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Abstract We present in this paper a spectrally accurate numerical method for com-
puting the spherical/vector spherical harmonic expansion of a function/vector field
with given (elemental) nodal values on a spherical surface. Built upon suitable ana-
lytic formulas for dealing with the involved highly oscillatory integrands, the method
is robust for high mode expansions. We apply the numerical method to the simula-
tion of three-dimensional acoustic and electromagnetic multiple scattering problems.
Various numerical evidences show that the high accuracy can be achieved within
reasonable computational time. This also paves the way for spectral-element dis-
cretization of 3D scattering problems reduced by spherical transparent boundary
conditions based on the Dirichlet-to-Neumann map.
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1 Introduction

Many applications in e.g., geophysics, weather and climate modelling, and optical
and electromagnetic materials, involve computations over spherical surfaces, where
various scenarios require to calculate the expansions of scalars or vector fields in
spherical harmonics (SPH) or vector spherical harmonics (VSH). Conventionally, the
associated surface integrals on S2 = {(θ, ϕ) : θ ∈ [0, π ], ϕ ∈ [0, 2π)}, are evaluated
by numerical quadrature on global “tensor product” of equispaced grids ([27, 33]):

θj = π(j + 1/2)

J + 1
, 1 ≤ j ≤ J ; ϕk = 2π(k + 1/2)

2K + 1
, 1 ≤ k ≤ K. (1.1)

The number of points in two directions is generally determined by the so-called alias-
free condition: J ≥ (3L+1)/2 and K ≥ 3L+1, where L is the cut-off frequency or
the highest expansion mode. The computational complexity of direct computation of
the discrete spherical harmonics transform is O(L3). Nevertheless, fast algorithms
were developed based on the FFT and new fast associated Legendre transform [27,
32, 33]. The related spectral transform method has been widely used in simulations
of partial differential equations (PDEs) on the sphere (see [6] and the references
therein), after all the spherical harmonics are eigenfunctions of the Laplace-Beltrami
operator. However, it is noteworthy that the VSH spectral transform method has been
less studied.

Various partitions of the spherical surfaces and local element methods have been
proposed to reduce the cost of nonlocal communications between global transforms
and facilitate the parallel implementation. These include the icosahedral, hexahedral,
and cubed-sphere grids (cf. [13]), among which the cubed-sphere partition of the
sphere introduced by Sadourny [28] meets the desirable features for a “good” par-
tition in the sense of Phillips [26]. In practice, spectral element methods with such
cartesian coordinate-based partitions provide powerful tools in weather prediction
and climate modelling and simulations.

In this paper, we are concerned with high-mode SPH and VSH expansions, where
the scalar and vector fields of interest are given nodal values resulted from a (con-
forming or non-conforming) spectral element discretization inside or exterior to the
spherical surface. One important application is related to the acoustic and elec-
tromagnetic wave scattering with high wavenumber using spherical transparent (or
nonreflecting) boundary condition (TBC) (or NRBC) for domain reduction. To fix
the idea, let S2h := {Se}Ee=1 be a generic non-overlapping partition (cf. Fig. 1) of the
sphere S2, and consider the spectral element approximations of unknown function u

and vector field v projected upon (or restricted to) S2 given by

uE
N(θ, ϕ) =

N∑

i=0

N∑

j=0

ue
ijψij (F−1

e (θ, ϕ)), vE
N (θ, ϕ) =

N∑

i=0

N∑

j=0

ve
ijψij (F−1

e (θ, ϕ)) on Se,

(1.2)
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where {ue
ij }Ni,j=0 and {ve

ij }Ni,j=0 are nodal values on the spectral-element grid on Se,
Fe is the elemental mapping from the reference square Q := [−1, 1] × [−1, 1] to
Se, and {ψij } are the spectral-element basis functions. We intend to evaluate

ãm
l = ∫

S2
uE

N(θ, ϕ)Ym
l (θ, ϕ)dS, and ṽr

lm = ∫
S2

vE
N · Ym

l
dS,

ṽ
(1)
lm = �−1

l

∫
S2

vE
N · �m

l dS, ṽ
(2)
lm = �−1

l

∫
S2

vE
N · �m

l dS,
(1.3)

where �l = l(l + 1) and {Ym
l

, �m
l , �m

l }0≤|m|≤l are VSH defined in (2.21)–(2.23)
(cf. [33]). The significant challenges reside in the following aspects.

(i) The spectral element approximation uE
N and vE

N are piecewise smooth (i.e., only
in C0(S2)), so the interplay between global quadrature points (cf. (1.1)) and
spectral element grids via interpolation and fast transformation algorithm has
only a first-order convergence.

(ii) When the SPH/VSH mode is high (i.e., l is large), the SPH and VSH (so the
integrands) become highly oscillatory. On the other hand, the elemental mapping
(e.g., for the cubed-sphere grids) significantly complicates the integrand when
one computes the integrals in the reference element Q. Thus, the naive use of a
composite rule with partition coherent to the spectral element partition S

2
h can

be applied to produce high accuracy, but one has to use a large number of points.

To overcome these difficulties, we employ a suitable partition of the spherical
surface that allows for using some analytic formulas to evaluate the above integrals
exactly element by element. Moreover, the double integrals can be calculated by
iterated integrals. These are essential for the efficiency of the algorithm, and effec-
tiveness for high-mode expansions. This approach does not induce any additional
error that exceeds accumulated computer round-off error by using these analytical
formulas. It is noteworthy that Fournier [10] proposed a method for calculating global
Fourier coefficients for given nodal values on non-conforming two-dimensional spec-
tral elements. Yang et al. [36] introduced a new elemental mapping for conforming
(curvilinear) spectral elements in simulations of polygonal invisibility cloaks involv-
ing time-harmonic Maxwell equations with non-local circular Dirichlet-to-Neumann
(DtN) boundary conditions. A very efficient semi-analytic approach was proposed to
compute Fourier coefficients via two-dimensional spectral element grids therein. The
algorithm herein is actually spawned by [36], and aims at paving the way for simu-
lating three-dimensional acoustic and electromagnetic wave scattering with bounded
scatterers using spherical DtN TBCs. Accurate and rapid evaluation of integrals in
(1.3) on spectral element grids becomes an exceedingly important ingredient for the
whole algorithm (which we shall report in a future work).

With the accurate tool at our disposal, we consider three-dimensional acoustic and
electromagnetic wave scattering in several scenarios where the incident waves are
given by high-order spectral element approximations. By using the separation vari-
able method together with our high mode SPH and VSH expansion algorithms for
spectral element approximations, we obtain very accurate approximations for high
frequency scattering waves from a single spherical scatterer. Besides, we provide a
very stable means to compute the ratio of spherical Hankel functions with a wide
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range of arguments. An algorithm consists of the proposed SPH expansion formu-
lation and transformed field expansion (TFE) method (cf. [38, 39]) is discussed for
solving scattering problem with irregular scatterer. This idea can also be extended
to electromagnetic scattering problem by using VSH expansion. The SPH and VSH
expansions play an important part in solving multiple scattering problems as well.
The simulation becomes much more challenging compared with the single scatter-
ing problem, due to the unavoidable interactions between the scattering waves from
different scatterers. Much effort has been devoted to 2D problems (see, e.g., [2, 4,
14, 37] and the references therein). However, there has been limited study for the
3D case [9, 20, 21]. Here, we consider the case involving multiple spherical scatter-
ers where the incident wave is given by spectral element approximation. Unlike the
2D problem, the separation matrices in 3D case take much more complicated form
(cf. [23]). Based on the recurrence formula presented in [7, 15], we derive a stable
recurrence formula for the computation of the expansion coefficients of the scaled
out-going wave functions. Then the expansion coefficients for purely outgoing waves
can be obtained by solving a linear system resulted by matching boundary data on
the scatterers. The proposed algorithm actually provides an accurate way to com-
pute the far-field scattering waves from local element based approximations [12, 31].
Besides, they can be combined with some appropriate solvers [2] to tackle practical
3D problems involving scatterers with complex shapes.

The rest of the paper is organized as follows. In Section 2, we collect some relevant
properties of spherical harmonics and vector spherical harmonics. We then present
the algorithms for computing the spherical harmonic coefficients and vector spheri-
cal harmonic coefficients in Section 3. Some interesting applications in 3D multiple
scattering problems are discussed in Section 4. Ample numerical results are provided
to validate the accuracy of the proposed algorithms.

2 Preliminaries

2.1 Spherical harmonics

The spherical coordinate of a given point x = (x, y, z) in R3 is represented by

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ, (2.4)

where r ≥ 0, θ ∈ [0, π ] and ϕ ∈ [0, 2π) stand for the radial distance, polar angle
and azimuthal angle (see Fig. 1). The unit coordinate vectors in spherical coordinate
system are denoted by {er , eθ , eϕ} which form a right hand coordinate system, i.e.,

er × eθ = eϕ, eθ × eϕ = er , eϕ × er = eθ . (2.5)

The spherical harmonics (see, e.g., [1]) are defined as

Ym
l (θ, ϕ) = (−1)mcm

l P m
l (cos θ)eimϕ = P̂ m

l (cos θ)eimϕ, cm
l :=

√
2l + 1

4π

(l − m)!
(l + m)! , (2.6)
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(a) (b) (c)

Fig. 1 Spherical coordinates system and partitions of unit sphere

for 0 ≤ |m| ≤ l, l = 0, 1 · · · , where P m
l (resp. P̂ m

l ) is the associated (resp.
normalized) Legendre function of degree l and order m. Recall that for integer
0 ≤ m ≤ l,

P m
l (x) = (−1)m(1 − x2)m/2 dm

dxm
Pl(x), x ∈ (−1, 1), (2.7)

where Pl(x) is the Legendre polynomial of degree l. For negative order, it is defined
by

P −m
l (x) = (−1)m

(l − m)!
(l + m)!P

m
l (x), so P̂ −m

l (x) = (−1)mP̂ m
l (x), 0 < m ≤ l.

