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Abstract. We show that the entries of the stiffness matrix, associated with the C0-
piecewise linear finite element discretization of the hyper-singular integral fractional
Laplacian (IFL) on rectangular meshes, can be simply expressed as one-dimensional
integrals on a finite interval. Particularly, the FEM stiffness matrix on uniform meshes
has a block-Toeplitz structure, so the matrix-vector multiplication can be implemented
by FFT efficiently. The analytic integral representations not only allow for accurate
evaluation of the entries, but also facilitate the study of some intrinsic properties of
the stiffness matrix. For instance, we can obtain the asymptotic decay rate of the en-
tries, so the “dense” stiffness matrix turns out to be “sparse” with an O(h3) cutoff.
We provide ample numerical examples of PDEs involving the IFL on rectangular or L-
shaped domains to demonstrate the optimal convergence and efficiency of this semi-
analytical approach. With this, we can also offer some benchmarks for the FEM on
general meshes implemented by other means (e.g., for accuracy check and comparison
when triangulation reduces to rectangular meshes).
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1 Introduction

There has been a fast growing interest in nonlocal models in terms of numerics, analysis
and applications, which can be testified by the recent review articles [8,20,31] and mono-
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graphs [19, 21], together with many references therein. Among several types of nonlocal
operators, the integral fractional Laplacian (IFL) is deemed as one of the most prominent,
but challenging operators to deal with. It is known that given a sufficiently nice function
u(x):Rd→R and s∈(0,1), its IFL (−∆)su(x) has the hypersingular integral representation
(cf.[35]):

(−∆)su(x)=Cd,s p.v.
∫

Rd

u(x)−u(y)
|x−y|d+2s dy, Cd,s :=

22ssΓ(s+d/2)
πd/2Γ(1−s)

, (1.1)

where “p.v.” stands for the principal value and Cd,s is the normalisation constant. It can
also be defined as a pseudo-differential operator with symbol |ξ|2s through the Fourier
transform:

(−∆)su(x)=F−1[|ξ|2sF [u](ξ)
]
(x), x∈Rd. (1.2)

The nonlocal and singular nature of this operator poses major difficulties in discretisation
and analysis.

Most recent concerns are with PDEs involving the IFL operator on an open bounded
Lipschitz domain Ω⊂Rd. More precisely, given f : Ω→R in a suitable space, we look
for u on Ω satisfying the fractional Poisson equation with the (nonlocal) homogeneous
Dirichlet boundary condition:

(−∆)su(x)= f (x) in Ω; u(x)=0 on Ωc :=Rd\Ω. (1.3)

We also intend to apply the FEM solver to spatial discretisation of the fractional diffusion
equation:

ut(x,t)+(−∆)su(x,t)=F(u(x,t)) in Ω×(0,T], (1.4)

with the boundary condition: u= 0 in Ωc×[0,T] and the initial condition: u|t=0 = u0 on
Ω̄. Here, F(u) is a certain nonlinear functional of u.

1.1 Contributions

In this paper, we provide a semi-analytic means for computing the piecewise linear FEM
stiffness matrix for (1.3) and (1.4) on a rectangular domain Ω with a rectangular partition,
or a more general domain that can be decomposed into occluded rectangular meshes,
e.g., an L-shaped domain. More specifically, given a uniform partition (with mesh size
hx,hy along x,y, respectively) of Ω with the C0-piecewise linear tensorial FEM nodal basis:
{Φmn(x)=ϕm(x)ϕn(y)}1≤n≤N

1≤m≤M, the fractional stiffness matrix S=(Sll′) of size M2N2 is a
block-Toeplitz matrix that can be generated by an M×N matrix G=(Gkj) and each Gkj
can be explicitly represented as an one-dimensional integral on (0,π/2). Such an analytic
representation is derived from (i) implementation of FEM in the Fourier transformed
domain, and (ii) evaluation of the integral in R2 using polar coordinates, and judicious
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use of some analytic formulas in e.g., the handbook [26]. In a nutshell, the main finding
is

Sll′=
(
(−∆)s/2Φmn,(−∆)s/2Φm′n′

)
R2 =

∫
R2
|ξ|2sF [Φmn](ξ)F [Φm′n′ ](ξ)dξ

=Gkj =
∫ π

2

0
gk

j (θ)dθ, j= |m−m′|, k= |n−n′|, 1≤m≤M, 1≤n≤N,
(1.5)

with the index mapping: l=(n−1)M+m and l′=(n′−1)M+m′, where the integrand gk
j (θ)

has removable endpoint singularities and some explicitly known interior singular points.
In particular, if hx = hy, then Gkj = Gjk. As a result, the computation of the entries boils
down to evaluating one-dimensional integrals which can be carried out in parallel for
each index. We then introduce an efficient and accurate numerical integration technique
based upon two essential components: (i) binomial expansions with recursive formu-
las to remove the endpoint singularities, and (ii) Jacobi-Gauss quadrature with suitable
weight functions to absorb interior singularities of gk

j (θ). It is worthwhile to point out that
the error of the full algorithm is controllable. Benefited from the block-Toeplitz structure
of the stiffness matrix, we can avoid computing and saving the MN-by-MN matrix S,
but the M-by-N generating matrix G instead. In practice, the fast Fourier transform can
be applied to solve the structured linear system (cf.[17]).

