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Abstract: We report in this paper a fast and accurate algorithm for edimg the exact spherical non-
reflecting boundary condition (NRBC) for time-dependentiiall’s equations. It is essentially based
on a new formulation of the NRBC, which allows for the use ofaaalytic method for computing the
involved inverse Laplace transform. This tool can be geadlyi integrated with the interior solvers for
challenging simulations of electromagnetic scatteringpfams. We provide some numerical examples
to show that the algorithm leads to very accurate results.
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1. Introduction

The time-domain simulations, which are capable of capgunide-band signals and modeling more
general material inhomogeneities and nonlinearitiese lairacted much attention [18,[9,/ 12]. A long-
standing issue in many simulations resides in how to dedl thi¢ unbounded computational domain.
Various approaches including the perfectly matched lay®t() (cf. [3]), the boundary integral methods
(cf. [8]), nonreflecting (absorbing or transparent) bougwd@nditions (cf. [8, 6]), and many others, have
been proposed to surmount this obstacle. Although the usegastt nonreflecting boundary conditions
(NRBCs) is desirable and beneficial, the practitioners atelly plagued with their complications and
computational infficiency. Indeed, these time-domain NRBCs are global in botke and space, and
involving Laplace inversion of special functions. It is wwhile to highlight some works onfiecient
algorithms for exact NRBCs for acoustic wave equations,esge [17/2[ 18, 10, 19]. However, there
has been significantly less study of the NRBCs for Maxweldjsations, where one finds the existing
formulations (see e.gl.l[l/] 4]) actually present a grealiemge for evaluation.

In this paper, we reformulate the NRBC for the three-dimamsi Maxwell’s equations, and extend
the techniques for the NRBC of the acoustic wave equatiof2,iidg] for computing it in a fast and
accurate manner. It is important to point out that it is qgi@eric to integrate this sort of semi-analytic
tool with any solver for the interior truncated problem (&ample, the finite elemempectral element
methods, and the boundary perturbation technique [16}h thie aid of the Spherepadki [1] or certain
hybrid mesh interpolatiori [11].

Typically, we consider an electromagnetic scattering lembwith a homogeneous background
transmission medium, and with a bounded scatt®&eAssume that the source current (or excita-
tion source), other inputs and inhomogeneity of media appaded in a ball of radiud, that is,

B := {x € R® : |x] < b}. Then the analytic method of Laplace transform and separatiovariables
can be applied to solve the time-dependent Maxwell’s sygeterior toB) with free source, homoge-
neous initial data and the Silver-Muller radiation corutiti

HET +cXxdH = o(xI™Y), t>0; c=1/+em, (1)

where{E, H} are the electric and magnetic fields,= x/|x|, andEtr = X x (E x X) is the tangential
component ofE. The electric permittivitye and magnetic permeability are positive constants. The
underlying solution (cf. Hagstrom and Ldu [7]) can be expeésin terms of vector spherical harmonic



functions (VSHSs) with the cdicients determined by the electric field Bn
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where the VSHYY™%, VY™, T := VsY™ x &} are the orthogonal basis df(S))3 with S being the

unit sphere (see e. gEﬂ14]) aﬁq’“ bemg the spherical harmonics as normalized_in [15]. N ith

[7], the exact NRBC is expressed as a systerfa ahdH, which is actually equivalent to the formulation
(cf. [4]) by using the VSH notation here:

OET —CcXx (VX E) = Tp[E], atr=h, 3)

where the electric-to-magnetic (EtM) operator:

o |
THlE] = % 3 (o1« EY ISV + (o« ED) TP, (4)
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Here,p; ando (termed as the nonreflecting boundary kernels (NRBKS)) afiaed by
(2@ e K@y, . sb
o) = £ [z(m + 1)](t), o) = £ [1+ 74 zkl(z)](t) with 2= =, (5)

where £71 is the inverse Laplace transform (gdomain), andk(2) is the modified spherical Bessel
function defined byk(2) = V2/(72)Ki11/2(2), with K12 being the modified Bessel function of the
second kind of ordel + 1/2 (cf. [20]). The involved convolution is defined as usuat: «(g)(t) =
J f@g(t - 7).