(2.8)
The so-defined spherical harmonics

{
Ym

l (θ, ϕ)
}
0≤|m|≤l

constitute a complete,

orthogonal basis of L2(S2) (where S2 is a unit spherical surface), and

〈Ym
l , Ym

l 〉 S2 =
∫ π

0

∫ 2π

0
Ym

l (θ, ϕ)Ym′
l′ (θ, ϕ) sin θ dϕdθ = δll′δmm′, (2.9)

where ū is the conjugate of u. Note that we have

Y−m
l (θ, ϕ) = (−1)mYm

l (θ, ϕ). (2.10)

The algorithms to be proposed heavily rely on the trigonometric forms of the asso-
ciated normalized Legendre functions {P̂ m

l (cos θ)}. For this purpose, we start with
the second-order equation:

1

sin θ

d

dθ

(
sin θ

d

dθ
P̂ m

l (cos θ)
)

+
{
l(l + 1) − m2

sin2 θ

}
P̂ m

l (cos θ) = 0, (2.11)
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which can be solved by the Fourier method. Based on the parity of l and m, we have

P̂ m
l (cos θ) =

l/2∑

k=0

Ak
lm cos(2kθ), l even, m even; (2.12)

P̂ m
l (cos θ) =

l/2∑

k=1

Ak
lm sin(2kθ), l even; m odd; (2.13)

P̂ m
l (cos θ) =

(l+1)/2∑

k=1

Ak
lm cos(2k − 1)θ, l odd; m even; (2.14)

P̂ m
l (cos θ) =

(l+1)/2∑

k=1

Ak
lm sin(2k − 1)θ, l odd; m odd; (2.15)

where {Ak
lm} can be computed by (backward) three-term recurrence relations

obtained by inserting the expansions into (2.11). More precisely, for a given pair
(l, m),

• if l is even, then we compute

A
l/2
lm = (−1)�m/2	dlm; A

l/2−1
lm = al/2+1A

l/2
lm ;

Ak−2
lm = akA

k−1
lm + bkA

k
lm, k = l

2 , · · · , 3;

A0
lm =

⎧
⎨

⎩

(a2A
1
lm + b2A

2
lm)/2, if l ≥ 4,

l(l + 1) − 2

2l(l + 1) − 4m2
A1

lm, if l = 2,

(2.16)

where �a	 is the smallest integer ≥ a, and

dlm = �(l + 1/2)

π

√
2l + 1

(l − m)!(l + m)! ,

ak = 2(2m2 − l(l + 1) + 4(k − 1)2)

2(k − 2)(2k − 3) − l(l + 1)
, bk = l(l + 1) − 2k(2k − 1)

2(k − 2)(2k − 3) − l(l + 1)
; (2.17)

• if l is odd, then we compute

A
(l+1)/2
lm = (−1)�m/2	dlm; A

(l−1)/2
lm = a(l+3)/2A

(l+1)/2
lm ;

Ak−2
lm = akA

k−1
lm + bkA

k
lm, k = l+1

2 , · · · , 3; (2.18)

where

ak = 2(2m2 − l(l + 1) + (2k − 3)2)

(2k − 5)(2k − 4) − l(l + 1)
, bk = l(l + 1) − 2(k − 1)(2k − 1)

(2k − 5)(2k − 4) − l(l + 1)
.

Remark 2.1 The formulas for A
l/2
lm in (2.16) and A

(l+1)/2
lm in (2.18) can be derived

from the Rodrigue’s formula (cf. [34]):

P̂ m
l (cos θ) = cm

l

(−1)m

2l l! sinm θ
dl+m

dxl+m
(x2 − 1)l, x = cos θ, (2.19)
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whose leading trigonometric terms are respectively

P̂ m
l (cos θ) =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)m/2 cm
l (2l)!

22l−1l!(l − m)! cos(lθ) + · · · , m is even;

(−1)(m+1)/2 cm
l (2l)!

22l−1l!(l − m)! sin(lθ) + · · · , m is odd.
(2.20)

Using (2.6) and the identity (cf. [1]):
√

π�(2l + 1) = 22l�(l + 1/2)�(l + 1),

we can obtain the desired formulas in (2.16) and (2.18).

2.2 Vector spherical harmonics

Several versions of VSH with different notation and properties have been used in
practice (see, e.g., [11, 17, 19, 24, 25, 33]). Here, we adopt the vector spherical
harmonics (VSH) {Ym

l
, �m

l , �m
l

} in e.g., [33], defined by

Ym
l = Ym

l er , (2.21)

�m
l = ∇SYm

l = ∂Ym
l

∂θ
eθ + 1

sin θ

∂Ym
l

∂ϕ
eϕ, (2.22)

�m
l = ∇SYm

l × er = 1

sin θ

∂Ym
l

∂ϕ
eθ − ∂Ym

l

∂θ
eϕ, (2.23)

for 0 ≤ |m| ≤ l, and note that �0
0 = �0

0 = 0. The VSH form a complete orthogonal
basis (right hand) of (L2(S2))3. More precisely, they are mutually orthogonal and
∫

S2
Ym

l ·Ym′
l′ dS = δll′δmm′,

∫

S2
�m

l ·�m′
l′ dS =

∫

S2
�m

l ·�m′
l′ dS = l(l+1)δll′δmm′ .

(2.24)
Notice from (2.6) that

∂Ym
l

∂θ
= eimϕ d

dθ
P̂ m

l (cos θ),
1

sin θ

∂Ym
l

∂ϕ
= imeimϕ P̂ m

l (cos θ)

sin θ
,

where P̂ m
l (cos θ)/sin θ is singular at the poles. In order to compute the basis func-

tions {�m
l , �m

l } accurately and efficiently, it is necessary to compute P̂ m
l (cos θ)/sin θ

and d
dθ

P̂ m
l (cos θ) by some compact combination of {P̂ m

l (cos θ)}. For this purpose,
we recall the recurrence formula (cf. [1])

√
1 − x2 d

dx
P m

l (x) = 1

2

(
(l + m)(l − m + 1)P m−1

l (x) − P m+1
l (x)

)
,

so by (2.6),

√
1 − x2 d

dx
P̂ m

l (x) = 1

2

( cm
l

cm+1
l

P̂ m+1
l (x) − (l + m)(l − m + 1)

cm
l

cm−1
l

P̂ m−1
l (x)

)
.

(2.25)
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Thus, we have
{

d
dθ

P̂ m
l (cos θ) = c̃

m,1
l P̂ m−1

l (cos θ) − c̃
m,2
l P̂ m+1

l (cos θ), where

c̃
m,1
l = 1

2

√
(l + m)(l − m + 1), c̃

m,2
l = 1

2

√
(l + m + 1)(l − m).

(2.26)

It is noteworthy that form = 0, l, the above formulas should be understood as follows

d
dθ

P̂ 0
l (cos θ) = 1

2

√
l(l + 1)

(
P̂ −1

l (cos θ) − P̂ 1
l (cos θ)

)
= −√

l(l + 1)P̂ 1
l (cos θ),

d
dθ

P̂ l
l (cos θ) =

√
l
2 P̂

l−1
l (cos θ),

(2.27)
where we used (2.8) to derived the first identity.

To deal with P̂ m
l (cos θ)/sin θ, we recall a second recurrence formula (cf. [1])

1√
1 − x2

P m
l (x) = − 1

2m

(
(l − m + 2)(l − m + 1)P m−1

l+1 (x) + P m+1
l+1 (x)

)
, m > 0,

which, together with (2.6), leads to
⎧
⎨

⎩

P̂ m
l (cos θ)

sin θ
= 1

2m

(
ĉ
m,1
l P̂ m−1

l+1 (cos θ) + ĉ
m,2
l P̂ m+1

l+1 (cos θ)
)
,

ĉ
m,1
l =

√
(2l+1)(l−m+1)(l−m+2)

2l+3 , ĉ
m,2
l =

√
(2l+1)(l+m+1)(l+m+2)

2l+3 .
(2.28)

3 Algorithms for SPH and VSH expansions

In this section, we introduce the partition and analytic formulas for computing the
integrals in (1.3), and demonstrate the high accuracy of high-mode expansions.

3.1 Spectral-element grids on the sphere

As already mentioned, the way of partitioning the spherical surface and the form
of the associated elemental mapping are essential for computing the SPH and VSH
expansion coefficients. Here, we adopt a partition so that we can resort to analytical
formulas to evaluate the integrals of interest as one-dimensional iterated integrals.
Basically, let S2h be a non-overlapping partition of S2 such that each element Se ∈ S

2
h

is a rectangular domain in (θ, ϕ)-coordinates, that is, Se = [θs−1, θs] × [ϕt−1, ϕt ]
(see Fig. 1). Then we can choose the elemental mapping Fe : Q = [−1, 1]2 → Se

in the spectral-element discretization to be

(η, ξ) → (θs(η), ϕt (ξ)) : θs(η) = θ̂sη + αs, ϕt (ξ) = ϕ̂t ξ + βt , ξ, η ∈ [−1, 1],
(3.1)

where

θ̂s = θs − θs−1

2
αs = θs−1 + θs

2
, ϕ̂t = ϕt − ϕt−1

2
, βt = ϕt−1 + ϕt

2
, (3.2)

are constants determined by the “vertices” of the element Se. It is noteworthy that
the mapping Fe is linear and smooth from the reference coordinates (η, ξ) to the
spherical coordinates (θ, ϕ).
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(a) (b) (c)

Fig. 2 Tensorial LGL points on the reference square and two typical kinds of physical elements with the
mapping

Let {(ηj , ξi)}Ni,j=0 be the tensorial Legendre-Gauss-Lobatto (LGL) points in the
reference square Q. The distributions of mapped LGL points in two typical kinds of
physical elements are sketched in Fig. 2. The spectral-element approximations of a
scalar and a vector field in (1.2) take the form:

uE
N |Se = uE

N(Fe(η, ξ)) =
N∑

i=0

N∑

j=0

ue
ijψij (F−1

e (θ, ϕ)), (3.3)

vE
N |Se = vE

N (Fe(η, ξ)) =
N∑

i=0

N∑

j=0

ve
ijψij (F−1

e (θ, ϕ)), (3.4)

where {ue
ij } and {ve

ij } are nodal values on the mapped LGL points on Se, and
ψij (η, ξ) = li (ξ)lj (η) are the corresponding basis functions with {li (ξ), lj (η)} being
the Lagrange interpolating basis polynomials with respect to the LGL points (see,
e.g., [29]).