Needless to say, we oftentimes see the FEM on complex domains with unstructured
meshes. For the IFL operator, one can resort to Acosta, Bersetche and Borthagaray [3],
and Ainsworth and Glusa [5, 6], which were implemented based on the hypersingular
integral representation (1.1). Here, we consider the simple FEM setting (like the finite
differences in terms of simple domains, see Duo, Van Wyk and Zhang [22], Duo and
Zhang [24], Minden and Ying [34], and Hao, Zhang and Du [28]). Nevertheless, we wish
to provide benchmarks for testing general FEM solvers through this simplification, and
to study some intrinsic properties of the stiffness matrix (see, for example, Liu et al [32]
on the diagonal-dominance of 1D FEM stiffness matrix). Here we find that the entry of G
decays like

|Gkj|=O((j2+k2)−(s+1)), s∈ (0,1), (1.6)

(see Proposition 3.4). This implies that many entries with large j,k can be set to 0, for a
given error tolerance (e.g., O(h3)). In this sense, the matrix S is “sparse” (see Fig. 4).

We remark that the setting and idea can be extended to three dimensions using the
spherical coordinates for the integral in ξ∈R3. Accordingly, the integrals in (1.5) will be
over a two-dimensional box [0,π/2]2 with a much more complicated integrand. More-
over, our approach can be extended to the nonuniform mesh in multi-dimensions but
much more complicated and without Toeplitz structure, as with [18] in one-dimensional
case.
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1.2 Related works

The FEM counts with a solid and well-established theoretical foundation, so it is also
preferable for fractional PDEs, after all the IFL operator has interwoven connections with
the fractional Sobolev framework (cf.[35]). There have been many recent works devoted
to the FEM analysis for fractional PDEs (see, e.g., [4, 10–12, 25]), but the literature on
FEM implementation in multiple dimensions is very limited, where it is accomplished
based on either the hypersingular integral representation (1.1) [3, 5, 6] or the alternative
Dunford-Taylor formulation of the IFL operator [9]. Let {φi} be a set of nodal basis
functions associated to a triangulation T of Ω that vanishes in Ωc. The fractional stiffness
matrix requires to compute

as(φi,φj)=
Cd,s

2

∫
Ω

∫
Ω

(φi(x)−φi(y))(φj(x)−φj(y))
|x−y|d+2s dxdy

+Cd,s

∫
Ω

φi(x)φj(x)
(∫

Ωc

1
|x−y|d+2s dy

)
dx,

(1.7)

where the former is related to the regional fractional Laplacian and the latter counts the
external contribution. First, at the element level, one needs to compute the 2d-integral
like ∫

T

∫
T̃

(φi(x)−φi(y))(φj(x)−φj(y))
|x−y|d+2s dxdy (1.8)

for every pair T,T̃∈T (so the stiffness matrix is dense). If T∩ T̃ ̸=∅ (touching element
pair), some sufficiently high order quadrature techniques must be devised to evaluate such
hyper-singular integrals [6]. Second, to deal with the external part, Acosta et al. [3] pro-
posed to surround Ω by a suitable ball B and append an auxiliary mesh TB\Ω, where the
real computation was based on (1.7) with B (resp. Bc) in place of Ω (resp. Ωc), i.e., on the
mesh T ∪TB\Ω, and where over 99% of the CPU time was devoted to assembly routine.
Ainsworth and Glusa [6] reformulated the second term in (1.7) as a boundary integral
form

Cd,s

2s

∫
Ω

φi(x)φj(x)
(∫

∂Ω

ny ·(x−y)
|x−y|d+2s dy

)
dx, (1.9)

so that techniques for the boundary element method could be used for the troublesome
external part. We remark that Bonito et al.[9] developed the FEM based on the Dunford-
Taylor integral form of the IFL, where the sinc quadrature was used in the extra dimen-
sion, and a sequence of d-dimensional elliptic problems with quadrature node as param-
eters in Rd had to be solved. The aforementioned FEM approaches are amenable to a
general domain, but by no means simple.

The finite difference method for IFL can be implemented more tangibly than the FEM,
but it is available for simple domains and has a stronger regularity requirement for the
solution. We refer to [22–24, 28, 34] for more details. It is noteworthy that Antil et al. [7]
introduced a sinc spectral method for the fractional Laplacian in a hypercube where the
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Fourier transform of sinc function has a simple explicit representation so the proposed
approach can be implemented efficiently in the frequency domain.

The rest of this paper is organized as follows. In section 2, we derive the analytical
one-dimensional integral for the entry of the stiffness matrix. In section 3, we describe the
detailed algorithm for computing the resulting integrals. In section 4, we provide ample
numerical results to show the efficiency and accuracy. We conclude the paper with some
discussions on the extension to three dimensions in the last section.

2 Q1-FEM for fractional Laplacian on rectangular meshes

2.1 FEM setting

We consider the piecewise linear finite element approximation of (1.3) on Ω⊆R2, which
can be partitioned by a non-overlapping rectangular mesh (e.g., a rectangle or an L-
shaped domain). To fix the idea, we first restrict the discussions to the rectangular domain
Ω=(a,b)×(c,d) with a partition:

Th =
{
(a+mhx,c+nhy) : 0≤m≤M+1,0≤n≤N+1

}
, (2.1)

where hx =
b−a
M+1 and hy =

d−c
N+1 . Accordingly, we define the approximation space

Vh =span
{

ϕm(x)ϕn(y), 1≤m≤M, 1≤n≤N
}

, (2.2)

where the piecewise linear FEM basis functions are

ϕℓ(ζ)=


ζ−ζℓ−1
ζℓ−ζℓ−1

, if ζ∈ (ζℓ−1,ζℓ),
ζℓ+1−ζ
ζℓ+1−ζℓ

, if ζ∈ (ζℓ,ζℓ+1),

0, elsewhere on R,

(2.3)

for ζℓ= a+ℓhx or c+ℓhy.
A weak form of (1.3) with s∈ (0,1) is to find u∈ H̃s(Ω) := {v∈Hs(R2) : v= 0 in Ωc}

such that
as(u,v) :=

(
(−∆)s/2u,(−∆)s/2v

)
R2 =( f ,v)Ω, ∀v∈ H̃s(Ω), (2.4)

where (·,·)R2 and (·,·)Ω are the inner products on R2 and Ω, respectively, and Hs(R2)
denotes the fractional Sobolev space defined by the Fourier transform as usual. Then the
FEM for (2.4) is to find uh∈Vh such that

as(uh,vh) :=
(
(−∆)s/2uh,(−∆)s/2vh

)
R2 =( f ,vh)Ω, ∀vh∈Vh. (2.5)

