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Abstract

We introduce a family of generalized Jacobi polynomials/functions with indexes α,β ∈ R which are mutually orthogonal with
respect to the corresponding Jacobi weights and which inherit selected important properties of the classical Jacobi polynomials. We
establish their basic approximation properties in suitably weighted Sobolev spaces. As an example of their applications, we show
that the generalized Jacobi polynomials/functions, with indexes corresponding to the number of homogeneous boundary conditions
in a given partial differential equation, are the natural basis functions for the spectral approximation of this partial differential
equation. Moreover, the use of generalized Jacobi polynomials/functions leads to much simplified analysis, more precise error
estimates and well conditioned algorithms.
© 2008 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The classical Jacobi polynomials have been used extensively in mathematical analysis and practical applications
(cf. [35,2,36,31]). In particular, the Legendre and Chebyshev polynomials have played an important role in spectral
methods for partial differential equations (cf. [20,13,19,12,22] and the references therein). Recently, there have been
renewed interests in using the Jacobi polynomials in spectral approximations, especially for problems with degen-
erated or singular coefficients. For instance, Bernardi and Maday [9] considered spectral approximations using the
ultra-spherical polynomials in weighted Sobolev spaces. Guo [23,21,24] developed Jacobi approximations in cer-
tain Hilbert spaces with their applications to singular differential equations and some problems on infinite intervals.
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The Jacobi approximations were also used to obtain optimal error estimates for p-version of finite element methods
(cf. [3,4]).

Recently, Shen [33] introduced an efficient spectral dual-Petrov–Galerkin method for third and higher odd-order
differential equations, and pointed out that the basis functions used in [33], which are compact combinations of Leg-
endre polynomials, can be viewed as generalized Jacobi polynomials with negative integer indexes, and their use not
only simplified the numerical analysis for the spectral approximations of higher odd-order differential equations, but
also led to very efficient numerical algorithms. More precisely, the resulting linear systems are well conditioned, and
sparse for problems with constant coefficients. In fact, the basis functions used in [32], which are compact combi-
nations of Legendre polynomials, can also be viewed as generalized Jacobi polynomials with indexes α,β � −1.
Furthermore, the special cases with (α,β) = (−1,0), (−1,−1) have also been studied in [6,21,24]. Hence, instead
of developing approximation results for each particular pair of indexes, it would be very useful to carry out a system-
atic study on Jacobi polynomials with indexes α,β � −1 which can then be directly applied to other applications.
In [25], we defined the generalized Jacobi polynomials with indexes being negative integers, and presented some ap-
proximation results and applications. However, in many situations, it is helpful to define and use generalized Jacobi
polynomials with arbitrary non-integer indexes. For example, when developing and analyzing Chebyshev spectral
methods for boundary value problems, it becomes convenient to use generalized Jacobi polynomials with indexes
(−1/2 − k,−1/2 − l) (cf. [34]). Another example is the study of differential equations with singular coefficients of
the form (1 − x)α(1 + x)β .

The main purpose of this paper is to generalize the definition of the Jacobi polynomials to arbitrary indexes
α,β ∈ R, and to establish their fundamental approximation results, which include, as special cases, those announced
in [25] but not proved due to the page limitation of [25] as a conference proceeding paper. The main criteria that we
use to define the generalized Jacobi polynomials/functions are: (i) they are mutually orthogonal with respect to the
Jacobi weight, and (ii) they inherit some important properties (to be specified later) of the classical Jacobi polynomials
which are essential for spectral approximations.

As an example of applications, we consider approximations of high-order differential equations with suitable
boundary conditions. Mathematical modeling of some physical systems often leads to high-order differential equa-
tions. For example, high even-order differential equations often appear in astrophysics, structural mechanics and
geophysics (see, e.g., [1,11]); high odd-order differential equations, such as third-order Korteweg–de-Vries (KdV)
and fifth-order KdV-type equations, are routinely used in non-linear wave and non-linear optics theory (see, e.g.,
[37,28,10,16,30]).

While it is usually cumbersome to design an accurate and stable numerical algorithms using finite difference/finite
element methods due to the many boundary conditions involved or using a spectral-collocation method for which
special quadratures involving derivatives at the end points have to be developed (cf. [7,27,29]) or fictitious points have
to be introduced [18], the spectral approximations using generalized Jacobi polynomials/functions lead to straight-
forward and well-conditioned implementations, and can be analyzed with a unified approach leading to more precise
error estimates.

This paper is organized as follows. In the next section, we define the generalized Jacobi polynomials/functions and
analyze the approximation properties of the orthogonal projection in suitably weighted Sobolev spaces. The gener-
alized Jacobi polynomials/functions and their approximation results are used in Section 3 to construct and analyze
spectral-Galerkin method for some high-order model equations. Some concluding remarks are given in the final sec-
tion.

2. Generalized Jacobi polynomials/functions

In this section, we define the generalized Jacobi polynomials/functions (GJP/Fs), and investigate their basic prop-
erties.

We first introduce some notations. Let ω(x) be a weight function in I := (−1,1). One usually requires that
ω ∈ L1(I ). However, we shall mainly concern with the cases ω �∈ L1(I ). We shall use the weighted Sobolev spaces
Hr

ω(I) (r = 0,1,2, . . .), whose inner products, norms and semi-norms are denoted by (·, ·)r,ω,‖ · ‖r,ω and | · |r,ω , re-
spectively. For real r > 0, we define the space Hr

ω(I) by space interpolation. In particular, the norm and inner product
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of L2
ω(I ) = H 0

ω(I ) are denoted by ‖ · ‖ω and (·, ·)ω , respectively. To account for homogeneous boundary conditions,
we define

Hm
0,ω(I ) = {

v ∈ Hm
ω (I): v(±1) = ∂xv(±1) = · · · = ∂m−1

x v(±1) = 0
}
, m = 1,2, . . . ,

where ∂k
x = dk

dxk , k � 1. The subscript ω will be omitted from the notations in case of ω ≡ 1.
We denote by R and N the sets of all real numbers and non-negative integers, respectively. For any N ∈ N, let

PN be the set of all algebraic polynomials of degree � N . We denote by c a generic positive constant independent of
any function and N , and use the expression A � B to mean that there exists a generic positive constant c such that
A � cB .

We recall that the classical Jacobi polynomials J
α,β
n (x) (n � 0) are defined by

(1 − x)α(1 + x)βJ α,β
n (x) = (−1)n

2nn!
dn

dxn

{
(1 − x)n+α(1 + x)n+β

}
, x ∈ I. (2.1)

Let ωα,β(x) = (1 − x)α(1 + x)β be the Jacobi weight function. For α,β > −1, the Jacobi polynomials are mutually
orthogonal in L2

ωα,β (I ), i.e.,∫
I

J α,β
n (x)J α,β

m (x)ωα,β(x) dx = γ α,β
n δn,m, (2.2)

where δn,m is the Kronecker function, and

γ α,β
n = 2α+β+1�(n + α + 1)�(n + β + 1)

(2n + α + β + 1)�(n + 1)�(n + α + β + 1)
. (2.3)

The restriction “α,β > −1” was imposed to ensure that ωα,β ∈ L1(I ). Some other properties of the Jacobi polynomi-
als to be used in this paper are listed in Appendix A.