3.2 Accurate formulas for SPH expansions

Observe from (1.3) that the computation of spherical harmonic coefficients is actually
to calculate a bunch of integrals involving piecewise smooth and highly oscillatory
integrands on S

2. The naive use of usual quadrature rules does not lead to very
accurate results. In order to maintain the spectral accuracy obtained by the spec-
tral element approximation within reasonable computational cost, we propose the
following semi-analytical means.

Proposition 3.1 Given a spectral element approximation uE
N defined in (3.3), its

spherical harmonic expansion coefficients can be computed by the formula

ãm
l =

∫

S2
uE

N(θ, ϕ)Ym
l (θ, ϕ)dS =

E∑

e=0

N∑

i=0

N∑

j=0

ue
ija

t
m,ib

s
l,m,j , (3.5)
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where

at
m,i =

⎧
⎨

⎩

2vi0 ϕ̂t e−imβt , m = 0,

ϕ̂t e
−imβt

N∑
n=0

2i−nvin jn(mϕ̂t ), m = 0,
bs

l,m,j = θ̂s

N∑

n=0

vjnQ
n
lm(θ̂s , αs),

(3.6)
{vin} are the Legendre polynomial representation coefficients of Lagrange nodal
basis {li} in (3.15), jn(z) is the spherical Bessel function of the first kind, and

Qn
lm(λ, ρ) :=

∫ 1

−1
Pn(x)P̂ m

l (cos(λx + ρ)) sin(λx + ρ) dx, (3.7)

(Pn(x) is the Legendre polynomial of degree n), which can be computed by (3.21).

Proof According to the partition S2h, we decompose the integral into

ãm
l =

∫

S2
uE

N(θ, ϕ)Ym
l (θ, ϕ)dS =

E∑

e=1

I e
lm, (3.8)

where

I e
lm :=

∫

Se

uE
N(θ, ϕ)Ym

l (θ, ϕ) sin θdθdϕ =
∫ ϕt

ϕt−1

∫ θs

θs−1

uE
N(θ, ϕ)Ym

l (θ, ϕ) sin θdθdϕ.

(3.9)
Applying the elemental mapping Fe yields

I e
lm =

∫ 1

−1

∫ 1

−1
uE

N(θs(η), ϕt (ξ))Ym
l (θs(η), ϕt (ξ)) sin(θs(η))

∣∣∣
D(θs, ϕt )

D(ξ, η)

∣∣∣dξdη.

(3.10)
Here D(θs ,ϕt )

D(ξ,η)
is the Jacobian of the transformation Fe on patch Se. A very important

feature in the mapping Fe is that the angular variables θ and ϕ are linearly dependent
on the reference variables η and ξ independently (cf. (3.1)). Consequently, the surface
integral (3.10) can be formulated into the product of two one-dimensional integrals
as follows

I e
lm =

N∑

i,j=0

ue
ij

(
ϕ̂t

∫ 1

−1
li (ξ)e−imϕt (ξ)dξ

)(
θ̂s

∫ 1

−1
lj (η)P̂ m

l (cos θs(η)) sin(θs(η))dη
)
.

(3.11)
Next, we deal with the above two integrals

at
m,i = ϕ̂t

∫ 1

−1
li (ξ)e−imϕt (ξ)dξ, bs

l,m,j = θ̂s

∫ 1

−1
lj (η)P̂ m

l (cos θs(η)) sin(θs(η))dη,

(3.12)
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separately, so the formula (3.5) is obtained by simply using (3.11) and (3.12) in (3.8).
More precisely, by the definition (3.1),

at
m,i = ϕ̂t e

−imβt

∫ 1

−1
li (ξ)e−imϕ̂t ξ dξ, (3.13)

bs
l,m,j = θ̂s

∫ 1

−1
lj (η)P̂ m

l

(
cos(θ̂sη + αs)

)
sin(θ̂sη + αs)dη. (3.14)

By (2.8), we have

at−m,i = at
m,i , bs

l,−m,j = (−1)mbs
l,m,j , for m > 0.

Therefore, we only need to consider the integrals (3.13)–(3.14) for 0 ≤ m ≤ l.
Note that the Lagrange nodal basis {li (ξ)}Ni=0 can be represented in terms of

Legendre polynomials {Pn(ξ)}Nn=0 as follows (cf. [29]):

li (ξ) =
N∑

n=0

vinPn(ξ), 2vin =
{

(2n + 1)ωiPn(ξi), i = 0, · · · , n − 1,
nωiPn(ξi), i = n,

(3.15)

where {ξi, ωi}Ni=0 are LGL quadrature nodes and weights. Therefore, it suffices to
derive analytic formulas for the integrals (3.13) and (3.14) with the Lagrange nodal
basis functions replaced by Legendre polynomials. For this purpose, let us define

Cn(λ, ρ) := ∫ 1
−1 Pn(x) cos(λx + ρ)dx, Sn(λ, ρ) := ∫ 1

−1 Pn(x) sin(λx + ρ)dx,

Pn
lm(λ, ρ) := ∫ 1

−1 Pn(x)P̂ m
l

(
cos(λx + ρ)

)
dx.

(3.16)
We proceed with the following important formula:

∫ 1

−1
Pn(x)e−i(λx+ρ)dx =

{
2e−iρδn0, λ = 0,

2i−ne−iρjn(λ), λ = 0,
(3.17)

which can be derived from

∫ 1

−1
Pn(x)e−iλxdx =

{
2δn0, λ = 0,

2i−njn(λ), λ ∈ C\{0}, (3.18)

(cf. [5]) straightforwardly. Consequently, we obtain the explicit formulas for the first
two integrals in (3.16):

Cn(λ, ρ) =
{

2δn0 cos ρ, λ = 0,
2jn(λ)(Re{i−n} cos ρ + Im{i−n} sin ρ), λ = 0;

Sn(λ, ρ) =
{

2δn0 sin ρ, λ = 0,
2jn(λ)(Re{i−n} sin ρ − Im{i−n} cos ρ), λ = 0.

(3.19)
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With (3.17), we can then compute the integral (3.7) and the last integral in (3.16)
by using the trigonometric formulas (2.12)–(2.15). For example, if l and m are both
even, then

Pn(x)P̂ m
l (cos(λx + ρ)) =

l/2∑

k=0

Ak
lmPn(x) cos(qk(λx + ρ)),

Pn(x)P̂ m
l (cos(λx + ρ)) sin(λx + ρ) = 1

2

l/2∑

k=0

Ak
lmPn(x)[sin(pk(λx + ρ)) − sin(pk−1(λx + ρ))],

where pk := 2k + 1, qk := 2k and Ak
lm are coefficients given in (2.12)–(2.15). Thus

the exact formulas (3.19) can be used. In summary, we have

Pn
lm(λ, ρ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l/2∑
k=0

Ak
lmCn(qkλ, qkρ), l even; m even,

l/2∑
k=1

Ak
lmSn(qkλ, qkρ), l even; m odd,

(l+1)/2∑
k=1

Ak
lmCn(pk−1λ, pk−1ρ), l odd; m even,

(l+1)/2∑
k=1

Ak
lmSn(pk−1λ, pk−1ρ), l odd; m odd,

(3.20)

and

Qn
lm(λ, ρ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

l/2∑
k=0

Ak
lm[Sn(pkλ, pkρ) − Sn(pk−1λ, pk−1ρ)], l even; m even,

1

2

l/2∑
k=1

Ak
lm[Cn(pk−1λ, pk−1ρ) − Cn(pkλ, pkρ)], l even; m odd,

1

2

(l+1)/2∑
k=1

Ak
lm[Sn(qkλ, qkρ) − Sn(qk−1λ, qk−1ρ)], l odd; m even,

1

2

(l+1)/2∑
k=1

Ak
lm[Cn(qk−1λ, qk−1ρ) − Cn(qkλ, qkρ)], l odd; m odd,

(3.21)
where pk := 2k + 1, qk := 2k and Ak

lm are coefficients given in (2.12)–(2.15).
Substituting the Legendre polynomial representation formula (3.15) of

{li (ξ), lj (η)} and analytic formulas (3.17) and (3.21) into (3.13) and (3.14), we obtain
formulas (3.6).

Remark 3.1 In (3.21), we have Sn(−λ, −ρ) when l is even and k = 0. That needs
the computation of jn(−λ) with λ > 0. The spherical Bessel function with negative
arguments is usually not available in some popular library, e.g. GSL library. In fact,
the calculation of Sn(−λ, −ρ) can be avoided. When l is even and k = 0, we have

Sn(λ, ρ) − Sn(−λ, −ρ) = 2
∫ 1

−1
Pn(x) sin(λx + ρ)dx = 2Sn(λ, ρ).



Accurate calculation of spherical and vector spherical...