It is known that both (2.4)-(2.5) are well-posed by the standard Lax-Milgram Lemma.
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Given this setting, we intend to explore the best possible analytic information for
accurately computating the entries of the stiffness matrix. Write

uh(x,y)=
N

∑
n=1

M

∑
m=1

ũmnϕm(x)ϕn(y), (2.6)

and arrange the unknowns in column-major order, that is,

ũ=
(

ũ11,ũ21,··· ,ũM1︸ ︷︷ ︸
n=1

, ũ12,ũ22,··· ,ũM2︸ ︷︷ ︸
n=2

,······ ,ũ1N ,ũ2N ,··· ,ũMN︸ ︷︷ ︸
n=N

)t∈RMN , (2.7)

where we note the one-to-one correspondence: ũmn = ũl with l = (n−1)M+m. Corre-
spondingly, the fractional stiffness matrix S is an MN×MN symmetric matrix with the
entries

Sll′=Sl′ l =
(
(−∆)s/2ϕmϕn,(−∆)s/2ϕm′ϕn′

)
R2 , l′=(n′−1)M+m′. (2.8)

The computation of Sll′ based on the hypersingular integral definition (1.1) in (1.7)-
(1.8) is rather complicated. Given the rectangular mesh and tensorial basis, we take a
different routine as follows.

(i) The entries of S are evaluated in the Fourier transformed domain

Sll′=Sl′ l =
∫

R2
(ξ2+η2)sF [ϕm(x)ϕn(y)](ξ,η)F [ϕm′(x)ϕn′(y)](ξ,η)dξdη. (2.9)

The matrix S can be generated by an M-by-N generating matrix G, whose entries
can be represented as a one-dimensional integral on a finite interval.

(ii) S is a symmetric block-Toeplitz matrix with N2 blocks, and each block is an M-by-
M symmetric Toeplitz matrix. Thus, the matrix-vector multiplication can be carried
out by FFT with O(MN logMN) operations.

2.2 Main result

We first show that the entries of the stiffness matrix can be explicitly represented as one-
dimensional integrals as follows.

Theorem 2.1. For s∈ (0,1), the FEM stiffness matrix S is an N-by-N symmetric block-Toeplitz
matrix of the form

S= Ĉs
h4−2s

x
h2

y



T0 T1 ··· T N−2 T N−1

T1 T0
. . . . . . T N−2

...
. . . . . . . . .

...

T N−2
. . . . . . T0 T1

T N−1 T N−2 ··· T1 T0


, (2.10)
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where each block of S is an M-by-M symmetric Toeplitz matrix and the entries are given by

Tk =



tk
0 tk

1 ··· tk
M−2 tk

M−1

tk
1 tk

0
. . . . . . tk

M−2
...

. . . . . . . . .
...

tk
M−2

. . . . . . tk
0 tk

1

tk
M−1 tk

M−2 ··· tk
1 tk

0


, tk

j =
∫ π

2

− π
2

f k
j (θ)dθ, (2.11)

for 0≤ k≤N−1 and 0≤ j≤M−1, and

f k
j (θ)= f k

j (θ;s,ϱ)=
1

sin4 θcos4 θ

2

∑
p,q=−2

cpcq
∣∣(j+p)cosθ+(k+q)ϱsinθ

∣∣6−2s. (2.12)

In the above, the constants

Ĉs :=− 1
4πΓ(7−2s)sin(sπ)

, ϱ=
hy

hx
, c±2=1, c±1=−4, c0=6. (2.13)

Proof. Let {ϕℓ} be the FEM basis on uniform grids with grid size h given in (2.3). Then
from [32, Lemma 2.1], we have

F1[ϕℓ(ζ)](χ)=
1√
2π

∫
R

ϕℓ(ζ)e−iχζdζ=

√
2
π

e−iζℓχ

h
1−cos(hχ)

χ2 , ∀χ∈R, (2.14)

where F1 denotes the one-dimensional Fourier transform in R. Note that in (2.9), the
two-dimensional Fourier transform: F [ϕm(x)ϕn(y)]=F1[ϕm](ξ)×F1[ϕn](η) with h=hx
and h=hy, respectively. Thus, we derive from (2.14) and direct calculation that

Sll′=
4

π2h2
xh2

y

∫
R2
(ξ2+η2)s

{
ei(m−m′)hxξ (1−cos(hxξ))2

ξ4

}{
ei(n−n′)hyη (1−cos(hyη))2

η4

}
dξdη

=
16

π2h2
xh2

y

∫
R2

+

(ξ2+η2)s
{

cos((m−m′)hxξ)
(1−cos(hxξ))2

ξ4

}
·
{

cos((n−n′)hyη)
(1−cos(hyη))2

η4

}
dξdη

=
16

π2h2
xh2

y

∫
R2

+

(ξ2+η2)s
{

cos(jhxξ)
(1−cos(hxξ))2

ξ4

}{
cos(khyη)

(1−cos(hyη))2

η4

}
dξdη,

(2.15)

where we denoted R2
+ = (0,∞)2, j = |m−m′| and k = |n−n′|. This implies the entry Sll′

