{0} self-embedding.
C. Harris, K. Lee and S. B. Cooper has in recent work [8] extended Kierstead's result, where they proved that Kierstead's conjecture is true for a rather large subclass of the η-like computable linear orders. Recall the following definition:

Definition 1.6. A function F is called X-limitwise monotonic, abbreviated as X-l.m.f., if there is an X-computable function $f(x, s)$ such that
(1) $(\forall x)(\forall s)[f(x, s) \leq f(x, s+1)]$;
(2) $(\forall x)\left[F(x)=\lim _{s \rightarrow \infty} f(x, s)\right]$.
C. Harris, K. Lee and S. B. Cooper [8] proved that every η-like linear order with no η-interval and whose order type is defined by a $\mathbf{0}^{\prime}$-l.m.f function has a Π_{1}^{0}-rigid computable copy. Obviously, for η-like linear orders, an automorphism is nontrivial if and only if it is strongly nontrivial.
Theorem 1.7 (C. Harris, K. Lee, S. B. Cooper [8]). Suppose that $F: \mathbb{Q} \rightarrow \mathbb{N}$ is a $\mathbf{0}^{\prime}$-limitwise monotonic function and the linear order $\mathcal{L} \cong \sum_{q \in \mathbb{Q}} F(q)$ has no η-interval. Then \mathcal{L} has a Π_{1}^{0}-rigid computable copy.

Later, G. Wu and M. Zubkov considered non- η-like linear orders by generalizing this concept. They allowed $F(x)=\lim _{s \rightarrow \infty} f(x, s)$ to take value ζ, but still required that $\lim _{s \rightarrow \infty} f(x, s)$ exists for all x.

Theorem 1.8 (G. Wu, M. Zubkov [14]). Kierstead's conjecture holds for all linear orders \mathcal{L} of the form $\sum_{q \in \mathbb{Q}} F(q)$, where $F: \mathbb{Q} \rightarrow \mathbb{N} \cup\{\zeta\}$ satisfies the following. There is a $\mathbf{0}^{\prime}$-computable function $f: \mathbb{Q} \times \mathbb{N} \rightarrow \mathbb{N} \cup\{\zeta\}$ such that:
(1) for all $q \in \mathbb{Q}, \lim _{s \rightarrow \infty} f(q, s)=F(q)$;
(2) for all $q \in \mathbb{Q}, s \in \mathbb{N}, f(q, s) \leq f(q, s+1)$;
(3) if $\lim _{s \rightarrow \infty} f(q, s)=\zeta$ then there is s_{0} such that for all $s \geq s_{0}, f(q, s)=\zeta$.

Here we consider ζ as a formal symbol and order $\zeta>n$ for all $n \in \mathbb{N}$.
We remark that condition (3) in Theorem 1.8 appears to be very strong. However, our first main theorem show that it is in fact necessary and that Theorem 1.8 fails if condition (3) is removed.

The following proposition is easy to check:
Proposition 1.9. Let $F: \mathbb{Q} \rightarrow \mathbb{N} \cup\{\zeta\}$ be a function. Then the following conditions are equivalent.
(1) There is a $\mathbf{0}^{\prime}$-computable function $f(q, s)$ such that

- for all $q \in \mathbb{Q}, \lim _{s \rightarrow \infty} f(q, s)=F(q)$.
- for all $q \in \mathbb{Q}, s \in \mathbb{N}, f(q, s) \leq f(q, s+1)$.
(2) There is a computable function $g(q, s)$ such that:
- for all $q \in \mathbb{Q}, F(q)=\liminf _{s \rightarrow \infty} g(q, s)$.

In the above we identify ζ with ∞. If $F(q)=\zeta$ then the lim and lim inf are both infinite.

The difference between F in Proposition 1.9 and Theorem 1.8 is that in the case $F(q)=\zeta$ we allow $\lim _{s \rightarrow \infty} f(x, s)$ and $\liminf _{s \rightarrow \infty} g(x, s)$ to be ∞ in Proposition 1.9, while in Theorem $1.8 \lim _{s \rightarrow \infty} f(x, s)$ must actually exist. We remark that Proposition 1.9 can also be phrased in terms of functions that are limitwise monotonic relative to the Kleene's Ordinal Notation System O studied by A. Frolov and M. Zubkov [6], and is thus a very natural extension of $\mathbf{0}^{\prime}$-l.m.f. functions. We call the functions F in Proposition 1.9 generalized $\mathbf{0}^{\prime}$-l.m.f. functions.

Kierstead's conjecture has been verified for a large class of linear orders, and for a long time many have believed it to be true. The remaining cases appear to be intractable and the usual tools of computability theory do not seem to help in proving Kierstead's conjecture for these remaining cases. For this reason, the conjecture has remained open for thirty years. Our first main theorem in this paper proves the astonishing result that Kierstead's conjecture is in fact false:
First Main Theorem. There exists a generalized $\mathbf{0}^{\prime}$-l.m.f. function $G: \mathbb{Q} \rightarrow$ $\mathbb{N} \cup\{\zeta\}$ such that the linear order $\mathcal{L} \cong \sum_{q \in \mathbb{Q}} G(q)$ has no subinterval of type η and every computable copy of \mathcal{L} has a strongly nontrivial Π_{1}^{0}-automorphism.

Our first main theorem builds an order type of the form $\sum_{q \in \mathbb{Q}} \liminf _{s \rightarrow \infty} g(q, s)$ for some computable g. We now compare and contrast our construction with that of an η-like linear order with a $\mathbf{0}^{\prime}$-l.m.f. block function, where Kierstead's conjecture has been verified. That is, we wish to point out how allowing ζ as the order type of a block in our construction overcomes the difficulties present in the case when all blocks have finite size. Imagine that we are building \mathcal{L} and we are watching an
isomorphic copy \mathcal{L}_{e}. In \mathcal{L}_{e} perhaps we have identified $x_{0}<x_{1}<x_{2}<\cdots<x_{n}$ to be adjacent elements in the same \mathcal{L}_{e}-block, and similarly $y_{0}<y_{1}<y_{2}<\cdots<y_{n}$. We of course would like to build a Π_{1}^{0} automorphism f taking x_{i} to y_{i}. Now suppose we had to make each block finite, for example, we wish to make both blocks have size $n+1$. If a new element shows up between x_{0} and x_{n}, then \mathcal{L}_{e} will change its interpretation of a maximal block, and perhaps now make $x_{1}<x_{2}<\cdots<x_{n}<$ x_{n+1} a new maximal block of size $n+1$. Now as both blocks are finite, we have to map the endpoints x_{1} and x_{n+1} of one block to the corresponding endpoints y_{0} and y_{n} of the other block. Since f is Π_{1}^{0} we might have already excluded this definition of f and thus we cannot correct f. This difficulty is precisely what is used to verify Kierstead's Conjecture for η-like linear orders with a $\mathbf{0}^{\prime}$-l.m.f. block function. However, in our construction, we make our blocks have order type ζ. The discrete nature of each block means that any definition of f cannot go wrong simply because we were not matching up limit points correctly. The only threat to the correctness of f is when adjacent elements on which f or f^{-1} have already been defined are no longer adjacent. In the proof, we shall describe how we can correct f in this situation.

As we have seen, having blocks of discrete order type helps in reducing the number of situations in which we have to correct an automorphism f. Thus, we do not know if Kierstead's conjecture holds in the case where blocks might have order type ω or ω^{*}.

Open Question 1.10. Does Kierstead's Conjecture hold for computable linear orders with no maximal blocks of type ζ in which some (or all) maximal blocks have order type ω or ω^{*}, and no rational subintervals?

As we have pointed out, our counterexample to Kierstead's Conjecture is a non-η-like linear order. We do not know if Kierstead's Conjecture holds for all η-like linear orders.

Open Question 1.11. Does Kierstead's Conjecture hold for all computable η-like linear orders with no rational subintervals?

Question 1.11 seems extremely difficult, especially in the case where \mathcal{L} is a given computable η-like linear order with no $\mathbf{0}^{\prime}$-l.m.f. block function. (See [2, 15] for more discussions on these). Since guessing at the block sizes is unfeasible (the block function is Δ_{3}^{0} in general), one would expect that in order to verify Kierstead's conjecture for such \mathcal{L}, we would have to construct a computable copy \mathcal{L}_{e} directly. However, making $\mathcal{L}_{e} \Delta_{2}^{0}$ isomorphic to \mathcal{L} will not work if we want to verify Kierstead's conjecture this way. We prove this in the second main theorem of the paper:

Second Main Theorem. There exists a strongly η-like computable linear order \mathcal{L} with no η subinterval such that every computable linear order \mathcal{L}^{\prime} which is Δ_{2}^{0} isomorphic to \mathcal{L} has a strongly nontrivial Π_{1}^{0}-automorphism. Furthermore, every block of \mathcal{L} has size at most 4 .

The second main theorem says that even for strongly η-like linear orders, we cannot verify Kierstead's conjecture by constructing a Π_{1}^{0}-rigid copy which is $\Delta_{2^{-}}^{0}$ isomorphic to a given computable copy. Thus, it tells us that in order to solve Question 1.11, we will have to construct at least Π_{2}^{0} isomorphic copies which are Π_{1}^{0}-rigid, but this is beyond the reach of current technology.

The remainder of this paper is devoted to the proof of the two main theorems. In $\S 2$ we prove the first main theorem, and in $\S 3$ we prove the second main theorem.

2. The proof of the first main theorem

In this section we will prove our first main theorem. The proof in this section is organized as follows. In Section 2.1 we provide an informal description of the strategy. In Section 2.2 we give the formal construction for meeting a single requirement. In Section 2.3 we verify that the construction for a single requirement works. Finally in Section 2.4 we apply the uniformity of the construction in Section 2.2 to provide a solution to the first main theorem.

2.1. An informal description of the strategy.

2.1.1. Requirements. We fix $\left\{L_{e}\right\}_{e \in \omega}$ to be the family of r.e. subsets of \mathbb{Q}. We write $\mathcal{L}_{e}=\left\langle L_{e},<_{\mathbb{Q}}\right\rangle$ and let $L_{e, s}$ be the enumeration of L_{e} at stage s. To prove the theorem we will construct a computable linear order \mathcal{L} and satisfy the following requirements:
$R_{e}: \mathcal{L} \cong \mathcal{L}_{e} \Rightarrow\left(\exists f: L_{e} \rightarrow L_{e}\right)\left[f\right.$ is a strongly nontrivial Π_{1}^{0}-automorphism $]$.
The fact that \mathcal{L} corresponds to a generalized $\mathbf{0}^{\prime}$-l.m.f. function will be verified later.
We note that the requirements do indeed prove the theorem: Suppose that \mathcal{M} is a computable linear order such that there are no strongly nontrivial Π_{1}^{0} automorphisms of $\mathcal{M}=\left\langle M ;<_{\mathcal{M}}\right\rangle$. It is well-known that every computable linear order can be represented as an r.e. subset of the rationals preserving all effective properties. Hence, there is e such that $\mathcal{M} \cong \mathcal{L}_{e}$ and \mathcal{L}_{e} has no strongly nontrivial Π_{1}^{0} automorphism.

The main complexity in our proof lies in the strategy for a single requirement. For this reason we will first describe the strategy to meet a single requirement in isolation and prove that this strategy works. We will then observe that the strategy is uniform (in an index for \mathcal{L}_{e}) and then take \mathcal{L} to be the disjoint union of the different orderings built to satisfy each R_{e}, using appropriate separators to distinguish between the different locations. Unfortunately as we also have to recognize within each \mathcal{L}_{e} the appropriate interval in which we are meeting R_{e}, the global construction will introduce some feedback to the basic strategy. We will address this when discussing the global construction.

The construction of the linear order $\mathcal{L}=\left\langle L ;<_{\mathcal{L}}\right\rangle$ uses ideas from the work of A. Frolov and M. Zubkov [5] and [6]. We give the formal construction in §2.2.1.
2.1.2. Overview of a single requirement. Fix e and we now describe the strategy to meet R_{e} in isolation. We will construct a linear order \mathcal{L} such that either:

- $\mathcal{L} \cong \zeta \cdot \eta$ or $\mathcal{L} \cong m \cdot \eta$ for some $m \in \omega$.
- $\mathcal{L} \cong \mathcal{L}_{e}$ implies that $\mathcal{L} \cong \zeta \cdot \eta$ and \mathcal{L}_{e} has a strongly nontrivial Π_{1}^{0} automorphism f_{e}.
Clearly not every computable copy of $\zeta \cdot \eta$ will have a strongly nontrivial Π_{1}^{0} automorphism, since it is discrete, so it is not enough to simply take \mathcal{L} to be $\zeta \cdot \eta$. Similarly we cannot always take \mathcal{L} to be $m \cdot \eta$ since Kierstead's conjecture holds for strongly η-like linear orders. We have to observe how \mathcal{L}_{e} responds to our actions, build f_{e} as we go along, and only decide on the isomorphism type of \mathcal{L} in the limit. To simplify notations we will refer to f_{e} as f. At the end when we consider all requirements, we will put the outputs corresponding to the different requirements
into different subintervals, so our final linear order will be neither discrete nor η-like, and it will not be effective to figure out the isomorphism type in each subinterval. In fact, the oracle needed to compute the isomorphism type of each subinterval is at least as much as an oracle needed to compute an isomorphism between any two computable copies of \mathcal{L}. Thus there are no contradictions in allowing each R_{e} to produce either $m \cdot \eta$ or $\zeta \cdot \eta$, even though Kierstead's conjecture has been verified for both strongly η-like and discrete linear orders.

Suppose that f is an automorphism of a linear order \mathcal{L}_{e}. Let $f^{n}(x), n \in \mathbb{Z}$, be given by the following inductive definition: $f^{0}(x)=x, f^{n+1}=f\left(f^{n}(x)\right), f^{n-1}=$ $f^{-1}\left(f^{n}(x)\right)$. The orbit of an element x (relative to f) is the set $\operatorname{Orb}(x)=\{y=$ $\left.f^{n}(x) \mid n \in \mathbb{Z}\right\}$. It easy to see that for all x and y either $\operatorname{Orb}(x)=\operatorname{Orb}(y)$ or $\operatorname{Orb}(x) \cap \operatorname{Orb}(y)=\emptyset$. Thus, $L=\bigcup_{i \in \mathbb{N}} \operatorname{Orb}\left(x_{i}\right)$, where the x_{i} 's are representatives of each distinct orbit. To assist us in constructing a strongly nontrivial automorphism f of \mathcal{L}_{e}, we will construct a family of sets $\left\{O r b_{i}\right\}_{i \in \omega}$ which satisfy the following conditions.

The orbit condition: Every set in the family is infinite, and has order type ζ.
The order-preserving condition: Every pair of sets is consistent, i.e. if $x, y \in \operatorname{Orb}_{i}, z \in \operatorname{Orb}_{j}$ such that $x<_{\mathcal{L}_{e}} z<_{\mathcal{L}_{e}} y$ and there are no elements from $O r b_{i}$ between x and y then there are $x^{\prime}, y^{\prime} \in O r b_{j}$ such that $x^{\prime}<\mathcal{L}_{e}$ $x<_{\mathcal{L}_{e}} z<_{\mathcal{L}_{e}} y<_{\mathcal{L}_{e}} y^{\prime}$ and there are no elements from Orb b_{j} between x^{\prime} and z and between z and y^{\prime} (see Figure 1).
The totality condition: From every block of \mathcal{L}_{e} there is the unique pair i and x such that $x \in O r b_{i}$ and x is in the block.

Figure 1. Two consistent orbits

Notice that the totality condition is rather strong, as it not only implies that the family of sets is pairwise disjoint, but that Orb_{i} and Orb_{j} cannot even contain elements from the same block, unless $i=j$. It also implies that each $O r b_{i}$ contains at most one element from each block. Note that $\left\{\mathrm{Orb}_{i}\right\}_{i \in \omega}$ is not required to cover every f-orbit, but the totality condition ensures that every block is covered by some orbit and so f can be uniquely extended to elements outside $\operatorname{Orb}=\cup_{i} O r b_{i}$. (See Lemma 2.1 below).

Lemma 2.1. Suppose that $\mathcal{L}_{e} \cong \zeta \cdot \eta$ and $\left\{O r b_{i}\right\}_{i \in \omega}$ is a family of sets satisfying the three conditions above. Then there is a unique $f: L_{e} \rightarrow L_{e}$ such that f is a strongly nontrivial automorphism such that for any $x \in \operatorname{Orb}_{i} f(x)$ is a successor of x inside Orb_{i}.

Proof. We first define f on the elements of each Orb_{i} : By the orbit condition, Orb_{i} has order type ζ, and so we will obviously take $f(x)$ to be the successor of x inside $O r b_{i}$. Now we extend f to elements outside $O r b=\cup_{i} O r b_{i}$. If $x \notin O r b$ we find some y and i such that x and y are in the same block and $y \in O r b_{i}$. We find $y^{\prime}<_{\mathcal{L}_{e}} f(y)$ if $x<\mathcal{L}_{e} y$ or $y^{\prime}>_{\mathcal{L}_{e}} f(y)$ if $x>_{\mathcal{L}_{e}} y$ such that the number of elements between x and y is equal to the number of elements between y^{\prime} and $f(y)$ and define $f(x)=y^{\prime}$ (see Figure 2). The totality condition guarantees that y and i can always be found (and will be unique) for each x, and the fact that each block of \mathcal{L}_{e} is of order type ζ means that y^{\prime} can be found. Therefore f is total. The second (order-preserving) condition imply that f is order-preserving on Orb. The third (totality) condition imply that a single block cannot contain elements from distinct orbits, hence f is in fact order-preserving on L_{e}. The fact that f is surjective also follows from the third condition. Finally, f is strongly nontrivial because each Orb_{i} contains at most one element of each block.

blocks of type ζ containing adjacent elements of an orbit

Figure 2. A reconstruction of an automorphism by orbits

We remark that simply constructing the orbits to have the desired properties is not quite enough, as we need both $O r b$ and f to be effective in some way. The construction of the family $\left\{\mathrm{Orb}_{i}\right\}$ will be by stages and we use the notation $\operatorname{Orb} b_{i}(s)$ for the effective approximation of $O r b_{i}$ at stage s. Obviously we will take $\lim _{s \rightarrow \infty} \operatorname{Orb}_{i}(s)=\operatorname{Orb}_{i}$. However, we don't want $\left\{O r b_{i}\right\}$ to be just any Δ_{2}^{0} family of sets, since the induced automorphism f might not necessarily be Π_{1}^{0}. We need to restrict how we approximate $\left\{\mathrm{Orb}_{i}\right\}$. To do this we will add new elements to each $O r b_{i}$ only to the left of the leftmost element, or to the right of the rightmost element of $\operatorname{Orb}_{i}(s)$, but never on the inside of $\operatorname{Orb}_{i}(s)$. Furthermore each Orb_{i} will have elements leaving (the approximation is Δ_{2}^{0}), but we always do this by splitting $O r b_{i}$ at some point $x \in O r b_{i}$, and in two halves.

Even with a nice approximation to the family $\left\{\mathrm{Or}_{i}\right\}$, it is still not immediate that we can define a Π_{1}^{0} approximation to f (like in lemma 2.1). We shall need to force f to have a Π_{1}^{0} approximation, and this will be the main problem the basic strategy has to address. The entire construction will be devoted to ensuring that we can force L_{e} to grow in a certain way so as to allow us to define a Π_{1}^{0} approximation to f. This approximation to f will be defined explicitly in the construction.
2.1.3. Ensuring the properties for the orbits. As mentioned earlier, the construction defines a computable approximation to the family $\left\{\mathrm{Orb}_{i}\right\}$ during the construction.

We must ensure that at the end the constructed family satisfies the three conditions for orbits; this will be described soon. But there is a more basic requirement the family $\left\{O r b_{i}\right\}$ has to satisfy, namely, that every pair of elements $x, y \in O r b$ have to be in different \mathcal{L}_{e} blocks. Since we do not control \mathcal{L}_{e}, how do we force the distance between each pair of elements in Orb to be infinite?

We define the distance between $x, y \in L_{e}$ to be $d(x, y)=1+\mid\left\{z \in L_{e}: z\right.$ lies strictly between x and $y\} \mid$. We agree that $d(x, x)=0$ and $d(x, y)=1$ if x and y are adjacent. $d(x, y)=\infty$ if they are in different blocks. A similar definition holds for distance in \mathcal{L}, and $d(x, y, s)$ is the distance measured at stage s. Often when the context is clear we write $d(x, y)$ instead of $d(x, y, s)$.

At stage s suppose we see that $x, y \in \operatorname{Orb}(s)$ and $d(x, y, s)=j$. To ensure that $d(x, y)=\infty$ at the end, we might want to make our copy $\mathcal{L} \cong j \cdot \eta$. Since \mathcal{L} does not have a block of size $\geq j+1$, either $\mathcal{L}_{e} \nexists \mathcal{L}$ or $d(x, y)>j$, which in the latter case means that $d(x, y)=\infty$. Therefore, the only mechanism we have to force $d(x, y)=\infty$ for a pair of elements $x, y \in L_{e}$ is for us to play a certain block size in \mathcal{L}. We have to be a little careful with this approach, since we cannot always promise to make \mathcal{L} strongly η-like. In the case where $\mathcal{L}_{e} \cong \mathcal{L}$, we actually wish to make $\mathcal{L} \cong \zeta \cdot \eta$. Therefore, we have to continuously monitor $d(x, y, s)$. We will build $\mathcal{L} \cong j \cdot \eta$ until $d(x, y, s)$ increases to a new value $j^{\prime}>j$. At that point we increase the size of blocks in \mathcal{L} and switch to making $\mathcal{L} \cong j^{\prime} \cdot \eta$, and wait for $d(x, y)$ to further increase, and so on. At the end if $d(x, y)=m<\infty$ then we end up with $\mathcal{L} \cong m \cdot \eta \nsubseteq \mathcal{L}_{e}$; otherwise we will succeed in forcing $d(x, y)=\infty$ and with no obstructions to making $\mathcal{L} \cong \zeta \cdot \eta$.

To implement the above mentioned, we will control the construction of \mathcal{L} and $O r b$ using two important parameters: $g(s)$ and $h_{1}(s)$. The parameter $g(s)$ represents the size of blocks we currently wish for \mathcal{L} to have; as long as $g(s)=m$ is stable we will proceed to build $\mathcal{L} \cong m \cdot \eta$. The parameter $h_{1}(s)$ is a number such that if $d(x, y, s)<h_{1}(s)$ then we currently believe that x and y are in the same \mathcal{L}_{e} block. We also demand that $\min \{d(x, y, s) \mid x \neq y \in \operatorname{Orb}(s)\}>2 h_{1}(s)$ and we will obviously have to keep $g(s) \leq 2 h_{1}(s)$ in order for the above mentioned to work. We will increase $h_{1}(s)$ only if $\min \{d(x, y, s) \mid x \neq y \in \operatorname{Orb}(s)\}$ grows beyond $16 h_{1}(s)$. As long as we increase $g(s)$ together with $h_{1}(s)$, we have that $\mathcal{L} \cong \mathcal{L}_{e}$ iff $\lim \inf _{s} g(s)=\infty$ iff $\liminf _{s} h_{1}(s)=\infty$. Note that the fact that the quantities $h_{1}(s), 2 h_{1}(s)$ and $16 h_{1}(s)$ are all used are due to mere technicalities, which we will not explain at this time.