In fact, Szegö mentioned in [35] that one can define the Jacobi polynomial with indexes α or β � −1, based on the
Rodrigues’ formula (2.1), which is a polynomial of degree n, except for n + α + β + k = 0,0 � k � l (a reduction of
the degree in this case). However, the so defined Jacobi polynomials do not satisfy some important properties which
hold for α,β > −1, e.g., they are not mutually orthogonal in L2

ωα,β for all α,β . Hence, they are not quite suitable
for numerical computations. We shall define below generalized Jacobi polynomials/functions which inherit selected
important properties (of classical Jacobi polynomials) that play essential roles in a spectral approximation.

2.1. Definition of the GJP/Fs

For notational convenience, we introduce the following separable index sets in R
2 :

ℵ1 = {
(α,β): α,β � −1

}
, ℵ2 = {

(α,β): α � −1, β > −1
}
,

ℵ3 = {
(α,β): α > −1, β � −1

}
, ℵ4 = {

(α,β): α,β > −1
}
.

For any α,β ∈ R, we define

α̂ :=
{−α, α � −1,

0, α > −1,
ᾱ :=

{−α, α � −1,

α, α > −1
(2.4)

(likewise for β̂ and β̄). Throughout the paper, α̂, β̂ and ᾱ, β̄ are always defined from α,β as above.
The symbol [α] represents the largest integer � α, and let

n0 := n
α,β

0 := [α̂] + [β̂], n1 := n
α,β

1 := n − n
α,β

0 . (2.5)

The GJP/Fs are defined by

jα,β
n (x) = ωα̂,β̂ (x)J ᾱ,β̄

n1
(x), α,β ∈ R, n � n

α,β

0 , x ∈ I. (2.6)

We emphasize that {jα,β
n } are only defined for n � n

α,β . This fact is implicitly assumed hereafter.
0
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We can rewrite (2.6) in a more explicit from:

jα,β
n (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − x)−α(1 + x)−βJ
−α,−β
n1 (x), (α,β) ∈ ℵ1, n1 = n − [−α] − [−β],

(1 − x)−αJ
−α,β
n1 (x), (α,β) ∈ ℵ2, n1 = n − [−α],

(1 + x)−βJ
α,−β
n1 (x), (α,β) ∈ ℵ3, n1 = n − [−β],

J
α,β
n (x), (α,β) ∈ ℵ4.

(2.7)

We see that the GJP/Fs are generated from the classical Jacobi polynomials. In fact, as mentioned in Szegö [35], it
is also possible to use the Rodrigues’ formula (2.1) to define the Jacobi polynomial J

α,β
n with indexes α or β � −1.

A particular case is(
n

l

)
J−l,β

n (x) =
(

n + β

l

)(
x − 1

2

)l

J
l,β
n−l(x), 1 � l � n. (2.8)

However, there are very few discussions in [35] about the properties of the so-defined Jacobi polynomials with indexes
α or β � −1.

2.2. Basic properties of the GJP/Fs

The GJP/Fs have the following properties:

• The GJP/F j
α,β
n (x) is a polynomial of degree n if (i) (α,β) ∈ ℵ4, or (ii) α and β are negative integers. In these

cases, it coincides, apart from a constant, with the definition in Szegö [35]. Under the condition (ii), x = 1
(resp. x = −1) is the zero of multiplicity of α̂ for the polynomial j

α,β
n (x) (resp. β̂). Hence, the GJP/Fs are

suitable as base functions to approximate solutions of high-order differential equations with a corresponding set
of homogeneous boundary conditions (see Section 3 below).

• We find from (2.2), (2.6) and (2.7) that the GJP/Fs are mutually L2
ωα,β (I )-orthogonal, i.e.,∫

I

jα,β
n (x)jα,β

m (x)ωα,β(x) dx = ηα,β
n δm,n, with ηα,β

n = γ ᾱ,β̄
n1

. (2.9)

Here, we used the fact ᾱ = 2α̂ + α and β̄ = 2β̂ + β .
Note that polynomials of the form (1 − x)k(1 + x)lJ

α,β
n (x) (with α,β > −1) have been frequently used as basis

functions to impose boundary conditions, but they do not satisfy the orthogonality relation (2.9). We can also view
{j−k,−l

n } as the orthogonalization of {(1 − x)k(1 + x)lJ
α,β
n } in L2

ω−k,−l .
• They satisfy the Sturm–Liouville equation (see Appendix B.1):

∂x

(
(1 − x)α+1(1 + x)β+1∂xj

α,β
n (x)

) + λα,β
n (1 − x)α(1 + x)βjα,β

n (x) = 0, (2.10)

where

λα,β
n =

⎧⎪⎨
⎪⎩

(n1 + 1)(n1 − α − β), (α,β) ∈ ℵ1,

n1(n1 − α + β + 1) − α(β + 1), (α,β) ∈ ℵ2,

n1(n1 + α − β + 1) − β(α + 1), (α,β) ∈ ℵ3,

n1(n1 + α + β + 1), (α,β) ∈ ℵ4,

(2.11)

and n1 = n − n
α,β

0 = n − [α̂] − [β̂] � 0.

• The definition (2.7) ensures that ωα+1,β+1(x)j
α,β
n (x)∂xj

α,β
n (x) → 0 as |x| → 1. So multiplying j

α,β
m on both

sides of (2.10) and integrating by parts, we derive from (2.9) that∫
I

∂xj
α,β
m (x)∂xj

α,β
n (x)ωα+1,β+1(x) dx = λα,β

n ηα,β
n δm,n. (2.12)

• We infer from (A.3) (see Appendix A) and (2.6) that

jα,β
n (−x) = (−1)n1jβ,α

n (x), x ∈ I. (2.13)
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We next study the derivative relations of the GJP/Fs. Let us recall that for α,β > −1,

∂xj
α,β
n (x) = ∂xJ

α,β
n (x) = 1

2
(n + α + β + 1)j

α+1,β+1
n−1 (x), n � 1. (2.14)

Unfortunately, the GJP/Fs do not satisfy a similar derivative recurrence relation for all α,β ∈ R. Nevertheless, some
useful derivative recurrence relations can be derived.

Lemma 2.1. If one of the following conditions holds

(i) α,β � −2; (ii) α = −1, β � −2; (iii) α � −2, β = −1; (iv) α = β = −1, (2.15)

then

∂xj
α,β
n (x) = −2

(
n − [−α] − [−β] + 1

)
j

α+1,β+1
n−1 (x). (2.16)

On the other hand, if one of the following conditions holds

(i) α � −2, β > −1; (ii) α = −1, β > −1, (2.17)

then

∂xj
α,β
n (x) = −(

n − [−α] − α
)
j

α+1,β+1
n−1 (x). (2.18)

Similarly, if one of the following conditions holds

(i) α > −1, β � −2; (ii) α > −1, β = −1, (2.19)

then

∂xj
α,β
n (x) = (

n − [−β] − β
)
j

α+1,β+1
n−1 (x). (2.20)

The proof of this lemma is given in Appendix B.2.
Applying the formulas in Lemma 2.1 repeatedly, we obtain the following general derivative recurrence relations:

Lemma 2.2. Let k, l,m ∈ N and k, l,m � 1. We have

(i) If β > −1, then

∂m
x j−k,β

n (x) = Dk,β
m,n,j

−k+m,β+m
n−m (x), n � max(k,m), (2.21)

where

Dk,β
m,n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(−1)m
m−1∏
i=0

(n − i), m � k,

(−1)k
�(n + m − k + β + 1)

2m−k�(n + β + 1)

k−1∏
i=0

(n − i), m > k.