(with l=(n−1)M+m and l′=(n′−1)M+m′) only depends on |m−m′| and |n−n′|, so S
is a block Toeplitz matrix.
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In view of the non-separable factor (ξ2+η2)s for s ̸=1, we resort to the polar coordinate
transformation ξ=ρcosθ, η=ρsinθ, and rewrite the above double integral as

Sll′=
16

π2h2
xh2

y

∫ π
2

0

1
cos4 θsin4 θ

∫ ∞

0
ρ2s+1

{
cos(jhx ρcosθ)

(1−cos(hx ρcosθ))2

ρ4

}

·
{

cos(khy ρsinθ)
(1−cos(hy ρsinθ))2

ρ4

}
dρdθ=

16
π2h2

xh2
y

∫ π
2

0

gk
j (θ)

cos4 θsin4 θ
dθ,

(2.16)

where we denoted
gk

j (θ) :=
∫ ∞

0
ρ2s−7 f̃ k

j (ρ,θ)dρ, (2.17)

with

f̃ k
j (ρ,θ)=cos(ajρ)(1−cos(a1ρ))2cos(bkρ)(1−cos(b1ρ))2,

aj := aj(θ)= jhx cosθ, bk :=bk(θ)= khy sinθ.

Using the fundamental trigonometric identities, we find

cos(ajρ)(1−cos(a1ρ))2=cos(ajρ)
(3

2
−2cos(a1ρ)+

1
2

cos(2a1ρ)
)
=

1
4

2

∑
p=−2

cp cos(aj+pρ),

and

f̃ k
j (ρ,θ)=

1
16

( 2

∑
p=−2

cp cos(aj+pρ)
)( 2

∑
q=−2

cq cos(bk+qρ)
)

=
1

16

2

∑
p,q=−2

cpcq cos(aj+pρ)cos(bk+qρ)

=
1

32

2

∑
p,q=−2

cpcq
(
cos((aj+p+bk+q)ρ)+cos((aj+p−bk+q)ρ)

)
=

1
32

2

∑
p,q=−2

cpcq
(

cos(αpqρ)+cos(βpqρ)
)
,

where

αpq := |aj+p+bk+q|= |(j+p)hx cosθ+(k+q)hy sinθ|,
βpq := |aj+p−bk+q|= |(j+p)hx cosθ−(k+q)hy sinθ|.

(2.18)

It is evident that the n-th partial derivative is

∂n
ρ f̃ k

j (ρ,θ)=
1
32

2

∑
p,q=−2

cpcq

{
(αpq)

n cos
(

αpq ρ+
nπ

2

)
+(βpq)

n cos
(

βpq ρ+
nπ

2

)}
. (2.19)
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We proceed with the calculation by using integration by parts. For clarity, we consider
two cases: s∈ [ 1

2 ,1) and (0, 1
2 ), separately.

(i) s∈ [ 1
2 ,1): We derive from (2.17) and integration by parts that

gk
j (θ)=

∫ ∞

0
ρ2s−7 f̃ k

j (ρ,θ)dρ=
ρ2s−6

2s−6
f̃ k
j (ρ,θ)

∣∣∣∞

0
− 1

2s−6

∫ ∞

0
ρ2s−6∂ρ f̃ k

j (ρ,θ)dρ

=− 1
2s−6

∫ ∞

0
ρ2s−6∂ρ f̃ k

j (ρ,θ)dρ= ···=− 1
(2s−6)···(2s−2)

∫ ∞

0
ρ2s−2∂5

ρ f̃ k
j (ρ,θ)dρ

=
Γ(2−2s)
Γ(7−2s)

∫ ∞

0
ρ2s−2∂5

ρ f̃ k
j (ρ,θ)dρ, (2.20)

Recall the integral identity (cf. [26, p. 440]):∫ ∞

0
xµ−1sin(ax)dx=

Γ(µ)
aµ

sin
(µπ

2

)
, a>0, µ∈ (0,1), (2.21)

which holds for µ= 0 by understanding lim
µ→0

Γ(µ)sin(µπ/2)=π/2. This corresponds to

the Sine integral (cf. [26, p. 423]):∫ ∞

0

sin(ax)
x

dx=
π

2
, a>0. (2.22)

Then, by (2.19) and (2.21) with µ=2s−1 (and (2.2) for s=1/2 and µ=0), we obtain∫ ∞

0
ρ2s−2∂5

ρ f̃ k
j (ρ,θ)dρ=− 1

32

2

∑
p,q=−2

cpcq

∫ ∞

0
ρ2s−2((αpq)

5sin(αpqρ)+(βpq)
5sin(βpqρ)

)
dρ

=−Γ(2s−1)
32

sin
( (2s−1)π

2

) 2

∑
p,q=−2

cpcq
(
(αpq)

6−2s+(βpq)
6−2s) (2.23)

=
Γ(2s−1)

32
cos(sπ)

2

∑
p,q=−2

cpcq
(
(αpq)

6−2s+(βpq)
6−2s),

which holds for s= 1
2 with the understanding lim

s→1/2
Γ(2s−1)cos(sπ)=−π

2 .