Now that we have seen the basic mechanism of how we can force two distinct points $x, y \in L_{e}$ to increase their distance, we are now ready to describe how we intend to satisfy the three conditions for orbits. The orbits will be extended by one of two modules during the construction:

The first extension of orbits: The primary purpose of this module is to add elements to an existing orbit, and to ensure that the orbit and orderpreserving conditions hold.
The second extension of orbits: The main purpose of this module is to start a new orbit and to make sure that the totality condition holds.
In order to carefully control the growth of \mathcal{L}, we will not allow the first extension module to work at every stage, but only when triggered by the parameters h_{1} and w_{s}. In particular, the first extension module will work on stages such that $h_{1}(s+1) \neq h_{1}(s)$ and $w_{s} \uparrow$. We now elaborate on this.

A typical scenario will see the second extension module wait for h_{1} to increase and then pick an element x which is currently sufficiently far from all elements in $\operatorname{Orb}(s)$; i.e. $d(x, \operatorname{Orb}(s))>h_{1}(s)$. The second extension module would of course like to add x to a new fresh $O r b_{i}$, but obviously cannot do so until $d(x, O r b)>2 h_{1}$. So the second extension module will set $w_{s}=x$, recording the fact that it is now waiting for the element x to further separate from $\operatorname{Orb}(s)$. While waiting we keep $g=h_{1}(s)+1$ and do nothing else. Unless $\mathcal{L} \nexists \mathcal{L}_{e}$, we must later discover that $d(x, O r b)>2 h_{1}$; at this point, the second extension module is happy to add x to a fresh $O r b_{i}$ and declare the current $w_{s} \uparrow$.

Only when the second extension module has successfully added a new Orb_{i} will we allow the first extension module to act. The first extension module will pick the index of an existing orbit which needs to be extended and add a new element to it. Each orbit Orb_{m} will have a distinguished "central" element x_{m}^{0}, and a number of elements to the left and to the right of x_{m}^{0}. The central element x_{m}^{0} stipulates the priority of the orbit Orb_{m}, and will be used to determine how the orbit Orb_{m} is split (under the splitting module). Basically the first extension module tries to keep the number of elements on each side of x_{m}^{0} balanced, and adds a new element to Orb_{m} on the deficient side. In the actual construction we shall also have another parameter, $\operatorname{Cand}(s)$, which is a finite set of elements that are supposed to be placed into different fresh orbits. For this reason, the first extension module will also make sure that the new element it picks to add to the existing orbit $O r b_{m}$ is far from $\operatorname{Orb}(s) \cup C a n d(s)$. The second extension module will of course ignore Cand(s). Note that the set Cand records the set of elements on which f or f^{-1} has previously been defined and is now re-defined. We need to stream these elements into different new orbits in order to keep $f \Pi_{1}^{0}$.
2.1.4. The x-module, simplified. With the functions $g(s)$ and $h_{1}(s)$ we can establish some control over the distance of points in L_{e}. We have just discussed how this can be used to define the family $\left\{O r b_{i}\right\}$ of points in L_{e} with the desired properties. Unfortunately, this is not quite enough to ensure that f is Π_{1}^{0}. Suppose that the opponent was defining \mathcal{L}_{e} and of course would like to keep $\mathcal{L}_{e} \cong \mathcal{L}$. Now the cunning opponent knew that if he made his copy \mathcal{L}_{e} isomorphic to our copy \mathcal{L}, we must end up making $\mathcal{L} \cong \zeta \cdot \eta$. Armed with this knowledge, the opponent could attempt some sort of strategy similar to that for a general discrete linear order to defeat our definition of f. Our solution to this is to observe that we are not obliged to always produce $\mathcal{L} \cong \zeta \cdot \eta ;$ we only have to ensure this in the limit and only if $\mathcal{L}_{e} \cong \mathcal{L}$. Thus, we could, at every stage of the construction, make \mathcal{L} appear to be strongly η-like. The opponent must reduce the block size of every block in \mathcal{L}_{e}, otherwise he risks allowing $\mathcal{L}_{e} \not \equiv \mathcal{L}$. All we have to do is to ensure that $\lim _{\inf }^{s} g(s)=\infty$, but we will interrupt the opponent's strategy infinitely often and make it impossible for him to keep $\mathcal{L}_{e} \cong \mathcal{L}$ while simultaneously running the strategy to defeat f in a discrete linear order.

We now provide more details of the strategy above. Suppose that we have defined $x<y$ to be in $O r b_{i}$ for some i, such that no z in $O r b_{i}$ is between x and y. Then according to our choice of f in Lemma 2.1 we will send $f(x)=y$. Suppose that $x_{0}<x<x_{1}$ are currently adjacent and $y_{0}<y<y_{1}$ are also currently adjacent in \mathcal{L}_{e}. Suppose also that $h_{1}(s)>4$ so that we currently believe that $\left\{x_{0}, x, x_{1}\right\}$ are in the same block, and similarly for $\left\{y_{0}, y, y_{1}\right\}$. (Note that $d(x, y)>2 h_{1}(s)$). Thus we currently have no choice but to define $f\left(x_{0}\right)=y_{0}$ and $f\left(x_{1}\right)=y_{1}$.

The strategy the opponent would use to defeat f is the following. The opponent first enumerates a new point y_{2} such that $y_{0}<y_{2}<y<y_{1}$. Suppose $O r b_{i}$ is already stable and we have now fixed $f(x)=y$; this means that $f\left(x_{0}\right)$ must be updated to y_{2}. If the opponent now enumerates a new point x_{2} in the corresponding position, $x_{0}<x_{2}<x<x_{1}$, then we are in a bind; since $f \in \Pi_{1}^{0}$ we cannot return $f\left(x_{0}\right)$ to y_{0}, and the other alternative is to split the orbit $O r b_{i}$ at x and redefine $f(x)$. The latter alternative is not desirable, since the opponent has not yet done anything that might cause $\mathcal{L}_{e} \nsubseteq \mathcal{L}$, therefore we can only redefine $f(x)$ finitely often.

As mentioned above, our response to this is to play a strongly η-like linear order at every stage and force the opponent to reduce the size of every block in \mathcal{L}_{e}. Once the opponent enumerates the first point y_{2} and we redefine $f\left(x_{0}\right)=y_{2}$, we note that it is dangerous to allow y_{0} to be adjacent to, or even to remain in the same block as y_{2}. Therefore we will attempt to force $d\left(y_{0}, y\right)$ to increase enough so that we can put y_{0} into a new orbit. We achieve this by first waiting for a new point to appear on the right of y; let's say that the point y_{3} is enumerated so that $y_{0}<y_{2}<y<y_{3}<y_{1}$. Symmetrically we redefine $f\left(x_{1}\right)=y_{3}$ and we now wish to increase $d\left(y_{1}, y\right)$. We now set $g(s)=2$ and play $\mathcal{L} \cong 2 \cdot \eta$. Now notice that $d\left(y_{0}, y\right)$ and $d\left(y_{1}, y\right)$ have to both increase, unless \mathcal{L}_{e} contains a block of size at least 3 , and thus $\mathcal{L}_{e} \nexists \mathcal{L}$. Once they have both increased sufficiently, we can put y_{0}, y_{1} and y into three different orbits, and thus we will never have to worry about having to return $f\left(x_{0}\right)$ to y_{0}, or $f\left(x_{1}\right)$ to y_{1}.
2.1.5. The x-module, in full. The above section describes the problem that the x-module is designed to overcome, as well as the working of an x-module in a simplified situation, where we play $g(s)=2$. The full x-module will have several other features which we will describe now.

The x-module defines a function $g(x, s)$; the function $g(s)$ will be taken to be the minimum of all $g(x, s)$. We will have an x-module for each $x \in \operatorname{Orb}(s)$. We also keep a parameter W_{s} to record the progress of each x-module. The elements of W_{s} are 5 -tuples of the form $\left\langle x, d_{l}, d_{r}, z_{l}, z_{r}\right\rangle$. For every x there is at most one such tuple in W_{s}.

There are two possible cases at stage $s+1$ for the x-module.
Case 1. $\left\langle x, d_{l}, d_{r}, z_{l}, z_{r}\right\rangle \notin W_{s}$ for any $d_{l}, d_{r}, z_{l}, z_{r}$: This represents the situation where the x-module has been previously concluded successfully, and f corrected. We now wait for a new element to be enumerated close to x.

Suppose we find a new element $y>x$ enumerated into L_{e} such that $d(x, y)<h_{1}(s)$. We define z_{r} to be the element immediately to the right of y. Therefore we would like to increase $d\left(z_{r}, x\right)$ and force z_{r} to be put into a new orbit. We call the elements strictly between x and y interior elements. We next wait for a new element $y^{\prime}<x$ to be enumerated into L_{e} (this must exist, otherwise $\mathcal{L}_{e} \nexists \mathcal{L}$). We then define z_{l} to be the element immediately to the left of y^{\prime}, and also call the elements strictly between y^{\prime} and x interior elements (see Figure 3). We enumerate $\left\langle x, d\left(y^{\prime}, x\right), d(x, y), z_{l}, z_{r}\right\rangle$ into W. Note that the number of interior elements is equal to $d\left(y^{\prime}, x\right)+d(x, y)-2$. We now set $g(x)=d\left(y^{\prime}, y\right)$; for now we assume that no new element is enumerated between x and y while waiting for y^{\prime}, so that $d\left(y^{\prime}, y\right)$ equals to $2+$ the number of interior elements.

Figure 3. Case 1
Case 2. $\left\langle x, d_{l}, d_{r}, z_{l}, z_{r}\right\rangle \in W_{s}$ for some $d_{l}, d_{r}, z_{l}, z_{r}$: This means that we are now trying to force z_{l}, x and z_{r} into different orbits. In this situation we set $g(x)=2+$ the number of interior elements. Notice that one of the three alternatives must hold: Either $\mathcal{L}_{e} \not \not \mathcal{L}$, or $d\left(z_{l}, x\right)$ and $d\left(x, z_{r}\right)$ must both increase, or we will find a new element enumerated into L_{e} between two interior elements. In the first alternative we win the entire requirement. In the second alternative we will eventually see $d\left(z_{l}, x\right)>2 h_{1}$ and $d\left(x, z_{r}\right)>2 h_{1}$ so we can now add z_{l} and z_{r} to the set Cand. Recall that the set Cand contains elements that we do not wish to add to existing orbits, hence putting z_{l} and z_{r} into Cand ensures that they will eventually be placed into new orbits. We can remove $\left\langle x, d_{l}, d_{r}, z_{l}, z_{r}\right\rangle$ from W_{s} and declare a successful completion of the x-module.

The third alternative requires further elaboration. Suppose we discover a new element $y^{\prime \prime}>x$ enumerated between two interior elements. Let z be the interior element immediately to the right of the new point $y^{\prime \prime}$ (see Figure 4). In this case it is possible that $d\left(z_{l}, x\right)$ remains unchanged. We will set z as our new z_{r} and update $\left\langle x, d_{l}, d\left(x, y^{\prime \prime}\right), z_{l}, z\right\rangle$ in W_{s}. We also adjust the set of interior elements as being only those which are $\leq y^{\prime \prime}$. We now decrease $g(x)$ to $d_{l}+d\left(x, y^{\prime \prime}\right)$, and wait again.

Figure 4. Case 2, third alternative
 ∞ for some fixed x, then as we will soon see in $\S 2.1 .6$, this will imply that $\mathcal{L}_{e} \nsubseteq \mathcal{L}$. However we have to avoid the situation where $\liminf _{s} g(s)<\infty \operatorname{but~}_{\lim \inf _{s} g} g(x, s)=$ ∞ for every x. In order to do this we impose a minimum threshold for each x module; a reasonable choice would be to insist that $g(x) \geq x$ for every x. Due to global considerations, this particular requirement for defeating \mathcal{L}_{e} will also have a parameter k, which we can think of as being constant for the requirement. We will run the above strategy for the x-module as long as the strategy does not request for $g(x)<\max \{k, x\}$. If ever the x-module discovers that $d_{l}+d_{r}<\max \{k, x\}$, it will not proceed to request for $g(s) \leq d_{l}+d_{r}$; instead it will split the orbit at the point x : What this means is to take all elements of $O r b_{i}$ which are $\leq x$ in one orbit, and
take all elements of $O r b_{i}$ which are $>x$ in a different orbit. As observed in §2.1.4 this will automatically allow f to be corrected; more details are given in §2.1.7.
2.1.6. Analyzing the outcomes of the x-module. We now analyze the outcomes of the x-module. We have to ensure the global requirement $\liminf _{s} g(s)<\infty \Rightarrow \mathcal{L}_{e} \nsubseteq \mathcal{L}$. Since each x-module adopts the threshold $\max \{k, x\}$, we see that $\liminf _{s} g(s)<$ $\infty \Rightarrow \liminf _{s} g(x, s)<\infty$ for some x. Therefore we have to check that if an x-module infinitely often requests for $g(x)=m$ then $\mathcal{L}_{e} \nexists \mathcal{L}$.

Suppose that an x-module infinitely often requests for $g(x)=m$ and it is not stuck in any subcases. We claim that the size of the \mathcal{L}_{e}-block containing x is at most $m-1$. Otherwise consider a stage after which at least m many elements of the block containing x are stable. After such a stage all new elements of \mathcal{L}_{e} are added outside of this interval of m many elements; which means that the x-module must have at least $m-1$ many interior elements. Hence the x-module will always request for $g(x) \geq 2+(m-1)>m$, a contradiction. Therefore \mathcal{L}_{e} will contain a block of size at most $m-1$, while $\mathcal{L} \cong m \cdot \eta$, which means that $\mathcal{L}_{e} \nsubseteq \mathcal{L}$. If x-module infinitely often requests for $g(x)=m$ and it is stuck somewhere. In this case we will have two points in \mathcal{L}_{e} such that the distance between of them is greater that m and stabilized. Hence, this two points in the same block and \mathcal{L}_{e} has a block of size bigger than m, while $\mathcal{L} \cong m \cdot \eta$, which means that $\mathcal{L}_{e} \nsubseteq \mathcal{L}$.

There is one other outcome of an x-module to consider, which is the case where the module infinitely often requests for $g(x)<\max \{k, x\}$. (Notice that this outcome has no bearing on $\liminf _{s} g(s)$, so the global requirement is met independently of this outcome). In this case we will split the orbit at x infinitely often, which must be avoided unless $\mathcal{L}_{e} \not \not \mathcal{L}$, as this case violates the first orbit condition. If this is the case then \mathcal{L}_{e} contains a block of size less than $\max \{k, x\}$. If $\mathcal{L}_{e} \cong \mathcal{L}$ then by the global requirement, $\mathcal{L} \cong \zeta \cdot \eta$, which is a contradiction.
2.1.7. Correcting f. During the formal construction we will define an approximation to f, which has to be correct only if $\mathcal{L}_{e} \cong \mathcal{L} \cong \zeta \cdot \eta$. We do so by enumerating a c.e. set G which is intended to be $\operatorname{Cograph}(f)$. At the end, we will verify that for every pair of elements $x, y, f(x)=y$ if and only if $(x, y) \notin G$, and thus f is Π_{1}^{0}. First of all, notice that we always extend an orbit by adding an element which is (and never was) part of an orbit; therefore, the approximation to f is total. Suppose x_{0} is currently near to $x \in \operatorname{Orb}$ (i.e. $\left.0<d\left(x_{0}, x\right) \leq h_{1}(s)\right)$ and we have defined $f\left(x_{0}\right)$ such that $d\left(f\left(x_{0}\right), f(x)\right)=d\left(x_{0}, x\right)$. Now notice that the Π_{1}^{0} requirement on $f\left(x_{0}\right)$ isn't in danger unless $d\left(x_{0}, x\right)$ increases, but if a new point is enumerated in \mathcal{L}_{e} between x_{0} and x, then the x-module would act to force x_{0} to be far from x. This means that the element z that we next find such that $z \in \operatorname{Orb}$ and $d\left(x_{0}, z\right) \leq h_{1}$ will be in an orbit distinct from any element having anything to do with x or the previous values of $f\left(x_{0}\right)$. Hence we can arrange for the approximation of f to be consistent with G.

We describe one more problem which we have to overcome. In the above discussion we had implied that for each $x \in O r b_{i}$ we will always define $f(x)$ to be the least element of $O r b_{i}$ larger than x. Using the definition of f on the elements of $O r b$ we can extend the definition of f to all elements of \mathcal{L}_{e}. However, requiring that $f\left(O r b_{i}\right)=O r b_{i}$ is a little too much. Consider the following situation. Suppose that we have defined $f(x)=y$ where $x<y$ are successive elements in some Orb_{i}. Suppose that $x_{0}<x_{1}<x$ and $y_{0}<y_{1}<y$ are currently adjacent, and we have
defined $f\left(x_{0}\right)=y_{0}$ and $f\left(x_{1}\right)=y_{1}$. Now we must also enumerate $\left(x_{0}, y_{1}\right)$ into G. However, suppose after we do this we see a new point y_{2} show up such that $y_{0}<y_{1}<y_{2}<y$. Notice that we have already enumerated (x_{0}, y_{1}) into G and thus we cannot update $f\left(x_{0}\right)$ to be y_{1}. Our mechanism for dealing with this was to rely on the actions of the y-module and hope that we will be able to force y_{1} to be in a different block from y; if the y-module is able to do this successfully, then we can rescue f by redefining $f\left(x_{0}\right)$ to be one of the new elements appearing before y_{2}. Unfortunately, it could be that the y-module finishes unsuccessfully by splitting the orbit at y, and having no new elements show up between y_{1} and y_{2}.

What are our options in this case? We certainly do not wish to split x and y into different orbits, since no new element might have appeared close to x. We wish to ensure the orbit condition for x and that the orbit containing x is of type ζ. In particular, x should not be allowed to lose its $O r b$-successor unless the orbit is also split at x. Therefore we have to keep x and y in the same orbit. However, if we also demand that $f(x)=y$ then we cannot consistently have $f\left(x_{0}\right)=y_{1}$, as this violates G. Our solution is to pick some number $q>0$ large enough and redefine $f(x)=y^{\prime}$ such that $y^{\prime}>y$ and $d\left(y, y^{\prime}\right)=q$. Obviously we have to wait until $h_{1}>q$ before we can do this, otherwise y and y^{\prime} are not yet believed to be in the same block, but we can certainly stop enumerating into G until we see this. Now q is chosen large enough such that $f\left(x_{0}\right)$ and $f\left(x_{1}\right)$ can be consistently defined together with $f(x)=y^{\prime}$ (notice that we need to freeze G until we are able to redefine f). Thus we have to allow $f(x)$ to be not necessarily the $O r b$-successor y of x, but still require $f(x)$ to be in the same block as y. In this way, $f(x)$ is redefined if the orbit is split at y, but if $\mathcal{L} \cong \mathcal{L}_{e}$ then the orbit is split at y only finitely often, and so $f(x)$ is redefined this way only finitely often. All other definitions of $f\left(x^{\prime}\right)$ where x^{\prime} and x are in the same block can then reference $f(x)$.

We remark here that it seems rather critical in our proof that $\mathcal{L} \cong \zeta \cdot \eta$ in order for f to be built successfully. This is because our definition of $f\left(x_{0}\right)$ for an arbitrary element x_{0} depends on the definition of $f(x)$ where x is the unique element in $O r b$ in the same block as x_{0}. In turn, our choice of $f(x)$ was dependent on our implementation of the totality condition for orbits, which, in our construction was rather arbitrary. In other words, we are exploiting the fact that in ζ, any element is automorphic to any other element. If our constructed linear order \mathcal{L} contains blocks of rigid order types, then our strategy will not work: For instance, if we wanted to anchor our definition of f at the leftmost point of each block, then we would have to redefine f whenever the leftmost point of a block appears to shift, and we would be stuck if the leftmost point of a block shifts back to a previous point. For example, our strategy will not be able to define f correctly if we instead promise to make $\mathcal{L} \eta$-like if $\mathcal{L}_{e} \cong \mathcal{L}$. We do not know if a counter example to Kierstead's conjecture is possible if we replace $\zeta \cdot \eta$ with, say, $\omega \cdot \eta$.
2.2. The formal construction for a single requirement. In this section we fix a single requirement R_{e} and we describe the formal construction to meet R_{e}. We fix the associated given \mathcal{L}_{e}. As explained in the previous section, §2.1, the construction will consist of several modules and parts, and are controlled by the main module (§2.2.8). These will be presented over the different subsections of 2.2. As mentioned before, the number $k>1$ will be assumed to be fixed for this requirement R_{e}, and is used by the global construction to exert control over each requirement.
2.2.1. Construction of the linear order \mathcal{L}. We construct a uniformly computable sequence $\left\{I_{s}(q)\right\}_{s \in \omega, q \in \mathrm{Q}}$ of finite linear orders such that $I(q)=\lim _{s \rightarrow \infty} I_{s}(q)$ is a computable linear order, and $\mathcal{L}=\sum_{q \in \mathrm{Q}} I(q)$ is a computable linear order. Every interval $I_{s}(q)$ has a special element $U(q)$, which gives the interval $I(q)$ its identity. We have the following properties: $U(q)$ is defined at the least stage s_{0} when the approximation of $I(q)$ is nonempty; for every $s>s_{0}$ we have $U(q) \in I_{s}(q)$. All other elements of $I_{s}(q)$ may leave the interval, but will not be allowed to rejoin.

At stage $s=0, I_{0}(q)=\emptyset$ for all $q \in \mathbb{Q}$. At stage $s+1$, we do the following. For all $q \in \mathbb{Q}$ such that the Gödel number of q is $\leq s$, we modify $I_{s+1}(q)$, according to the following two cases.

Case 1. $I_{s}(q)$ is not empty: We write $I_{s}(q)=L_{s}(q)+\{U(q)\}+R_{s}(q)=$ $\left\{l_{i_{l}(q, s)}<\ldots<l_{1}<U(q)<r_{1}<\ldots<r_{i_{r}(q, s)}\right\}$. We note that we will always either have $i_{l}(q, s)=i_{r}(q, s)$ or $i_{l}(q, s)=i_{r}(q, s)-1$. Our actions for the block $I(q)$ will obviously depend on the current value of $g(s+1)$.