(2.22)

(ii) If α > −1, then

∂m
x jα,−k

n (x) = (−1)μDk,α
m,n,j

α+m,−k+m
n−m (x), n � max(k,m), (2.23)

where μ = m for m � k and μ = k for m > k.
(iii) If k � l, then

∂m
x j−k,−l

n (x) = Ek,l
m,n,j

−k+m,−l+m
n−m (x), n � max(k + l,m), (2.24)
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where

Ek,l
m,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−2)m
m∏

i=1

(n − l − k + i), m � l � k,

(−1)m2l

(
l∏

i=1

(n − l − k + i)

)(
m−l−1∏

i=0

(n − l − i)

)
, l < m � k,

(−1)k
�(n + m − l − k + 1)

2m−k−l�(n − l + 1)

(
l∏

i=1

(n − l − k + i)

)(
k−l−1∏
i=0

(n − l − i)

)
, l < k � m.

(2.25)

(iv) If l � k, then

∂m
x j−k,−l

n (x) = (−1)μEl,k
m,n,j

−k+m,−l+m
n−m (x), (2.26)

where μ = 0,m, l for the cases m � k � l, k < m � l and k < l � m, respectively.

The proof of this lemma is given in Appendix B.3.

2.3. Approximation properties of the GJP/Fs

We shall analyze below the approximation properties of generalized Jacobi orthogonal projections, which are useful
in the error analysis of spectral-Galerkin methods.

Since {jα,β
n } forms a complete orthogonal system in L2

ωα,β (I ), we define

Q
α,β
N := span

{
jα,β
n0

, j
α,β

n0+1, . . . , j
α,β
N

}
, (2.27)

and consider the orthogonal projection π
α,β
N : L2

ωα,β (I ) → Q
α,β
N defined by(

u − π
α,β
N u, v

N

)
ωα,β = 0, ∀v

N
∈ Q

α,β
N . (2.28)

We shall estimate the projection errors in two different ways. The first approach is based on the Sturm–Liouville
equation (2.10). The second one is based on the derivative relations given in Lemma 2.2.

We start with the Sturm–Liouville operator defined by

Aα,βφ(x) := −(1 − x)−α(1 + x)−β∂x

{
(1 − x)α+1(1 + x)β+1∂xφ(x)

}
. (2.29)

We recall that j
α,β
n (x) are the eigenfunctions of the Sturm–Liouville operator Aα,β with the corresponding eigenval-

ues λ
α,β
n (cf. (2.10)), and define the following Sobolev-type spaces associated with the Sturm–Liouville operator:

D
(
Ar

α,β

) = {
u: u ∈ L2

ωα,β (I ) and A
q
α,βu ∈ L2

ωα,β (I ),0 � q � r
}
, r ∈ N,

D
(
A

r+1/2
α,β

) = {
u: u ∈ D

(
Ar

α,β

)
and ∂xA

r
α,βu ∈ L2

ωα+1,β+1(I )
}
, r ∈ N, (2.30)

equipped with the norms

‖u‖D(Ar
α,β ) = ∥∥Ar

α,βu
∥∥

ωα,β , ‖u‖D(A
r+1/2
α,β )

= ∥∥∂xA
r
α,βu

∥∥
ωα+1,β+1 .

Using the identity Aα,βj
α,β
n = λ

α,β
n j

α,β
n repeatedly, we find from (2.9) and (2.12) that for r ∈ N,

‖u‖D(Ar
α,β ) =

( ∞∑
n=0

(
λα,β

n

)2r
ηα,β

n

∣∣ûα,β
n

∣∣2

)1/2

,

‖u‖D(A
r+1/2
α,β )

=
( ∞∑

n=0

(
λα,β

n

)2r+1
ηα,β

n

∣∣ûα,β
n

∣∣2

)1/2

, (2.31)

where û
α,β
n = (η

α,β
n )−1(u, j

α,β
n )ωα,β . For real r > 0, we define the space D(Ar

α,β) by space interpolation as in [5].
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Before we present one of our main results, we make the following observation: For any v ∈ D(Aα,β), if α � −1

(resp. β � −1), then v(x) → 0 as x → 1 (resp. x → −1), and by the definition of j
α,β
n , we have

ωα+1,β+1(x)∂xj
α,β
n (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
α − β + (α + β)x

)
J

−α,−β
n1 (x) + (1 − x2)∂xJ

−α,−β
n1 (x), if α,β � −1;

(1 + x)β+1
{
αJ

−α,β
n1 (x) + (1 − x)∂xJ

−α,β
n1 (x)

}
, if α � −1, β > −1;

(1 − x)α+1
{−βJ

α,−β
n1 (x) + (1 + x)∂xJ

α,−β
n1 (x)

}
, if α > −1, β � −1;

(1 − x)α+1(1 + x)β+1∂xJ
α,β
n (x), if α,β > −1,

where n1 = n − n0 � 0. Thus, for any v ∈ D(Aα,β), we have

ωα+1,β+1(x)v(x)∂xj
α,β
n (x) → 0, as |x| → 1, ∀(α,β) ∈ R

2. (2.32)

Using the identity Aα,βj
α,β
n = λ

α,β
n j

α,β
n again and integrating by parts, we find that for any v ∈ D(Aα,β),(

v, jα,β
n

)
ωα,β = (

λα,β
n

)−1(
v,Aα,βjα,β

n

)
ωα,β = (

λα,β
n

)−1
(Aα,βv, jα,β

n )ωα,β . (2.33)

Theorem 2.1. For any u ∈ D(A
r/2
α,β), r ∈ N and 0 � μ � r ,∥∥π

α,β
N u − u

∥∥
D(A

μ/2
α,β )

� Nμ−r‖u‖D(A
r/2
α,β )

. (2.34)

Proof. The proof follows a similar procedure used for the classical Jacobi projections (cf. [14,9,23]). We first consider
even integers, i.e., r = 2q for q = 0,1, . . . . We derive from (2.31) that for μ ∈ N,

∥∥π
α,β
N u − u

∥∥2
D(A

μ/2
α,β )

=
∞∑

n=N+1

(
λα,β

n

)μ
ηα,β

n

(
ûα,β

n

)2

=
∞∑

n=N+1

(
λα,β

n

)μ(
ηα,β

n

)−1(
u, jα,β

n

)2
ωα,β . (2.35)

Using repeatedly the identities Aα,βj
α,β
n = λ

α,β
n j

α,β
n and the relation (2.33), we derive that(

u, jα,β
n

)
ωα,β = (

λα,β
n

)−q(
A

q
α,βu, jα,β

n

)
ωα,β . (2.36)

Hence, by (2.9) and (2.11),

∥∥π
α,β
N u − u

∥∥2
D(A

μ/2
α,β )

=
∞∑

n=N+1

(
λα,β

n

)μ(
ηα,β

n

)−1(
u, jα,β

n

)2
ωα,β

� λ
μ−2q

N+1

∞∑
n=N+1

(
ηα,β

n

)−1(
A

q
α,βu, jα,β

n

)2
ωα,β

� N2(μ−2q)
∥∥A

q
α,βu

∥∥2
ωα,β � N2(μ−r)‖u‖2

D(A
r/2
α,β )

.