Now, the central task is to compute the NRBCI[ih (3)-(5). Netieat the electric fielE atr = b
is unknown as the NRBC serves as the boundary condition &intierior problem. Here, we resort
to the Spherepack][1] to communicate between the electlit died the VSH expansion cfieients.
Thus, some hybrid mesh interpolation technique (cf. [14]heécessary if the spatial discretization of
the interior solver (e.g., the finjfigpectral element methods) uses fiatent set of grids on the sphere.
Thus, the critical issue becomes how to compute the NRBKS)inafid temporal convolutions inl(4) at
any timet efficiently. This will be the topic of the following section.

2. The Algorithm for Computing the NRBC

The NRBK | appears in the NRBC for the transient wave equation, whishalmeexplicit formula
(see [®) below) derived from the Residue theory (see €.pI9)). However, this analytic tool for
inverse Laplace transform can not be applied to compytsince we lack information on the zeros of
k(2) + zK(2) (i.e., the poles of the integrand in the inverse Laplacesfiam), while that ofk(2) is
available. In fact, there is no stable way to directly conepie NRBKp.

A. Alternative formulation of [ E]

Observe from[{4) that the EtM operator only involves the VSiansion cofficients{ EI(;), E(Z)}
@). In fact, there holds the following relation betwegp and Eﬁq) :

ki(2) EW
k(2 +zK(2 Sim
where{E (s), Eﬂ)(s)} are Laplace transforms ¢/ E(l) respectively. The derivation df](6) is quite

involved, "so we will provide the proof in the extendled pap€his leads to the following alternative
formulation, from which the f@cient algorithm stems.

El (9 =I(+1) (9, z= %b, atr=bh, (6)

Theorem 1.The EtM operatof/,[E] in (4)) can be reformulated as:

THlE] = £ i Z ( T 1")“ VY + (1 + EP)TY) (7)



whereo is defined infg), andw; is given by

wi(t) = L‘l[z(l +z+ z%)](t) - g(al’(t) + n(00(), z= %b ®)

with § being the Dirac delta function.

B. Explicit formulas of the NRBKs and wj

As already mentioned, the NRBI, appears in the exact NRBC for the wave equation, and the
explicit formula derived from the Residue theory (see ¢4j/19]) is of the form:

o) =
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where{z'j}'j=1 are the zeros dk,1/2(2). Hence, it follows from[(B) that

| |
() = EZ(ij)Ze%fjt v Y2, 121 t=0 (10)
=1 =1

Remark 1. We find from [20] that (see Fid.]11 (left)): (¥.1/2 has exactlyl zeros, which appear in
conjugate pairs and lie in the left-half Bplane; and (ii) the zeros approximately sit along the beud
of an eye-shaped domain that intersects the imaginary api®aimately atil, and the negative real
axis at-la, wherea ~ 0.66274 We point out that a practical algorithm in[10] could be usedird the

zeros ofK|,1/2(2) for anyl < 1000 accurately in negligible time. [
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Fig. 1. Left: distributions of the zeros ®f.1,2(2). Right: distributions of poles ir [2](red color), and
used zeros (blue color), which lies on the right of the vattatashdot line-gla with g = 0.4.

Armed with the explicit formulag{9)-(10), we can compute RBKs at any time. Observe that as

the real part ot'j is negative;egz'it becomes exponentially small whéjnis far away from the imaginary

axis andt is slightly large. This motivates us to drop many insignificaeros by using the algorithm
described in[[19] (see Figl 1 (right)).