Subcase $g(s+1)=i_{r}(q, s)+i_{l}(q, s)+1$: The requested block size is exactly right, so we leave the parameters $L_{s+1}(q)$ and $R_{s+1}(q)$ unchanged.
Subcase $g(s+1)>i_{r}(q, s)+i_{l}(q, s)+1$: We need to add $g(s+1)-$ $\left(i_{l}(q, s)+i_{r}(q, s)+1\right)$ many new elements. We add the new elements on the outside, i.e. we add the new elements to the right of $r_{i_{r}(q, s)}$ and to the left of $l_{i_{l}(q, s)}$. The $g(s+1)-\left(i_{l}(q, s)+i_{r}(q, s)+1\right)$ many new elements are distributed in a way to keep both sides balanced, i.e. we keep $i_{l}(q, s+1)=i_{r}(q, s+1)$ or $i_{l}(q, s+1)=i_{r}(q, s+1)-1$.
Subcase $g(s+1)<i_{r}(q, s)+i_{l}(q, s)+1$: Then we need to trim the block $I_{s}(q)$. If $g(s+1)=2 k$ then take $R_{s+1}(q)=\left\{r_{1}<\ldots<r_{k}\right\}$ and $L_{s+1}(q)=\left\{l_{k-1}<\ldots<l_{1}\right\}$. Otherwise if $g(s+1)=2 k+1$ then take $R_{s+1}(q)=\left\{r_{1}<\ldots<r_{k}\right\}$ and $L_{s+1}(q)=\left\{l_{k}<\ldots<l_{1}\right\}$. In either subcase define $I_{s+1}(q)=L_{s+1}+U(q)+R_{s+1}$ and call all elements from the set $I_{s}(q)-I_{s+1}(q)$ free. These free elements are already in \mathcal{L} but are now not associated with any block $I(q)$, so we have to find a new block for each free element.
Case 2. $I_{s}(q)$ is empty: For uniformity we add a new point at ∞ and a new point at $-\infty$ and agree that $I(\pm \infty)=\{ \pm \infty\}$. Now search for $q_{1}, q_{2} \in$ $\mathbb{Q} \bigcup\{-\infty,+\infty\}$ such that $q_{1}<_{\mathbb{Q}} q<_{\mathbb{Q}} q_{2}, I_{s}\left(q_{1}\right)$ and $I_{s}\left(q_{2}\right)$ are not empty and there is no q_{3} such that $q_{1}<_{\mathbb{Q}} q_{3}<_{\mathbb{Q}} q_{2}$ and $I_{s}\left(q_{3}\right)$ is not empty. Find the least x (in the standard order on \mathbb{N}) such that x is free and lies between $I_{s}\left(q_{1}\right)$ and $I_{s}\left(q_{2}\right)$. If there is no such x then we add a new free element x between $I_{s}\left(q_{1}\right)$ and $I_{s}\left(q_{2}\right)$. Define $U(q)=x$. Populate the rest of $I_{s+1}(q)$ according to Case 1.

Clearly $|I(q)|=\liminf _{s}\left|I_{s}(q)\right|$. Therefore, $\mathcal{L} \cong \sum_{q \in \mathbb{Q}} \liminf _{s}\left|I_{s}(q)\right|$. It has no subinterval of type η since $|I(q)| \geq \liminf _{s} g(s) \geq k>1$ for every q. Hence \mathcal{L} is of the desired type. The inequality $\liminf _{s} g(s) \geq k$ directly follows from the construction of g.
2.2.2. The x-module. Formally we define, for $x, y \in L_{e}$ and $s \in \omega$,

$$
d_{e}(x, y, s)= \begin{cases}\left|\left\{z \in L_{e} \mid z<s \wedge x \mathcal{L}_{e} z<\mathcal{L}_{e} y\right\}\right|+1, & \text { if } x<\mathcal{L}_{e} y \\ \left|\left\{z \in L_{e} \mid z<s \wedge y \mathcal{L}_{e} z<\mathcal{L}_{e} x\right\}\right|+1, & \text { if } y<\mathcal{L}_{e} x \\ 0, & \text { if } x=y\end{cases}
$$

We will simply write $<$ instead of $<_{\mathcal{L}_{e}}$ when the context is clear. The x-module will work only if $x \in \operatorname{Orb}(s)$. We assume that at every stage at most one new element is enumerated into L_{e}.

First of all, if $h_{1}(s) \leq \max \{k, x\}+1$, we keep $g(x, s+1) \uparrow$ and say that the x-module is inactive. Otherwise we declare the x-module active and consider the following cases.

Case 1. $\left\langle x, d_{l}, d_{r}, z_{l}, z_{r}\right\rangle \notin W_{s}$ for any $d_{l}, d_{r}, z_{l}, z_{r}$: This means that the x module is currently not attending to any instructions and is ready to start again. There are three subcases.

Case 1.1: There is $y \in L_{e, s+1}-L_{e, s}$ such that $y>x$ and $h_{1}(s)>$ $d(x, y, s+1)$ and there is some least $z>x$ such that $d(x, z, s+1)>$ $d(x, z, s)$. We put $\langle x,-\infty, d(x, y, s+1),-\infty, z\rangle$ in W_{s+1}, and define $g(x, s+1)=h_{1}(s)+d(x, y, s+1)-2$.
Case 1.2: There is $y \in L_{e, s+1}-L_{e, s}$ such that $y<x$ and $h_{1}(s)>$ $d(x, y, s+1)$ and there is some greatest $z<x$ such that $d(x, z, s+1)>$ $d(x, z, s)$. We put $\langle x, d(x, y, s+1),+\infty, z,+\infty\rangle$ in W_{s+1}, and define $g(x, s+1)=h_{1}(s)+d(x, y, s+1)-2$.
Case 1.3: Otherwise, define $g(x, s+1)=2 h_{1}(s)+1$.
Case 2. $\left\langle x, d_{l}, d_{r}, z_{l}, z_{r}\right\rangle \in W_{s}$ and $d_{l}=-\infty$ or $d_{r}=+\infty$: This means that the x-module has found either $z_{r}>x$ or $z_{l}<x$ (but not both) that needs to be forced to be in a different block as x.

Case 2.1: $d_{l}=-\infty$ and there is $y \in L_{e, s+1}-L_{e, s}$ such that $y<x$ and $d(x, y, s+1)<h_{1}(s)$.
(i) If $y<z$ for all $z \in L_{e, s}$ then set $g(x, s+1)=h_{1}(s)+d_{r}-2$.
(ii) If there is some greatest $z \in L_{e, s}$ such that $z<y$ and $d_{r}+$ $d(x, y, s+1) \geq \max \{k, x\}$ then set $g(x, s+1)=d(x, y, s+1)+d_{r}$ and update $\left\langle x, d(x, y, s+1), d_{r}, z, z_{r}\right\rangle$ in W_{s+1}.
(iii) Otherwise, i.e. the new element $y \in L_{e, s}$ is not added to the extreme left of $L_{e, s}$ and $d_{r}+d(x, y, s+1)<\max \{k, x\}$. Set $g(x, s+1)=\max \{k, x\}+1$ and update $\langle x, 0,0,0,0\rangle$ in W_{s+1}. Additionally we split the orbit at point x.
Case 2.2: $d_{l}=-\infty$ and there is $y \in L_{e, s+1}-L_{e, s}$ such that $y>x$ and $d(x, y, s+1)<d_{r}$. Hence there has now appeared a new element y between x and an interior element, and we need to update z_{r}. Let $z>x$ be the least such that $d(x, z, s+1)>d(x, z, s)$. We define $g(x, s+1)=h_{1}(s)+d(x, y, s+1)-2$ and replace $\left\langle x,-\infty, d_{r},-\infty, z_{r}\right\rangle$ by $\langle x,-\infty, d(x, y, s+1),-\infty, z\rangle$ in W_{s+1}.
Case 2.3: $d_{r}=+\infty$ and there is $y \in L_{e, s+1}-L_{e, s}$ such that $y>x$ and $d(x, y, s+1)<h_{1}(s)$. This case is symmetric with Case 2.1.
(i) If $y>z$ for all $z \in L_{e, s}$ then set $g(x, s+1)=h_{1}(s)+d_{l}-2$.
(ii) If there is some least $z \in L_{e, s}$ such that $z>y$ and $d_{l}+d(x, y, s+$ 1) $\geq \max \{k, x\}$ then set $g(x, s+1)=d(x, y, s+1)+d_{l}$ and update $\left\langle x, d_{l}, d(x, y, s+1), z_{l}, z\right\rangle$ in W_{s+1}.
(iii) Otherwise, i.e. the new element $y \in L_{e, s}$ is not added to the extreme right of $L_{e, s}$ and $d_{l}+d(x, y, s+1)<\max \{k, x\}$. Set $g(x, s+1)=\max \{k, x\}+1$ and update $\langle x, 0,0,0,0\rangle$ in W_{s+1}. Additionally we split the orbit at point x.
Case 2.4: $d_{r}=+\infty$ and there is $y \in L_{e, s+1}-L_{e, s}$ such that $y<x$ and $d(x, y, s+1)<d_{l}$. This case is symmetric with Case 2.2. There is now a new element y between an interior element and x, and we need to update z_{l}. Let $z<x$ be the greatest such that $d(x, z, s+1)>$ $d(x, z, s)$. We define $g(x, s+1)=h_{1}(s)+d(x, y, s+1)-2$ and replace $\left\langle x, d_{l},+\infty, z_{l},+\infty\right\rangle$ by $\langle x, d(x, y, s+1),+\infty, z,+\infty\rangle$ in W_{s+1}.
Case 2.5: Otherwise, do nothing and leave all parameters relating to the x-module unchanged.
Case 3. $\left\langle x, d_{l}, d_{r}, z_{l}, z_{r}\right\rangle \in W_{s}$ and $d_{l} \neq-\infty, d_{r} \neq+\infty$: This means that the x-module has found both $z_{r}>x$ and $z_{l}<x$, and now wants to force both to leave the block containing x. If $\langle x, 0,0,0,0\rangle \in W_{s}$ then we say that the x-module is split.

Case 3.1: There is $y \in L_{e, s+1}-L_{e, s}$ such that $y>x$ and $d_{r}>d(x, y, s+$ 1), and the x-module is not yet split. This means that a new element has appeared between x and an interior element, and we need to update z_{r} if we can.
(i) If $d_{l}+d(x, y, s+1) \geq \max \{k, x\}$, set $g(x, s+1)=d_{l}+d(x, y, s+1)$. Let $z>x$ be the least such that $d(x, z, s+1)>d(x, z, s)$. We update $\left\langle x, d_{l}, d_{r}, z_{l}, z_{r}\right\rangle$ with $\left\langle x, d_{l}, d(x, y, s+1), z_{l}, z\right\rangle$ in W_{s+1}.
(ii) If $d_{l}+d(x, y, s+1)<\max \{k, x\}$, set $g(x, s+1)=\max \{k, x\}+1$ and update $\langle x, 0,0,0,0\rangle$ in W_{s+1}. Additionally we split the orbit at point x.
Case 3.2: There is $y \in L_{e, s+1}-L_{e, s}$ such that $y<x$ and $d_{l}>d(x, y, s+$ 1), and the x-module is not yet split. This means that a new element has appeared between an interior element and x, and we need to update z_{l} if we can.
(i) If $d_{r}+d(x, y, s+1) \geq \max \{k, x\}$, set $g(x, s+1)=d_{r}+d(x, y, s+$ 1). Let $z<x$ be the greatest such that $d(x, z, s+1)>d(x, z, s)$. We update $\left\langle x, d_{l}, d_{r}, z_{l}, z_{r}\right\rangle$ with $\left\langle x, d(x, y, s+1), d_{r}, z, z_{r}\right\rangle$ in W_{s+1}.
(ii) If $d_{r}+d(x, y, s+1)<\max \{k, x\}$, set $g(x, s+1)=\max \{k, x\}+1$ and update $\langle x, 0,0,0,0\rangle$ in W_{s+1}. Additionally we split the orbit at point x.
Case 3.3: No such $y \in L_{e, s+1}-L_{e, s}$ exists, or the x-module is split. Then no updates of z_{l} or z_{r} are necessary. If $d(\operatorname{Orb}(s+1), z, s+1)>$ $16 h_{1}(s)$ for every old element z, we set $g(x, s+1)=2 h_{1}(s)+1$. If we find that some old element does not satisfy the above inequality and the x-module is already split, we set $g(x, s+1)=\max \{k, x\}+1$. Otherwise we do nothing and leave all parameters relating to the x module unchanged.
Let t be the first stage where the current x-cycle entered case 2 . We define an old element z to be one where $z \in \mathcal{L}_{e}[t], d(z, x, t+1) \leq h_{1}(t)$, and where either (i) the x-module is not split and either $z \leq z_{l}$ or $z \geq$ z_{r} holds, or (ii) the x-module is split and $d(z, x, s+1)>\max \{k, x\}+1$.

If $\langle x,-\rangle$ is removed from W, then we say that the x-module completes a x-cycle.
2.2.3. Splitting the orbit at the point x. Suppose that x is currently in $\operatorname{Orb} b_{m}(s)=$ $\left\{x_{m}^{-l_{s}}<\ldots<x_{m}^{0}<\ldots<x_{m}^{r_{s}}\right\}$. There are three cases, depending on the position of x relative to the center x_{m}^{0}. Suppose that $x=x_{m}^{j}$.
$j=-l_{s}$ or r_{s} : Then we do nothing.
$0<j<r_{s}$: Then we find the least k such that $\operatorname{Orb}_{k}(s)=\emptyset$ and define

$$
\operatorname{Orb}_{m}(s+1)=\left\{x_{m}^{-l_{s}}<\ldots<x_{m}^{0}<\ldots<x_{m}^{j}\right\}, \text { and }
$$

$$
\operatorname{Orb}_{k}(s+1)=\left\{x_{m}^{j+1}<\ldots<x_{m}^{r_{s}}\right\}=\left\{x_{k}^{0}<\ldots<x_{k}^{r_{s}-j-1}\right\}
$$

$-l_{s}<j<0$: Then we find the least k such that $\operatorname{Orb}_{k}(s)=\emptyset$ and define $\operatorname{Orb}_{m}(s+1)=\left\{x_{m}^{j}<\ldots<x_{m}^{0}<\ldots<x_{m}^{r_{s}}\right\}$.

$$
\operatorname{Orb}_{k}(s+1)=\left\{x_{m}^{-l_{s}}<\ldots<x_{m}^{j-1}\right\}=\left\{x_{k}^{-l_{s}-j+1}<\ldots<x_{k}^{0}\right\}
$$

$j=0$: Then we find the least k, k^{\prime} such that $\operatorname{Orb}_{k}(s)=\operatorname{Orb}_{k^{\prime}}(s)=\emptyset$ and define

$$
\begin{aligned}
& \operatorname{Orb}_{m}(s+1)=\left\{x_{m}^{0}\right\} . \\
& \operatorname{Orb}_{k}(s+1)=\left\{x_{m}^{-l_{s}}<\ldots<x_{m}^{-1}\right\}=\left\{x_{k}^{-l_{s}+1}<\ldots<x_{k}^{0}\right\} . \\
& \operatorname{Orb}_{k^{\prime}}(s+1)=\left\{x_{m}^{1}<\ldots<x_{m}^{r_{s}}\right\}=\left\{x_{k^{\prime}}^{0}<\ldots<x_{k^{\prime}}^{r_{s}-1}\right\} .
\end{aligned}
$$

2.2.4. The definition of h_{1}. We use h_{2} as a local parameter to help us define h_{1}. At stage $s=0$, set $h_{1}(0)=h_{2}(0)=k$. At stage $s+1$, we define the quantity

$$
\begin{aligned}
& h_{2}(s+1)=\min \left\{\frac{d(x, y, s+1)}{16}: x \in \operatorname{Orb}(s+1) \cup\{-\infty, \infty\},\right. \\
& \left.\qquad y \in \operatorname{Orb}(s+1) \cup \operatorname{Cand}^{*}(s+1) \cup\{-\infty, \infty\}, x \neq y\right\} .
\end{aligned}
$$

Here, $\operatorname{Cand}^{*}(s)=\left\{x \in \operatorname{Cand}(s): d(x, \operatorname{Orb}(s))>2 h_{1}(s)\right\}$. Notice that Cand is a c.e. set while Cand * is Δ_{2}^{0}. We check if the following conditions hold:
(i) $h_{2}(s+1)>h_{1}(s)$.
(ii) For each active x-module, either it is still in case 1 and $\langle x,-\rangle \notin W_{s}$, or else it is in case 3 and $d(\operatorname{Orb}(s+1), z, s+1)>16 h_{1}(s)$ for every old element z.
(iii) If $w_{s} \downarrow=x$ then $d(x, \operatorname{Orb}(s+1), s+1)>16 h_{1}(s)$.

If all three conditions hold, we call $s+1$ a h_{1}-expansionary stage and take following actions:
(i) Set $h_{1}(s+1)=h_{1}(s)+1$.
(ii) For each active x-module in case 3, define $g(x, s+1)=2 h_{1}(s)+1, \operatorname{Cand}(s+$ $1)=\operatorname{Cand}(s) \cup\{$ all old elements $\}$, and remove $\left\langle x, d_{l}, d_{r}, z_{l}, z_{r}\right\rangle$ from W_{s+1}.
(iii) If $w_{s} \downarrow=x$ find the least m such that $\operatorname{Orb}_{m}(s)=\emptyset$ and define $x_{m}^{0}=x$ and $w_{s+1} \uparrow$.
Otherwise, if $s+1$ is not h_{1}-expansionary take $h_{1}(s+1)=h_{1}(s)$.
2.2.5. The first extension of orbits. The primary aim of this module is to extend an existing orbit. We use a local parameter l for this module, which records the number of times this module has acted. At stage $s=0$, define $l(0)=0$. If s is not h_{1}-expansionary we simply define $l(s+1)=l(s)$ and do nothing else. Otherwise,
we assume that s is h_{1}-expansionary. Fix m and j such that $l(s)=\langle m, j\rangle$ and we increment $l(s+1)=l(s)+1$.

Case 1. $\operatorname{Orb}_{m}(s)=\emptyset:$ Do nothing.
Case 2. $\operatorname{Orb}_{m}(s)=\left\{x_{m}^{-l_{s}}<_{\mathcal{L}_{e}} \ldots<_{\mathcal{L}_{e}} x_{m}^{0}<_{\mathcal{L}_{e}} \ldots<_{\mathcal{L}_{e}} x_{m}^{r_{s}}\right\}$: If either $x_{m}^{-l_{s}}$ or $x_{m}^{r_{s}}$ has not been defined for at least two h_{1}-expansionary stages, we do nothing. Otherwise we assume that they had both received their definitions at least two expansionary stages ago.

If $l_{s}<r_{s}$ then we extend to the left. We find the least x such that $x<x_{m}^{-l_{s}}, x \notin \operatorname{Orb}(s), d(x, \operatorname{Orb}(s) \cup \operatorname{Cand}(s), s)>2 h_{1}(s)$ and consistent with $\operatorname{Orb}_{p}(s)$ for all $p \neq m$ such that $\operatorname{Orb}_{p}(s) \neq \emptyset$. This means that if $x_{0}<x<x_{1}$ for $x_{0}, x_{1} \in \operatorname{Orb}_{p}(s)$ then $f\left(x_{0}, s\right)<x_{m}^{-l_{s}}<f\left(x_{1}, s\right)$. We define $x_{m}^{-l_{s}-1}=x$.

If $l_{s} \geq r_{s}$, then we extend to the right, in a similar way. We find the least x such that $x>x_{m}^{r_{s}}, x \notin \operatorname{Orb}(s), d(x, \operatorname{Orb}(s) \cup \operatorname{Cand}(s), s)>2 h_{1}(s)$ and consistent with $\operatorname{Orb}_{p}(s)$ for all $p \neq m$ such that $\operatorname{Orb}_{p}(s) \neq \emptyset$. This means that if $x_{0}<x_{m}^{r_{s}}<x_{1}$ for $x_{0}, x_{1} \in \operatorname{Orb}_{p}(s)$, then $f\left(x_{0}, s\right)<x<f\left(x_{1}, s\right)$. We define $x_{m}^{r_{s}+1}=x$.

We remark here that if s is h_{1}-expansionary, we can always find the required x by Lemma 2.3.
2.2.6. The second extension of orbits. The primary aim of this module is to grow a new orbit. We search for the \mathbb{N}-least x such that $d(x, \operatorname{Orb}(s), s+1)>h_{1}(s)$. If x exists and if $w_{s} \uparrow$ or $w_{s} \downarrow>_{\mathbb{N}} x$, we define $w_{s+1}=x$.
2.2.7. The definition of f. Let $x_{m}^{i} \in \operatorname{Orb}_{m}(s)$. We will use the following notation. Let $x_{m}^{i, 0}=x_{m}^{i}$, and if $x_{m}^{i}<y$ and $d\left(x_{m}^{i}, y, s\right)=j$ then $x_{m}^{i, j}=y$. If $y<x_{m}^{i}$ and $d\left(x_{m}^{i}, y, s\right)=j$ then $x_{m}^{i,-j}=y$. We also enumerate a c.e. set G with the intention that G is the complement of $\operatorname{Graph}(f)$.

Let $x=x_{m}^{i}$. If $i<0$, the x_{m}^{i}-module is active and s is a h_{1}-expansionary stage, we wish to act for x. If this is the first time that x is put in Orb, we set $f\left(x_{m}^{i, j}, s+1\right)=x_{m}^{i+1, j}$ for $-h_{1}(s+1)<j<h_{1}(s+1)$, provided that none of these definitions are already in G. Otherwise, let $t<s$ be the previous time we were able to act for x. There are two cases.

Case 1: Suppose that between t and s we did not split the x-module. Let

$$
q= \begin{cases}d\left(f\left(x_{m}^{i}\right), x_{m}^{i+1}\right)[t], & \text { if } d\left(f\left(x_{m}^{i}\right), x_{m}^{i+1}\right)[t]<h_{1}(s+1) \\ 0, & \text { if } d\left(f\left(x_{m}^{i}\right), x_{m}^{i+1}\right)[t] \geq h_{1}(s+1)\end{cases}
$$

For every j such that $-h_{1}(s+1)<j<h_{1}(s+1)-q$ we set $f\left(x_{m}^{i, j}\right)=x_{m}^{i+1, q+j}$, provided that none of these definitions are already in G. (In particular, it might be the case that $d\left(f\left(x_{m}^{i}, t\right), x_{m}^{i+1}, t\right) \neq d\left(f\left(x_{m}^{i}, t\right), x_{m}^{i+1}, s\right)$, but we will keep the position relative to x_{m}^{i+1}). If some of these definitions are in G, do nothing else for x.