Remark 3.2 It is noteworthy that starting from the spectral element approximation
of a function on the sphere, the proposed algorithm for computing the spherical har-
monic expansion coefficients does not induce additional errors. Here, we summarise
the approach for computing the coefficients of a given smooth function u on the
sphere S2 as follows:

(i) Construct a Cartesian partition S2h = {Se}Ee=1 of S
2 in the θ -ϕ plane;

(ii) Approximate u by its LGL interpolation IE
Nu associated with the mesh S

2
h;

(iii) Compute the spherical harmonic coefficients of IE
Nu.

To have some insights into the complexity of this approach, we arrange the nodal
values {ue

ij } into the matrix

U e = [
Ue
0 Ue

1 · · · Ue
N

]
,

where the column vectors are given by Ue
j

= (ue
ij )(N+1)×1. Define the vectors At

m =
(at

m,i)
′ and Bs

lm = (bs
l,m,j )

′ where the prime denotes the transpose. Then, the matrix-
vector form of (3.5) is

N∑

i=0

N∑

j=0

ue
ija

t
m,ib

s
l,m,j = ((At

m)′U e)Bs
lm. (3.22)

It is important to remark that the vector (At
m)′U e is independent of l, so it can be

used repeatedly for different l. Assuming that we need to compute the coefficients
{ ˜am

l }Ll=0, we haveL+1 vectors {(At
m)′U e}Lm=0 to be formed, which requires (L+1)×

(N + 1)2 multiplications. With these vectors ready, N + 1 multiplications are needed
for computing every coefficient. From (3.15), it is easy to see that the computational
cost for {vin} is (N+1)2. Thus, once the values {vin} and {Qn

lm(θ̂s, αs)} are computed
off stage, the total computational cost is ((L+1)×(N+1)2+(L+1)2×(N+1))×E.

3.3 Accurate formulas for VSH expansions

In this section, we explore accurate formulas for computing VSH expansions of a
vector field vE

N in (3.4) given by spectral-element nodal values. For convenience, we
express the vector field vE

N in the spherical coordinate basis {er , eθ , eϕ}, namely,

vE
N (θ, ϕ) = uE

N(θ, ϕ)er + vE
N(θ, ϕ)eθ + wE

N(θ, ϕ)eϕ.

Noting that for any vector field v given in the Cartesian coordinate basis:

v(θ, ϕ) = vx(θ, ϕ)ex + vy(θ, ϕ)ey + vz(θ, ϕ)ez,

one can represent it in terms of {er , eθ , eϕ} :
v(θ, ϕ) = vr(θ, ϕ)er + vθ (θ, ϕ)eθ + vϕ(θ, ϕ)eϕ,

where the components are connected via
[
vr(θ, ϕ) vθ (θ, ϕ) vϕ(θ, ϕ)

] = [
vx(θ, ϕ) vy(θ, ϕ) vz(θ, ϕ))

]
T(θ, ϕ), (3.23)
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with the transformation matrix T(θ, ϕ) given by

T(θ, ϕ) =
⎡

⎣
sin θ cosϕ sin θ sinϕ cos θ

cos θ cosϕ cos θ sinϕ − sin θ

− sinϕ cosϕ 0

⎤

⎦ .

Denote by {Ue
ij , V

e
ij , W

e
ij } the {er , eθ , eϕ} components of the vector nodal values

ve
ij in (3.4).

Proposition 3.2 Given a spectral element approximation vE
N in (3.4), we compute{

ṽr
lm, ṽ

(1)
lm , ṽ

(2)
lm

}
in (1.3) by

ṽr
lm =

E∑

e=1

N∑

i=0

N∑

j=0

Ue
ij a

t
m,ib

s
l,m,j , (3.24)

ṽ
(1)
lm = 1

l(l + 1)

E∑

e=1

N∑

i=0

N∑

j=0

at
m,i

{
V e

ijd
s
l,m,j − imWe

ij c
s
l,m,j

}
, (3.25)

ṽ
(2)
lm = −1

l(l + 1)

E∑

e=1

N∑

i=0

N∑

j=0

at
m,i

{
imV e

ij c
s
l,m,j + We

ijd
s
l,m,j

}
, (3.26)

where at
m,i and b

s
l,m,j are the same as in (3.6),

csl,m,j = θ̂sP
n
lm(θ̂s , αs), ds

l,0,j = −√
l(l + 1)bs

l,1,j , ds
l,l,j = √

l/2bs
l,l−1,j ,

ds
l,m,j = c̃

m,1
l bs

l,m−1,j − c̃
m,2
l bs

l,m+1,j , m = 1, · · · , l − 1,
(3.27)

and Pn
lm is the same as in (3.16) (which can be computed by (3.20)).

Proof By definition, we have �0
0 = �0

0 = 0, so ṽ
(1)
00 = ṽ

(2)
00 = 0. Moreover, using

the definition of {Ym
l

, �m
l , �m

l } in (2.21)–(2.23), we obtain

ṽr
lm =

∫

S2
uE

NYm
l dS,

ṽ
(1)
lm = 1

l(l + 1)

( ∫

S2
vE
N

∂Ym
l

∂θ
dS +

∫

S2
wE

N

∂Ym
l

∂ϕ

1

sin θ
dS
)
,

ṽ
(2)
lm = 1

l(l + 1)

( ∫

S2
vE
N

∂Ym
l

∂ϕ

1

sin θ
dS −

∫

S2
wE

N

∂Ym
l

∂θ
dS
)
. (3.28)

Therefore, we need to compute the following integrals
∫

S2
uE

NYm
l dS,

∫

S2
vE
N

∂Ym
l

∂θ
dS,

∫

S2
vE
N

∂Ym
l

∂ϕ

1

sin θ
dS,

∫

S2
wE

N

∂Ym
l

∂θ
dS,

∫

S2
wE

N

∂Ym
l

∂ϕ

1

sin θ
dS,

(3.29)

to obtain the vector spherical harmonic coefficients.
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We have already derived an analytic formula for the first integral in Proposition
3.1, i.e.,

ṽr
lm =

∫

S2
uE

NYm
l dS =

E∑

e=1

N∑

i=0

N∑

j=0

Ue
ija

t
m,ib

s
l,m,j ,

where at
m,i and bs

l,m,j are given in (3.6). For other integrals, we decompose them as

∫

S2
vE
N

∂Ym
l

∂θ
dS =

E∑

e=1

N∑

i=0

N∑

j=0

V e
ij

∫ ϕt

ϕt−1

∫ θs

θs−1

li (ξ)lj (η)
∂Ym

l

∂θ
sin θdθdϕ,

∫

S2
vE
N

∂Ym
l

∂ϕ

1

sin θ
dS = −im

E∑

e=1

N∑

i=0

N∑

j=0

V e
ij

∫ ϕt

ϕt−1

∫ θs

θs−1

li (ξ)lj (η)Ym
l dθdϕ,

(3.30)

and

∫

S2
wE

N

∂Ym
l

∂θ
dS =

E∑

e=1

N∑

i=0

N∑

j=0

We
ij

∫ ϕt

ϕt−1

∫ θs

θs−1

li (ξ)lj (η)
∂Ym

l

∂θ
sin θdθdϕ,

∫

S2
wE

N

∂Ym
l

∂ϕ

1

sin θ
dS = −im

E∑

e=1

N∑

i=0

N∑

j=0

We
ij

∫ ϕt

ϕt−1

∫ θs

θs−1

li (ξ)lj (η)Ym
l dθdϕ.

(3.31)

We see that they actually involve two integrals

∫ ϕt

ϕt−1

∫ θs

θs−1

li (ξ)lj (η)
∂Ym

l

∂θ
sin θdθdϕ,

∫ ϕt

ϕt−1

∫ θs

θs−1

li (ξ)lj (η)Ym
l dθdϕ. (3.32)

Applying the mapping Fe and following the proof of Proposition 3.1, we derive
∫ ϕt

ϕt−1

∫ θs

θs−1

li (ξ)lj (η)Ym
l dθdϕ = at

m,ic
s
l,m,j ,

∫ ϕt

ϕt−1

∫ θs

θs−1

li (ξ)lj (η)
∂Ym

l

∂θ
sin θdθdϕ = at

m,id
s
l,m,j ,

where at
m,i is defined in (3.12) and

csl,m,j := θ̂s

∫ 1

−1
lj (η)P̂ m

l (cos(θ(η)))dη,

ds
l,m,j := θ̂s

∫ 1

−1
lj (η)

d

dθ
P̂ m

l (cos(θ(η))) sin(θ(η))dη.

(3.33)

Then, using (3.30), (3.31) and (3.33) in (3.28) we obtain (3.25) and (3.26).
As in the calculation of bs

l,m,j in (3.12), we derive analytic formulas for csl,m,j and
ds
l,m,j by using very similar techniques. Recalling the definition (3.16), we have

csl,m,j = θ̂s

∫ 1

−1
lj (η)P̂ m

l (cos(θ̂sη + αs))dη = θ̂sP
n
lm(θ̂s, αs). (3.34)



B. Wang et al.

The integration ds
l,m,j can be reformulated into bs

l,m,j by using recurrence formulas
(2.26) and (2.27). We first consider the special cases with m = 0, l. From (2.27), we
have

ds
l,0,j = −√

l(l + 1)θ̂s

∫ 1

−1
lj (η)P̂ 1

l (cos(θs(η))) sin(θs(η))dη = −√l(l + 1)bs
l,1,j ,

ds
l,l,j =

√
l
2 θ̂s

∫ 1

−1
lj (η)P̂ l−1

l (cos(θs(η))) sin(θs(η))dη =
√

l

2
bs

l,l−1,j . (3.35)

Then for 0 < m < l, inserting (2.26) into (3.33) yields

ds
l,m,j = θ̂s

∫ 1

−1
lj (η)

[
c̃
m,1
l P̂ m−1

l (cos(θs(η))) − c̃
m,2
l P̂ m+1

l (cos(θs(η)))
]
sin(θs(η))dη

= c̃
m,1
l bs

l,m−1,j − c̃
m,2
l bs

l,m+1,j .