C. Fast algorithms for temporal convolution

Observe from[(9)E(T0) that the time varialblenly appears in the exponentials. This allows for a fast
recursive temporal convolution as shownlih [2]. More prelgisgiven a generic functiog(t), we define

t
f(tir) = et = g(t) = f et Ig(r) dr, (11)
0

and find AL
N
f(t+At;r) = es" A f(t:r) + f b (A g(7) i, (12)
t



whereAt is the time step size. We see that at each time step, the catigpubarrows down to computing
the integral of the current interval [+ At]. This essentially eliminates the burden of history depeoéen
induced by the temporal convolution.

Using this notion, we deduce froml (9)-(11) that

| |
[+l =£ >3 f b4 gtr)dr = £ " 41(2), (13)
=1 =1

|
[+ 60 = £ ) (@)? f et ”g(r)dwg(t)z Z(£)2f<t,£)+g(t)22 (14)
j=1

=1

Giveng at grids for time discretization, we only need to stofé; z'.)}'j:1 for previous steps to compute
the convolutions at current time. It is optimal for storaggquirement.
D. Summary of the algorithm

For clarity, we summarize the whole algorithm and outline strategies to further reduce the com-
plexity related to largé. The algorithm is intended to compufg[E](t) in (@) att = t, = nAt,n > 0,
and on the colatitude-longitude grids adopted by the Siplaeie[1] fromE on the same grids.

Algorithm for computing 7p[E] in (@)
Step 1. Use the Spherepack to comg&g;, E(l) from E.
Step 2. Compute the zeroz%} forl > 1.
Step 3. Compute * E&) andw * E via (I3)-[13).
Step 4. Use the Spherepack to comptgE] via (7).

It is clear that the number of zeros to be used is determingtidoyruncation of the expansionl (2).
If I is large, we can adopt the strategies (i) dropping insiganitizeros (cf.[[19]) and (ii) compression
algorithm (cf. I[Z]) to reduce the complexity in Step 3. Hese, outline the main idea.

(). Since eb4! becomes exponentially small Whek'n is far away from the imaginary axis arids
slightly large, for some' > 0, we modify the NRBKsr; andw, in (@)-(10) as follows

Fi(t) = g 3 deftt o = : ° 3 @yt +5(t)Z£, t>t, (15)

je'Y"ff jE'Y‘ﬁ

where! = {z'j ; Redj) > —pla} with a ~ 0.66742 ang3 € (0, 1) (3 tunes the number of used
zeros). We plot in Fig[J1 (right) the used zeros = 0.4. This can reduce the zeros from
100 to 10 (see the markex” on the right of vertical dashdot line) and leads to quitelsiate
approximation. We refer to the analysis in[19] on how to atj andt'0 to achieve a good
accuracy.

(ii). Alpert et al. [2] proposed a compression technique bgtional approximation of the NRBK in
s-domain, which required to solve a nonlinear least squawblpm. This led to the approximate

poles{z‘f}J _, with d < | (see Fig[L (right, marked by") with a reduction froml = 100 tod = 12

and error tolerance 18). Correspondinglyg andw; could be approximated by
d ” d g7 d
> afes ', o) = Z et +5(t) Y of, >0, (16)
j=1 j=1

=1
where{a J}J _, are the cofficients occurring in the rational partial fractlomd/(s czd/b) Some
samples ofad P z‘J’I are available from the website: hiffiaculty.smu. ed,(nhagstromsth txt.
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3. Numerical Results and Discussions

In this section, we provide some numerical examples to sh@natcuracy of computing the N-
RBC. We also test a spectral-Galerkin with (second-ordewiNark’s time integration for Maxwell’s
equations in a spherical sh¢dl < |x| < b}, where the NRBC is set at the outer spherical surfaceb.

In the following tests, we generate the exact solution tghothe field: & x E)|;.=a = g, and with
homogeneous initial data and source term. More precisayake

[ee)

I 4
06.0.0 = 3 | P dfy sy + (L7 o + EEEZL?
1=1 m=-I

](t) . sin8(4t)) an T{“],

where{g["}.g",} are the expansion cfiiients in terms ofVsY™, T["}, of the the function

3
2

5 7
90, ¢) = b((cos(xfxzx;;) +2)°,x(sin(xax2) + 1)°, x1(0.5 cos(xxxg) + 1) )
Note thatx = (X1, X2, X3) (with |x| = 1) is the corresponding Cartesian coordinates. Here, wegotam
{g". g5} accurately by using the Spherepaick [1].