For every $m^{\prime}, i^{\prime}, j$ and j^{\prime}, if $-h_{1}(s+1)<j<h_{1}(s+1)-q,-h_{1}(s+1)<$ $j^{\prime}<h_{1}(s+1)$ and $x_{m^{\prime}}^{i^{\prime}} \downarrow \neq x_{m}^{i+1}$, we enumerate $\left(x_{m}^{i, j}, x_{m^{\prime}}^{i^{\prime}, j^{\prime}}\right)$ in G. For each j satisfying $-h_{1}(s+1)<j<h_{1}(s+1)-q$ and each j^{\prime} satisfying $j^{\prime} \neq q+j$ and $-h_{1}(s+1)<j^{\prime}<h_{1}(s+1)$ we enumerate $\left(x_{m}^{i, j}, x_{m}^{i+1, j^{\prime}}\right)$ into G.

Case 2: Between t and s we had split the x-module. Find the least number $q>0$ such that $2 h_{1}(t+1)<q<h_{1}(s+1)$ and for every j satisfying $-h_{1}(s+1)<j<h_{1}(s+1)-q$, the pair $\left(x_{m}^{i, j}, x_{m}^{i+1, q+j}\right) \notin G$. If we can find q, we set $f\left(x_{m}^{i, j}\right)=x_{m}^{i+1, q+j}$ for all j satisfying $-h_{1}(s+1)<j<h_{1}(s+1)-q$. If we cannot find q, do nothing for x and consider the current stage as not having acted for x.
Now suppose that $i \geq 0$, the x-module is active and s is a h_{1}-expansionary stage. If x_{m}^{i+1} is not defined, do nothing for x_{m}^{i}. Otherwise if this is the first time x_{m}^{i+1} is put in $O r b$, we set $f\left(x_{m}^{i, j}, s+1\right)=x_{m}^{i+1, j}$ for $-h_{1}(s+1)<j<h_{1}(s+1)$, provided that none of these definitions are already in G. Otherwise let $t<s$ be the previous time we were able to act for x. There are two cases.

Case 1: Suppose that between t and s we did not split the x_{m}^{i+1}-module. Then the actions for x_{m}^{i} are exactly the same as Case 1 above, for $i<0$.
Case 2: Between t and s we had split the x_{m}^{i+1}-module. Then the actions for x_{m}^{i} are exactly the same as Case 2 above, for $i<0$.
2.2.8. The main module for R_{e}. At stage $s+1$ the main module consists of the following steps.
(1) Do stage $s+1$ of the second extension of orbits (§2.2.6).
(2) Do stage $s+1$ of the first extension of orbits (§2.2.5).
(3) Do stage $s+1$ of each active x-module, for $x \in \operatorname{Orb}(s+1)(\S 2.2 .2)$.
(4) Take $g(s+1)=\min \left\{h_{1}(s)+1, g(x, s) \mid x \leq s+1\right\}$.
(5) Do stage $s+1$ of the \mathcal{L}-construction (§2.2.1).
(6) Update h_{1} (§2.2.4).
(7) Do stage $s+1$ of the definition of f (§2.2.7).

The module in $\S 2.2 .3$ is not directly called upon by the main module, because it is called by the x-module ($\S 2.2 .2$) as a subroutine. We also assume that a new element is enumerated into \mathcal{L}_{e} at the beginning of every stage (before any step of the main module is considered).
2.3. The formal verification for a single requirement. Throughout the rest of this proof, when we refer to a parameter, we mean the value or status of the parameter when it is mentioned. For instance, a stage is h_{1}-expansionary if h_{1} is increased the previous time we updated h_{1}. Whenever we refer to a stage, we mean a particular instance or "sub-stage" within that stage. Also we assume that $h_{1}(s)>16$ for every s. We also adopt the "Lachlan notation", by appending $[s]$ to an expression to mean the value of the expression evaluated at s.

Lemma 2.2. If h_{1} is incremented at s, then immediately after this step, $d(x, y, s+$ $1)>15 h_{1}(s+1)$ for every distinct $x \in \operatorname{Orb}(s+1)$ and $y \in \operatorname{Orb}(s+1) \cup \operatorname{Cand}^{*}(s+1)$, unless x is added during this step and $y \in \operatorname{Cand}^{*}(s+1)$.

Proof. Note that if $y \in \operatorname{Cand}^{*}(s+1) \cap \operatorname{Cand}(s)$ then $y \in \operatorname{Cand}^{*}(s)$. Hence if neither x nor y is added during this step, then $d(x, y, s+1) \geq 16 h_{2}(s+1)>16 h_{1}(s)$. Since $h_{1}(s+1)=h_{1}(s)+1$, we have $d(x, y, s+1)>15 h_{1}(s+1)$. If x is added during this step, then $y \in \operatorname{Orb}(s+1)$, and as $x \neq y, y \in \operatorname{Orb}(s)$. We can then apply the condition $\S 2.2 .4$ (iii) (for an expansionary stage). The same goes if y is added during this step and $y \in \operatorname{Orb}(s+1)$. Finally if y is added during this step and $y \in \operatorname{Cand}^{*}(s+1)$ then $x \in \operatorname{Orb}(s)$ and we can apply condition $\S 2.2 .4$ (ii) (for an expansionary stage).

Lemma 2.3. At each h_{1}-expansionary stage we are able to find the element x in §2.2.5.

Proof. Let $s+1$ be h_{1}-expansionary. Consider case 2 of $\S 2.2 .5$. Fix an element $x_{m} \in \operatorname{Orb}(s+1)$, and assume that x_{m} was added to Orb before the previous expansionary stage. (If this is not true then we force the first extension module to wait for one more expansionary stage before considering this orbit again). Suppose we wish to find an element $x<x_{m}$ with the desired property, namely, we need to find a x such that $d(x, \operatorname{Orb}(s+1) \cup \operatorname{Cand}(s+1))>2 h_{1}(s+1)$. Let $y<x_{m}$ be the rightmost element such that $y \in \operatorname{Orb}(s+1) \cup \operatorname{Cand}^{*}(s+1)$. If y does not exist then clearly any $x<x_{m}$ such that $d\left(x, x_{m}\right)>4 h_{1}(s+1)$ will have the desired property, so x can be found as long as there are sufficiently many elements to the left of x_{m} (which we always assume we have by speeding up the enumeration of \mathcal{L}_{e}, if necessary).

Otherwise fix the rightmost such y. Then any $z \in \operatorname{Cand}(s+1)$ such $y<z<x_{m}$ must have distance at most $2 h_{1}(s+1)$ from y or from x_{m}. At the last increment of h_{1}, since x_{m} was already in $\operatorname{Orb}(s)$, we apply Lemma 2.2 to conclude that $d\left(x_{m}, y\right)>15 h_{1}$. (Note that extensions of orbits are always done at the beginning of a stage). Therefore, x can always be found between y and x_{m}.
Lemma 2.4. At every stage s and every $x \in \operatorname{Orb}(s)$ and every $y \in \operatorname{Orb}(s) \cup$ Cand $^{*}(s)$, if $x \neq y$ then $d(x, y, s)>2 h_{1}(s)$.

Proof. We proceed by induction on s. If $y \in \operatorname{Cand}^{*}(s)$ then by definition we already have $d(x, y, s)>2 h_{1}(s)$. So we may assume that $y \in \operatorname{Orb}(s)$. At each stage s, h_{1} is increased (see $\S 2.2 .4$) only if $d(x, y, s+1) \geq 16 h_{2}(s+1)>15 h_{1}(s+1)$. If a new element x is added to $\operatorname{Orb}(s)$ then (by $\S 2.2 .4$ and $\S 2.2 .5$) we must have $d(x, y, s+1)>2 h_{1}(s+1)$.
Lemma 2.5. If $\liminf _{s \rightarrow \infty} g(s)=m<\infty$, then $\mathcal{L} \cong m \cdot \eta$.
Proof. There is a stage s_{0} such that for all $s \geq s_{0}$ we have $g(s) \geq m$. Fix $q \in \mathbb{Q}$, and examine $\S 2.2 .1$. Since we always grow and trim $I_{s}(q)$ symmetrically about the center point $U(q)$, and $U(q)$ is never changed, we always have $i_{l}(q)=i_{r}(q)$ or $i_{r}(q)-1$, this means that there must be elements $x_{-l}, \ldots, x_{0}, \ldots, x_{r}$ (where $l+r+1=m$ and $\left.x_{0}=U(q)\right)$ which are permanently in $I(q)$. At the infinitely many stages where $g(s+1)=m$ we will remove all other elements from the block $I(q)$. Therefore, $I(q) \cong m$.

Now we wish to argue that every element x enumerated into \mathcal{L} is permanently in some block $I(q)$. The only way for x to not belong to any block is for it to become free during the construction of \mathcal{L}. Suppose x is the least (in the standard order of \mathbb{N}) free element. Then the construction must move to set $x=U(q)$ for some yet unused q. Once x is picked as $U(q)$ for some q, then it stays in $I(q)$. Thus $\mathcal{L} \cong m \cdot \eta$.

Lemma 2.6. Suppose that $\liminf _{s \rightarrow \infty} g(s)=m<\infty$ and that $\lim _{s \rightarrow \infty} h_{1}(s)+1>m$, then there is x such that $\liminf _{s \rightarrow \infty} g(x, s)=m$.
Proof. Notice that h_{1} is a non-decreasing function. Since each x-module is only active if $h_{1}(s)>\max \{k, x\}+1$, it is easy to check the construction to see that $g(x, s) \geq \max \{k, x\}$ for every x and s. By definition, if $\liminf _{s \rightarrow \infty} g(s)<\lim _{s \rightarrow \infty} h_{1}(s)+1$,
then there are infinitely many stages s_{i} such that $g\left(s_{i}\right)=\min \left\{g\left(x, s_{i}\right) \mid x \leq s_{i}\right\}=$ m. Since $g\left(x, s_{i}\right) \geq \max \{k, x\}$ for each of these x, thus $\min \left\{g\left(x, s_{i}\right) \mid x \leq s_{i}\right\}=$ $\min \left\{g\left(x, s_{i}\right) \mid x \leq m\right\}$, and so the minimum must be attained infinitely often by a single x. This means there is some x_{0} such that $\liminf _{s \rightarrow \infty} g\left(x_{0}, s\right) \leq m$. Clearly we must in fact have $\liminf _{s \rightarrow \infty} g\left(x_{0}, s\right)=m$.
Lemma 2.7. Let x be an active module and assume that the orbit is split at x infinitely often. Then \mathcal{L}_{e} has a block of size strictly less than $\max \{k, x\}$.
Proof. The orbit can be split at x only in cases 2.1(iii), 2.3(iii), 3.1(ii) and 3.2(ii) of the x-module. Suppose case 2.1(iii) happens infinitely often. Then infinitely often we have $d_{r}+d(x, y, s+1)<\max \{k, x\}$ for some new element $y<x$. However the value of d_{r} was earlier (at stage s^{\prime}) assigned under case 1.1 (or 2.2) where we discovered a new element y^{\prime} such that $y^{\prime}>x$ and $d_{r}=d\left(x, y^{\prime}, s^{\prime}\right)$. This means that there are infinitely many pairs of distinct elements of the form y, y^{\prime} and $s^{\prime}<s$ where $y<x<y^{\prime}$ and where $d\left(x, y^{\prime}, s^{\prime}\right)+d(x, y, s)<\max \{k, x\}$. This means that the block containing x cannot have size $\max \{k, x\}$ or greater; otherwise after $\max \{k, x\}$ many elements around x are stable, the new elements y, y^{\prime} must appear outside these elements, and so $d\left(x, y^{\prime}, s^{\prime}\right)+d(x, y, s)$ cannot possibly be $<\max \{k, x\}$. Thus, x is in an \mathcal{L}_{e}-block of size strictly less than $\max \{k, x\}$.

A similar argument holds for cases 2.3(iii), 3.1(ii) and 3.2(ii).
Here we list a fact that is important, but easy to verify:
Fact 2.8. Suppose that there are only finitely many h_{1}-expansionary stages. Then the parameters $h_{1}, O r b, C a n d$ and $C a n d^{*}$ are all eventually stable.
Proof. Trivial by the construction.
Lemma 2.9. Suppose that $\lim _{s \rightarrow \infty} g(x, s)$ does not exist and $\liminf _{s \rightarrow \infty} g(x, s)=m<\infty$, then x is in a \mathcal{L}_{e}-block of size strictly less than m.
Proof. Suppose that the x-module completes only finitely many cycles and is eventually stuck waiting at some step. Examining the x-module reveals that it can only be stuck mid-cycle in cases $1.3,2.1(\mathrm{i}), 2.3(\mathrm{i}), 2.5$ or 3.3 . In case $2.5, g$ is eventually never redefined and so $\lim _{s \rightarrow \infty} g(x, s)$ exists, contrary to our assumptions. In the first three cases, since $\lim _{s \rightarrow \infty} g(x, s)$ does not exist, this means that $\lim _{s \rightarrow \infty} h_{1}(s)=\infty$, which means that $\liminf _{s \rightarrow \infty} g(x, s)=\infty$, again contrary to our assumptions. Suppose we get stuck in case 3.3 , then it must be the case that we switch between $g(x)=2 h_{1}+1$ and $g(x)=\max \{k, x\}+1$ infinitely often. As the x-module is never completed, there are only finitely many expansionary stages and by Fact $2.8, h_{1}$ and Orb are eventually stable. There are only finitely many elements which can be labeled "old" (specifically, only those elements which are around and close to x at stage t can qualify). Of these finitely many elements, if any one, say z, is labeled "old", then the label remains forever on z (with only at most one exception when the module is split) and the inequality $d(O r b, z)>16 h_{1}$ is eventually forever satisfied (as the parameters h_{1} and $O r b$ are eventually stable). Thus we cannot possibly switch between $g(x)=2 h_{1}+1$ and $g(x)=\max \{k, x\}+1$ infinitely often, a contradiction. Thus we may assume that the x-module completes infinitely many cycles.

Since infinitely many x-cycles are completed, there are infinitely many h_{1}-expansionary stages. If the orbit is split at x infinitely often, we apply Lemma 2.7
to conclude that x is in a block of size less than $\max \{k, x\} \leq m$. (Recall that $g(x, s) \geq \max \{k, x\}$ for every x and $s)$. Therefore we assume that the orbit is split at x finitely often.

Whenever we finish an x-cycle at an expansionary stage, we must have last updated z_{l} or z_{r} for the x-module in cases 2.1(ii), 2.3(ii), 3.1(i) or 3.2(i). In any case, we must have defined $g(x, s)=d(x, y)+d\left(x, y^{\prime}\right)$ for some new elements $y<x<y^{\prime}$. A reasoning similar to the one in the proof of Lemma 2.7 shows that the size of the block containing x must be $\leq \liminf _{y, y^{\prime}} d(x, y)+d\left(x, y^{\prime}\right)-1$. (The crucial point here is that as infinitely many x-cycles are completed, this liminf is taken over an infinite collection of pairs y, y^{\prime}).

Now our case assumption is that the orbit is split at x finitely often and that $\lim _{s \rightarrow \infty} h_{1}(s)=\infty$. Hence there are only four possibilities for the definition of $g(x, s)$ at a stage s; either $g(x, s+1)=h_{1}(s)+d_{l}-2$, or $g(x, s+1)=h_{1}(s)+d_{r}-2$, or $2 h_{1}(s)+1$ or $d_{l}+d_{r}$. Definitions of the first three kinds do not affect $\liminf _{s} g(x, s)$ since $\lim _{x \rightarrow \infty} h_{1}(s)=\infty$. Since d_{l} and d_{r} must be attained by $d(x, y)$ and $d\left(x, y^{\prime}\right)$ for some y, y^{\prime}, this means that $m=\liminf _{s} g(x, s)=\liminf _{y, y^{\prime}} d(x, y)+d\left(x, y^{\prime}\right)$. Hence the size of the block containing x has size $\leq m-1<m$.

Lemma 2.10. If there is some active x-module such that $\lim _{s \rightarrow \infty} g(x, s)=m<\infty$ and $\liminf _{s \rightarrow \infty} g(y, s) \geq m$ for all active y, then either $\mathcal{L}_{e} \nexists \mathcal{L}$ or \mathcal{L}_{e} has a block of size strictly larger than m.

Proof. Fix x such that $\lim _{s \rightarrow \infty} g(x, s)=m<\infty$. We first suppose that there are infinitely many h_{1}-expansionary stages; therefore, $\lim _{s \rightarrow \infty} h_{1}(s)=\infty$. If infinitely many x-cycles are ended, then $g(x, s+1)=2 h_{1}(s)+1$ for infinitely many s, contrary to our assumption that $\lim _{s \rightarrow \infty} g(x, s)=m<\infty$. Therefore the x-module is eventually stuck in a final cycle. If it is stuck in case 1 then $g(x, s+1)=2 h_{1}(s)+1$ for almost all s, which is impossible. If it is stuck in case 2 then condition (ii) of $\S 2.2 .4$ will never hold and so there cannot be infinitely many h_{1}-expansionary stages. If it is stuck in case 3 then at the next h_{1}-expansionary stage we will end the "final" x-cycle, which is impossible.

Therefore for the remainder of this proof we will assume that there are only finitely many h_{1}-expansionary stages, i.e. $\lim _{s \rightarrow \infty} h_{1}(s)$ exists. We first prove two claims:

Claim 2.11. If there is some y_{0} such that the y_{0}-module is forever stuck waiting in Case 2, then \mathcal{L}_{e} has a block of size strictly larger than m.

Proof of claim. Fix such a y_{0}. Suppose the y_{0}-module is stuck waiting in case 2 . Cases 2.2 and 2.4 can only apply finitely many times before we have to leave case 2. Cases 2.1(i) and 2.3(i) can only apply finitely often, because $\lim _{s \rightarrow \infty} h_{1}(s)$ exists. Therefore we may assume that the y_{0}-module is forever waiting in case 2.5 .

Without loss of generality, assume $d_{l}=-\infty$; we argue symmetrically if $d_{r}=+\infty$. Let t be the least stage after which the y_{0}-module is forever waiting in case 2.5 . By $\S 2.2 .4$ as $\left\langle y_{0},-\right\rangle \in W_{s}$, we have $h_{1}(s)=h_{1}(t)$ for all $s>t$. Furthermore $g\left(y_{0}, s\right)=g\left(y_{0}, t+1\right)$ for all $s>t$, where at stage t we had defined $g\left(y_{0}, t+1\right)=$ $h_{1}(t)+d_{r}-2 \geq m$. Since case 2.1 does not hold after stage t, every element enumerated into \mathcal{L}_{e} to the left of y_{0} must have a distance of at least $h_{1}(s)$ to y_{0}.

Also as case 2.2 does not hold after stage t, every element enumerated into \mathcal{L}_{e} to the right of y_{0} must have a distance of at least d_{r} to y_{0}. As we assume that \mathcal{L}_{e} has no greatest or least element, at stage t there must already be at least $h_{1}(t)-1$ many elements to the left and $d_{r}-1$ many elements to the right of y_{0}. These elements must be in the same block as y_{0}, hence, \mathcal{L}_{e} has a block of size at least $\left(h_{1}(t)-1\right)+\left(d_{r}-1\right)+1>m$.

Let s_{0} be the final h_{1}-expansionary stage, then (by examining Fact 2.8) the values of $h_{1}, O r b$ and $C a n d$ are stable after s_{0}.

Claim 2.12. Suppose there is some y_{0} such that after s_{0}, the y_{0}-module is forever stuck waiting in Case 3, and there is some old element z such that $d(\operatorname{Orb}(s+$ $1), z, s+1) \leq 16 h_{1}\left(s_{0}\right)$ for almost all $s>s_{0}$. Then $\mathcal{L}_{e} \nexists \mathcal{L}$ or \mathcal{L}_{e} has a block of size strictly larger than m.

Proof of claim. Fix such a y_{0}. Suppose the y_{0}-module is stuck waiting in case 3. Note that cases 3.1 and 3.2 can apply only finitely many times, therefore we assume that the y_{0}-module forever waiting in case 3.3, say after stage t_{0}. Let t_{1} be the stage where this final y_{0}-cycle first enters case 2 ; notice that after we begin case 2 of this final y_{0}-cycle, there cannot be any more h_{1}-expansionary stages (otherwise the "final" y_{0}-cycle has to end). Therefore, $t_{0}>t_{1}>s_{0}$. Let z be the old element in the statement of the claim.

There are two possibilities, either the final y_{0}-cycle is split before getting stuck in case 3.3 , or it is never split. We first assume that the final y_{0}-cycle is never split. As the cycle is never split, z must already be labeled old at the point the module began getting stuck (at t_{0}). Since our assumption is that $d(\operatorname{Orb}(s+1), z, s+1) \leq 16 h_{1}\left(s_{0}\right)$ for almost all $s>s_{0}$, we must in fact have $d(\operatorname{Orb}(s+1), z, s+1) \leq 16 h_{1}\left(s_{0}\right)$ for all $s \geq t_{0}$. Together with the fact that z was already labeled old at t_{0}, this means that $g\left(y_{0}, s\right)=d_{l}+d_{r}$ for all $s>t_{0}$ where $\left\langle y_{0}, d_{l}, d_{r}, z_{l}, z_{r}\right\rangle \in W_{t_{0}}$ (and never gets redefined under case 3.3). Therefore $m \leq \liminf _{s \rightarrow \infty} g\left(y_{0}, s\right)=d_{l}+d_{r}$.

Without loss of generality assume that $z<y_{0}$. Let $y_{1}<y_{0}$ be the rightmost such element in $\operatorname{Orb}\left(s_{0}\right)$ (an easier argument follows if y_{1} does not exist). By Lemma 2.4 we have $d\left(y_{0}, y_{1}, s+1\right)>2 h_{1}\left(s_{0}\right)$ for all $s>s_{0}$. Since z is declared old, by definition, we have $d\left(z, y_{0}, t_{1}\right) \leq h_{1}\left(s_{0}\right)$, and so $d\left(z, y_{1}, t_{1}\right)>h_{1}\left(s_{0}\right)$. We wish to now argue that z and y_{1} are in different \mathcal{L}_{e}-blocks; suppose not, then the block containing z and y_{1} will have size at least $h_{1}\left(s_{0}\right)+2$. However from step 4 of the main module we see that $\liminf _{s \rightarrow \infty} g(s) \leq h_{1}\left(s_{0}\right)+1$ and by Lemma $2.5 \mathcal{L}$ does not have a block of size larger than $h_{1}\left(s_{0}\right)+1$, while \mathcal{L}_{e} does, hence $\mathcal{L}_{e} \not \approx \mathcal{L}$.

So we may assume that z and y_{1} are in different blocks, in particular, that $d\left(z, y_{1}\right)$ is eventually $>16 h_{1}\left(s_{0}\right)$. As $d(\operatorname{Orb}(s+1), z, s+1) \leq 16 h_{1}\left(s_{0}\right)$ for all large s, it must mean that $d\left(y_{0}, z, s+1\right) \leq 16 h_{1}\left(s_{0}\right)$ for all large s. This means that that z and y_{0} are in the same block. But checking the construction reveals that when z was first declared old we had $d\left(z, y_{0}\right.$, stage where z declared old $) \geq d_{l}+1$. Furthermore every new L_{e}-element to the right of y_{0} must have distance $\geq d_{r}$ to y_{0}, as Case 3.1 no longer holds after t_{0}. This means that the block containing y_{0} has size strictly greater than $d_{l}+d_{r} \geq m$.