Next, we consider odd integers, i.e., r = 2q + 1 for q = 0,1, . . . . We observe from (2.10), (2.32) and (2.36) that(
u, jα,β

n

)
ωα,β = (

λα,β
n

)−q(
A

q
α,βu, jα,β

n

)
ωα,β = (

λα,β
n

)−q−1(
∂x

(
A

q
α,βu

)
, ∂xj

α,β
n

)
ωα+1,β+1 .

Therefore, by (2.11) and (2.12),

∥∥π
α,β
N u − u

∥∥2
D(A

μ/2
α,β )

=
∞∑

n=N+1

(
λα,β

n

)μ(
ηα,β

n

)−1(
u, jα,β

n

)2
ωα,β

� λ
μ−2q−1
N+1

∞∑ (
λα,β

n

)−1(
ηα,β

n

)−1(
∂x

(
A

q
α,βu

)
, ∂xj

α,β
n

)2
ωα+1,β+1
n=N+1
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� N2(μ−2q−1)
∞∑

n=N+1

(
λα,β

n

)−1(
ηα,β

n

)−1(
∂x

(
A

q
α,βu

)
, ∂xj

α,β
n

)2
ωα+1,β+1

� N2(μ−2q−1)
∥∥∂x

(
A

q
α,βu

)∥∥2
ωα+1,β+1 � N2(μ−r)‖u‖2

D(A
r/2
α,β )

.

Finally the desired result with real μ follows from the previous results and space interpolation. �
Theorem 2.1 provides a general approximation result for all α,β ∈ R. However, the norms used in Theorem 2.1

are expressed by the frequencies of u in terms of j
α,β
n , whose relation to the derivatives of u is not straightforward.

Next, we derive some approximation results which are expressed in terms of derivatives of u.
We introduce the space

Br
ωα,β (I ) := {

u: u is measurable on I and ‖u‖r,ωα,β < ∞}
, r ∈ N, (2.37)

equipped with the norm and semi-norm

‖u‖Br

ωα,β
=

(
r∑

k=0

∥∥∂k
xu

∥∥2
ωα+k,β+k

)1/2

, |u|Br

ωα,β
= ‖∂r

xu‖ωα+r,β+r .

For real r > 0, we define the space Hr
ωα,β (I ) by space interpolation as in [5].

Theorem 2.2. Let k, l � 1 and k, l ∈ N. If one of the following conditions holds:

(i) α = −k, β > −1; (ii) α > −1, β = −l; (iii) α = −k, β = −l, (2.38)

then for any u ∈ Br
ωα,β (I ), r ∈ N, r � 1 and 0 � μ � r ,∥∥π

α,β
N u − u

∥∥
B

μ

ωα,β
� Nμ−r

∥∥∂r
xu

∥∥
ωα+r,β+r . (2.39)

Proof. We first prove (2.39) with (i). In this case,

π
−k,β
N u(x) − u(x) = −

∞∑
n=N+1

ûnj
−k,β
n (x), with ûn = (u, j

−k,β
n )ω−k,β

‖j−k,β
n ‖2

ω−k,β

. (2.40)

As a consequence of (2.9) and (2.21)–(2.22), we have the orthogonality:∫
I

∂m
x j−k,β

n (x)∂m
x j

−k,β

n′ (x)ω−k+m,β+m(x)dx = (
Dk,β

m,n

)2
η

−k+m,β+m
n−m δn,n′ . (2.41)

Thanks to (2.41), we deduce from (2.40) that for μ ∈ N,

∥∥∂μ
x

(
π

−k,β
N u − u

)∥∥2
ω−k+μ,β+μ =

∞∑
n=N+1

(
Dk,β

μ,n

)2
û2

nη
−k+μ,β+μ
n−μ

� C
k,β
N,μ,r

∞∑
n=N+1

(
Dk,β

r,n

)2
û2

nη
−k+r,β+r
n−r � C

k,β
N,μ,r

∥∥∂r
xu

∥∥2
ω−k+r,β+r ,

where

C
k,β
N,μ,r = max

n>N

{
(D

k,β
μ,n)

2η
−k+μ,β+μ
n−μ

(D
k,β
r,n )2η

−k+r,β+r
n−r

}
.

We now estimate the upper bound of C
k,β
N,μ,r . By using the Stirling formula (cf. [15]),

�(s + 1) = √
2πs sse−s

(
1 + O(s−1/5)

)
, s 
 1,
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we derive from (2.3), (2.9) and (2.22) that for given ᾱ, β̄, k,μ,γ ,

γ ᾱ,β̄
n ∼ n−1, η

−k+μ,β+μ
n−μ ∼ η

−k+r,β+r
n−r ∼ n−1,

D
k,β
μ,n

D
k,β
r,n

∼ Nμ−r , n 
 1.

The above facts lead to C
α,β
N,μ,r � N2μ−2r . This completes the proof of (2.39) with (i).

The other two cases can be proved similarly. �
Remark 2.1. The results for the classical Jacobi polynomials with α,β > −1 were proved in [26]. The same results for
μ = 0 or α = β were also given in [19,3], respectively. The results for the case α = −k and β = −l were announced
(without proof) in [25].

3. Applications

An important application of GJP/Fs is that they form natural basis functions for spectral-Galerkin approximations
of differential equations. For example, one can verify (see Appendix B) that

j−1,−1
n (x) = 2(n − 1)

2n − 1

(
Ln−2(x) − Ln(x)

)
, (3.1)

j−2,−1
n (x) = 2(n − 2)

2n − 3

(
Ln−3(x) − 2n − 3

2n − 1
Ln−2(x) − Ln−1(x) + 2n − 3

2n − 1
Ln(x)

)
, (3.2)

j−1,−2
n (x) = 2(n − 2)

2n − 3

(
Ln−3(x) + 2n − 3

2n − 1
Ln−2(x) − Ln−1(x) − 2n − 3

2n − 1
Ln(x)

)
, (3.3)

j−2,−2
n (x) = 4(n − 2)(n − 3)

(2n − 3)(2n − 5)

(
Ln−4(x) − 2(2n − 3)

2n − 1
Ln−2(x) + 2n − 5

2n − 1
Ln(x)

)
, (3.4)

where Lk(x) is the Legendre polynomial of k-th degree. The GJP/Fs in (3.1) and (3.4) were used in [32] as basis
functions to approximate the solutions of second- and forth-order equations with homogeneous Dirichlet boundary
conditions, while the GJP/Fs in (3.2) and (3.3) were used as basis functions for the test and trial spaces in the dual-
Petrov–Galerkin method for third-order differential equations in [33].

A main advantage of using the GJP/Fs as basis functions is that the GJP/Fs satisfy all given boundary conditions of
the underlying problem. Hence, there is no need to construct special quadratures involving derivatives at end-points
as in a collocation approach [7,27,29]. for third-order equations and in [7] for fourth-order equations. The spectral
approximations using GJP/Fs lead to well-conditioned, sparse for problems with constant or polynomial coefficients
(cf. [32,33]), systems that can be efficiently implemented. Moreover, using the GJP/Fs simplifies theoretical analysis,
and leads to more precise error estimates as demonstrated below.