We first test the accuracy of the algorithm for the NRBL (3)t ER be the truncated exact solution
E (the included modes ared.| < Ng; |m| < 1). Define the error:

eb,t) = ||(atE$' ~c&x (Vx EN)) - Tb[EN]H (17)

Ng,N,~
where|| - |In,.n, denotes the discrete?-norm associated withly x N, colatitude and longitude grids.
Here, we take = 2,¢ = 5,Ny = 40 andN,, = 2N,. We aim to test the accuracy for computifig[ EN],
so the diferentiations it and curl are calculated analytically. In Table 1, we tataséh, t) for differentt

andb (note: the magnitude @ is actually between 1 and 20, so the waves cross the artificiaidary).
We see that in all cases, the computation of the NRBC is varyrate.

Table 1: The erroge(b, t) for differentt andb

t b=3 b=5 b=5 b=6
1.0 7.73246E-14 2.67652E-14 1.64591E-14 1.10549E-14
2.0 7.01963E-14 4.43072E-14 4.30850E-14 9.58167E-14
40 1.30672E-13 7.07636E-14 8.15754E-14 9.56271E-14
10.0 3.35293E-13 1.87063E-13 2.32403E-13 2.74720E-13

Next, we set the NRBC as the boundary condition and solve taewdll's equation in curl-curl
formulation with homogeneous initial conditions and freeiree in a spherical shell. In this case, we
can expand the interior electric field in VSHs, and reducepttoblem to a sequence of equations in
radial direction. Then we solve the systems by using thetsgeBalerkin method in space and the
second-order Newmark scheme in time. Moreover, we use ttleRIson extrapolation to improve the
time discretization to fourth-order. We refer o [19] fomslar idea for the acoustic wave equations, and
report the details in the extended version.

Under the same setting of the reference solution and ottiar @& provide in Tablgl2, the discrete
L2-norm errors (in space with fiicient resolution): Ert) (Newmark scheme), EF(t) (Richardson
extrapolation), and the convergence order in timeféint time. As expected, we observe the second-
order convergence for the Newmark scheme and the fourtira@ahvergence for the extrapolation.

We have proposed in this paper difi@ent algorithm for computing the spherical NRBC for the
Maxwell's equations. This tool can be integrated well widrigus interior solvers in bounded domain
for simulating scattering problems in many situations. Wk neport the works along this line in the
forthcoming papers.
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Table 2: Convergence of the Newmark scheme and Richardsmpetation

t At Err order ErR order t At Err order ErR order
5.00e-3 2.3090E-2 2.0719E-5 5.00e-3 1.6912E-2 2.8491E-5

0.5 2.50e-3 5.7684E-3 2.001 1.2870E-6 4.003-5 2.50e-3  4.2193E2®»03 1.7754E-6 4.004
1.25e-3 1.4419E-3 2.000 8.0317E-8 4.00 1.25e-3 1.0543E-3 2.000 1.1088E-7 4.001
1.00e-3 9.2276E-4 2.000 3.2912E-8 3.998 1.00e-3 6.7470E2€001 4.5411E-8 4.009
5.00e-3 2.1041E-2 2.6540E-5 5.00e-3 2.2117E-2 2.3189E-5

1.0 2.50e-3 5.2591E-3 2.000 1.6500E-6 4.00%0 2.50e-3 5.5142E2304 1.4467E-6 4.003
1.25e-3 1.3147E-3 2.000 1.0299E-7 4.00 1.25e-3 1.3776E-3 2.001 9.0376E-8 4.001
1.00e-3 8.4140E-4 2.000 4.2178E-8 4.009 1.00e-3 8.8159R2400 3.7016E-8 4.000
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