Now we assume the second possibility, where the final y_{0}-cycle is split before t_{0}. Since z is an old element for which $d(\operatorname{Orb}(s+1), z, s+1) \leq 16 h_{1}\left(s_{0}\right)$ for almost all $s>s_{0}$, case 3.3 will ensure that $m \leq \liminf _{s \rightarrow \infty} g\left(y_{0}, s\right)=\max \left\{k, y_{0}\right\}+1$. However
as z is eventually labeled old we must have, by definition, $d\left(z, y_{0}, t_{1}\right) \leq h_{1}\left(s_{0}\right)$. Define y_{1} as above, and we see that we also have $d\left(z, y_{1}, t_{1}\right)>h_{1}\left(s_{0}\right)$. The same argument above shows that z and y_{1} are in different blocks (unless already $\mathcal{L}_{e} \nsucceq \mathcal{L}$). In particular, as above we can conclude that z and y_{0} are in the same block. But as we are in the case where y_{0} is split and z is old, this means that $d\left(z, y_{0}\right)>$ $\max \left\{k, y_{0}\right\}+1 \geq m$. Hence, the block containing y_{0} has size strictly greater than m.

Now back to the proof of Lemma 2.10. There are three possible reasons why there are no more expansionary stages after s_{0} : (1) There is some active y_{0}-module which fails condition (ii) in $\S 2.2 .4$. (2) $w_{s} \downarrow=y_{1}$ is eventually always defined, but $d\left(y_{1}, \operatorname{Orb}(s), s+1\right) \leq 16 h_{1}\left(s_{0}\right)$ for all $s>s_{0}$. (3) $h_{2}(s+1) \leq h_{1}\left(s_{0}\right)$ for all $s>s_{0}$. We show below that in each case either $\mathcal{L}_{e} \not \equiv \mathcal{L}$ or \mathcal{L}_{e} has a block of size strictly larger than m.
(1) There is some active y_{0}-module which fails condition (ii): Consider an active y_{0} which fails condition (ii). We cannot complete infinitely many y_{0}-cycles because there are only finitely many expansionary stages. Therefore there is a final y_{0}-cycle. It cannot be stuck in case 1 , as it fails condition (ii). If the y_{0}-module is stuck in case 2 we apply Claim 2.11. If the y_{0}-module is stuck in case 3 , then as it fails condition (ii) we apply Claim 2.12.
(2) $d\left(y_{1}, \operatorname{Orb}(s), s+1\right) \leq 16 h_{1}\left(s_{0}\right)$ for almost all s : Assume that for almost every $s>s_{0}$ we have $w_{s} \downarrow=y_{1}$ and $d\left(y_{1}, \operatorname{Orb}\left(s_{0}\right), s+1\right) \leq 16 h_{1}\left(s_{0}\right)$. Suppose that $w_{s} \downarrow=y_{1}$ received its stable definition $w_{s}=y_{1}$ at some stage after s_{0}. At that point we must have $d\left(y_{1}, \operatorname{Orb}\left(s_{0}\right)\right)>h_{1}\left(s_{0}\right)$. Furthermore we have $d\left(y_{1}, \operatorname{Orb}\left(s_{0}\right), s+1\right) \leq 16 h_{1}\left(s_{0}\right)$ for every $s>s_{0}$. This implies that for some $y_{2} \in \operatorname{Orb}\left(s_{0}\right)$ we have $h_{1}\left(s_{0}\right)<d\left(y_{1}, y_{2}, s+1\right) \leq 16 h_{1}\left(s_{0}\right)$ for every $s>s_{0}$, and thus \mathcal{L}_{e} contains a block of size larger than $h_{1}\left(s_{0}\right)+1$. However by step 4 of the main module, $\liminf _{s \rightarrow \infty} g(s) \leq h_{1}\left(s_{0}\right)+1$ which by Lemma 2.5 implies that $\mathcal{L}_{e} \not \equiv \mathcal{L}$.
(3) $h_{2}(s+1) \leq h_{1}\left(s_{0}\right)$ for all $s>s_{0}$: As Orb, Cand and h_{1} are stable after s_{0}, it is obvious that Cand* is also eventually stable after s_{0}. Thus we have some $x \in \operatorname{Orb}\left(s_{0}\right) \cup\{-\infty, \infty\}$ and some $y \in \operatorname{Orb}\left(s_{0}\right) \cup \operatorname{Cand}^{*}(s+1) \cup$ $\{-\infty, \infty\}$ such that $x \neq y$ and $d(x, y, s+1) \leq 16 h_{1}\left(s_{0}\right)$ for almost all s, and thus x and y are in the same block. However by Lemma 2.4, $d(x, y, s)>$ $2 h_{1}\left(s_{0}\right)$ and thus \mathcal{L}_{e} contains a block of size larger than $2 h_{1}\left(s_{0}\right)+1$. As $\liminf _{s \rightarrow \infty} g(s) \leq h_{1}\left(s_{0}\right)+1$ we have that $\mathcal{L}_{e} \not \not 二 \mathcal{L}$ by Lemma 2.5.
This ends the proof of Lemma 2.10.
Lemma 2.13. If $\liminf _{s \rightarrow \infty} g(s)=\infty$, then $\mathcal{L} \cong \zeta \cdot \eta$.
Proof. For every m there is a stage s_{0} such that for all $s \geq s_{0}$ we have $g(s) \geq m$. We always pad each $I(q)$ up to $g(s) \geq m$ many elements, and we always trim $I(q)$ symmetrically, it follows that the block $I(q)$ has at least m many elements. Each element x enumerated into \mathcal{L} is permanently in some block $I(q)$; this follows from the same argument as in Lemma 2.5.

Lemma 2.14. If $\mathcal{L} \cong \mathcal{L}_{e}$, then $\mathcal{L} \cong \zeta \cdot \eta$.

Proof. If $\mathcal{L} \not \nexists \zeta \cdot \eta$ then by Lemmas 2.5 and 2.13, $\liminf _{s \rightarrow \infty} g(s)=m<\infty$ and $\mathcal{L} \cong m \cdot \eta$. Suppose that $\lim _{s \rightarrow \infty} h_{1}(s)+1>m$, then we can apply Lemma 2.6 to get some x such that $\liminf _{s \rightarrow \infty} g(x, s)=m$. By Lemmas 2.9 and 2.10 we get an \mathcal{L}_{e}-block of size different from m, or $\mathcal{L}_{e} \nexists \mathcal{L}$. In either case, $\mathcal{L}_{e} \nexists \mathcal{L}$.

Now suppose that $\lim _{s \rightarrow \infty} h_{1}(s)+1=m$. In particular, there are only finitely many h_{1}-expansionary stages. Then $h_{1}, O r b, C a n d$ and $C a n d^{*}$ are all eventually stable. If no x-module eventually becomes active, then the reason there are only finitely many h_{1}-expansionary stages must be due to conditions (i) or (iii) of $\S 2.2 .4$ failing to hold, and by the same argument as in Lemma 2.10 (note items (2) and (3) in the proof of Lemma 2.10), we conclude that $\mathcal{L}_{e} \nexists \mathcal{L}$. So we may assume that some x-module is eventually active. In that case each active x-module gets stuck at a final x-cycle. It is easy to check that as $\lim _{s \rightarrow \infty} h_{1}(s)$ exists, we also have $\lim _{s \rightarrow \infty} g(x, s)$ exists. Since this conclusion holds for any active module, we apply Lemma 2.10 to an active x-module with the smallest $\lim _{s \rightarrow \infty} g(x, s)$. Thus either $\mathcal{L}_{e} \not \not \mathcal{L}$ or \mathcal{L}_{e} has a block of size larger than $\lim _{s \rightarrow \infty} g(x, s) \geq \liminf _{s \rightarrow \infty} g(s)$. In any case we have $\mathcal{L}_{e} \not \equiv \mathcal{L}$.
Lemma 2.15. If $\liminf _{s \rightarrow \infty} g(s)=\infty$ then every $x \neq y \in$ Orb are in different blocks of \mathcal{L}_{e}.

Proof. This follows directly from Lemma 2.4.
Lemma 2.16. If $\mathcal{L} \cong \mathcal{L}_{e}$ then Orb $_{m}$ has order type ζ for every m.
Proof. Since $\mathcal{L} \cong \mathcal{L}_{e}$, by Lemmas 2.5 and 2.14 we know that $\liminf _{s \rightarrow \infty} g(s)=\infty$. Since $g(s) \leq h_{1}(s)+1$, this means that there are infinitely many h_{1}-expansionary stages.

By Lemma $2.2, d\left(z, z^{\prime}\right)>15 h_{1}$ for every distinct $z, z^{\prime} \in O r b$ just immediately after each time h_{1} is incremented. The next action performed by the main module is the second extension of orbits, which means that there are infinitely many stages where the second extension of orbits is able to define w_{s}. Hence, every orbit is nonempty. (Notice that x_{m}^{0} is never removed from Orb_{m}, so the condition $\operatorname{Orb}_{m} \neq \emptyset$ is equivalent to $x_{m}^{0} \downarrow$).

Now fix m and we know that x_{m}^{0} exists. We shall now argue that $O r b_{m}$ has order type ζ. By $\S 2.2 .5, \operatorname{rng}(l)=\omega$ and so there are infinitely many h_{1}-expansionary stages s such that $l(s)=\langle m, n\rangle$ for some n, where we attend to $O r b_{m}$. At each stage we extend $O r b_{m}$, we grow $O r b_{m}$ from the outside, and (eventually) in both directions. Also Lemma 2.3 ensures we are always able to find an element to put in Orb_{m}. Thus Orb_{m} will have order type ζ unless the splitting module (§2.2.3) causes Orb_{m} to have a greatest or a least element.

Now we assume that $O r b_{m}$ has a greatest or a least element x. By Lemma 2.7 the orbit can only be split at x finitely many times since we assume that $\mathcal{L}_{e} \cong \mathcal{L} \cong \zeta \cdot \eta$. Suppose that x is the greatest element of $\operatorname{Orb} b_{m}$. Let $x=x_{m}^{j}$. As x_{m}^{0} is always in $\operatorname{Orb} b_{m}$, we must have $j \geq 0$. Each time $x_{m}^{j+1} \uparrow$ we must extend $O r b_{m}$ on the right and find a new value for x_{m}^{j+1}, unless $x_{m}^{-j^{\prime}}$ is the least element of $O r b_{m}$ for some $j^{\prime}<j$, in which case we consider $x_{m}^{-j^{\prime}}$ instead. But as x_{m}^{j} is the largest element of Orb_{m}, we have to split the module at $x=x_{m}^{j}$. This means that we will split the module at x infinitely often, which is impossible, by what we just observed at the beginning of this paragraph.

A similar argument holds if x is the least element of $O r b_{m}$.
The following is an easy, but very crucial fact about the construction. Informally, it says that whenever a new element enters \mathcal{L}_{e} between z and some $x \in O r b$ which we currently think are in the same block, then the construction will force z to be in a different block from x, unless z is already too close to x.

Lemma 2.17. Suppose $x \in O r b$ and z is an element such that $d(x, z)<h_{1}(s)$ and the x-module is active at s, where s is an expansionary stage. Suppose that a new element is later enumerated between x and z. Then at the next expansionary stage (if there is one), either z is labeled old or $d(x, z) \leq \max \{k, x\}+1$. In the latter case the x-module must be split.

Proof. We check $\S 2.2 .2$. Let t be the first stage after s where the x-module enters case 2 ; then obviously $z \in \mathcal{L}_{e}[t]$ and $d(z, x, t+1) \leq h_{1}(t)$. At the next expansionary stage, if the x-module is split and $d(x, z)>\max \{k, x\}+1$, then z is old. Otherwise if $d(x, z) \leq \max \{k, x\}+1$ then we are in the second alternative in the statement of the lemma. So we can suppose that the x-module is not split before the next expansionary stage. Consider the first time an element is enumerated between x and z. It is easy to see that this must cause an element between z and x (possibly z itself) to be defined as z_{l} or z_{r}. At the next expansionary stage, z is old.

The rest of the proof will be devoted to showing that f is a strongly nontrivial Π_{1}^{0} automorphism. We will do this over several lemmas.

Lemma 2.18. If $\mathcal{L} \cong \mathcal{L}_{e}$ then for every block $B \subset L_{e}$ there is an $x \in$ Orb such that $x \in B$.

Proof. Suppose that x is the \mathbb{N}-least number such that the block containing x has no elements from $O r b$. As we assume that $\mathcal{L} \cong \mathcal{L}_{e}$, by Lemmas 2.5 and 2.14 we know that $\liminf _{s \rightarrow \infty} g(s)=\infty$. Hence we must have $\lim _{s \rightarrow \infty} h_{1}(s)=\infty$. Then there is a stage s_{0} such that $h_{1}(s)>\max \{x, k\}$ for all $s \geq s_{0}$.

We first claim that $w_{s} \downarrow \rightarrow w_{s} \geq x$ for every $s>s_{0}$. Suppose not. Then at the next expansionary stage (after the counterexample stage) we will put $w_{s}<x$ into Orb (or something even \mathbb{N}-smaller), and we may assume s_{0} is large enough so this does not happen (notice that $O r b$ is a c.e. set).

Now if there is a stage $s>s_{0}$ such that $d(x, \operatorname{Orb}(s), s+1)>h_{1}(s)$, then at the beginning of stage s we will set $w_{s+1}=x$. (Notice that the second extension of orbits is always done at the beginning of a stage). Thus x will be added to Orb at the next expansionary stage after that.

Thus we may assume that at (the beginning of) every stage $s>s_{0}$, we have $d(x, \operatorname{Orb}(s), s+1) \leq h_{1}(s)$. We fix some (in fact, any) y and some expansionary stage $s_{1}>s_{0}$ such that $y \in \operatorname{Orb}\left(s_{1}\right)$ and $d\left(x, y, s_{1}+1\right) \leq h_{1}\left(s_{1}\right)$. We claim that $d(x, y, s+1) \leq h_{1}(s)$ at the beginning of every $s>s_{1}$. Suppose instead we have $d(x, y, s+1)>h_{1}(s)$ at the beginning of some least stage $s>s_{1}$. Note that $s-1$ cannot be an expansionary stage as $d(x, y, s) \leq h_{1}(s-1)$ and we assume that at every stage only at most one element is enumerated into \mathcal{L}_{e}. (Note that this is unaffected by any assumptions on speeding up the enumeration of \mathcal{L}_{e}; in speeding up we only ask for evidence that \mathcal{L}_{e} has no greatest or least element and so the distance between two points are unaffected by the speedup). Thus $h_{1}(s-1)=h_{1}(s)$ and $\operatorname{Orb}(s-1)=\operatorname{Orb}(s)$. Furthermore as $d(x, y, s) \leq h_{1}(s-1)$, by Lemma 2.4 we
can see that $d\left(x, y^{\prime}, s\right)>h_{1}(s-1)$ for every $y^{\prime} \neq x, y, y^{\prime} \in \operatorname{Orb}(s-1)$. This means that at stage s, we must have $d(x, \operatorname{Orb}(s), s+1)>h_{1}(s)$, a contradiction. Thus $d(x, y, s+1) \leq h_{1}(s)$ at the beginning of every $s>s_{1}$.

Let $s_{2}>s_{1}$ be large enough such that the y-module is active, the orbit is never again split at y (by Lemmas 2.7 and 2.14), $d\left(x, y, s_{2}+1\right) \leq h_{1}\left(s_{2}\right)$ and some new element p is enumerated into \mathcal{L}_{e} between x and y where $d(p, y)<h_{1}\left(s_{2}\right)$ (at the beginning of s_{2}). This stage exists because we assumed that no element in the same block as x is in Orb. By Lemma 2.17 we have $d(x, y)>16 h_{1}$ at the next expansionary stage, contrary to our assumption that $d(x, y) \leq h_{1}$.

Lemma 2.19. For every $x \in$ Orb there is m such that $x \in O r b_{m}$ stably.
Proof. Suppose that $x \in \operatorname{Orb}_{m}(s)$ and $x \in \operatorname{Orb}_{n}(s+1)$, then $x=x_{m}^{i}$ at stage s and $x=x_{n}^{j}$ at stage $s+1$. Examining the steps in $\S 2.2 .3$ shows that $|j|<|i|$. Notice that x_{m}^{0} will never leave $O r b_{m}$.
Lemma 2.20. At every stage s and for every $x \in \operatorname{Cand}(s)$, there is at most one y such that $y \in \operatorname{Orb}(s)$ and $d(x, y) \leq 2 h_{1}(s)$.

Proof. We proceed by induction on s; note that Cand is a c.e. set. Initially, Cand is empty. If an action in the construction does not increase Cand, Orb or h_{1}, then it will not cause a problem. Let's first consider an action which adds elements to Cand. This is done in $\S 2.2 .4(\mathrm{ii})$, but the condition for performing this action is that $d(O r b, z)>16 h_{1}$ for every z added to Cand. If an element y is added to Orb then $d\left(y, y^{\prime}\right)>16 h_{1}$ for every existing $y^{\prime} \in$ Orb if this is done in $\S 2.2 .4(\mathrm{iii})$, and $d(y, x)>2 h_{1}$ for every $x \in C$ and if y is added in $\S 2.2 .5$. In either case the statement still holds after the action.

Finally consider the action $\S 2.2 .4$ which increases h_{1}. Apply Lemma 2.2 to see that $d\left(y, y^{\prime}\right)>15 h_{1}$ for every pair of distinct $y, y^{\prime} \in O r b$ immediately after the action, which means of course that no $x \in C$ and can be close to two elements of Orb.

Lemma 2.21. At every stage s and for every $x \in \operatorname{Cand}(s), y \in \operatorname{Orb}(s)$ such that $d(x, y) \leq 2 h_{1}(s)$, we have $y=x_{m}^{0}$ for some m such that y is added to Orb at some stage $t \leq s$ where $d(x, y) \leq 2 h_{1}$ holds at every point between t and s.

Proof. We fix x and suppose that x is added to Cand under step 2.2.4(ii) at stage s_{0}. Just before this step we had $d(\operatorname{Orb}, x)>16 h_{1}$. Suppose after this step we have $d(x, y) \leq 2 h_{1}$ for some $y \in O r b$. If y was also added at this step, then y was defined to be x_{m}^{0} for some $\operatorname{Or} b_{m}=\emptyset$, so the statement holds after this step. If y was not added at this step, then $d(x, y)>16 h_{1}$ before the step, so after incrementing h_{1} we have $d(x, y)>15 h_{1}$, which is impossible.

Now we consider some step at s performed after the initial step at s_{0}, and assume the statement holds just before performing the step. We want to argue that the statement still holds after performing the step at s. If the step at s did not increase $O r b$ or h_{1}, then the inductive step is trivial. Suppose the action at s enumerated y into $O r b$. If this action was done under $\S 2.2 .5$ then note that $d(y, C a n d)>2 h_{1}$, so y cannot be close to x. Suppose y was enumerated by $\S 2.2 .4$ (iii), then as above, y was defined to be x_{m}^{0} for some $O r b_{m}=\emptyset$, so the statement holds after this step.

Now we assume that the step at s increased h_{1}. Since we assumed that this is not the initial step, $s>s_{0}$, thus x was already in Cand before taking this step at s. If $x \in$ Cand * before this step then condition $\S 2.2 .4(\mathrm{i})$ implies that
$d(x, O r b) \geq h_{2}>16 h_{1}$ just before the increment, and thus the argument in the first paragraph above can be applied. Thus we assume that $x \notin C a n d^{*}$ before this step. As $x \in C a n d$, this means that $d\left(x, y_{0}\right) \leq 2 h_{1}$ for some $y_{0} \in O r b$ just before the step, and by induction hypothesis, $y_{0}=x_{m}^{0}$ is of the desired type. But after the increment to h_{1}, due to Lemma 2.20, there cannot be $y_{1} \neq y_{0}$ such that $d\left(x, y_{1}\right) \leq 2 h_{1}$ and $y_{1} \in O r b$. Thus the statement holds after the step.

The following lemma will help us show that whenever we wish to make a definition of $f(x)$ under $\S 2.2 .7$ we will not be blocked from doing so.

Lemma 2.22. Suppose that s is an expansionary stage and there are some i, m, j, j^{\prime} such that $-h_{1}(s+1)<j, j^{\prime}<h_{1}(s+1)$ such that $\left(x_{m}^{i, j}[s], x_{m}^{i+1, j^{\prime}}[s]\right)$ is already in G. Then both $x_{m}^{i}[s]$ and $x_{m}^{i+1}[s]$ are in Orb at the previous expansionary stage. Suppose $t<s$ is the previous stage where we acted for $x_{m}^{i}[s]$ and between t and s we did not split the $x_{m}^{i}[s]$-module nor the $x_{m}^{i+1}[s]$-module. Then $j^{\prime} \neq q+j$, where

$$
q= \begin{cases}d\left(f\left(x_{m}^{i}\right), x_{m}^{i+1}\right)[t], & \text { if } d\left(f\left(x_{m}^{i}\right), x_{m}^{i+1}\right)[t]<h_{1}(s+1), \\ 0, & \text { if } d\left(f\left(x_{m}^{i}\right), x_{m}^{i+1}\right)[t] \geq h_{1}(s+1) .\end{cases}
$$

Proof. Let $a=x_{m}^{i, j}[s]$ and $b=x_{m}^{i+1, j^{\prime}}[s]$ and let $s_{0}<s$ be an expansionary stage where we had enumerated (a, b) into G. Then $a=x_{m_{0}}^{i_{0}, j_{0}}\left[s_{0}\right]$ and $b=x_{m_{0}^{\prime}}^{i_{0}^{\prime}, j_{0}^{\prime}}\left[s_{0}\right]$ for some $i_{0}, i_{0}^{\prime}, j_{0}, j_{0}^{\prime}, m_{0}$ and m_{0}^{\prime} such that $\left|j_{0}\right|,\left|j_{0}^{\prime}\right|<h_{1}\left(s_{0}+1\right)$. Note that the $x_{m_{0}}^{i_{0}}$-module and the $x_{m_{0}^{\prime}}^{i_{0}^{\prime}}$-module have to be active at s_{0}.

If $x_{m_{0}}^{i_{0}}\left[s_{0}\right] \neq x_{m}^{i}[s]$ then this is a pair of distinct elements of Orb. By Lemma 2.4, $d\left(a, x_{m_{0}}^{i_{0}}\left[s_{0}\right]\right) \geq h_{1}$ between s_{0} and s, and since $h_{1}>\max \left\{k, x_{m_{0}}^{i_{0}}\left[s_{0}\right]\right\}+1$, we can apply Lemma 2.17 to conclude that $a \in \operatorname{Cand}(s)$. By Lemma $2.21 i=0$ and $x_{m}^{0}[s]$ must be added to $O r b$ after stage s_{0}; this last fact follows by applying Lemma 2.2 to see that at each expansionary stage, $d\left(x_{m}^{0}, x_{m_{0}}^{i_{0}}\right)>15 h_{1}$. Similarly, if $x_{m_{0}^{\prime}}^{i_{0}^{\prime}}\left[s_{0}\right] \neq x_{m}^{i+1}[s]$, then the same argument above shows that $i+1=0$ and $x_{m}^{0}[s]$ is added to Orb after s_{0}.