Thus, we derive from (2.17), (2.20), and (2.23) that

gk
j (θ)=

Γ(2−2s)Γ(2s−1)
32Γ(7−2s)

cos(sπ)
2

∑
p,q=−2

cpcq
(
(αpq)

6−2s+(βpq)
6−2s)

=− 1
64Γ(7−2s)sin(sπ)

2

∑
p,q=−2

cpcq
(
(αpq)

6−2s+(βpq)
6−2s),

(2.24)

where in the last step, we used the property:

Γ(z)Γ(1−z)=
π

sinπz
, z ̸=0,−1,··· . (2.25)
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(ii) s∈ (0, 1
2 ): Recall the integral identity (cf. [26, p. 441]):

∫ ∞

0
xµ−1cos(ax)dx=

Γ(µ)
aµ

cos
(µπ

2

)
, a>0, µ∈ (0,1). (2.26)

We integrate the equation (2.20) by parts one more time and obtain

gk
j (θ)=

∫ ∞

0
ρ2s−7 f̃ k

j (ρ,θ)dρ=
Γ(1−2s)
Γ(7−2s)

∫ ∞

0
ρ2s−1∂6

ρ f̃ k
j (ρ,θ)dρ. (2.27)

Then, by (2.19) and (2.26) with µ=2s∈ (0,1), we obtain

∫ ∞

0
ρ2s−1∂6

ρ f̃ k
j (ρ,θ)dρ=− 1

32

2

∑
p,q=−2

cpcq

∫ ∞

0
ρ2s−1((αpq)

6cos(αpqρ)+(βpq)
6cos(βpqρ)

)
dρ

=−Γ(2s)
32

cos(sπ)
2

∑
p,q=−2

cpcq
(
(αpq)

6−2s+(βpq)
6−2s).

Hence, following the same lines as the previous cases, we can derive (2.24) with s∈ (0, 1
2 )

similarly. A combination of (2.16), (2.18) and (2.24) leads to

Sll′= C̃s

∫ π
2

0

2

∑
p,q=−2

cpcq
|(j+p)cosθ+(k+q)ϱsinθ|6−2s+|(j+p)cosθ−(k+q)ϱsinθ|6−2s

cos4 θsin4 θ
dθ,

where C̃s= Ĉsh4−2s
x /h2

y with Ĉs given in (2.13). Introducing f k
j (θ) in (2.12), we can rewrite

the integral and then use a simple substitution to obtain

Sll′= C̃s

∫ π
2

0

(
f k
j (θ)+ f k

j (−θ)
)

dθ= C̃s

(∫ π
2

0
f k
j (θ)dθ+

∫ 0

− π
2

f k
j (θ)dθ

)
= C̃s

∫ π
2

− π
2

f k
j (θ)dθ.

Finally, by the relation between the indices, that is, l =(n−1)M+m, l′=(n′−1)M+m′,
j= |m−m′|, and k= |n−n′|, we can derive the desired formulas.

Remark 2.1. Vollmann and Schulz [42] explored the multilevel Toeplitz structures of the FEM
on rectangular meshes for general nonlocal operators with translation and reflection invariant
kernels. In contrast to our approach, the implementation was performed in the physical space
based on the hypersingular integral (1.7).

We observe from the Toeplitz-structure of S that it can be generated from the matrix
G ∈RMN with the entries Gkj = tk

j , and the value of tk
j only depends on the mesh ratio ϱ and

the fractional order s. In particular, if hx = hy = h (i.e., ϱ= 1), we can show that tk
j = tj

k for
0≤ j,k≤min{N,M}−1. In what follows, we shall restrict our attention to this case, but
with different M,N. In fact, the algorithm can be extended to hx ̸=hy without difficulty.
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As each entry can be computed independently, we do not specify the dependence of
the notation on j,k and s. Denote

xj+p := |j+p|h, yk+q := |k+q|h, 0≤ j≤ J :=M−1, 0≤ k≤K :=N−1, (2.28)

for p,q∈{0,±1,±2}. The following alternative formulation of tk
j is more convenient for

computation.

Corollary 2.1. If hx =hy =h, then we can rewrite tk
j in Theorem 2.1 as

tk
j =

∫ π
2

0
Fk

j (θ)dθ, 0≤ j≤ J, 0≤ k≤K, (2.29)

where the integrand

Fk
j (θ)=

h−γ

sin4 θcos4 θ

2

∑
p,q=−2

cpcq

{∣∣xj+p sinθ−yk+q cosθ
∣∣γ
+
∣∣xj+p sinθ+yk+q cosθ

∣∣γ
}

, (2.30)

with γ=6−2s and {ci} given in (2.13). Moreover, we have tk
j = tj

k for 0≤ j,k≤min{J,K}.

Proof. In view of (2.11)-(2.12), we make the change of variable θ→−θ for θ∈ (−π/2,0)
and obtain

tk
j =

∫ π
2

− π
2

f k
j (θ)dθ=

∫ π
2

0

(
f k
j (θ)+ f k

j (−θ)
)

dθ=
∫ π

2

0

(
f k
j (π/2−θ)+ f k

j (θ−π/2)
)

dθ

=
∫ π

2

0

(
f j
k(θ)+ f k

j (θ−π/2)
)

dθ=
∫ π

2

0

(
f j
k(π/2−θ)+ f k

j (θ)
)

dθ :=
∫ π

2

0
Fk

j (θ)dθ,

where we used the substitution θ→ π
2 −θ in the last step, and denoted the integrand by

Fk
j (θ). Note from (2.30) that Fk

j (θ)= Fj
k(π/2−θ), so we find from (2.29) immediately that

tk
j = tj

k.

To conclude this section, we remark that the proposed approach can recover the stan-
dard FEM stiffness matrix:

S=Sx⊗My+Mx⊗Sy, (2.31)

where
Sz =

1
hz

diag(−1,2,−1), Mz =
hz

6
diag(1,4,1), z= x,y,

are the usual tridiagonal FEM stiffness and mass matrices in one dimension, respectively.
When s=1, the factor (ξ2+η2)s is separable, so we derive from (2.15) and direction cal-
culation that

Sll′=
16

π2h2
xh2

y

(∫ ∞

0

w(ξ; j,hx)

ξ2 dξ
∫ ∞

0

w(η;k,hy)

η4 dη+
∫ ∞

0

w(ξ; j,hx)

ξ4 dξ
∫ ∞

0

w(η;k,hy)

η2 dη
)

,
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where

w(x;ℓ,h)=
1
4

2

∑
p=−2

cp cos((ℓ+p)hx).