(3.36)

Assembling the above formulas leads to the desired results.

Remark 3.3 As with Remark 3.2, the above algorithm applies to the VSH expansion
of a given vector field v on sphere S2 with a spectral element approximation on the
same partition S2h.

Observe from the above that the VSH expansion can be performed with a constant
multiple of the cost for the SPH expansion. To have more insights into this, we define

V e = [
V e
0 V e

1 · · · V e
N

]
, V e

j = [
ve
0j ve

1j · · · ve
Nj

]′
,

and likewise W e = (We
j
)′, We

j
= (we

ij )
′, Cs

lm = (csl,m,j )
′ and Ds

lm = (ds
l,m,j )

′. Then,
we can formulate (3.24)–(3.26) into the following matrix form:

ṽr
lm =

E∑

e=1

((At
m)′U e)Bs

lm, ṽ
(1)
lm = 1

l(l + 1)

E∑

e=1

{
((At

m)′V e)Ds
lm − im((At

m)′W e)Cs
lm

}
,

ṽ
(2)
lm = −1

l(l + 1)

E∑

e=1

{
((At

m)′W e)Ds
lm + im((At

m)′V e)Cs
lm

}
.

3.4 Accuracy test

We now provide some illustrative numerical examples to show the high accuracy
of the aforementioned method. For simplicity, we consider the partition S

2
h by equi-

spaced latitude lines θ = sπ/N , s = 1, 2, · · · ,N − 1, and longitude lines ϕ =
2πt/M, t = 0, 1, · · · ,M − 1. We test the expansions of the plane wave u(x) =
eikk̂·x in SPH and the vector field

v(x) = ∇u + ∇u × er = ik
(
k̂ + k̂ × x

|x|
)
eikk̂·x (3.37)
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in VSH, where kk̂ is the propagation vector. Given a spherical surface S
2
R := {x :

|x| = R}, the plane wave u(x) = eikk̂·x confined on S2R has the SPH expansion:

u(x) =
∞∑

l=0

l∑

m=−l

am
l Ym

l (θ, ϕ) with am
l = 4π iljl(kR)Ym

l (k̂),

derived from the Funk-Hecke formula [23, P. 72]. Here, (R, θ, ϕ) is the spherical
coordinate of x ∈ S

2
R . Thus, we find the VSH expansion of ∇u on S2R is

∇u(x) = kj ′
0(kR)er +

∞∑

l=1

l∑

m=−l

4π ilYm
l (k̂)

(
kj ′

l (kR)Ym
l (θ, ϕ) + jl(kR)

R
�m

l (θ, ϕ)
)
.

Consequently, the exact VSH expansion coefficients {vr
lm, v

(1)
lm , v

(2)
lm } of v(x) on S

2
R

are

{vr
lm, v

(1)
lm , v

(2)
lm } = 4π ilYm

l (k̂)
{
kj ′

l (kR),
jl(kR)

R
,
jl(kR)

R

}
, l ≥ 1,

and
{
vr
00, v

(1)
00 , v

(2)
00

} = {
kj ′

0(kR), 0, 0
}
.

Without loss of generality, we fix k̂ = (1, 1, 1), and test several examples with
various wavenumber k. For the SPH expansion of the scalar u(x), we examine the
error:

EL(u) := max|l|≤L
max|m|≤l

|am
l − ãm

l |,

while the error:

EL(v) := max|l|≤L
max|m|≤l

{
|vr

lm − ṽr
lm|, |v(1)

lm − ṽ
(1)
lm |, |v(2)

lm − ṽ
(2)
lm |

}
,

is examined for the VSH expansion of v(x) in (3.37). We depict the errors against
N (with fixed partition N = 3, M = 4), against the number of elements NS with
N = M = NS (and fixed N = 10), and against the degree of freedom (dof) of the
spectral element approximationswithN = M = N in Figs. 3–4, respectively, forR = 1,
L = 20 and k = 10, 20, 30. We observe from the above figures an exponential decay
of the errors as the number of points increases even for high mode expansions.

(a) (b) (c)

Fig. 3 SPH expansion errors E20(u) against N , NS and dof respectively
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(a) (b) (c)

Fig. 4 VSH expansion errors E20(v) against N , NS and dof respectively

One important feature of the proposed algorithm is that it can produce highly accu-
rate expansion for large wave number. If the given spectral element approximation is
accurate enough, the algorithm can calculate arbitrary high mode coefficients without
inducing additional errors. We now provide a numerical example to show the capa-
bility of the presented algorithm in the computation of high modes. Consider again

the spherical harmonic expansion of the plane wave u(x) = eikk̂·x . Here, we take
k̂ = (1, 0, 0) and k = 100, 200, respectively. We fix the partition N = 3,M = 4
and use polynomials of degree N = 120 and N = 220 for spectral element approx-
imation. According to our calculation, the spectral element approximation errors

for eikk̂·x are 7.4847e-14 and 1.55806e-13, respectively. Define ãl = max
0≤|m|≤l

|ãm
l |,

and list the results in Table 1. We see that it is sufficient to set L = 145, 260 for
k = 100, 200 to achieve machine accuracy as shown in Table 1, which also indicates
the high efficiency of the proposed algorithm.

4 Applications to wave scattering simulation

In this section, we solve time-harmonic wave scattering problems numerically in
several scenarios, where the proposed algorithm for SPH and VSH expansions play
an important part. We start with a relatively simple situation of computing (far-
field) acoustic and electromagnetic waves scattered by a spherical scatterer, where

Table 1 Algorithm performance for high wave number

k = 100 k = 200

l ãl E145(u) CPU time (s) l ãl E260(u) CPU time (s)

141 1.1973e-12 1.8241e-14 1.48 256 3.0841e-14 3.8124e-14 8.24

142 4.9071e-13 257 1.5661e-14

143 1.9962e-13 258 6.8950e-15

144 8.0668e-14 259 4.7365e-15

145 3.1744e-14 260 2.0108e-15
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much care must be devoted to properly dealing with the involved ratio of the Hankel
functions. We then consider an irregular scatterer by integrating the above far-field
computation with the transformed field expansion (TFE) method [38, 39], and the
spherical Dirichlet-to-Neumann (DtN) transparent boundary condition. Finally, we
extend the approach to multiple scatterers.

4.1 Computing scattering waves by a single spherical scatterer

Consider the time-harmonic wave scattering governed by

{
�u + k2u = 0, r > b,

u|r=b = uN, ∂u
∂r

− iku = O
(
1
r

)
, as r → ∞,

(4.1)

and
⎧
⎪⎨

⎪⎩

∇ × ∇×E − k2E = 0, in r > b (4.2a)

ES = x̂ × (EN × x̂), on r = b, (4.2b)

lim
r→∞ r

(∇ × E × x̂ − ikE
) = 0, (4.2c)

with a spherical scatterer B(b) (note: B(b) is a ball of radius b), where x̂ := x/|x|,
k is the wave number, ES = x̂ × (EN × x̂) (note: x̂ unit outward normal of B(b))
is the tangential component of E, and the boundary data uN and EN are assumed to
be spectral element approximations resulted from given incident waves or provided
by other numerical solvers. For acoustic scattering problem (4.1), sound soft bound-
ary condition on the scatter B(b) and Sommerfeld radiation condition at the infinity
are used. On the other hand, the perfect conduct boundary condition on B(b) and
the Silver-Muller radiation condition at infinity are imposed for the electromagnetic
scattering problem (4.1). The exterior solver presented below can be combined with
appropriate interior solver (cf [2]) to solve multiple scattering problems with irregular
scatterers.

Using the separation variable method together with SPH and VSH expansion (cf.
[25]) leads to approximations:

uL =
L∑

l=0

l∑

m=−l

Ûm
N,l

h
(1)
l (kb)

ψlm(x), ψlm(x) := h
(1)
l (kr)Ym

l (θ, ϕ), (4.3)

and

EL =
L∑

l=1

l∑

|m|=0

{
− l(l + 1)Bm

l

ik

h
(1)
l (kr)

r
Ym

l − Bm
l Zl(kr)

ikr
�m

l + Am
l h

(1)
l (kr)�m

l

}
,

HL =
L∑

l=1

l∑

|m|=0

{
l(l + 1)Am

l

ik

h
(1)
l (kr)

r
Ym

l + Am
l Zl(kr)

ikr
�m

l + Bm
l h

(1)
l (kr)�m

l

}
, (4.4)
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where L is the cut-off number, {Ûm
N,l} are the SPH coefficients of uN on the spherical

surface r = b, {ψlm(x)} is the outgoing spherical wave functions (cf. [23]), {h(1)
l (z)}

are the spherical Hankel functions of the first kind,

Zl(z) := h
(1)
l (z) + zh

(1)′
l (z), (4.5)

and the coefficients {Am
l , Bm

l } need to be determined by matching the boundary data
on r = b. Now, we use the algorithm proposed in Section 3 to compute the SPH
coefficients {Ûm

N,l} and the approximate VSH expansion

x̂ × (Es
N × x̂) =

L∑

l=1

l∑

|m|=0

{
V m

N,l�
m
l + Wm

N,l�
m
l

}
. (4.6)

Then matching the boundary condition (4.2b) leads to

Am
l = Wm

N,l

h
(1)
l (kb)

, Bm
l = − ikb V m

N,l

Zl(kb)
.