Now we claim that we must have $x_{m_{0}}^{i_{0}}\left[s_{0}\right]=x_{m}^{i}[s]$ and $x_{m_{0}^{\prime}}^{i_{0}^{\prime}}\left[s_{0}\right]=x_{m}^{i+1}[s]$. Suppose $x_{m_{0}}^{i_{0}}\left[s_{0}\right] \neq x_{m}^{i}[s]$. Then the preceding paragraph tells us that $i=0$ and x_{m}^{0} is added to $O r b$ after s_{0}. In other words, x_{m}^{0} is first defined after s_{0}. This also means that the element $x_{m}^{1}[s]$ is added to $O r b$ after s_{0}, which means that $x_{m_{0}^{\prime}}^{i_{0}^{\prime}}\left[s_{0}\right] \neq x_{m}^{i+1}[s]$. By the preceding paragraph, $i+1=0$, contradicting the fact that $i=0$. A similar argument applies if $x_{m_{0}^{\prime}}^{i_{0}^{\prime}}\left[s_{0}\right] \neq x_{m}^{i+1}[s]$. Let us call $a^{*}=x_{m_{0}}^{i_{0}}\left[s_{0}\right]=x_{m}^{i}[s]$ and $b^{*}=x_{m_{0}^{\prime}}^{i_{0}^{\prime}}\left[s_{0}\right]=x_{m}^{i+1}[s]$.

It is clear that $m_{0}=m_{0}^{\prime}$, otherwise $a^{*}=x_{m_{0}}^{i_{0}}\left[s_{0}\right]$ and $b^{*}=x_{m_{0}^{\prime}}^{i_{0}^{\prime}}\left[s_{0}\right]$ are in different orbits at s_{0}, but have to end up in the same orbit at the later stage s, which is impossible. Thus $m_{0}=m_{0}^{\prime}$. In this case it is also easy to see that we must have $i_{0}^{\prime}=i_{0}+1$, because a^{*} and b^{*} have to end up as successive elements of the same orbit at the later stage s.

Summarizing, we are now able to assume that $a^{*}=x_{m}^{i}[s]=x_{m_{0}}^{i_{0}}\left[s_{0}\right]$ and $b^{*}=$ $x_{m}^{i+1}[s]=x_{m_{0}^{\prime}}^{i_{0}^{\prime}}\left[s_{0}\right]=x_{m_{0}}^{i_{0}+1}\left[s_{0}\right]$. Let $t<s$ be the largest stage where we were able to act for a^{*}. We first make a couple of observations.
(i) Clearly t exists and in fact, $s_{0} \leq t$.
(ii) At stage t, both $a^{*}=x_{m}^{i}[s]$ and $b^{*}=x_{m}^{i+1}[s]$ are already in Orb, and are successive elements of the same orbit, although their Orb-indices might change.
(iii) If $i_{0} \geq 0$ then for every stage \hat{s} between s_{0} and s, if $a^{*}=x_{\hat{m}}^{\hat{i}}[\hat{s}]$ then $\hat{i} \geq 0$. Similarly if $i_{0}+1 \leq 0$ then for every stage \hat{s} between s_{0} and s, if $b^{*}=x_{\hat{m}}^{\hat{i}}[\hat{s}]$ then $\hat{i} \leq 0$.
(iv) For every stage \hat{s} between s_{0} and $s, d\left(a, a^{*}, \hat{s}\right)<h_{1}(\hat{s})$ and $d\left(b, b^{*}, \hat{s}\right)<$ $h_{1}(\hat{s})$. This follows by the previous part of the proof of the current lemma.
(v) Either $d\left(a, a^{*}, s_{0}\right)=d\left(a, a^{*}, s\right)$ and $d\left(b, b^{*}, s_{0}\right)=d\left(b, b^{*}, s\right)$, or else $j^{\prime} \neq q+j$. We now show this. Suppose $i_{0} \geq 0$. If some new element enters \mathcal{L}_{e} between a and a^{*}, by Lemma 2.17, then either the a^{*} module is split, or $d\left(a, a^{*}\right)$ is increased large. By item (iv) above, the second alternative is impossible. However, if the a^{*} module is split, as $i_{0} \geq 0$, by item (iii) above, we must put a^{*} and b^{*} into different orbits, and they cannot end up in the same orbit at s. Therefore, $d\left(a, a^{*}, s_{0}\right)=d\left(a, a^{*}, s\right)$ and thus $j_{0}=j$.

Now we suppose that some new element enters \mathcal{L}_{e} between b and b^{*}. Similarly, we can conclude that the b^{*}-module must be split, and in fact $d\left(b, b^{*}\right)<\max \left\{k, b^{*}\right\}+1$. This must take place before t, as the b^{*}-module is assumed not to split between t and s. Repeating this each time a new element enters b and b^{*}, we see that by the time we get to stage s, we must still have $d\left(b, b^{*}, s\right)<\max \left\{k, b^{*}\right\}+1$.

Consider the final time the b^{*}-module is split before t. At the next time we manage to act for a^{*} (which has to be at t or before, call it $t^{\prime} \leq t$), we must be in case 2 of $\S 2.2 .7$, and we would define $f\left(a^{*}, t^{\prime}\right)$ such that $2 h_{1}\left(s_{0}\right)<d\left(f\left(a^{*}\right), b^{*}\right)\left[t^{\prime}\right]<h_{1}\left(t^{\prime}\right)$. By item (iii) above, a^{*} and b^{*} are always successive elements of the same orbit, and so at every expansionary stage after t^{\prime}, the value of q is always non-zero. Thus value of q stays constant between t^{\prime} and s, and therefore, the value of q at s is larger than $2 h_{1}\left(s_{0}\right)>\left|j_{0}\right|+\left(\max \left\{k, b^{*}\right\}+1\right)>|j|+d\left(b, b^{*}, s\right)=|j|+\left|j^{\prime}\right|$. Thus, $j^{\prime} \neq q+j$.

Finally, if $i_{0}<0$ we argue similarly. We can easily show that $d\left(b, b^{*}, s_{0}\right)=$ $d\left(b, b^{*}, s\right)$, because splitting the b^{*}-module causes a^{*} and b^{*} to be put into different orbits. Now to argue that $d\left(a, a^{*}, s_{0}\right)=d\left(a, a^{*}, s\right)$, we observe that if the a^{*}-module is split then q will be redefined large, and proceed similarly to above.

Now we want to conclude the proof of the lemma. Let $u_{0}<u_{1}$ be two consecutive stages where we had acted for a^{*}, such that $s_{0} \leq u_{0}<u_{1} \leq t$. (If $s_{0}=t$ then we immediately get the conclusion at the end of this paragraph). At u_{0} since we had acted for a^{*} and since $u_{0} \geq s_{0}$, we had to be in case 1 or case 2 , which means that we were able to define $f\left(a^{*}\right)$ such that $d\left(f\left(a^{*}\right), b^{*}\right)\left[u_{0}\right]<h_{1}\left(u_{0}\right)$. If case 1 applies at u_{1}, then at stage u_{1}, we must have evaluated $q\left[u_{1}\right]=d\left(f\left(a^{*}\right), b^{*}\right)\left[u_{0}\right]$ and thus we would have kept $d\left(f\left(a^{*}\right), b^{*}\right)\left[u_{0}\right]=d\left(f\left(a^{*}\right), b^{*}\right)\left[u_{1}\right]$. If case 2 applies we would have redefined $f\left(a^{*}\right)$ such that $d\left(f\left(a^{*}\right), b^{*}\right)\left[u_{1}\right]>2 h_{1}\left(u_{0}+1\right)>d\left(a, a^{*}, u_{0}\right)+$ $d\left(b, b^{*}, u_{0}\right)=d\left(a, a^{*}, s\right)+d\left(b, b^{*}, s\right)=|j|+\left|j^{\prime}\right|$, due to item (v) above. This means that at stage t, either $d\left(f\left(a^{*}\right), b^{*}\right)\left[s_{0}\right]=d\left(f\left(a^{*}\right), b^{*}\right)[t]$, or $d\left(f\left(a^{*}\right), b^{*}\right)[t]>|j|+$ $\left|j^{\prime}\right|$. We also have $q=d\left(f\left(a^{*}\right), b^{*}\right)[t]$, since at stage t we had acted for a^{*}. If the second alternative holds, then $q=d\left(f\left(a^{*}\right), b^{*}\right)[t]>|j|+\left|j^{\prime}\right|$ and so $j^{\prime} \neq$ $q+j$. If the first alternative holds, then $q=d\left(f\left(a^{*}\right), b^{*}\right)\left[s_{0}\right]$, and at stage s_{0}
when we enumerated (a, b) into G, the condition for doing so implies that $j_{0}^{\prime} \neq$ $d\left(f\left(a^{*}\right), b^{*}\right)\left[s_{0}\right]+j_{0}$. Again by item (v) above, we conclude that $j^{\prime} \neq q+j$.
Lemma 2.23. If $\mathcal{L} \cong \mathcal{L}_{e}$ then for each m and i there are infinitely many stages where we are able to act for x_{m}^{i} in §2.2.7.
Proof. First of all, observe that when considering some $x_{m}^{i}[s] \in O r b$ in $\S 2.2 .7$ and $i<0$, if it is the first time $x_{m}^{i}[s]$ is put in $O r b$, we will be able to act for it; for this we apply the first part of Lemma 2.22. Similarly if $i \geq 0$ and if $x_{m}^{i+1}[s]$ is first put into Orb, we will be able to act for $x_{m}^{i}[s]$. Therefore, the only way for any x_{m}^{i} to be stuck is under case 1 or case 2 .

As we assume that $\mathcal{L} \cong \mathcal{L}_{e}$ we have $\lim _{s \rightarrow \infty} g(s)=\lim _{s \rightarrow \infty} h_{1}(s)=\infty$. Fix m and i. By Lemma 2.16, x_{m}^{i} and x_{m}^{i+1} are eventually defined and stable, and as $\lim _{s \rightarrow \infty} h_{1}(s)=\infty$, there are infinitely many expansionary stages and the x_{m}^{i}-module and x_{m}^{i+1}-module are eventually active. Let a^{*} and b^{*} be the final values of x_{m}^{i} and x_{m}^{i+1} respectively. If we get stuck after $x_{m}^{i}=a^{*}$ and x_{m}^{i+1} have received their final values, then we have to be stuck in either case 1 or case 2 , and in particular, the final stage t where we were able to act for a^{*} exists.

Suppose after t we never split the a^{*}-module or the b^{*}-module. Then we are stuck in case 1 after t. We apply Lemma 2.22 to see that this case is impossible.

Suppose after t we split one of the two modules. It is straightforward to see that we are eventually stuck in case 2 (note that b^{*} must already be in $\operatorname{Orb}(t)$ and be the $O r b$-successor of a^{*} at stage t). But as $\lim _{s \rightarrow \infty} h_{1}(s+1)=\infty$, we fix some s and some q such that $2 h_{1}(t+1)<q<h_{1}(s+1)$ and argue that we must be able to act at stage s with q. Suppose not. Fix some j such that $-h_{1}(s+1)<j<h_{1}(s+1)-q$ and $\left(x_{m}^{i, j}[s], x_{m}^{i+1, q+j}[s]\right) \in G$. Let $a=x_{m}^{i, j}[s]$ and $b=x_{m}^{i+1, q+j}[s]$, and let s_{0} be the stage where we enumerated (a, b) into G. Following the proof of the first part of Lemma 2.22, we can fix $i_{0}, j_{0}, j_{0}^{\prime}$ and m_{0} such that $a=x_{m_{0}}^{i_{0}, j_{0}}\left[s_{0}\right]$ and $b=x_{m_{0}}^{i_{0}+1, j_{0}^{\prime}}\left[s_{0}\right]$, and $\left|j_{0}\right|,\left|j_{0}^{\prime}\right|<h_{1}\left(s_{0}+1\right)$. We also have $a^{*}=x_{m_{0}}^{i_{0}}\left[s_{0}\right]$ and $b^{*}=x_{m_{0}}^{i_{0}+1}\left[s_{0}\right]$. Thus, $s_{0} \leq t$.

By Lemmas 2.17 and 2.21, either $d\left(a, a^{*}, s\right)=d\left(a, a^{*}, s_{0}\right)$ or $d\left(a, a^{*}, s\right)<$ $\max \left\{k, a^{*}\right\}+1$. (We argued similarly in Lemma 2.22). Since $d\left(a, a^{*}, s_{0}\right)<h_{1}\left(s_{0}+\right.$ $1)$, this means that $d\left(a, a^{*}, s\right)<h_{1}(t+1)$. The same holds for b and b^{*}. Thus, we have $|j|=d\left(a, a^{*}, s\right)<h_{1}(t+1)$ and $|q+j|=d\left(b, b^{*}, s\right)<h_{1}(t+1)$, which means that $q<2 h_{1}(t+1)$, contradicting the choice of q.
Lemma 2.24. If $\mathcal{L} \cong \mathcal{L}_{e}$ then $f(x)=\lim _{s \rightarrow \infty} f(x, s)$ is a strongly nontrivial automorphism of \mathcal{L}_{e}.
Proof. In this lemma we do not worry about the complexity of f; this is taken care of in Lemma 2.25. Since we assume that $\mathcal{L} \cong \mathcal{L}_{e}$ we have $\lim _{s \rightarrow \infty} g(s)=\lim _{s \rightarrow \infty} h_{1}(s)=\infty$. Thus for each $x \in O r b$, the x-module eventually becomes active. By Lemma 2.19 , there is m and i such that $x=x_{m}^{i}$ eventually. By Lemma 2.16, x_{m}^{i+1} is eventually defined and stable. Eventually the cycle cannot be split at x_{m}^{i} or x_{m}^{i+1}. By Lemma 2.23 we get to act infinitely often for $x=x_{m}^{i}$. Since we never split the cycle at x_{m}^{i} or x_{m}^{i+1}, we are always in case 1 of $\S 2.2 .7$, and thus the value of $q=d\left(f(x), x_{m}^{i+1}\right)$ is eventually stable. Let q be the final value of $q=d\left(f(x), x_{m}^{i+1}\right)$. Thus $\lim _{s \rightarrow \infty} f(x, s)=x_{m}^{i+1, q}$ exists, as the order type of each \mathcal{L}_{e}-block is ζ.

We write $x \sim y$ to denote that x and y are in the same \mathcal{L}_{e}-block. Now fix an arbitrary element x and by Lemma 2.18 there is some $y \in \operatorname{Orb}$ such that $x \sim y$.

Let $y_{1} \in O r b$ and $p>0$ be such that $\lim _{s \rightarrow \infty} f(y, s) \sim y_{1}$ with a distance of p away from y_{1}. Without loss of generality, assume that $x>y$. Since \mathcal{L}_{e} also has order type $\zeta \cdot \eta$, the block containing y_{1} has order type ζ, and so we can certainly find some $x_{1}>y_{1}$ such that $d\left(x_{1}, y_{1}\right)=d(x, y)+p$, and hence $\lim _{s \rightarrow \infty} f(x, s)=x_{1}$. This shows that $f(x)=\lim _{s \rightarrow \infty} f(x, s)$ exists for every $x \in \mathcal{L}_{e}$, and if $x \in \mathcal{L}_{e}$ and $y \in$ Orb are in the same block, then $f(x) \sim f(y)$, and $x<y$ if and only if $f(x)<f(y)$. This obviously generalizes to any pair of elements $x, y \in \mathcal{L}_{e}$ in the same block.

The orbits satisfy the order-preserving condition, because the construction ensures that at every stage $s, \operatorname{Orb}_{m}(s)$ and $\operatorname{Orb}_{n}(s)$ are consistent for all m, n and s. Now we claim that for any pair of elements x, y, if $x<y$ then $f(x)<f(y)$. If $x \sim y$ then we have verified this above, so we assume that x and y are in different blocks. By Lemma 2.18 there are $x_{1}, y_{1} \in O r b$ such that $x_{1} \sim x$ and $y_{1} \sim y$. Obviously $x_{1} \neq y_{1}$ as $x \nsim y$. Since $x<y$ we must have $x_{1}<y_{1}$. By Lemma 2.19, there are m and n such that $x_{1} \in O r b_{m}$ and $y_{1} \in O r b_{n}$.

If $n=m$ then as $x_{1}<y_{1}$, there is $t>0$ such that $f^{t}\left(x_{1}\right) \sim y_{1}$, and consequently, $f^{t+1}\left(x_{1}\right) \sim f\left(y_{1}\right)$ hence $f\left(x_{1}\right)<f\left(y_{1}\right)$. As $f(x) \sim f\left(x_{1}\right)$ and $f(y) \sim f\left(y_{1}\right)$ and $f\left(x_{1}\right) \nsim f\left(y_{1}\right)$, we have $f(x)<f(y)$. So, we suppose that $n \neq m$, and in particular, $z_{0} \nsim z_{1}$ for any pair of distinct elements from $\left\{x_{1}, y_{1}, f\left(x_{1}\right), f\left(y_{1}\right)\right\}$. If $f\left(x_{1}\right)<$ y_{1} then we have $f\left(x_{1}\right)<y_{1}<f\left(y_{1}\right)$, and since they are all in different blocks, this means that $f(x)<f(y)$. Finally we assume that $f\left(x_{1}\right)>y_{1}$. Then by the consistency of $O r b_{m}$ and $O r b_{n}$ we have $x_{1}<y_{1}<f\left(x_{1}\right)<f\left(y_{1}\right)$, and thus we again have $f(x)<f(y)$.

The fact that f is surjective follows easily from the fact that the order type of each \mathcal{L}_{e}-block is ζ, and the order type of each orbit is ζ. Notice also that $f(x)$ is well-defined, as there is at most one $z \in O r b$ such that $d(x, z, s)<h_{1}(s)$ at every s, by Lemma 2.4. The fact that f is strongly nontrivial follows from Lemma 2.15. Thus we have verified that f is a strongly nontrivial automorphism of \mathcal{L}_{e}.

Lemma 2.25. If $\mathcal{L} \cong \mathcal{L}_{e}$ then f has a Π_{1}^{0} graph.
Proof. Let $f(x)=\lim _{s \rightarrow \infty} f(x, s)$ for each $x \in \mathcal{L}_{e}$. We show that $f(x)=y$ if and only if $(x, y) \notin G$. Suppose $f(x)=y$. Then fix a stage s_{0} such that we define $f\left(x, s_{0}\right)=y$ under $\S 2.2 .7$, and for every stage after s_{0}, whenever we make a definition of $f(x, s)$ it is always equal to y. Suppose that $(x, y) \in G$, and $x \sim x^{*}$ where $x^{*} \in O r b$. Then for a large enough stage $s>s_{0}$ we will see $(x, y) \in G[s]$ and act for x^{*} under §2.2.7 (which is guaranteed by Lemma 2.23). We also assume $h_{1}(s+1)$ is large enough so that $d\left(x, x^{*}, s\right)<h_{1}(s+1)-q$, where q is the parameter corresponding to $f\left(x^{*}\right)$. At this point we will define $f(x, s)=y$, but as $(x, y) \in G[s]$, the instructions in case 1 of $\S 2.2 .7$ will prevent us from doing so, contradicting the fact that we will act for x^{*} at s.

Now suppose $f(x) \neq y$. Let $x \sim x^{*}$ and $y \sim y^{*}$ where $x^{*}, y^{*} \in O r b$. By Lemma 2.23 we act for x^{*} infinitely often under case 1 . Eventually when s and $h_{1}(s+1)$ are large enough, we will put (x, y) in G.

This ends the proof of a single requirement. In the next section, we will handle all requirements by performing the construction in this section uniformly, so we will now give some remarks about the effectiveness of the construction for a single requirement.

An important observation is that the index for \mathcal{L} can be effectively computed from an index for \mathcal{L}_{e} and the parameter k, and does not depend, for example, on whether $\mathcal{L}_{e} \cong \mathcal{L}$. The order type of \mathcal{L} will of course depend on whether or not $\mathcal{L}_{e} \cong \mathcal{L}$, but not the index of \mathcal{L}.

In fact, if we examine the construction in this section, we will see that $\S 2.2 .1$ uses only g and does not refer to the other parameters $W_{s}, h_{1}, O r b, C a n d, w_{s}, f$ and G defined in the rest of the sections $\S 2.2 .2$ to $\S 2.2 .7$. Similarly, sections $\S 2.2 .2$ to $\S 2.2 .7$ refer only to \mathcal{L}_{e} and defines the parameters g, W_{s}, h_{1}, Orb, Cand, w_{s}, f using only \mathcal{L}_{e}. Therefore, we could view the construction as consisting of two independent parts. The first part produces the parameters g, W_{s}, h_{1}, Orb, Cand, w_{s}, f effectively from an index for \mathcal{L}_{e}. The second part produces the computable linear order \mathcal{L} effectively from g.

Formally, the construction in this section produces total computable functions μ_{0} and μ_{1} with the following properties. If g is (an index for) a total computable function then $\mathcal{M}_{\mu_{1}(g)}$ is a computable linear ordering such that:
(i) If $\liminf _{s \rightarrow \infty} g(s)=m<\infty$ then $\mathcal{M}_{\mu_{1}(g)} \cong m \cdot \eta$.
(ii) If $\liminf _{s \rightarrow \infty} g(s)=\infty$ then $\mathcal{M}_{\mu_{1}(g)} \cong \zeta \cdot \eta$.

This follows from Lemmas 2.5 and 2.13.
Furthermore, for any e and $k, g_{\mu_{0}(e, k)}$ is a total computable function with the following properties:
(i) $g_{\mu_{0}(e, k)}(s) \geq k$ for every s.
(ii) If $\liminf _{s \rightarrow \infty} g_{\mu_{0}(e, k)}(s)<\infty$ then $\mathcal{M}_{\mu_{1}\left(g_{\mu_{0}(e, k)}\right)} \nsubseteq \mathcal{L}_{e}$.
(iii) If $\mathcal{M}_{\mu_{1}\left(g_{\mu_{0}(e, k)}\right)} \cong \mathcal{L}_{e}$ then \mathcal{L}_{e} has a strongly nontrivial Π_{1}^{0}-automorphism.

The first item follows from the fact that $g(x, s)$ is either undefined, or $g(x, s) \geq$ $\max \{k, x\}$ for every x and s. The second item follows from Lemma 2.14, and the third item follows from Lemmas 2.24 and 2.25 .