Using integration by parts, we find

∫ ∞

0

w(x;ℓ,h)
x2 dx=−h

4

2

∑
p=−2

cp(ℓ+p)
∫ ∞

0

sin((ℓ+p)hx)
x

dx=−πh
8

2

∑
p=−2

cp|ℓ+p|,

∫ ∞

0

w(x;ℓ,h)
x4 dx=

h3

24

2

∑
p=−2

cp(ℓ+p)3
∫ ∞

0

sin((ℓ+p)hx)
x

dx=
πh3

48

2

∑
p=−2

cp|ℓ+p|3,

where we used the formula (2.2) (see [26, P. 423]): for a∈R,∫ ∞

0

sin(ax)
x

dx=
π

2
sign(a).

One verifies readily that

2

∑
p=−2

cp|z+p|=


−4, if z=0,
2, if z=1,
0, if z≥2,

2

∑
p=−2

cp|z+p|3=


8, if z=0,
2, if z=1,
0, if z≥2.

A combination of the above leads to the assembled matrix form given in (2.31).

3 Fast and accurate computation of the one-dimensional integral
tk

j

In this section, we describe the algorithm for computing the one-dimensional integrals
{tk

j } in (2.29)-(2.30). Note that their values only depend on the fractional order s, and

it suffices to compute {tk
j } with j≥ k≥ 0 (as tk

j = tj
k), and J ≥ K. Indeed, for J ≤ K, the

generating matrix can be obtained by the transpose Gt. As a result, we always assume
that

j≥ k≥0, 0≤ j≤ J, 0≤ k≤K≤ J. (3.1)

The main focus will be placed on how to deal with the singularities of the integrand
Fk

j (θ). As shown in Fig. 1, Fk
j (θ) exhibits some local steep peaks that need to be located

and resolved.
We find from (2.30) readily that Fk

j (θ) has a low regularity at θ satisfying xj+p sinθ−
yk+q cosθ=0, but xj+p ̸=0,yk+q ̸=0, that is, at

ϑ
q
p :=arctan

(yk+q

xj+p

)
=arctan

( |k+q|
|j+p|

)
∈ (0,π/2), ∀p∈Υj, ∀q∈Υk, (3.2)
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(a) j=256, k=0 :32 :256. (b) k=32, j=32 :32 :256.

Figure 1: Profiles of Fk
j (θ) with θ∈ [0,π/2] for s=0.7.

where the index set
Υℓ=

{
i : i∈{0,±1,±2}, i ̸=−ℓ

}
, ℓ≥0. (3.3)

Based on the location and nature of the singularities, we split the integral (2.29) into

tk
j =

∫ θ1

0
Fk

j (θ)dθ+
∫ θ2

θ1

Fk
j (θ)dθ+

∫ π
2

θ2

Fk
j (θ)dθ

:=Ik
j (θ1)+J k

j (θ1,θ2)+I j
k(π/2−θ2),

(3.4)

where 0< θ1 < θ2 <π/2 are two constants to be specified later such that all the interior
“singular” points ϑ

q
p ∈ (θ1,θ2). Here the relation between the first and third integrals in

(3.4) follows from a simple change of variable and the property Fj
k(θ)= Fk

j (π/2−θ). We
proceed to compute Ik

j (θ1) by using the binomial expressions at θ=0,π/2, and J k
j (θ1,θ2)

by a suitable Jacobi-Gauss quadrature where the weight function is chosen to absorb the
interior “singularities” of the integrand.

3.1 Computation of Ik
j (θ1)

To reduce the roundoff errors in computation (particularly for j≫ k), we adopt the nor-
malisation

x̄j+p :=
xj+p

xj+2
=
|j+p|
j+2

≤1, ȳk+q :=
yk+q

yk+2
=
|k+q|
k+2

≤1, ∀p∈Υj, ∀q∈Υk, (3.5)

and define the normalised sine and cosine as

Sj(θ) := xj+2sinθ, Ck(θ) :=yk+2cosθ. (3.6)
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For simplicity, we introduce two constants involved in the following proposition:

Cj,k
2n :=

( 2

∑
|p|=0

cp x̄2n+4
j+p

)(
∑

q∈Υk

cq ȳ2−2n−2s
k+q

)
, C̃j,k :=

c−k

2

∑
|p|=0

cp x̄γ
j+p, if k≤2,

0, if k≥3.

(3.7)

We can compute Ik
j (θ1) by the following binormal expansion which indicates the sin-

gularity of Fk
j (θ) in (2.29) at θ=0 is removable.

Proposition 3.1. Let s∈ (0,1). If tanϑ< tanϑ
q
p, i.e., 0≤ϑ<ϑ

q
p for all p∈Υj,q∈Υk, then

Ik
j (ϑ)=

∫ ϑ

0
Fk

j (θ)dθ=
2x4

j+2 y4
k+2

hγ

{
C̃j,kR̃(ϑ)+

∞

∑
n=0

(γ)2n+4 Cj,k
2n

(2n+4)!
R2n(ϑ)

}
, (3.8)

where γ=6−2s, (γ)m=γ(γ−1)···(γ−m+1) is the counting down Pochhammer symbol,
and

R2n(ϑ) :=
∫ ϑ

0

(Sj(θ))
2n

(Ck(θ))2n+2+2s dθ, R̃(ϑ) :=
∫ ϑ

0

(Sj(θ))
2−2s

(Ck(θ))4 dθ, (3.9)

with the constants Cj,k
2n and C̃j,k given in (3.7). Moreover, we have the recurrence relation

R2n−2(ϑ)=−
2n+1+2s

2n−1

( k+2
j+2

)2
R2n(ϑ)+

1
2n−1

k+2
j+2

(Sj(ϑ))
2n−1

(Ck(ϑ))2n+1+2s , (3.10)

and the explicit representation

R̃(ϑ)=
sin(2ϑ)(1+2scos2 ϑ)

6
(Sj(ϑ))

2−2s

(Ck(ϑ))4 +
2s(s−1)

3

x2−2s
j+2

y4
k+2

B(sin2ϑ;3/2−s,1/2), (3.11)

where B(x;a,b) is the incomplete Beta function.