3.1. Spectral-Galerkin methods for high order equations

We consider the following 2m-th order linear equation:

L2mu := (−1)mb0u
(2m) +

2m−1∑
k=0

b2m−ku
(k) = f, in I,m � 1,

u(k)(±1) = 0, 0 � k � m − 1, (3.5)

where {bj }0�j�2m and f are given, and we assume b0 > 0. We introduce the bilinear form associated with (3.5):

am(u, v) = (
b0∂

m
x u, ∂m

x v
) + (−1)m

(
b1∂

m−1
x u, ∂m

x v
)

+ (−1)m−1(b2∂
m−1
x u, ∂m−1

x v
) + · · · + (b2mu,v), ∀u,v ∈ Hm(I). (3.6)

As usual, we assume that the bilinear form is continuous and elliptic in Hm(I), i.e.,
0
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∣∣am(u, v)
∣∣ � C0|u|m|v|m, ∀u,v ∈ Hm

0 (I ), (3.7a)

am(u,u) � C1|u|2m, ∀u ∈ Hm
0 (I ) (3.7b)

where C0 and C1 are two positive constants depending only on bj ,0 � j � 2m.
The variational formulation for (3.5) is: Given f ∈ H−m(I), find u ∈ Hm

0 (I ) such that

am(u, v) = (f, v), ∀v ∈ Hm
0 (I ), (3.8)

and the corresponding spectral-Galerkin approximation is: Given f ∈ C(Ī ), find uN ∈ VN := PN ∩ Hm
0 (I ) such that

am(uN, vN) = (f, vN)N , ∀vN ∈ VN, (3.9)

where (·, ·)N is the inner product associated to the Legendre–Gauss–Lobatto quadrature. The well-posedness of (3.8)
and (3.9) is ensured by (3.7a)–(3.7b).

3.2. Error estimates

Let us denote πm
N = π

−m,−m
N . We note immediately that(

∂m
x

(
πm

N u − u
)
, ∂m

x vN

) = (−1)m
(
πm

N u − u, ∂2m
x vN

)
= (−1)m

(
πm

N u − u,ωm,m∂2m
x vN

)
ω−m,−m = 0, ∀vN ∈ VN, (3.10)

which is a consequence of (2.28) and the fact ωm,m∂2m
x vN ∈ VN . In other words, πm

N is simultaneously orthogonal
projectors associated with (·, ·)ω−m,−m and (∂m

x ·, ∂m
x ·).

For simplicity, we assume that {bj } are constants, and let u and uN be respectively the solutions of (3.8) and (3.9).
Then, we have the following result:

Theorem 3.1. Assuming u ∈ Hm
0 (I ) ∩ Br

ω−m,−m(I ) and f (1 − x2)m ∈ B
ρ

ω0,0(I ), m,r,ρ ∈ N with 1 � m � r , 1 � ρ,
then for 0 � μ � m, we have

‖u − uN‖μ � Nμ−r
∥∥∂r

xu
∥∥

ωr−m,r−m + N−ρ
∥∥∂ρ

x

(
f (1 − x2)m

)∥∥
ωρ,ρ . (3.11)

Proof. We denote êN = πm
N u − uN and eN = u − uN = (u − πm

N u) + êN .
We first prove (3.11) for μ = m. We derive from (3.8) and (3.9) that

am(êN , vN) = am

(
πm

N u − u,vN

) + (f, vN) − (f, vN)N , vN ∈ VN. (3.12)

By using the Hardy inequality (cf., for example, Section A.14 in [13]), it is easy to show that∫
I

v2(1 − x2)−2m dx �
∫
I

(∂xv)2(1 − x2)−2m+2 dx � · · · �
∫
I

(
∂m
x v

)2
dx, ∀v ∈ Hm

0 (I ). (3.13)

For vN ∈ VN , let f̃ = f (1 − x2)m and ṽN = vN(1 − x2)−m, then by using the properties of the Legendre–Gauss–
Lobatto quadrature (cf. [13]) and (3.13),

(f, vN) − (f, vN)N = (f̃ , ṽN ) − (f̃ , ṽN )N = (
f̃ − π0

N−1f̃ , ṽN

) − (
IN f̃ − π0

N−1f̃ , ṽN

)
N

�
(∥∥f̃ − π0

N−1f̃
∥∥ + ∥∥IN f̃ − π0

N−1f̃
∥∥)‖ṽN‖

�
(∥∥f̃ − π0

N−1f̃
∥∥ + ‖f̃ − IN f̃ ‖)∥∥∂m

x vN

∥∥
� C

(∥∥f̃ − π0
N−1f̃

∥∥2 + ‖f̃ − IN f̃ ‖2) + C1

2
‖vN‖2

m. (3.14)

We recall from Theorem 4.10 in [26] and Theorem 2.2 with (α,β) = (0,0) that∥∥f̃ − π0
N−1f̃

∥∥ + ‖f̃ − IN f̃ ‖ � N−ρ
∥∥∂ρ

x f̃
∥∥

ωρ,ρ . (3.15)

Thanks to (3.10), the first term involving the derivative of the highest order m vanishes in the expression of
am(πm

N u − u,vN). Moreover, we have from (2.39) with condition (iii) that for certain suitable small ε > 0, 0 �
k � m − 1, k � l � k + 1, k + l � 2m − 1 and k, l ∈ N,
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∣∣(∂k
x

(
πm

N u − u
)
, ∂l

xvN

)∣∣ �
∥∥∂k

x

(
πm

N u − u
)∥∥

ω−m+k,−m+k

∥∥∂l
xvN

∥∥
ωm−k,m−k

� Nk−r
∥∥∂r

xu
∥∥

ωr−m,r−m‖vN‖l

� ε‖vN‖2
l + c

4ε
N2k−2r

∥∥∂r
xu

∥∥2
ωr−m,r−m. (3.16)

Taking vN = êN in (3.12) and (3.16), we derive from (3.6), (3.7b), (3.14) and 3.15 that

C1

2
‖êN‖2

m � ε‖êN‖2
m +

(
m−1∑
k=0

N2k−2r

)∥∥∂r
xu

∥∥2
ωr−m,r−m + N−2ρ

∥∥∂ρ
x f̃

∥∥2
ωρ,ρ

� ε‖êN‖2
m + N2m−2r−2

∥∥∂r
xu

∥∥2
ωr−m,r−m + N−2ρ

∥∥∂ρ
x f̃

∥∥2
ωρ,ρ . (3.17)

Thus,

‖êN‖m � Nm−r−1
∥∥∂r

xu
∥∥

ωr−m,r−m + N−ρ
∥∥∂ρ

x f̃
∥∥

ωρ,ρ . (3.18)

On the other hand, we have from (2.39) with condition (iii) that∥∥πm
N u − u

∥∥
m

�
∥∥πm

N u − u
∥∥

Bm

ω−m,−m
� Nm−r

∥∥∂r
xu

∥∥
ωr−m,r−m.