Substituting it into (4.4), we obtain

EL =
L∑

l=1

l∑

|m|=0

{
b�lV

m
N,l

h
(1)
l (kr)

rZl(kb)
Ym

l + bV m
N,l

Zl(kr)

rZl(kb)
�m

l + Wm
N,l

h
(1)
l (kr)

h
(1)
l (kb)

�m
l

}
, (4.7)

HL =
L∑

l=1

l∑

|m|=0

{
�lW

m
N,l

ik

h
(1)
l (kr)

rh
(1)
l (kb)

Ym
l + Wm

N,l

ik

Zl(kr)

rh
(1)
l (kb)

�m
l − ikbV m

N,l

hl(kr)

Zl(kb)
�m

l

}
, (4.8)

where �l = l(l + 1).
We reiterate that the error in the approximations (4.3) and (4.7)–(4.8) only comes

from the mode of truncation because the computation of the SPH coefficients Ûm
N,l

and the VSH coefficients {V m
N,l, W

m
N,l} does not induce any additional error that

exceeds accumulated computer round-off error.
One challenge for computing the far-field scattering waves lies in that the naive

calculation of the ratio Ûm
N,l/h

(1)
l (kb) is not stable in performing the superposition

(4.3). This is due to the “bad” asymptotic behaviour of jl(z) and yl(z) (cf. [1]):

jl(z) ∼ 1

2l + 1

√
1

2πz

( ez

2l + 1

)l+ 1
2
, yl(z) ∼ − 1

2l + 1

√
8

πz

( ez

2l + 1

)−l− 1
2
, l � 1, (4.9)

which induces numerical underflow/overflow in computing the ratio Ûm
N,l/h

(1)
l (ka)

and ψlm(x) for large l. Therefore, the usual approach for the direct computation of
the scattering field works only for lower mode L and small r . In order to overcome
this obstacle, we rearrange the terms in (4.3) as

uL =
L∑

l=0

l∑

|m|=0

Ûm
N,lRl(r)Y

m
l (θ, ϕ), where Rl(r) := h

(1)
l (kr)

h
(1)
l (kb)

. (4.10)
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It is important to point out that the ratio Rl(r) is well behaved for all l and r ≥ b,
which can be evaluated efficiently as follows. For this purpose, we reformulate the
ratio as

R′
l(r) − kρl(kr)Rl(r) = 0, r > b; Rl(b) = 1, (4.11)

where

ρl(z) := h
(1)′
l (z)

h
(1)
l (z)

= d

dz
logh

(1)
l (z), z > 0. (4.12)

Equivalently, we have

Rl(r) = exp
(
k

∫ r

b

ρl(kξ)dξ
)
, l ≥ 0, r > b. (4.13)

Remark 4.1 Recall the properties of ρl(z) (cf. [25, 30]):

ρ0(z) = −1

z
+ i; − l + 1

z
≤ Re(ρl(z)) ≤ −1

z
, 0 < Im(ρl(z)) ≤ 1,

for all l ≥ 1 and z > 0, and Im(ρl(z)) becomes exponentially small for large l. This
implies |Rl(r)| ≤ eb−r for r > b and all l ≥ 1.

Note that ρl can be evaluated recursively and stably by (see, e.g., [3])

ρl(z) = z

l − 1 − zρl−1(z)
− l + 1

z
, l ≥ 1; ρ0(z) = −1

z
+ i. (4.14)

With this, we can use a suitable (composite) quadrature rule and evaluate the ratio
(4.13) in a very accurate manner.

The above algorithm also applies to the computation of (4.7)–(4.8). Indeed, except
for Rl(r) in (4.3), we also need to deal with

R̃l(r) := Zl(kr)

Zl(kb)
= h

(1)
l (kr) + krh

(1)′
l (kr)

h
(1)
l (kb) + kah

(1)′
l (kb)

= Rl(r) + rR′
l(r)

1 + kbρl(b)
, (4.15)

R̆l(r) := h
(1)
l (kr)

Zl(kb)
= h

(1)
l (kr)

h
(1)
l (kb) + kbh

(1)′
l (kb)

= Rl(r)

1 + kbρl(b)
, (4.16)

where we used (4.5), and ρl(r) is defined in (4.12). Therefore, the ratios R̃l and R̆l

can be computed by using the ratios Rl(r) and ρl(r) accurately.
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We provide some numerical illustrations of the above algorithm. For the acoustic
scattering problem, we take the incident wave uN to be the spectral-element inter-

polation of the plane wave eikk̂·x , and the spherical wave eik|x−x0|, where x0 is the
center of the spherical wave and k̂ is the propagation vector. For electromagnetic
scattering test, we take EN to be the spectral element interpolation of the plane wave
(eikz, eikz, 0)T. In our example, we set k̂ = (1, 0, 0), x0 = (1, 0, 0), k = 40, B(b)

be the ball centered at origin with radius b = 0.25. For the spectral element inter-
polation, we use a uniform 3 × 4 mesh in the θ -ϕ plane for the spherical surface
r = b and set N = 50 to obtain machine accuracy. According to our computa-

tion, the interpolation errors for eikk̂·x , eik|x−x0| and vector field (eikz, eikz, 0)T in a
discrete maximum norm are 1.1233e-14, 2.90127e-14 and 1.3110e-14, respectively.
Define

ÛN,l = max
0≤|m|≤l

|Ûm
N,l | VN,l = max

0≤|m|≤l
|V m

N,l | WN,l = max
0≤|m|≤l

|Wm
N,l |,

and list the computed values from l = 30 to l = 35 in Table 2. These results show that
it is enough to set the truncation mode L = 35 for k = 40. We depict the scattering
waves in Figs. 5 and 6.

4.2 Computing scattering waves by an irregular scatterer

It is seen that with the spectral element approximations (or solutions) on the sphere,
we can compute the far-filed scattering waves without loss of accuracy. Indeed, in
many applications (e.g., radar detection and remote sensing), the computation of far-
field scattering waves becomes very important. In what follows, we compute the
acoustic scattering wave by an irregular scatterer and note that the approach can
be extended to Maxwell’s equations. The essential idea is to reduce the unbounded
domain by a ball enclosing the scatterer, and use the transformed field expansion
and spectral-Galerkin method (cf. [38, 39]) to solve the reduced problem inside the

Table 2 Magnitude of spherical harmonic coefficients (single spherical scatterer)

l ÛN,l VN,l WN,l

plane incident wave spherical incident wave

30 2.2271e-12 2.6243e-12 4.7366e-13 1.6125e-13

31 3.6545e-13 4.3957e-13 7.8593e-14 2.5827e-14

32 5.8040e-14 7.1058e-14 1.2605e-14 3.9934e-15

33 8.4522e-15 1.1510e-14 1.9629e-15 6.0101e-16

34 1.3907e-15 1.8552e-15 2.9224e-16 8.0510e-17

35 2.5900e-16 6.2305e-16 3.2677e-17 7.3894e-18
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(a) (b) (c) (d)

Fig. 5 Acoustic scattering waves from a spherical scatterer with plane incident wave (a)–(b) and spherical
incident wave (c)–(d)

ball. Then we compute the exterior scattering wave by using the aforementioned
algorithm. Again the SPH and VSH expansions become indispensable tools for both
the interior and exterior solvers.

To fix the idea, we consider

{
�u + k2u = 0, in R

3\D,

u|∂D = g; ∂u
∂r

− iku = O
(
1
r

)
, as r → ∞,

(4.17)

where D is a bounded scatterer given by

D = {
(r, θ, ϕ)|0 ≤ r ≤ a + w(θ, ϕ), 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π

}
, (4.18)

and w(θ, ϕ) = ε�(θ, ϕ) is a smooth perturbation of a ball of radius a.

(a)

(d) (e) (f)

(b) (c)

Fig. 6 Electromagnetic scattering waves from a spherical scatterer
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We reduce the unbounded domain to a bounded domain by a ball of radius b

that encloses the scatterer D (see Fig. 7), and then impose the exact DtN boundary
condition at r = b. This leads to an equivalent boundary value problem:

⎧
⎪⎨

⎪⎩

�u + k2u = 0, (r, θ, ϕ) ∈ � := B(b)\D, (4.19a)

u(a + w(θ, ϕ), θ, ϕ) = g(θ, ϕ), (4.19b)

∂ru + Tb[u] = 0, at r = b, (4.19c)

where

Tb[u] := −
∞∑

l=0

k
∂zh

(1)
l (kb)

h
(1)
l (kb)

l∑

m=−l

ûlmYm
l (θ, ϕ),

is the DtN operator and {̂ulm} are the spherical harmonic expansion coefficients of u

at r = b.
The transformed field expansion (TFE) method (cf. [38, 39]) has been proven to

be efficient in solving the BVP (4.2) even with slightly large perturbation. It relies on
an accurate and efficient SPH expansion algorithm for solving the transformed field
in the separable spherical annulus �a,b := {(r, θ, ϕ), a < r < b} transformed from
� via the transformation:

r̂ = (b − a)r − bw(θ, ϕ)

(b − a) − w(θ, ϕ)
= dr − bw

d − w
, θ̂ = θ, ϕ̂ = ϕ, (4.20)

where d = b − a. Let ũ(r̂, θ̂ , ϕ̂) = u
(
r̂ + (b−r̂)w(θ̂,ϕ̂)

d

)
be the transformed field of u.