We sketch the derivation in Appendix A to avoid distraction from the main topic.
Note that the expansion (3.8) is valid for all

0≤ϑ<ϑ
j,k
min :=min

p,q

{
ϑ

q
p : p∈Υj,q∈Υk

}
=

arctan
( k−2

j+2

)
, if k≥3,

arctan
( 1

j+2

)
, if 0≤ k≤2.

(3.12)

In practice, we have to truncate the infinite sum and approximate Ik
j (ϑ) by

Ĩk
j (ϑ)=

2x4
j+2 y4

k+2

hγ

{
C̃j,kR̃(ϑ)+

Nδ−1

∑
n=0

(γ)2n+4 Cj,k
2n

(2n+4)!
R2n(ϑ)

}
, (3.13)

where the cut-off number Nδ can be determined by the truncation error for some 0<δ<1
and under the condition

xj+p sinϑ

yk+q cosϑ
≤δ<1, i.e., 0≤ϑ≤arctan(δϑ

j,k
min) := θ1. (3.14)
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Proposition 3.2. Let s∈ (0,1) and let δ∈ (0,1) be given. Then under the condition (3.14),
we have the truncation error∣∣Ik

j (ϑ)−Ĩk
j (ϑ)

∣∣≤ Ĉs
j,k(ϑ)

e−2|lnδ|Nδ

|lnδ|N7−2s
δ

, (3.15)

where

Ĉs
j,k(ϑ) :=

cΓ(7−2s)|sin(2sπ)|ϑ
26−2sπ(cosϑ)2+2s

( 2

∑
|p|=0
|cp||j+p|4

)(
∑

q∈Υk

|cq||k+q|2−2s
)

, c≈1.

We sketch the proof in Appendix B. With the above estimate, we can determine Nδ for
a preassigned δ∈(0,1) and a given error tolerance to compute Ik

j (θ1), so does I j
k(π/2−θ2)

with θ2 =π/2−θ1 in a fast manner. In Fig. 2, we depict the subinterval [θ1,θ2]⊂ [0,π/2]
for fixed j or k with δ=0.9 and s=0.7, where in the shaded region, we need to compute
J k

j (θ1,θ2).

0 /8 /4 3 /8 /2
0

64

128

192

256

k

21

(a) j=256 and k=0 :256.

0 /8 /4 3 /8 /2
0

64

128

192

256
j

1

2

(b) k=10 and j=10 :256.

Figure 2: The distribution of the subinterval [θ1,θ2] with δ=0.9 and s=0.7.

3.2 Computation of J k
j (θ1,θ2)

As illustrated in Fig. 1, the peaks (resulted from local singularities) of the integrand Fk
j (θ)

in (2.30) are contained in [θ1,θ2]. We can show that such singularities can be absorbed by
the weight function of a suitable Jacobi-Gauss quadrature. To this end, we introduce the
linear transformation:

w1(z)=
θ1−ϑ

q
p

2
z+

ϑ
q
p+θ1

2
∈
(
θ1,ϑq

p
)
, w2(z)=

θ2−ϑ
q
p

2
z+

ϑ
q
p+θ2

2
∈
(
ϑ

q
p,θ2

)
, (3.16)

for z∈ (−1,1), where ϑ
q
p is defined in (3.2). Define

d1=
ϑ

q
p−θ1

2
, d2=

θ2−ϑ
q
p

2
. (3.17)
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Proposition 3.3. For s∈ (0,1) and fixed j≥ k≥0, J k
j (θ1,θ2) in (3.4) can be computed by

J k
j (θ1,θ2)=

16
hγ

2

∑
p,q=−2

cpcq(x2
j+p+y2

k+q)
γ
2 Ip,q, (3.18)

where for j≥ k≥3,

Ip,q =I−p,q+I+p,q :=
∫ 1

−1

{(sin(d1(1+z))
d1(1+z)

)γ dγ+1
1 (1+z)5

sin4(2w1(z))

+
(sin(d2(1+z))

d2(1+z)

)γ dγ+1
2 (1+z)5

sin4(2w2(z))

}
(1+z)1−2sdz+

∫ θ2

θ1

|sin(θ+ϑ
q
p)|γ

sin4(2θ)
dθ,

(3.19)

while for j≥ k and k≤2,

Ip,q =
2y4

k+2

x2−2s
j+2

(
R̃(θ2)− R̃(θ1)

)
, (3.20)

and for 2≥ j≥ k≥0,

Ip,q =
2y4

k+2

x2−2s
j+2

(
R̃(π/2−θ2)− R̃(π/2−θ1)

)
. (3.21)

Here R̃(θ) is computed explicitly by (3.11).
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Figure 3: Maximum errors of quadrature against number of nodes with s = 0.7. Left: Jacobi-Gauss
quadrature for I−p,q. Right: Legendre-Gauss quadrature for I+p,q.