During the construction we had made some assumptions about speeding up the enumeration of \mathcal{L}_{e} to search for confirmation that \mathcal{L}_{e} has no greatest or least element. It could be that \mathcal{L}_{e} does have a greatest or a least element, or could even be finite. (For the sake of uniformity, we must explain what we do in these cases). In this case the construction waits forever for the evidence it needs but never finds, and we will never take another nontrivial step in the construction, and never update the control parameters g and h_{1}. In this case $\liminf _{s \rightarrow \infty} g_{\mu_{0}(e, k)}(s)$ will end up being finite, and obviously $\mathcal{M}_{\mu_{1}\left(g_{\mu_{0}}\right)} \not \not \mathcal{L}_{e}$. Thus, the properties above still hold even if \mathcal{L}_{e} is finite or has a greatest or a least element.
2.4. Handling all requirements. In this section we will complete the proof of the first main theorem and construct a computable linear order $\mathcal{L}_{\text {final }}$ satisfying all requirements. $\mathcal{L}_{\text {final }}$ will be of the form
$1+S_{1}+1+\mathcal{M}_{1}+1+S_{2}+1+\mathcal{M}_{2}+1+S_{3}+\cdots+S_{e}+1+\mathcal{M}_{e}+1+S_{e+1}+\cdots$,
where $S_{e} \cong(e+1) \cdot \eta$ and \mathcal{M}_{e} will be built using μ_{0} and μ_{1} from the previous section. We will require that the blocks in \mathcal{M}_{e} have size at least $e+3$, which we can ensure by the parameter k. Obviously, the intervals $1+S_{e}+1$ serve as separators. As these separators are "static", their locations can be found in any copy \mathcal{L}_{e} of $\mathcal{L}_{\text {final }}$ in a Σ_{3}^{0} way. This will allow us to run the basic construction and guess for the corresponding interval in \mathcal{L}_{e}.

We will satisfy the requirement corresponding to \mathcal{L}_{e} inside the interval \mathcal{M}_{e} of $\mathcal{L}_{\text {final }}$. However, if \mathcal{L}_{e} is a copy of $\mathcal{L}_{\text {final }}$ then it will also contain copies of \mathcal{M}_{k} for $k \neq e$. In order for us to meet the requirement we shall need to guess for the interval corresponding to $1+\mathcal{M}_{e}+1$ inside \mathcal{L}_{e}. Given any \mathcal{L}_{e} which is isomorphic to $\mathcal{L}_{\text {final }}$, let $a_{0}^{e}<_{\mathcal{L}_{e}} a_{1}^{e}<_{\mathcal{L}_{e}} \cdots$ be exactly all the elements of block size 1 in \mathcal{L}_{e}. Obviously, any isomorphism between $\mathcal{L}_{\text {final }}$ and \mathcal{L}_{e} has to fix this sequence, and consequently, $\left(a_{2 i+1}^{e}, a_{2 i+2}^{e}\right)_{\mathcal{L}_{e}} \cong \mathcal{M}_{i+1}$ and $\left(a_{2 i}^{e}, a_{2 i+1}^{e}\right)_{\mathcal{L}_{e}} \cong \mathcal{S}_{i+1}$ for every $i \geq 0$. For convenience, for each e such that $\mathcal{L}_{e} \cong \mathcal{L}_{\text {final }}$, we denote $\left(a_{2 i+1}^{e}, a_{2 i+2}^{e}\right)_{\mathcal{L}_{e}}$ by $\hat{\mathcal{M}}_{i+1}^{e}$ and $\left(a_{2 i}^{e}, a_{2 i+1}^{e}\right)_{\mathcal{L}_{e}}$ by $\hat{\mathcal{S}}_{i+1}^{e}$. Note that if φ is any isomorphism from $\mathcal{L}_{\text {final }}$ onto \mathcal{L}_{e} then $\varphi\left(\mathcal{M}_{i+1}\right)=\hat{\mathcal{M}}_{i+1}^{e}$ and $\varphi\left(\mathcal{S}_{i+1}\right)=\hat{\mathcal{S}}_{i+1}^{e}$.
Lemma 2.26. Suppose that $\mathcal{L}_{\text {final }} \cong \mathcal{L}_{e}$. Hence the sequence $a_{e}^{1}<_{\mathcal{L}_{e}} a_{e}^{2}<\mathcal{L}_{e} \cdots$ exists. Then for any $b_{0}<_{\mathcal{L}_{e}} b_{1} \in \mathcal{L}_{e}, b_{0}=a_{2 e-1}^{e}$ and $b_{1}=a_{2 e}^{e}$ if and only if and only if $\left|\left[b_{0}\right]_{\mathcal{L}_{e}}\right|=\left|\left[b_{1}\right]_{\mathcal{L}_{e}}\right|=1$ and there is a sequence $x_{1}<_{\mathcal{L}_{e}} x_{2}<_{\mathcal{L}_{e}} \cdots<\mathcal{L}_{e} x_{e}<\mathcal{L}_{e}$ $b_{0}<_{\mathcal{L}_{e}} b_{1}<_{\mathcal{L}_{e}} x_{e+1}$ such that $\left|\left[x_{i}\right]_{\mathcal{L}_{e}}\right|=i+1$ for all $i=1, \cdots, e+1$.

Proof. We prove the nontrivial direction. Suppose that $\left|\left[b_{0}\right]_{\mathcal{L}_{e}}\right|=\left|\left[b_{1}\right]_{\mathcal{L}_{e}}\right|=1$ and there is a sequence $x_{1}<\mathcal{L}_{e} x_{2}<_{\mathcal{L}_{e}} \cdots<\mathcal{L}_{e} x_{e}<_{\mathcal{L}_{e}} b_{0}<\mathcal{L}_{e} b_{1}<\mathcal{L}_{e} x_{e+1}$ such that $\left|\left[x_{i}\right]_{\mathcal{L}_{e}}\right|=i+1$.

Recall that for every i if $x \in \hat{\mathcal{M}}_{i}^{e}$ we had required that $\left|[x]_{\mathcal{L}_{e}}\right|>i+2$. Consequently, $x_{e+1} \notin \hat{\mathcal{M}}_{i}^{e}$ for $i \geq e$.

First of all, observe that $x_{1} \in \hat{\mathcal{S}}_{1}^{e}$, because $\left|\left[x_{1}\right]_{\mathcal{L}_{e}}\right|=2$ and this is the only interval which can contain a block of size 2. Similarly, $\left|\left[x_{2}\right]_{\mathcal{L}_{e}}\right|=3$ and so $x_{2} \in \hat{\mathcal{S}}_{2}^{e}$ because this is the only interval possible. Next $\left|\left[x_{3}\right]_{\mathcal{L}_{e}}\right|=4$, and the only interval to the right of x_{2} which can contain a block of size 4 is $\hat{\mathcal{S}}_{3}^{e}$. Continuing this way, we see that $x_{i} \in \hat{\mathcal{S}}_{i}^{e}$ for $i=1,2, \cdots, e, e+1$. Since the only pair of elements between x_{e} and x_{e+1} with a block size of 1 are $a_{2 e-1}^{e}$ and $a_{2 e}^{e}$, we conclude that $b_{0}=a_{2 e-1}^{e}$ and $b_{1}=a_{2 e}^{e}$.

It is easy to see that the condition in Lemma $2.26{ }^{\prime}\left|\left[b_{0}\right]_{\mathcal{L}_{e}}\right|=\left|\left[b_{1}\right]_{\mathcal{L}_{e}}\right|=1$ and there is a sequence $x_{1}<_{\mathcal{L}_{e}} x_{2}<_{\mathcal{L}_{e}} \cdots<\mathcal{L}_{e} x_{e}<_{\mathcal{L}_{e}} b_{0}<\mathcal{L}_{e} b_{1}<_{\mathcal{L}_{e}} x_{e+1}$ such that $\left|\left[x_{i}\right]_{\mathcal{L}_{e}}\right|=i+1$ for all $i=1, \cdots, e+1 "$ is Σ_{3}^{0}. Therefore, fix a Π_{2}^{0} predicate R such that $\exists w R\left(e, b_{0}, b_{1}, w\right)$ if and only if the condition above holds inside \mathcal{L}_{e}. Since R is a Π_{2}^{0} predicate, fix a computable approximation of it such that $R\left(e, b_{0}, b_{1}, w\right)$ holds if and only if $R\left(e, b_{0}, b_{1}, w\right)[s]=1$ for infinitely many s. Now let wt_{e} be a function (wt for "witness") such that $\mathrm{wt}_{e}(s)=\min \left\{\left\langle b_{0}, b_{1}, w\right\rangle \mid R\left(e, b_{0}, b_{1}, w\right)[s]=1\right\}$. If this is not defined we retain the previous value of wt ${ }_{e}$. Now obviously for any e, if $\mathcal{L}_{\text {final }} \cong \mathcal{L}_{e}$ then $\liminf _{s \rightarrow \infty} \operatorname{wt}_{e}(s)$ exists and outputs $\left\langle a_{2 e-1}^{e}, a_{2 e}^{e}, w\right\rangle$ for some w.

Fix an e. We now describe how to define \mathcal{M}_{e}. Our description will be effective in e and so we can use this to define the computable $\mathcal{L}_{\text {final }}$. For each possible witness $\sigma=\left\langle b_{0}, b_{1}, w\right\rangle$, we let $\nu\left(\left\langle b_{0}, b_{1}, w\right\rangle\right)$ be an index for the subordering of \mathcal{L}_{e} restricted to the interval $\left(b_{0}, b_{1}\right)$.

Now we use wt_{e} to define the different values of k which we will later use to form \mathcal{M}_{e}. Each possible witness σ will get a parameter $k_{\sigma}(s)$. At the beginning, let $k_{\sigma}(0)=\langle\sigma\rangle+e+3$. This ensures that the size of each block in \mathcal{M}_{e} is at least $e+3$. At stage $s>0$, and for each σ with $\langle\sigma\rangle>\mathrm{wt}_{e}(s)$, we increase the value of $k_{\sigma}(s)$. Finally we define the function \tilde{g} by the following. Let $\tilde{g}(s)=g_{\mu_{0}\left(\nu(\langle\sigma\rangle), k_{\sigma}(s)\right)}(t+1)$, where $\sigma=\mathrm{wt}_{e}(s)$, where t was the previous value of the input for $g_{\mu_{0}\left(\nu(\langle\sigma\rangle), k_{\sigma}(s)\right)}$ we used
to define \tilde{g}. Now we let $\mathcal{M}_{e}=\mathcal{M}_{\mu_{1}(\tilde{g})}$. Now $\tilde{g}(s)=g_{\mu_{0}\left(\nu(\langle\sigma\rangle), k_{\sigma}(s)\right)}(t+1) \geq k_{\sigma}(s)$ by the first item in the list of properties of μ_{0}. But $k_{\sigma} \geq e+3$, which means that the size of each block in \mathcal{M}_{e} is at least $e+3$, as required for Lemma 2.26 to be applied.
Lemma 2.27. If $\mathcal{L}_{\text {final }} \cong \mathcal{L}_{e}$ then \mathcal{L}_{e} has a strongly nontrivial Π_{1}^{0} automorphism.
Proof. Since $\mathcal{L}_{\text {final }} \cong \mathcal{L}_{e}$, then by our previous observation, $\liminf _{s \rightarrow \infty} \operatorname{wt}_{e}(s)$ exists and outputs $\left\langle a_{2 e-1}^{e}, a_{2 e}^{e}, w\right\rangle$ for some w. Let $\langle\sigma\rangle=\liminf _{s \rightarrow \infty} w t_{e}(s)$. Then clearly $k=\lim _{s \rightarrow \infty} k_{\sigma}(s)$ exists. Then $\nu(\langle\sigma\rangle)$ is an index for a computable linear ordering isomorphic to \mathcal{M}_{e}.

Now we claim that $\liminf _{s \rightarrow \infty} \tilde{g}(s)=\liminf _{s \rightarrow \infty} g_{\mu_{0}(\nu(\langle\sigma\rangle), k)}(s)$. Consider s_{0} large enough such that $k_{\sigma}(s)=k$ and $\operatorname{wt}_{e}(s) \geq\langle\sigma\rangle$ for every $s \geq s_{0}$. Let τ be such that $\langle\tau\rangle$ is the least with $\langle\tau\rangle>\langle\sigma\rangle$. Then as there are infinitely many stages such that $\mathrm{wt}_{e}(s)=\langle\sigma\rangle$, we know that $\lim _{s \rightarrow \infty} k_{\tau}(s)=\infty$.

Let T_{0} be the set of s such that $s \geq s_{0}$ and $\operatorname{wt}_{e}(s) \neq\langle\sigma\rangle$. Then for every $s \in T_{0}$, we see that $\mathrm{wt}_{e}(s) \geq\langle\tau\rangle$ and so $k_{\mathrm{wt}_{e}(s)}(s) \geq k_{\tau}(s)$. By the first property of μ_{0}, we know that $\tilde{g}(s) \geq k_{\mathrm{wt}_{e}(s)}(s)$, and if $s \in T_{0}$ then this quantity is $\geq k_{\tau}(s)$. Thus, this tells us that $\liminf _{s \in T_{0}} \tilde{g}(s)=\infty$. Therefore, this tells us that $\liminf _{s \rightarrow \infty} \tilde{g}(s)=$ $\liminf _{s \notin T_{0}} \tilde{g}(s)=\liminf _{s \rightarrow \infty} g_{\mu_{0}(\nu(\langle\sigma\rangle), k)}(s)$, as required.

This means that $\mathcal{M}_{\mu_{1}(\tilde{g})} \cong \mathcal{M}_{\mu_{1}\left(g_{\mu_{0}(\nu(\langle\sigma\rangle), k)}\right)}$, since the two functions have the same liminf. Now since $\nu(\langle\sigma\rangle)$ codes a linear ordering isomorphic to $\mathcal{M}_{e}=$ $\mathcal{M}_{\mu_{1}(\tilde{g})} \cong \mathcal{M}_{\mu_{1}\left(g_{\left.\mu_{0}(\nu(\langle\sigma\rangle), k)\right)}\right.}$, by the third item in the list of properties of μ_{0}, we see that $\mathcal{L}_{e} \upharpoonright\left(a_{2 e-1}^{e}, a_{2 e}^{e}\right)$ has a strongly nontrival Π_{1}^{0} automorphism. This clearly extends to a strongly nontrivial Π_{1}^{0} automorphism of \mathcal{L}_{e} by fixing all points outside the interval $\left(a_{2 e-1}^{e}, a_{2 e}^{e}\right)$.

3. The proof of the second main theorem

3.1. Intuition and the organization of the construction. As before we use the following notations: $\left\{L_{e}\right\}_{e \in \omega}$ is a family of c.e. subsets of $\mathbb{Q}, \mathcal{L}_{e}=\left\langle L_{e},<_{\mathbb{Q}}\right\rangle$ and $L_{e, s}$ is an enumeration of L_{e} at stage s. We also fix a sequence of total computable functions $\left\{\varphi_{e}\right\}_{e \in \omega}$ such that if F is any Δ_{2}^{0} function, then there exists an e such that for every $x, \lim _{s \rightarrow \infty} \varphi_{e}(x, s)$ exists and is equal $F(x)$.

To prove the theorem we shall satisfy the following requirements.

$$
R_{e}: \text { If } F_{e}(x):=\lim _{s \rightarrow \infty} \varphi_{e}(x, s) \text { exists for every } x
$$

and $F_{e}: L \rightarrow L_{e}$ is an isomorphism, then $\exists f: L_{e} \rightarrow L_{e}$
such that f is a strongly nontrivial Π_{1}^{0} automorphism.
We shall ensure that L is strongly η-like with block size of at most 4 . As in the proof of the first main theorem, there are no interactions between the different requirements. We will first describe how to satisfy each requirement in isolation. As the requirements are satisfied in a uniform way, to meet all requirements we simply put all the constructions together. However, unlike in the previous theorem where we had to guess in a Σ_{3}^{0} way the corresponding interval of \mathcal{L}_{e} where we are satisfying the requirement corresponding to \mathcal{L}_{e}, in this theorem we will not need
to do so. This is because the requirement R_{e} assumes that $F_{e}: L \rightarrow L_{e}$ is an isomorphism, and therefore will tell us which part of \mathcal{L}_{e} to look at when meeting R_{e}, even though \mathcal{L} contains lots of other intervals devoted to other requirements.

As in the previous construction, we will construct $\mathcal{L}=\sum_{q \in \mathbb{Q}} I(q)$ to be a computable linear order. Each $I(q)$ will eventually have size 2,3 or 4, depending on what \mathcal{L}_{e} does on $\operatorname{rng}\left(F_{e}\right)$. Again we approximate $I(q)$ by a computable sequence $\left\{I_{s}(q)\right\}_{s \in \omega}$ and take $I(q)=\lim _{s \rightarrow \infty} I_{s}(q)$. Every interval $I_{s}(q)$ has a special pair of elements $U_{1}(q)$ and $U_{2}(q)$ which gives the block $I(q)$ its identity. This pair of elements is enumerated into $I(q)$ the very first time it becomes non-empty, and will never leave $I(q)$. All other elements of $I_{s}(q)$ may leave the interval but cannot rejoin. Hence, every $I(q)=\lim _{s \rightarrow \infty} I_{s}(q)$ has at least two elements.

Let $h(q)=q+1$. (Actually, any nontrivial computable automorphism of \mathbb{Q} will do). We call a rational number q even if $\lfloor q\rfloor$ is even, and odd if $\lfloor q\rfloor$ is odd. We let $\operatorname{Orb}_{i}=\left\{n+p_{i} \mid n \in \mathbb{Z}\right\}$ where p_{i} is the i-th rational number in the interval $[0,1)$. Obviously, $\left\{O r b_{i}\right\}_{i \in \omega}$ satisfies all of the orbit conditions in $\S 2.1 .2$ and is meant to be the corresponding notion of $O r b$ in the proof of the first main theorem. The only difference is that the orbits in this proof is a computable set and is fixed right at the start. Let $\hat{I}_{s}(q)=\left\{\varphi_{e}(x, s) \mid x \in I_{s}(q)\right\}$. Our automorphism f obviously intended to map $\hat{I}_{s}(q)$ to $\hat{I}_{s}(q+1)$. However, f will not obviously be computable because the elements of $\hat{I}_{s}(q)$ will change. Our goal is to enumerate a c.e. set G ensure that G is the Cograph (f).

We will also build the computable function $g(q, s)$, which represents the current size of $I_{s}(q)$ we wish to have. However, unlike the proof of the first main theorem, we shall not need the function h_{1}; the control of when to allow for an expansionary stage is much simpler in the current proof.

The way we will build $I_{s}(q)$ is the following. The first time the construction looks at $I_{s}(q)$ we will pick the two special elements $U_{1}(q)$ and $U_{2}(q)$ and enumerate them into $I_{s}(q)$. Then depending on whether q is even or odd, we will add additional elements to the left of $U_{1}(q)$ or to the right of $U_{2}(q)$. For example, if q is even and $g(q, s)=4$ then we let $I_{s}(q)$ be the set $x_{0}<x_{1}<U_{1}(q)<U_{2}(q)$. Non-special elements are always added to the left of $U_{1}(q)$. If q is odd and $g(q, s)=3$ for example, then we let $I_{s}(q)$ be $U_{1}(q)<U_{2}(q)<x_{0}$. Non-special elements are always added to the right of $U_{2}(q)$.

At every stage s we will grow \mathcal{L} by updating each $I_{s}(q)$ according to $g(q, s)$, and growing a new $I_{s}\left(q^{\prime}\right)$. Let s^{-}be the largest expansionary stage before s. Then s may or may not be an expansionary stage depending on whether \mathcal{L}_{e} has recovered on its diagram at stage s^{-}. If s is not an expansionary stage, then we simply grow \mathcal{L} and do nothing else. If s is an expansionary stage then on top of growing \mathcal{L} we shall also need to take various other actions, such as updating f. Details are in the formal construction.

In Figure 5, the special elements of $I_{s}(q-1), I_{s}(q)$ and $I_{s}(q+1)$ are denoted by •, while the non-special elements are denoted by o. f is always defined in a way that matches up the elements of $\varphi_{e}\left(I_{s}(q)\right)$ with the corresponding elements of $\varphi_{e}\left(I_{s}(q+1)\right)$. Note that special elements will be mapped to non-special ones, and vice versa. This design of "alternating special elements" is important for our strategy to work.

Figure 5. A diagram of mappings

We briefly describe the basic strategy at work here. The reader familiar with the workings of the first main theorem will have no trouble here. The basic strategy here is similar to the first main theorem, and much simpler. Refer to Figure 5. Let's call the elements of $I_{s}(q)$ (from left to right) $x_{0}<x_{1}<x_{2}<x_{3}$, and the elements of $\varphi_{e}\left(I_{s}(q)\right) y_{0}<y_{1}<y_{2}<y_{3}$. Currently, $\varphi_{e}\left(x_{i}, s\right)=y_{i}$ and x_{0}, x_{1} are the special elements of $I(q)$. Let's denote the corresponding elements over in the next block $I_{s}(q+1)$ the same, with x_{i} replaced by x_{i}^{\prime} and y_{i} replaced by y_{i}^{\prime}. So we have declared $f\left(y_{i}, s\right)=y_{i}^{\prime}$ and also declared that $f\left(y_{i}\right) \neq y_{j}^{\prime}$ for $j \neq i$. As with the previous proof, the difficulty of the construction comes down to enforcing these restrictions on f.

Suppose a new element y shows up between y_{2} and y_{3}. This does not pose an immediate threat to f, because y is new and we can readily declare $f(y)=y_{3}^{\prime}$, and since y_{3} is now bumped out of the block $\varphi_{e}\left(I_{s}(q)\right)$, it will be easy to redefine $f\left(y_{3}\right)$.

Now suppose y shows up between y_{1} and y_{2}. Now the redefinition of y_{2} is in danger, because according to the current configuration, we have to map y_{2} to y_{3}^{\prime}, but we have already forbidden this definition. Therefore, we simply reduce the block size of $I(q)$ down to 3 and put more elements between x_{2} and x_{3}. Provided that $f\left(\varphi_{e}\left(x_{0}\right)\right)=y_{0}$ and $f\left(\varphi_{e}\left(x_{1}\right)\right)=y_{1}$ and $f\left(\varphi_{e}\left(x_{2}\right)\right)=y$ do not change, we must force y_{2} to leave the block, avoiding the need to redefine $f\left(y_{2}\right)=y_{3}^{\prime}$.