Then it satisfies

{
∂r̂ (r̂

2∂r̂ ũ) + �Ŝũ + k2r̂2ũ = f (r̂, θ̂ , ϕ̂; ũ, w), (r̂, θ̂ , ϕ̂) ∈ �a,b, (4.21a)

ũ(a, θ̂ , ϕ̂) = g(θ̂ , ϕ̂), ∂r̂ ũ(b, θ̂ , ϕ̂) + Tb [̃u(b, θ̂ , ϕ̂)] = H(θ̂, ϕ̂; ũ, w), (4.21b)

Fig. 7 An illustration of scatterer D and artificial boundary S
2
b
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where

�Ŝũ := 1

sin θ̂
∂
θ̂
(sin θ̂∂

θ̂
ũ) + 1

sin2 θ̂
∂2
ϕ̂
ũ. (4.22)

According to the field expansion theory [38], we can approximate the solution of
(4.2) by

ũJ (r̂, θ̂ , ϕ̂) =
J∑

j=0

ũj (r̂, θ̂ , ϕ̂)εj , (4.23)

and the functions {̃uj (r̂, θ̂ , ϕ̂)} are determined by

{
∂r̂ (r̂

2∂r̂ ũj ) + �Ŝũj + k2 r̂2ũj = fj (r̂, θ̂ , ϕ̂; {̃uj−s}4s=1), (r̂, θ̂ , ϕ̂) ∈ �a,b, (4.24a)

ũj (a, θ̂ , ϕ̂) = δj,0g(θ̂ , ϕ̂), ∂r̂ ũj (b, θ̂ , ϕ̂) + Tb [̃uj (b, θ̂ , ϕ̂)] = Hj (θ̂, ϕ̂; ũj−1),(4.24b)

where δj,0 is the Kronecker delta. Noting that fj only involves ũj−s(s = 1, 2, 3, 4)
and Hj only depends on ũj−1, each ũj can be solved from (4.2) in a spherical shell
�a,b. Thanks to the special geometry of the computational domain �a,b, an effi-
cient spectral-Galerkin method with SPH expansion can be used. Denote the SPH
expansions by

{̃uj (r̂, θ̂ , ϕ̂), fj (r̂, θ̂ , ϕ̂)} =
∞∑

l=0

l∑

m=−l

{Û j
lm(r̂), F̂

j
lm(r̂)}Ym

l (θ̂ , ϕ̂), (4.25a)

{g(θ̂ , ϕ̂), Hj (θ̂ , ϕ̂)} =
∞∑

l=0

l∑

m=−l

{Ĝlm, Ĥ
j
lm}Ym

l (θ̂ , ϕ̂). (4.25b)

Then, (4.2) can be decomposed into a sequence of one-dimensional, two-point
boundary value problems:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d

dr̂

(
r̂2

dÛ
j
lm

dr̂

)
+ (r̂2k2 − l(l + 1))Û j

lm = F̂
j
lm, r̂ ∈ (a, b), (4.26a)

Û
j
lm(a) = δj,0Ĝlm,

dÛ
j
lm(b)

dr̂
− k

∂zh
(1)
l (kb)

h
(1)
l (kb)

Û
j
lm(b) = Ĥ

j
lm, (4.26b)

for integers |m| ≤ l, l ≥ 0 and j = 0, 1, · · · , J . We use the proposed SPH
expansion algorithm to compute the expansion coefficients {F̂ j

lm, Ĝlm, Ĥ
j
lm} and then

employ spectral solver to solve (4.2). In the calculation of SPH expansion coeffi-
cients, we first evaluate the values of given functions on spectral element grids and
then apply our SPH expansion algorithm. Further, we can use the solver introduced
in the last subsection to compute the far field of the scattering wave after having the
approximation of ũJ on the artificial boundary r = b.

We remark that the VSH expansion algorithm together with the TFE method can
also be applied to solve the electromagnetic scattering problem in a similar setting.
We refer to [40] for the detailed description of the TFE method along this line.
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Below, we present some numerical results. Assume that ∂D has the parameterization:

r = a + ε�(θ, ϕ), (4.27)

where

a = 0.2, ε = 0.05, �(θ, ϕ) = 1

8
(35 cos4 θ − 30 cos2 θ + 3). (4.28)

Take the incident wave g to be the plane wave eikk̂·x , and the spherical wave eik|x−x0|
with k̂ = (1, 0, 0), k = 30, x0 = (1, 0, 1). The artificial boundary centered at
origin with radius b = 0.4 is adopted. It is set to be very close to the scatterer D

for small truncated domain and thus less computation time. On the other hand, the
scattering field outsideB(b) is computed from the spectral element approximation on
∂B(b). For the spectral element approximation on spherical surfaces, we always use
a uniform 3×4 mesh in the θ-ϕ plane and set N = 40. Actually, this spectral element
approximation setting is good enough to make the spectral element interpolation to
machine accuracy. In the spectral solver of one dimensional problems (4.2), we use
polynomial of degree p = 30. The field expansion (4.23) is truncated at J = 10. The
computed values ÛN,l for 35 ≤ l ≤ 40 are listed in Table 3. These results show that
it is enough to set the truncation mode L = 40 for k = 30. We depict the scattering
waves in Figs. 8 and 9, where the scattering waves outside B(b) in the right columns
are computed by the numerical method introduced in the Section 4.1.

4.3 Computing scattering waves by multiple spherical scatterers

Consider the multiple scattering problem
⎧
⎪⎪⎨

⎪⎪⎩

�u + k2u = 0, in R
3\D̄, (4.29a)

u = gN, on ∂D, (4.29b)
∂u

∂r
− iku = O

(1
r

)
, r → ∞, (4.29c)

where k is the wave number and gN is induced by the incident wave. Without loss of
generality, we assume that the scatterer D = D1 ∪ D2 ∪ · · · DM consists of M well-
separated spherical scatterers centered at points O1, O2, · · · , OM of radii a1, a2,

Table 3 Magnitude of spherical
harmonic coefficients (single
irregular scatterer)

l ÛN,l

plane incident wave spherical incident wave

35 5.5527e-12 3.8383e-12

36 2.5861e-12 1.5264e-12

37 9.9869e-13 7.6434e-13

38 4.5069e-13 2.9476e-13

39 1.6978e-13 1.3971e-13

40 7.3989e-14 5.3222e-14
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(a) (b)

(c) (d)

Fig. 8 Scattering wave of plane incident wave

· · · , aM , respectively, see Fig. 10 for an example of two scatterers. As with the previous
case, gN is the high-order spectral element approximation of a given incident wave.

It is known that the scattering field u has a unique purely outgoing wave decom-
position u = u1 + u2 + · · · + uM, where u1, u2, · · · , uM are purely outgoing waves
satisfying the following scattering problems (cf. [14, 21]):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�ui + k2ui = 0, in R
2\D̄i, (4.30a)

ui = gN −
M∑

j=1,j =i

uj , on ∂Di, (4.30b)

∂ui

∂r
− ikui = O

(1
r

)
, r → ∞. (4.30c)
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(a) (b)

(c) (d)

Fig. 9 Scattering wave of spherical incident wave

The position vectors of any point P with respect to the local spherical coordinate
systems are given by

rj = (rj sin θj cosϕj , rj sin θj sinϕj , rj cos θj ), j = 1, 2, · · · , M.

Fig. 10 Geometric configuration for two spherical scatters
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Let bij be the position vector of Oj with respect to Oi , so that r i = rj + bij . We
further introduce the unit vectors

b̂ij = bij

|bij | = bij

bij

, r̂j = rj

|rj | = rj

rj
, i, j = 1, 2, · · · , M.

Recall the following useful formulas (cf. [8, 23]).

Lemma 4.1 For m = 0, ±1, · · · , ±l and l = 0, 1, · · · , there hold

h
(1)
l (kri)Y

m
l (r̂ i ) =

∞∑
n=0

n∑
s=−n

Ssm
nl (bij )jn(krj )Y

s
n (r̂j ), rj < bij ,

h
(1)
l (kri)Y

m
l (r̂ i ) =

∞∑
n=0

n∑
s=−n

Ŝsm
nl (bij )h

(1)
n (krj )Y

s
n (r̂ i ), rj > bij ,

(4.31)

where

Ssm
nl (bij ) = 4π in−l

∞∑
q=0

iqh
(1)
q (kbij )Y

s−m
q (b̂ij )G(l, m; q, s − m; n),

Ŝsm
nl (bji) = 4π in−l

∞∑
q=0

iq(−1)mjq(kbij )Y
s−m
q (b̂ij )G(l, m; n, −s; q),

(4.32)

and G(l, m; n, −s; q) is the Gaunt coefficient.

Like (4.3), (4.3) admits the solution

ui(r i ) =
∞∑

l=0

l∑

|m|=0

Ai
lmψm

l (r i ), i = 1, 2, · · · , M,

where

ψm
l (r i ) := h

(1)
l (kri)

h
(1)
l (kai)

Ym
l (θi, ϕi), i = 1, 2, · · · , M.

We truncate the series and obtain numerical approximations:

Ui
L(r i ) =

L∑

l=0

l∑

|m|=0

Ai
lmψm

l (r i ), i = 1, 2, · · · , M. (4.33)

Then, the problem is to determine the coefficients A := [A1, A2, · · · , AM ] where
Ai = (Ai

lm).
Similar to the single scatterer case, these coefficients can be determined by match-

ing the data on the spherical surfaces ∂D1, ∂D2, · · · , ∂DM using the boundary
conditions (4.30b). For this purpose, we first use the developed algorithm to com-
pute the spherical harmonic expansions of the boundary data gN on the spherical
scatterers ∂D1, ∂D2, · · · , ∂DM :

gN |∂Dj
≈

L∑

l=0

l∑

|m|=0

ĝ
j
lmYm

l (θj , ϕj ).
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According to Lemma 4.1, we have the approximations

ψm
l (r i )|∂Dj

≈
L∑

n=0

n∑

|s|=0

�sm
nl (bij )Y

s
n (θj , ϕj ),

where

�sm
nl (bij ) = Ssm

nl (bij )jn(kaj )

h
(1)
l (kai)

. (4.34)

Note that �sm
nl (bij ) also depends on ai, aj and k, but we do not specify the depen-

dence for simplicity. Then the numerical approximations (4.33) on specific scatterer
Dj can be further approximated by

Ui
L|∂Dj

=
L∑

n=0

n∑

|s|=0

( L∑

l=0

l∑

|m|=0

Ai
lm�sm

nl (bij )
)
Y s

n (̂rj ), j = 1, 2, · · · , i − 1, i + 1, · · · ,M. (4.35)

Although we have analytic formulas (4.32) and (4.34) for the matrices S
ij :=

(�sm
nl (bij )), they are too complicated to be directly used in the practical computa-

tion. For example, consider the analytic formula for �sm
nl (bij ), which has terms of

the form

4π in−l+qh
(1)
q (kbij )jn(kaj )G(l, m; q, s − m; n)

h
(1)
l (kai)

Y s−m
q (b̂ij ), q = 0, 1, · · · .