So (3.11) follows from the triangle inequality, (3.18) and the above estimate.
We now turn to the case μ = 0. For given g ∈ L2(I ), we consider the auxiliary problem: Find w ∈ Hm

0 (I ) such that

am(z,w) = (g, z), ∀z ∈ Hm
0 (I ). (3.19)

We know from (3.7a) and (3.7b) that (3.19) has a unique solution with the regularity

‖w‖2m � ‖g‖. (3.20)

From (3.8) and (3.9),

am(u − uN,vN) = (f, vN) − (f, vN)N , ∀vN ∈ VN. (3.21)

Taking z = u − uN in (3.19), we find from Theorem 2.2, (3.7a), (3.11), (3.20)–(3.21) and (3.14) that

(u − uN,g) = am(u − uN,w) = am

(
u − uN,w − πm

N w
) + (

f,πm
N w

) − (
f,πm

N w
)
N

� ‖u − uN‖m

∥∥πm
N w − w

∥∥
m

+ (∥∥f̃ − π0
N−1f̃

∥∥ + ∥∥IN f̃ − π0
N−1f̃

∥∥)∥∥∂m
x πm

N w
∥∥

� N−r
∥∥∂r

xu
∥∥

ωr−m,r−m

∥∥∂2m
x w

∥∥
ωm,m + N−ρ

∥∥∂ρ
x f̃

∥∥
ωρ,ρ ‖w‖m

�
(
N−r

∥∥∂r
xu

∥∥
ωr−m,r−m + N−ρ

∥∥∂ρ
x f̃

∥∥
ωρ,ρ

)‖g‖.
Consequently,

‖u − uN‖ = sup
g∈L2(I )

g �=0

|(u − uN,g)|
‖g‖ � N−r‖u‖ωr−m,r−m + N−ρ

∥∥∂ρ
x f̃

∥∥
ωρ,ρ .

This implies the result with μ = 0.
For 0 < μ < m, let θ = 1 − μ

m
. Clearly 0 < θ < 1. Since Hm(I) is continuously embedded and dense in L2(I ), we

can define the interpolation space [Hm(I),L2(I )]θ as in [5]. Indeed, as is shown in Theorem 1.6 of [9] (see also [22]),
[Hm(I),L2(I )]θ = H(1−θ)m(I ) = Hμ(I). Therefore, by the Gagliardo–Nirenberg inequality and the previous results,

‖u − uN‖μ � ‖u − uN‖1−θ
m ‖u − uN‖θ � Nμ−r |u|r,ω−m,−m + N−ρ

∥∥∂ρ
x f̃

∥∥
ωρ,ρ .

This ends the proof. �
Remark 3.1. Using the GJP/F approximation not only greatly simplifies the error analysis, but also leads to more
precise error estimates. For instance, if we use the Hm

0 -orthogonal projection results in [8] and [22], then the best
error estimate will be

‖u − uN‖m � Nm−r‖u‖r + N−ρ‖f ‖ρ, 0 � m � r. (3.22)
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Therefore, the result (3.11) is much sharper than (3.22) for problems with singularities at the endpoints. As an example,
let

u(x) = (1 − x)γ v(x), v ∈ C∞(I ), γ > m, x ∈ I, (3.23)

be a solution of (3.5). It can be easily checked that u ∈ Hγ+1/2−ε(I ) ∩ B
2γ−m+1−ε

ω−m,−m (I ) (∀ε > 0) and f ∈
Hγ−2m+1/2−ε(I ), f (1 − x2)m ∈ B

2(γ−m)+1−ε

ω0,0 (I ) (∀ε > 0). Hence, Theorem 3.1 with μ = m implies that

‖u − uN‖m � N−2γ+2m−1+ε, (3.24)

while the usual analysis (cf. Bernardi and Maday [7]) only leads to

‖u − uN‖3 � N−γ+2m+1/2+ε. (3.25)

3.3. Matrix form of (3.9)

In view of the homogeneous boundary conditions satisfied by j
−m,−m
k , we have

VN = span
{
j

−m,−m
2m , j

−m,−m
2m+1 , . . . , j

−m,−m
N

}
.

Using the facts that ωm,m∂2m
x j

−m,−m
l ∈ Vl and j

−m,−m
k is orthogonal to Vl if k > l, we find that

(
∂m
x j

−m,−m
k , ∂m

x j
−m,−m
l

) = (−1)m
(
j

−m,−m
k , ∂2m

x j
−m,−m
l

)
= (

j
−m,−m
k ,ωm,m∂2m

x j
−m,−m
l

)
ω−m,−m = 0. (3.26)

By symmetry, the same is true if k < l. Hence, letting φk(x) = cm,kj
−m,−m
k with a suitable cm,k , we can have(

∂m
x φk, ∂

m
x φl

) = δkl .

Hence, by setting

fk = (f,φk), f = (f2m,f2m+1, . . . , fN)T ,

uN =
N∑

l=2m

ûlφl, u = (û2m, û2m+1, . . . , ûN )T ,

akl = am(φl, φk), A = (akl)2m�k,l�N,

the matrix system associated with (3.9) becomes

Au = f. (3.27)

Thanks to (3.7a)–(3.7b), we have

C0‖u‖2
l2

= C0|uN |2m � am(uN,uN) = (Au,u)l2 � C1|uN |2m = C1‖u‖2
l2
, (3.28)

which implies that cond(A) � C1/C0 and is independent of N . It can be easily shown that A is a sparse matrix with
bandwidth 2m+ 1. The same argument as above shows that (3.28) is still valid for problems with variable coefficients
as long as (3.7a)–(3.7b) are satisfied. Therefore, even though A becomes full for problems with variable coefficients
but the product of A with a vector x̄ can be computed efficiently without the explicit knowledge of the entries of A

so the associated linear system can still be solved efficiently with a suitable iterative method such as the Conjugate
Gradient method.

The generalized Jacobi polynomials/functions were also successfully used for numerical solutions of partial differ-
ential equations of odd orders (cf. [25,34]).
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Fig. 1. The maximum pointwise error (marker “◦”) and the L2-error (marker “�”) against various N in semi-log scale for Example 1.

4. Numerical results

We present some numerical examples to illustrate the performance of the proposed spectral methods using gener-
alized Jacobi polynomials as basis functions. As an example, we consider the sixth-order equations, which are known
to arise in astrophysics [1,11]. In the computations, we use the spectral-Galerkin scheme (3.9) with m = 3 and the
generalized Jacobi polynomials {J−3,−3

m } as the basis functions.
We first consider an example discussed in [17], where the numerical solutions are obtained by a Sinc-Galerkin

method.

Example 1. Consider

u(6)(x) − u(x) = f (x), x ∈ (−1,1), (4.1)

with boundary conditions for u(±1), u′(±1), u′′(±1) and f (x) such that the exact solution is u(x) = (1 − x)ex .

In Fig. 1, we plot the maximum pointwise error and the L2-error against various N . It is clear that the errors decay
exponentially fast, consistent with the results in Theorem 3.1 since both the solution u and the function f are analytic.
Note that with the same computational cost, say, N = 16, the Sinc-method in [17] only achieves an accuracy O(10−4),
see Table 4.3 in [17], while our method is much more accurate.