Finally, suppose y shows up between y_{0} and y_{1}. Then φ_{e} must change on a special element of $I(q)$. Everytime this happens, we will reduce the block size of both $I(q)$ and $I(q+1)$ down to 2 . (For symmetrical reasons, we also reduce the size of $I(q-1)$, but this is irrelevant in this example). This will cause y_{0}^{\prime} and y_{1}^{\prime} to be replaced by fresh elements (never seen before in \mathcal{L}_{e}) which we can then take to be the new values of $f\left(\varphi_{e}\left(x_{0}\right)\right)$ and $f\left(\varphi_{e}\left(x_{1}\right)\right)$.
3.2. The formal construction for a single requirement. In this section we fix a requirement R_{e} and describe the formal construction to meet R_{e}. We fix the associated \mathcal{L}_{e}. As in the proof of the first main theorem, the construction consists of several modules and are controlled by the main module. Since we fix e in this section we will not mention e when referring to the parameters of the construction.
3.2.1. Construction of the linear order \mathcal{L}. At stage $s=0, I_{0}(q)=\emptyset$ for all $q \in \mathbb{Q}$. At stage $s+1$, we do the following. For all $q \in \mathbb{Q}$ such that the Gödel number of q is $\leq s$, we modify $I_{s+1}(q)$, according to the following two cases.

Case 1. $I_{s}(q)$ is not empty: Our actions for the block $I(q)$ will obviously depend on the current value of $g(q, s+1)$.

Subcase $g(q, s+1)=\left|I_{s}(q)\right|$: Then $\left|I_{s}(q)\right|$ is just right, and we set $I_{s+1}(q)=I_{s}(q)$.
Subcase $g(q, s+1)>\left|I_{s}(q)\right|$: Then we shall need to add elements to $I_{s}(q)$. Pick one or two new elements, x_{1} or $x_{1}<x_{2}$, depending on the value of $g(q, s+1)-\left|I_{s}(q)\right|$. If q is even we add x_{1} and(or) x_{2} immediately to the left of all elements of $I_{s}(q)$. If q is odd we add immediately to the right. After adding the new element(s) we have $I_{s+1}(q)=g(q, s+1)$, consisting of consecutive elements of \mathcal{L}.
Subcase $g(q, s+1)<\left|I_{s}(q)\right|$: Then we shall need to remove one or two elements depending on the value of $\left|I_{s}(q)\right|-g(q, s+1)$. If q is even we remove the least (or least two) elements of $I_{s}(q)$, and if q is odd we remove the greatest (or greatest two) elements of $I_{s}(q)$. After removing the new elements(s) we have $I_{s+1}(q)=g(q, s+1)$, and notice that this does not remove $U_{1}(q)$ or $U_{2}(q)$. The elements of $I_{s}(q) \backslash I_{s+1}(q)$ which are removed are of course removed from $I(q)$ but not from \mathcal{L}; we declare these elements free.
Case 2. $I_{s}(q)$ is empty: We would like to find a suitable pair of elements for $U_{1}(q)$ and $U_{2}(q)$. Search for $q_{1}, q_{2} \in \mathbb{Q}$ such that $q_{1}<_{\mathbb{Q}} q<_{\mathbb{Q}} q_{2}, I_{s}\left(q_{1}\right)$ and $I_{s}\left(q_{2}\right)$ are not empty and there is no q_{3} such that $q_{1}<_{\mathbb{Q}} q_{3}<_{\mathbb{Q}} q_{2}$ and $I_{s}\left(q_{3}\right)$ is not empty. (Obviously, if q_{1} or q_{2} cannot be found we take it to be a point at infinity). Find the least x (in the standard order on \mathbb{N}) such that x is free and lies strictly between $I_{s}\left(q_{1}\right)$ and $I_{s}\left(q_{2}\right)$. If there is no such x then we add a new free element x between $I_{s}\left(q_{1}\right)$ and $I_{s}\left(q_{2}\right)$. Now add a new free element $x^{\prime}>x$ as the successor of x. Define $U_{1}(q)=x$ and $U_{2}(q)=x^{\prime}$. Populate the rest of $I_{s+1}(q)$ according to the instructions in Case 1.
Clearly, $|I(q)|=\liminf _{s \rightarrow \infty}\left|I_{s}(q)\right|=\liminf _{s \rightarrow \infty} g(q, s)$. Therefore, $\mathcal{L}=\sum_{q \in \mathbb{Q}} \liminf _{s \rightarrow \infty} g(q, s)$.
It is strongly η-like with no rational subinterval because we will ensure that $2 \leq$ $g(q, s) \leq 4$ for every q, s. Hence, \mathcal{L} is of the desired type.
3.2.2. The definition of an expansionary stage. We call $s=0$ an expansionary stage. For $s>0$ we let s^{-}be the largest expansionary stage less than s. First define the set $\operatorname{Ind}(s)$ to be all numbers of the form $q+n$ where $q \in \mathbb{Q}$ such that $0 \leq q<1$ and the Gödel number of q is $<s$, and $n \in \mathbb{Z}$ such that $|n|<s$. We declare s to be an expansionary stage if and only if the following conditions hold.

- φ_{e} is currently order preserving on the set $\cup\left\{I_{s}(q) \mid q \in \operatorname{Ind}\left(s^{-}\right)\right\}$.
- For each $q \in \operatorname{Ind}\left(s^{-}\right), \varphi_{e}\left(I_{s}(q), s\right)$ is an interval of $\mathcal{L}_{e}[s]$. That is, no other elements of $\mathcal{L}_{e}[s]$ lies strictly between two elements of $\varphi_{e}\left(I_{s}(q), s\right)$.
- For each $q \in \operatorname{Ind}\left(s^{-}\right),\left|I_{s}(q)\right|=4$.
3.2.3. The q-module. The q-module is only active at a stage s if $q \in \operatorname{Ind}\left(s^{-}\right)$. Otherwise, it is inactive, and doesn't do anything at stage s. Suppose the q-module is active at the current stage s. We call $U_{1}(q)$ and $U_{2}(q)$ the special elements of
$I(q)$, and the element $x \in I_{s}(q)$ the secondary element of $I(q)$ if x is the immediate predecessor of $U_{1}(q)$ if q is even, and the immediate successor of $U_{2}(q)$ if q is odd.

Case 1: $\varphi_{e}(x, s) \neq \varphi_{e}(x, s-1)$ for some special element x of $I(q)$. Then we request for $g(q-1, s)=g(q, s)=g(q+1, s)=2$.
Case 2: The secondary element x of $I(q)$ exists and $\varphi_{e}(x, s) \neq \varphi_{e}(x, s-1)$. Then we request for $g(q-1, s)=g(q, s)=g(q+1, s)=3$.
Case 3: Otherwise. Then we check if the two elements immediately to the left of $\varphi_{e}\left(I_{s}(q-1)\right), \varphi_{e}\left(I_{s}(q)\right)$ and $\varphi_{e}\left(I_{s}(q+1)\right)$ and the two elements immediately to the right of $\varphi_{e}\left(I_{s}(q-1)\right), \varphi_{e}\left(I_{s}(q)\right)$ and $\varphi_{e}\left(I_{s}(q+1)\right)$ are enumerated after s^{-}. If all of these elements are new, we request for $g(q-$ $1, s)=g(q, s)=g(q+1, s)=4$. Otherwise we make the same requests as the previous stage.
3.2.4. The definition of f. We update f on $\varphi_{e}(I(q))$ only if s is an expansionary stage, $g(q-1, s)=g(q, s)=g(q+1, s)=4,\left|I_{s}(q-1)\right|=\left|I_{s}(q)\right|=\left|I_{s}(q+1)\right|$ and $q \in \operatorname{Ind}\left(s^{-}\right)$. Otherwise, as usual, we retain the previous value of $f(y)$ if there are no requests to update $f(y, s)$.

For each $x \in I_{s}(q)$ we define $f\left(\varphi_{e}(x, s), s\right)$ to be the corresponding element in $\varphi_{e}\left(I_{s}(q+1)\right)$. That is, send the smallest element of $\varphi_{e}\left(I_{s}(q)\right)$ to the smallest element in $\varphi_{e}\left(I_{s}(q+1)\right)$, and so on.

For each $y \in \varphi_{e}\left(I_{s}(q)\right)$ we also enumerate (y, z) into G_{s} for every $z \neq f(y, s)$ and $z \in \cup\left\{\varphi_{e}\left(I_{s}(q)\right) \mid q \in \operatorname{Ind}\left(s^{-}\right)\right\}$.
3.2.5. The main module for R_{e}. At every stage we update $\varphi_{e}(x, s)$ at the beginning of stage s. The main module at stage $s>0$ consists of the following steps.
(1) Do step s of each active q-module (§3.2.3).
(2) For each active q, define $g(q, s)$ to be the smallest requested value in the previous step. If q is not yet active, define $g(q, s)=4$.
(3) Do step s of the \mathcal{L}-construction (§3.2.1).
(4) Do step s of the definition of f (§3.2.4).
3.3. The formal verification for a single requirement. First of all, notice that $g(q, s)$ is either 2,3 or 4 for every q and s. Furthermore, every x enumerated into \mathcal{L} is eventually inside $I(q)$ for some fixed q. Since $\S 3.2 .1$ is taken at every stage, it is clear that $\mathcal{L}=\sum_{q \in \mathbb{Q}} \liminf _{s \rightarrow \infty} g(q, s)$. Hence, \mathcal{L} is of the desired type.

For the rest of the verification, we assume that $F_{e}=\lim \varphi_{e}(-, s)$ is total and is an isomorphism from $\mathcal{L} \rightarrow \mathcal{L}_{e}$.

Lemma 3.1. For any $q, g(q, s)=4$ for almost all s.
Proof. If q is never active, then $g(q, s)=4$ for all s. We first assume that there is some q such that $g(q, s)=2$ for infinitely many s. This means that for some $q^{\prime}=q-1, q$ or $q+1$, the q^{\prime}-module will infinitely often request for $g(q, s)=2$ under case 1 or 3 . As the special elements of $I\left(q^{\prime}\right)$ are fixed, and $\varphi_{e}(x, s)$ must eventually stop changing on these special elements, this means that eventually the q^{\prime}-module is stuck in case 3 . That means that from some point on, $I_{s}\left(q^{\prime}-1\right), I_{s}\left(q^{\prime}\right)$ and $I_{s}\left(q^{\prime}+1\right)$ will consist of only its special elements. This means that $\varphi_{e}\left(I_{s}\left(q^{\prime}-1\right)\right)$, $\varphi_{e}\left(I_{s}\left(q^{\prime}\right)\right)$ and $\varphi_{e}\left(I_{s}\left(q^{\prime}+1\right)\right)$ are all eventually stable. By the construction of \mathcal{L}, $I_{s}\left(q^{\prime}-1\right), I_{s}\left(q^{\prime}\right)$ and $I_{s}\left(q^{\prime}+1\right)$ are maximal blocks of \mathcal{L}, which means that in order
to get stuck in case $3, F_{e}$ cannot be surjective. Therefore, we conclude that for every $q, g(q, s)>2$ eventually.

Now fix some q with infinitely many s such that $g(q, s)=3$. Again let the q^{\prime}-module be infinitely often responsible for requesting $g(q, s)=3$ under case 2 or 3. Since $g\left(q^{\prime}, s\right)$ is eventually ≥ 3, this means that the secondary element of $I\left(q^{\prime}\right)$ is eventually stable and φ_{e} is also stable on it. Hence the q^{\prime}-module is eventually stuck in case 3 . Since $g\left(q^{\prime}-1, s\right), g\left(q^{\prime}, s\right)$ and $g\left(q^{\prime}+1, s\right)$ are eventually ≥ 3, this means that $I\left(q^{\prime}-1\right), I\left(q^{\prime}\right)$ and $I\left(q^{\prime}+1\right)$ are eventually stable with exactly three elements each (two special, one secondary). The same argument as above produces a contradiction. Hence we conclude that for any $q, g(q, s)=4$ for almost all s.

Therefore, under the additional assumptions that $\mathcal{L} \cong \mathcal{L}_{e}$ via F_{e}, we in fact have $\mathcal{L} \cong 4 \cdot \eta$, and that for every $q, I_{s}(q)$ is eventually stable with four elements. Thus, it can be easily seen that there are infinitely many expansionary stages in the construction.

Lemma 3.2. $f(y)=\lim _{s \rightarrow \infty} f(y, s)$ is a nontrivial automorphism of \mathcal{L}_{e}.
Proof. Fix $y \in \mathcal{L}_{e}$. As F_{e} is bijective, there is some unique x such that $F_{e}(x)=y$, which means that $\varphi_{e}(x, s)=y$ for almost all s. But x has to eventually be in some $I(q)$ for some fixed q, and since there are infinitely many expansionary stages, q is eventually active. Hence $f(y, s)$ must be defined for a large enough s. Since $I_{s}(q+1)$ and $\varphi_{e}\left(I_{s}(q+1)\right)$ are eventually stable, $\lim _{s \rightarrow \infty} f(y, s)$ is also eventually stable. Thus, the function $f(y)=\lim _{s \rightarrow \infty} f(y, s)$ is total.

It is easy to see that f is order-preserving. If $y_{1}<y_{2}$ then fix the corresponding q_{1} and q_{2} such that $y_{i} \in \varphi_{e}\left(I\left(q_{i}\right)\right)$. Since φ_{e} is order-preserving, this means that $q_{1} \leq q_{2}$. If $q_{1}=q_{2}$ then obviously $f\left(y_{1}\right)<f\left(y_{2}\right)$. If $q_{1}<q_{2}$ then $q_{1}+1<q_{2}+1$ and so $\varphi_{e}\left(I\left(q_{1}+1\right)\right)$ lies to the left of $\varphi_{e}\left(I\left(q_{2}+1\right)\right)$ and thus $f\left(y_{1}\right)<f\left(y_{2}\right)$. The surjectivity of f follows similarly.

Lemma 3.3. f has a Π_{1}^{0} graph.
Proof. We need to show that $f(y)=z$ if and only if $(y, z) \notin G$. If $f(y) \neq z$ then at a suitably large expansionary stage s after y and z are both in the set $\cup\left\{\varphi_{e}\left(I_{s}(q)\right) \mid q \in \operatorname{Ind}\left(s^{-}\right)\right\}$and $f(y, s) \neq z$, we will enumerate (y, z) into G.

Now assume for a contradiction that there exists some $(y, z) \in G$ such that $f(y)=z$. Fix x_{0}, x_{1}, q_{0} and q_{1} such that $\varphi_{e}\left(x_{0}, s\right)=y, \varphi_{e}\left(x_{1}, s\right)=z, x_{0} \in I_{s}\left(q_{0}\right)$ and $x_{1} \in I_{s}\left(q_{1}\right)$ for almost all s. Notice that as $f(y)=z$, we must have $q_{1}=q_{0}+1$. Since y and z occupy the same position in $\varphi_{e}\left(I\left(q_{0}\right)\right)$ and $\varphi_{e}\left(I\left(q_{0}+1\right)\right)$, it must be that either x_{0} is a special element of $I\left(q_{0}\right)$, or x_{1} is a special element of $I\left(q_{0}+1\right)$. Without loss of generality, assume that x_{0} is a special element of $I\left(q_{0}\right)$. Thus x_{1} is a non-special element of $I\left(q_{0}+1\right)$.

Let s_{0} be the first time (y, z) is enumerated into G. In particular, s_{0} is an expansionary stage and both $y, z \in \mathcal{L}_{e}\left[s_{0}\right]$. After s_{0}, we cannot have a change in $\varphi_{e}(x)$ where x is a special element of $I\left(q_{0}+1\right)$. This is because otherwise, we would set $g\left(q_{0}+1, s\right)=2$ and thus at every expansionary stage after $s_{0}, \varphi(v, s)$ has to be a new element not in $\mathcal{L}_{e}\left[s_{0}\right]$ for each non-special element v of $I\left(q_{0}+1\right)$. In particular, this contradicts the property of z.

Therefore, after s_{0}, we also see that we cannot have a change in $\varphi_{e}\left(x_{0}\right)$. Otherwise, as x_{0} is a special element of $I\left(q_{0}\right)$, this would cause $g\left(q_{0}+1, s\right)=2$. Since
$\varphi_{e}\left(U_{1}\left(q_{0}+1\right)\right)$ and $\varphi_{e}\left(U_{2}\left(q_{0}+1\right)\right)$ are stable at s_{0}, this also means that at every expansionary stage after $s_{0}, \varphi(v, s)$ has to be a new element not in $\mathcal{L}_{e}\left[s_{0}\right]$ for each non-special element v of $I\left(q_{0}+1\right)$, contradicting the property of z.

Thus we conclude that at $s_{0}, \varphi_{e}\left(x_{0}\right), \varphi_{e}\left(U_{1}\left(q_{0}+1\right)\right)$ and $\varphi_{e}\left(U_{2}\left(q_{0}+1\right)\right)$ are all stable. In particular, at $s_{0}, \varphi_{e}\left(x_{0}, s_{0}\right)=y$. At stage s_{0}, since we enumerated (y, z) into G, there are some $q^{\prime} \in \operatorname{Ind}\left(s_{0}^{-}\right)$and $x^{\prime} \in I_{s_{0}}\left(q^{\prime}\right)$ such that $z=\varphi_{e}\left(x^{\prime}, s_{0}\right)$. Obviously, $q^{\prime}=q_{0}+1$, because otherwise as s_{0} is an expansionary stage, we have $\left|I_{s_{0}}\left(q_{0}+1\right)\right|=4$ and so there are at least two elements between z and $\varphi_{e}\left(U_{1}\left(q_{0}+1\right)\right)$ and $\varphi_{e}\left(U_{2}\left(q_{0}+1\right)\right)$. Since the latter two values are already stable at s_{0}, z cannot possibly end up in $\varphi_{e}\left(I\left(q_{0}+1\right)\right)$ later.

Thus we see that at $s_{0}, z=\varphi_{e}\left(x^{\prime}, s_{0}\right)$ for some $x^{\prime} \in I_{s_{0}}\left(q_{0}+1\right)$. However, one of the conditions for enumerating (y, z) into G is that $f\left(y, s_{0}\right) \neq z$. Therefore, the only possibility is that at s_{0}, x^{\prime} is the secondary element of $I\left(q_{0}+1\right)$. (Otherwise if x^{\prime} is not the secondary element of $I\left(q_{0}+1\right)$ then z is not adjacent to a special element of $\varphi\left(I\left(q_{0}+1\right)\right)$ and of course cannot later become adjacent). Now after s_{0}, we must have $g\left(q_{0}+1, s\right) \geq 3$, otherwise we would require for at least two new elements to show up between the special elements of $\varphi_{e}\left(I\left(q_{0}+1\right)\right)$ and z, which contradicts the property of z. Therefore, x^{\prime} stays forever as the secondary element of $I\left(q_{0}+1\right)$. This means that if $\varphi_{e}\left(x^{\prime}, s\right)$ does not change after s_{0}, then $f(y, s)$ cannot be equal to z later on. However, if $\varphi_{e}\left(x^{\prime}, s\right)$ does change after s_{0} but not $\varphi_{e}\left(U_{1}\left(q_{0}+1\right)\right)$ or $\varphi_{e}\left(U_{2}\left(q_{0}+1\right)\right)$, then exactly one new element must appear between the special elements of $\varphi_{e}\left(I\left(q_{0}+1\right)\right)$ and z. This causes $g\left(q_{0}+1, s\right)=3$ and thus before the next expansionary stage we would require further elements between $\varphi_{e}\left(I\left(q_{0}+1\right)\right)$ and z, which again contradicts the property of z.
3.4. Handling all requirements. The previous section is effective in the sense that given any pair \mathcal{L}_{e} and F_{e}, we are able to produce \mathcal{L} with the desired properties. Let's give this output \mathcal{L} a different name, say \mathcal{M}_{e}. We can take our final linear order

$$
\mathcal{L}_{\text {final }} \cong 1+2 \cdot \eta+1+\mathcal{M}_{1}+1+2 \cdot \eta+1+\mathcal{M}_{2}+1+2 \cdot \eta+1+\cdots
$$

where in each interval \mathcal{M}_{e} we run the basic construction and play against the pair \mathcal{L}_{e} and $F_{e} \upharpoonright \mathcal{M}_{e}$. Unlike the proof of the first main theorem, we do not need to worry about the subinterval of \mathcal{L}_{e} corresponding to \mathcal{M}_{e}, because $F_{e} \upharpoonright \mathcal{M}_{e}$ will automatically pick it out for us, if F_{e} is to be trusted. Thus we will be able to build a nontrivial Π_{1}^{0} automorphism of $\mathcal{L}_{e} \upharpoonright F_{e}\left(\mathcal{M}_{e}\right)$. This obviously extends to an automorphism of \mathcal{L}_{e} by taking the identity on the outside.

References

1. R. G. Downey. Computability Theory and Linear Orderings, in: Handbook of Recursive Mathematics Vol. 2., Elsevier, Amsterdam, (1998), pp. 823-976.
2. R. G. Downey, A. M. Kach, D. Turetsky. Limitwise monotonic functions and their applications, Proceedings of the 11th Asian Logic Conference, (2012), pp. 59-85.
3. R. G. Downey, M. F. Moses. On Choice Sets and Strongly Non-Trivial Self-Embeddings of Recursive Linear Orders, Mathematical Logic Quarterly, 35 (1989), pp. 237-246.
4. B. Dushnik, E. W. Miller. Partially Ordered Sets, American Journal of Mathematics, 63 (1941), pp. 600-610.
5. A. N. Frolov, M. V. Zubkov. Increasing η-Representable Degrees, Mathematical Logic Quarterly, 55 (2009), pp. 633-636.
6. A. N. Frolov, M. V. Zubkov. Limitwise Monotonic Functions Relative to the Kleene's Ordinal Notation System, Lobachevskii Journal of Mathematics, 35 (2014), pp. 295-301.
7. K. Harris. η-Represetation of Sets and Degrees, Journal of Symbolic Logic, 73 (2008), pp. 1097-1121.
8. C. Harris, K. Lee, S. B. Cooper. Automorphisms of η-Like Computable Linear Orderings and Kierstead's Conjecture, Mathematical Logic Quarterly, 62(6) (2016), pp. 481-506.
9. A. M. Kach, D. Turetsky. Limitwise Monotonic Fuctions, Sets and Degrees on Computable Domaine, The Journal of Symbolic Logic, 75 (2010), pp. 131-154.
10. H. A. Kierstead. On Π_{1}^{0}-Automorphisms of Recursive Linear Orders, Journal of Symbolic Logic, 52 (1987), pp. 681-688.
11. J. Rosenstein. Linear Orderings, Academic Press, New York, (1982).
12. S. T. Schwarz. Quotient Lattices, Index Sets, and Recursive Linear Orderings, Ph.D. Thesis: University of Chicago, Department of Mathematics, (1982).
13. S. T. Schwarz. Recursive Automorphisms of Recursive Linear Orderings, Annals of Pure and Applied Logic, 26 (1984), pp. 69-73.
14. G. Wu, M. Zubkov. The Kierstead's Conjecture and limitwise monotonic functions. Annals of Pure and Applied Logic, 169(6) (2018), pp. 467-486.
15. M. V. Zubkov. Sufficient conditions for the existence of 0^{\prime}-limitwise monotonic functions for computable η-like linear orders. Siberian Mathematical Journal, 58(1) (2017), pp. 80-90.

Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Russia, Kazan, Kremlevskaya 18, 420008