(4.36)
We see that the first kind spherical Hankel functions of different orders and argu-
ments and quite complicated Gaunt coefficients are involved in (4.36). According
to the asymptotic formula (4.9), direct computation of the first kind spherical Han-
kel function may lead to underflow/overflow for large order. Moreover, the Gaunt
coefficients G(l, m; q, s −m; n) are very complicated and require sophisticated algo-
rithm (cf. [35]) to compute. Therefore, a robust and accurate numerical algorithm for
computing (4.34) is indispensable for highly accurate simulation.

A recurrence formula for the computation of Ssm
nl (bij ) was presented in [7, 15].

However, the calculation of Ssm
nl (bij ) may cause underflow/overflow for large n, l

(see Table 4 below). Thus, the procedure that first calculates Ssm
nl (bij ) and then multi-

plies it by the T-matrix, could result in very large errors for high modes. It is important
to note that we actually only need to compute the coefficients {�sm

nl (bij )} in the mul-
tiscattering problems. Therefore, based on the recurrence formula for Ssm

nl (bij ), we
derive the recurrence formulas for �sm

nl (bij ) as follows. First, we use

b−m−1
m+1 �

s,m+1
n,m+1(bij ) = b−s

n
βi

m

α
j
n−1

�
s−1,m
n−1,m(bij ) − bs−1

n+1α
j
nβi

m�
s−1,m
n+1,m(bij ),

b−m−1
m+1 �

s,−m−1
n,m+1 (bij ) = bs

n
βi

m

α
j

n−1

�
s+1,−m
n−1,m (bij ) − b−s−1

n+1 α
j
nβi

m�
s+1,−m
n+1,m (bij ),

(4.37)
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Table 4 A comparison of
Ssm

nl (bij ) and �sm
nl (bij ) for

k = 90, bij = (0.5, 0, 0),
ai = aj = 0.15

s S
s,0
90,90(bij ) �

s,0
90,90(bij )

0 0.02655 – 1.18586e+84i 7.78972e-43 – 1.39298e-58i

1 −9.99986e-18 + 1.30687e+70i −8.58424e-57 + 8.75699e-73i

2 0.00052 + 1.17247e+84i −7.70172e-43 + 1.49713e-58i

3 −2.75346e-17 – 1.27731e+70i 8.39038e-57 – 1.47936e-72i

4 0.02106 – 1.13316e+84i 7.44350e-43 – 4.30398e-58i

to compute the so-called sectorial coefficients where

α
j
n = jn(kaj )

jn+1(kaj )
, βi

m = hm(kai)

hm+1(kai)
, bm

n =

⎧
⎪⎪⎨

⎪⎪⎩

√
(n−m−1)(n−m)
(2n−1)(2n+1) , 0 ≤ m ≤ n,

−
√

(n−m−1)(n−m)
(2n−1)(2n+1) , −n ≤ m ≤ 0,

0, |m| > n.

(4.38)
The recurrence process start with

�s0
n0(bij ) = (−1)n

√
4π

jn(kaj )hn(kbij )

h0(kai )
Y−s

n (̂bij ),

�0m
0l (bij ) = √

4π
j0(kaj )hl(kbij )

hl(kai )
Ym

l (̂bij ).
(4.39)

Then all other coefficients are computed by

am
l �sm

n,l+1(bij ) = am
l−1β

i
l−1β

i
l �

sm
n,l−1(bij ) − as

nα
j
nβi

l �
sm
n+1,l (bij ) + as

n−1
βi

l

α
j

n−1

�sm
n−1,l (bij ),

(4.40)

where

am
n =

{√
(n+1+|m|)(n+1−|m|)

(2n+1)(2n+3) , n ≥ |m|,
0, |m| > n.

(4.41)

We compare the behaviour of Ssm
nl (bij ) and �sm

nl (bij ), and present their values
obtained by recurrence formula in Table 4. It shows that it is infeasible to use Ssm

nl (bij )

in the numerical simulation.
By matching the boundary data on ∂Di , we obtain linear system

⎡

⎢⎢⎢⎣

I S
21

S
31 · · · SM1

S
12

I S
32 · · · SM2

...
...

...
. . .

...

S
1M

S
2M

S
3M · · · I

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

A1

A2

...

AM

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

G1

G2

...

GM

⎤

⎥⎥⎥⎦ (4.42)

where Gi = (ĝi
lm) are vectors consisting of spherical harmonic expansion coeffi-

cients of gN on ∂Di , respectively. By using the Lapack to directly solve this linear
system, we are able to solve a multiple scattering problem with a limited number of
scatterers. We report the simulation result of 25 scatterers at the end of this subsec-
tion. It is worthwhile to point out that our expansion approach can be adopted not
only to other fast numerical methods (e.g., fast multipole method [16, 22], and the
iterative method [18]) to deal with many more spherical scatterers but also to other
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appropriate solvers (e.g., finite difference method in curvilinear coordinates [2]) to
simulate multiple scattering with irregular scatterers.

Next, we present some numerical results. We set two spherical scatterers located
at (−1, 0, 0) and (1, 0, 0) with radius a1 = a2 = 0.25, respectively. As in the last
example 1, the incident wave is chosen to be the spectral element interpolations of a

plane wave eikk̂·x and a spherical wave eik|x−x0|, respectively. We set k̂ = (0, 0, 1),
x0 = (0, 0, 1), k = 50 and use a uniform 3 × 4 mesh in the θ − ϕ plane for the
spherical surface and polynomials of degree N = 50 for the interpolation. Accord-

ing to our computation, the interpolation errors for eikk̂·x and eik|x−x0| in a discrete
maximum norm are 9.4565e − 15 and 4.5760e − 14, respectively. Define

ĝl = max
0≤|m|≤l

{|̂g1
lm|, |̂g2

lm|}, Cl = max
0≤|m|≤l

{|A1
lm|, |A2

lm|},

and list the computed values for 35 ≤ l ≤ 40 in Table 5. These results show that it
is enough to set the truncation mode L = 40 for k = 50. We depict the scattering
waves in Fig. 11.

We then test the algorithm for many scatterers. We set 25 spherical scatterers
located at a uniform grid points in square area in x-z plane delimited by points
(−2, 0, −2) and (2, 0, 2). All scatterers are identical and of radius a = 0.25. The
incident wave is chosen to be the spectral element interpolations of a plane wave

eikk̂·x . We set k̂ = (0, 0, 1), k = 35 and use a uniform 3 × 4 mesh in the θ -ϕ
plane for the spherical surface and polynomials of degree N = 30 for the interpo-

lation. According to our computation, the interpolation errors for eikk̂·x in a discrete
maximum norm are 2.5367e − 14. Define

ĝl = max
0≤|m|≤l

{|̂g1
lm|, · · · , |̂g25

lm|}, Cl = max
0≤|m|≤l

{|A1
lm|, · · · , |A25

lm|},

and list the computed values from l = 25 to l = 30 in Table 6. The results show that
very accurate solution can be obtained by setting the truncation mode L = 30 for
k = 35 in this example. We depict the scattering waves in Fig. 12.

Table 5 Magnitude of spherical harmonic coefficients (two spherical scatterers)

l Plane incident wave Spherical incident wave

ĝl Cl ĝl Cl

35 1.0371e-12 1.0366e-12 2.6723e-13 2.6756e-13

36 1.8550e-13 1.8483e-13 4.7839e-14 4.7969e-14

37 3.2006e-14 3.1935e-14 8.1178e-15 8.0802e-15

38 5.5439e-15 5.5707e-15 1.3823e-15 1.3574e-15

39 9.3425e-16 9.3619e-16 4.6158e-16 4.6883e-16

40 4.6226e-16 4.7945e-16 5.4598e-16 5.5918e-16
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(a) (b)

(d) (d)

Fig. 11 Scattering waves from two spherical scatterers

Table 6 Magnitude of spherical harmonic coefficients (25 spherical scatterers)

l ĝl Cl l ĝl Cl

25 1.4501e-9 1.8695e-9 28 6.6724e-12 6.9720e-12

26 2.5081e-10 2.8347e-10 29 1.0286e-12 8.7441e-13

27 4.1688e-11 4.2603e-11 30 1.5652e-13 1.3781e-13

(a) (b)

Fig. 12 Scattering waves from many spherical scatterers
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4.4 Concluding remarks

In this paper, we presented accurate numerical tools for computing SPH/VSH
expansions of scalars/vector fields with given nodal values of spectral element
approximations. With the aid of some analytic formulas, we could accurately cal-
culate the underlying highly oscillatory integrals so it is particularly robust for high
mode expansions. As direct applications of the algorithms, we considered several 3D
scattering problems, and demonstrated that stable and accurate simulations can be
achieved with afford computational cost. It is expected that the development in this
paper paves the way for the simulation of scattering problems with complex scat-
terers using the exact DtN boundary conditions. We leave the integration of the tool
herein with the interior spectral-element solver for challenging 3D simulations to a
future work.
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