Example 2. We consider (4.1) with boundary conditions for u(±1), u′(±1), u′′(±1) and f (x) such that the exact
solution is

u(x) = (1 + x)γ ex, x ∈ (−1,1).

When γ is not an integer, the solution has a finite regularity and it can be easily checked that (cf. Remark 3.1)
u ∈ B

2γ−2−ε

ω−3,−3 (I ), f (1 − x2)3 ∈ B
2γ−5−ε

ω0,0 (I ) (∀ε > 0). Hence, Theorem 3.1 with m = 3 and μ = 3 implies that

‖u − uN‖3 � Nε−2γ+5 (∀ε > 0). (4.2)

We plot in Fig. 2 the H 3-error against various N with γ = 3.1,3.5,3.8,4.2. Note that for these values of γ , f is
not even in L2(I ). The “approximate” slopes of these lines are respectively −1.19, −2.01, −2.65 and −3.49. These
convergence rates are very close to the predicted convergence rate of 2γ − 5 in (4.2).
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Fig. 2. H 3-errors against various N in log–log scale for Example 2 with several γ .

5. Concluding remarks

We introduced in this paper a family of generalized Jacobi polynomials/functions with indexes α,β ∈ R based on
the principle that they are mutually orthogonal with respect to the corresponding Jacobi weights and that they inherit
selected important properties of the classical Jacobi polynomials. We established two sets of approximation results by
using the Sturm–Liouville operator and the derivative recurrence relations.

An important application of GJP/Fs is to serve as basis functions for spectral approximations of differential
equations with suitable boundary conditions which are automatically satisfied by corresponding GJP/Fs. This is
especially convenient for high-order differential equations. Unlike in a collocation method for which special quadra-
tures involving derivatives at the end points need to be developed, the implementations using GJP/Fs are simple and
straightforward. Moreover, the use of generalized Jacobi polynomials/functions leads to much simplified analysis,
more precise error estimates and well conditioned algorithms.

Appendix A. Properties of the classical Jacobi polynomials

The classical Jacobi polynomials are the eigenfunctions of the Sturm–Liouville problem:

∂x

(
(1 − x)α+1(1 + x)β+1∂xJ

α,β
n (x)

) + μα,β
n (1 − x)α(1 + x)βJ α,β

n (x) = 0, n � 0, (A.1)

with the corresponding eigenvalues μ
α,β
n = n(n + α + β + 1). An alternative form of (A.1) is (see [35])

(1 − x2)∂2
xYn + [

α − β + (α + β − 2)x
]
∂xYn + (n + 1)(n + α + β)Yn = 0 (A.2)

where Yn(x) = ωα,β(x)J
α,β
n (x) and ωα,β(x) = (1 − x)α(1 + x)β .

The classical Jacobi polynomials with indexes α,β > −1 satisfy the following recurrence relations (see Szegö [35],
Askey [2] and Rainville [31]):

Jα,β
n (−x) = (−1)nJ β,α

n (x); (A.3)

J
α,β

n−1(x) = Jα,β−1
n (x) − Jα−1,β

n (x), α,β > 0, n � 1; (A.4)

Jα,β
n (x) = 1

n + α + β

[
(n + β)J α,β−1

n (x) + (n + α)J α−1,β
n (x)

]
, α,β > 0; (A.5)

(1 − x)J α+1,β
n (x) = 2 [

(n + α + 1)J α,β
n (x) − (n + 1)J

α,β

n+1(x)
]; (A.6)
2n + α + β + 2



B.-Y. Guo et al. / Applied Numerical Mathematics 59 (2009) 1011–1028 1025
(1 + x)J α,β+1
n (x) = 2

2n + α + β + 2

[
(n + β + 1)J α,β

n (x) + (n + 1)J
α,β

n+1(x)
]; (A.7)

∂xJ
α,β
n (x) = 1

2
(n + α + β + 1)J

α+1,β+1
n−1 (x), n � 1; (A.8)

ωα,β(x)J α,β
n (x) = (−1)m(n − m)!

2mn!
dm

dxm

{
ωα+m,β+m(x)J

α+m,β+m
n−m (x)

}
, n � m � 0; (A.9)

xJα,β
n (x) = anJ

α,β

n−1(x) + bnJ
α,β
n (x) + cnJ

α,β

n+1(x), (A.10)

where an, bn, cn are constants (see [35] for their expressions).

Appendix B. Some proofs

B.1. The proof of (2.10)

We first consider the case (α,β) ∈ ℵ1. Taking Yn1(x) = ω−α,−β(x)J
−α,−β
n1 (x) = j

α,β
n (x) in (A.2), we find that

(1 − x2)∂2
x jα,β

n (x) + [
(β − α) − (α + β + 2)x

]
∂xj

α,β
n (x) + λα,β

n jα,β
n (x) = 0.

Multiplying ωα,β(x) on both sides of the above equation, we can rewrite the resulting equation as (2.10) with λ
α,β
n =

(n1 + 1)(n1 − α − β).
Next, let (α,β) ∈ ℵ2. By the definition (2.7), we have J

−α,β
n1 (x) = (1 − x)αj

α,β
n (x). We plug it into (A.1) to get

that

∂x

(
(1 − x)−α+1(1 + x)β+1∂x

(
(1 − x)αjα,β

n (x)
)) + μ−α,β

n1
(1 + x)βjα,β

n (x) = 0,

which can be simplified to

(1 − x2)∂2
x jα,β

n (x) + [
(β − α) − (α + β + 2)x

]
∂xj

α,β
n (x) + (

μ−α,β
n1

− α(β + 1)
)
jα,β
n (x) = 0.

Multiplying ωα,β(x) on both sides of the above equation, we can get the resulting equation (2.10) with (α,β) ∈ ℵ2.
We can prove the case (α,β) ∈ ℵ3 similarly.

Finally (2.10) with (α,β) ∈ ℵ4 is a direct consequence of (A.1) and (2.7).

B.2. The proof of Lemma 2.1

We first prove (2.16). For α,β � −2, let n1 = n − [−α] − [−β] � 0, and by (A.9) and (2.7),

j
α+1,β+1
n−1 (x)

(2.7)= (1 − x)−α−1(1 + x)−β−1J
−α−1,−β−1
n1+1 (x)

(A.9)= − 1

2(n1 + 1)
∂x

(
(1 − x)−α(1 + x)−βJ−α,−β

n1
(x)

)
(2.7)= − 1

2(n − [−α] − [−β] + 1)
∂xj

α,β
n (x). (B.1)

This leads to (2.16) for the case (i) of the condition (2.15). In fact, (B.1) also holds for α = −1 and β � −2, which,
along with (2.7) (the cases (−1, β) ∈ ℵ1 and (0, β + 1) ∈ ℵ3), leads to

j
0,β+1
n−1 (x) = (1 + x)−β−1J

0,−β−1
n1+1 (x) = − 1

2(n1 + 1)
∂x

(
ω1,−β(x)J 1,−β

n1
(x)

)
= − 1

2(n1 + 1)
∂xj

−1,β
n (x), n1 = n − [−β] − 1 � 0. (B.2)

Hence, (2.16) holds for the case (ii) of the condition (2.15). Similarly, we can prove the case: α � −2 and β = −1,
while taking α = β = −1 in (B.1) gives (2.16) for the case (iv) of the condition (2.15).

We now turn to the proof of (2.18). If α � −2 and β > −1, then, using (A.6), (A.8) and (2.7) with n1 = n − [−α],
yields that for n1 � 0,
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∂xj
α,β
n (x)

(2.7)= ∂x

(
(1 − x)−αJ−α,β

n1
(x)

)
= (1 − x)−α−1(αJ−α,β

n1
(x) + (1 − x)∂xJ

−α,β
n1

(x)
)

(A.8)= (1 − x)−α−1
(

αJ−α,β
n1

(x) + 1

2
(n1 − α + β + 1)(1 − x)J

−α+1,β+1
n1−1 (x)

)
(A.6)= (1 − x)−α−1

(
αJ−α,β

n1
(x) + n1 − α + β + 1

2n1 − α + β + 1

(
(n1 − α)J

−α,β+1
n1−1 (x) − n1J

−α,β+1
n1

(x)
))

.

Using (A.4) gives

J
−α,β+1
n1−1 (x) = J−α,β

n1
(x) − J−α−1,β+1

n1
(x),

and plugging it into the above formula leads to

∂xj
α,β
n (x) = (1 − x)−α−1

{
αJ−α,β

n1
(x) + n1 − α + β + 1

2n1 − α + β + 1

(
(n1 − α)J−α,β

n1
(x)

− (n1 − α)J−α−1,β+1
n1

(x) − n1J
−α,β+1
n1

(x)
)}

= (1 − x)−α−1
{

n1

2n1 − α + β + 1

(
(n1 + β + 1)J−α,β

n1
(x) − (n1 − α + β + 1)J−α,β+1

n1
(x)

)
− (n1 − α)(n1 − α + β + 1)

2n1 − α + β + 1
J−α−1,β+1

n1
(x)

}
.

Thanks to (A.5), we have

(n1 − α + β + 1)J−α,β+1
n1

(x) = (n1 + β + 1)J−α,β
n1

(x) + (n1 − α)J−α−1,β+1
n1

(x).

Consequently,

∂xj
α,β
n (x) = (1 − x)−α−1

( −n1(n1 − α)

2n1 − α + β + 1
J−α−1,β+1

n1
(x) − (n1 − α)(n1 − α + β + 1)

2n1 − α + β + 1
J−α−1,β+1

n1
(x)

)

= −(n1 − α)(1 − x)−α−1J−α−1,β+1
n1

(x)

(2.7)= −(
n − [−α] − α

)
j

α+1,β+1
n−1 (x).

Hence, (2.18) holds for the case (i) of condition (2.17). Note that the above procedure is also valid for α = −1 and
β > −1, namely,

∂xj
−1,β
n (x) = −nJ

0,β+1
n−1 (x) = −nj

0,β+1
n−1 (x), n � 1.

Here, we used the definition (2.7) (with (0, β + 1) ∈ ℵ4) to derive the last identity. This implies (2.18) for the case (ii)
of condition (2.17).

Finally, (2.20) can be verified by using the property (2.13) and (2.18).

B.3. The proof of Lemma 2.2

We first prove (2.21).
If m � k, then we know from the condition (2.17) that the derivative relation (2.18) is valid for α = −k � −1 and

β > −1, and using it inductively leads to the desired result (2.21) in case of m � k.
Next, thanks to (A.8), we derive that for a, b > −1,

∂
p
x J a,b

q (x) = �(q + p + a + b + 1)

2p�(q + a + b + 1)
J

a+p,b+p
q−p (x), q � p, p,q ∈ N. (B.3)

Thus, for m > k, we deduce from (2.18) with m = k and the above formula that
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∂m
x j−k,β

n (x) = ∂m−k
x ∂k

x j−k,β
n (x)

(2.21)= (−1)k

(
k−1∏
i=0

(n − i)

)
∂m−k
x j

0,β+k
n−k (x)

(2.7)= (−1)k

(
k−1∏
i=0

(n − i)

)
∂m−k
x J

0,β+k
n−k (x)

(B.3)= (−1)k

(
k−1∏
i=0

(n − i)

)
�(n + m − k + β + 1)

2m−k�(n + β + 1)
J

m−k,β+m
n−m (x)

(2.7)= Dk,β
m,nj

−k+m,β+m
n−m (x).

We used the definition (2.7) with (−k + m,β + m) ∈ ℵ4 to derive the last identity.
The result (2.23) follows from (2.13) and (2.21)–(2.22).
We now turn to the proof of (2.24). For the first case: m � l � k, we can derive the result by using (2.16) inductively.

For the second case: l < m � k, we use the above result with m = l, l < k and (2.21) with m − l � k − l, to deduce
that

∂m
x j−k,−l

n (x) = ∂m−l
x ∂l

xj
−k,−l
n (x) = (−2)l

(
l∏

i=1

(n − l − k + i)

)
∂m−l
x j

−k+l,0
n−l (x)

= (−2)l

(
l∏

i=1

(n − l − k + i)

)(
(−1)m−l

m−l−1∏
i=0

(n − l − i)

)
j

−k+m,m−l
n−m (x)

= Ek,l
m,nj

−k+m,−l+m
n−m (x).

We can prove the result with l < k � m in the same manner. Finally, the result (2.26) follows from (2.25) and (2.13).

B.4. Derivation of (3.1)–(3.4)

Let α,β < 1 and n1 = n − [−α] − [−β]. By the definition (2.7) and (A.6), (A.7),

jα−1,β
n (x) = 2

2n1 − α − β

[
(n1 − α)j

α,β

n−1(x) − n1j
α,β
n (x)

]
,

jα,β−1
n (x) = 2

2n1 − α − β

[
(n1 − α)j

α,β

n−1(x) + n1j
α,β
n (x)

]
. (B.4)

Hence, taking α = β = 0 leads to

j−1,0
n (x) = Ln−1(x) − Ln(x), j0,−1

n (x) = Ln−1(x) + Ln(x). (B.5)

Next, we verify from (A.6), (A.7) that for a, b > −1,

(1 − x2)J
a+1,b+1
k−1 (x) = A

a,b
k J

a,b
k−1(x) + B

a,b
k J

a,b
k (x) + C

a,b
k J

a,b
k+1(x), (B.6)

where

A
a,b
k = 4(k + a)(k + b)

(2k + a + b)(2k + a + b + 1)
, B

a,b
k = 4k(a − b)

(2k + a + b)(2k + a + b + 2)
,

C
a,b
k = 4k(k + 1)

(2k + a + b + 1)(2k + a + b + 2)
. (B.7)

Taking a = −α,b = −β and k = n1, we derive from (B.6), (B.7) and the definition (2.7) that

j
α−1,β−1

(x) = A−α,−β
n j

α,β
(x) + B−α,−β

n jα,β
n (x) + C−α,−β

n j
α,β

(x). (B.8)
n+1 1 n−1 1 1 n+1
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Thus, we have

j
−1,−1
n+1 (x) = 2n

2n + 1

(
Ln−1(x) − Ln+1(x)

)
, (B.9)

which implies (3.1). Similarly, taking (α,β) = (−1,0), (0,−1), (−1,−1) in (B.8), and using (B.5) and/or (B.9), we
derive (3.2)–(3.4).
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