We refer to Appendix C for the derivation. It is seen from (3.19) that the integrals I−p,q
can be computed very accurately by using the Jacobi-Gauss quadrature with the weight
ω(0,1−2s)(z)=(1+z)1−2s and a small number of nodes. Meanwhile, the integral I+p,q can be
evaluated accurately by the Legendre-Gauss quadrature with a small number of nodes
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as well. In Fig. 3, we show the maximum quadrature errors for several j,k with the
reference values obtained by a large enough number of nodes. In the worst case with
j≫k, we need slightly more nodes than the case when j,k are close. Here, we resort to the
Multiprecision Computing Toolbox for Matlab [1] in some extreme cases, so we observe
the accuracy up to 10−30.

We summarise the algorithm for computing the entries {tk
j } of the generating matrix

G as follows.

Algorithm 1: Evaluate tk
j

for k=0,··· ,K do
for j= k,··· , J do

Set θ1 to be the value in (3.14) and θ2=
π
2 −θ1;

Compute Ĩk
j (θ1) and Ĩ j

k(π/2−θ2) by (3.13);

Compute J k
j (θ1,θ2) by (3.18) and the quadrature rule to obtain J̃ k

j (θ1,θ2);

Set
tk

j = Ĩk
j (θ1)+J̃ k

j (θ1,θ2)+Ĩ j
k(π/2−θ2).

end
end

3.3 Decay rate of tk
j and sparsity of the generating matrix

With the analytic formula of tk
j in Theorem 2.1 at our disposal, we can show that the

entries {tk
j } of the generating matrix G decay at a rate O((j2+k2)−(s+1)). As a result, for

a given error tolerance (e.g., O(h3)), the entries with large j or k can be set as zero, so the
matrix G becomes relatively “sparse” (see Fig. 4). The derivation of the following decay
rate is essentially based on an alternative representation of the integrand f k

j (θ) in (2.12)
derived from the finite difference perspective, which is sketched in Appendix D.

Proposition 3.4. For s∈ (0,1) and hx =hy =h, the integral tk
j in (2.11) behaves like

tk
j =O

(
(j2+k2)−(s+1)), (3.22)

where the constant in the O-term is independent of j, k and h.

In Fig. 4 (left), we plot the magnitude of the diagonal entries (i.e., |tk
j | with j= k) of

G against the reference decay rate (j2+k2)−(s+1) by (3.22) for different s, which shows a
good agreement. In actual computation, we can directly set tk

j with small magnitudes to
be zero. More precisely, if the magnitude of the entry of the stiffness matrix S is smaller
than h3, we set it to be zero. Indeed, by (2.10), S is generated by G with its entry multiply-
ing the factor Ĉsh2−2s, so we can adopt the truncation rule: if |tk

j |<h2s+1, then we set tk
j =0.
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Figure 4: Left: Decay rate of |tk
j | with k= j various s. Right: Portion of {tk

j } for 1≤ j≤ J = 750 and

1≤ k≤K=512 needs to be evaluated, where s=0.3.

In view of (3.22), we require
√

j2+k2≥ h
1

2(s+1)−1. In practice, it is safe to set tk
j = 0 for all√

j2+k2>P :=[c(s)h−(1+ϵ)] (the integer part) for some small ϵ>0 and 0<c(s)<1. In fact,
we find from many tests that a good choice is ϵ=0.07 and c(s)=1−0.18s, so we take these
values in what follows. We illustrate in Fig. 4 (right) the nonzero entries of the modified
generating matrix G with j≥ k and

√
j2+k2≤ P = 357, where s = 0.3, h = 2−8, J = 750,

K=512. In fact, about 14% of {tk
j } is needed to be evaluated in view of the symmetry and

decay properties.
In Table 1, we tabulate the sparsity of modified generating matrix (i.e., the number

of zero entries divided by the total number of entries) for J = K = 2/h and various s
and h, which indicates a substantial saving can be gained. The condition number κ(S)
with/without cut-off for s=0.3,0.7 are depicted in Fig. 5, where both are consistent with
the theoretical results κ(S)=O(h−2s) (cf. [5, Theorem 5]).

Although more delicate analysis can be conducted for the cut-off rule, the above nu-
merical evidences demonstrate that the h3-rule can be used in practice.

Table 1: Sparsity of the generating matrix G for various s and h
s=0.2 s=0.3 s=0.4 s=0.6 s=0.7 s=0.8

h P Sparsity P Sparsity P Sparsity P Sparsity P Sparsity P Sparsity
2−3 8 80.7% 8 80.7% 8 80.7% 8 80.7% 8 80.7% 7 85.2%
2−4 18 75.3% 18 75.3% 18 75.3% 17 78.1% 16 80.3% 16 80.3%
2−5 39 70.9% 38 72.7% 37 73.7% 36 75.6% 35 76.5% 34 77.8%
2−6 82 67.8% 81 68.6% 79 70.8% 76 72.3% 74 73.7% 73 74.4%
2−7 173 64.9% 170 65.5% 166 67.9% 160 69.9% 157 70.5% 153 71.9%
2−8 363 60.5% 357 61.9% 350 63.5% 336 66.1% 329 67.6% 323 68.6%
2−9 763 56.4% 749 58.0% 735 59.8% 706 62.7% 692 64.1% 678 65.5%
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Figure 5: Condition Number for fractional stiffness matrix S with/without cutting off. Left: s= 0.3.
Right: s=0.7.

Remark 3.1. It is noteworthy that there is much recent interest and attempt in sparse approx-
imation of the IFL stiffness matrix. Karkulik and Melenk [29] developed a conforming FEM on
the quasiuniform mesh based on the Caffarelli-Silvestre extension, where the individual blocks of
the inverse of stiffness matrix can be approximated by low-rank matrices with an exponentially
small error in the rank. Boukaram et al. [14] proposed the hierarchical matrix approximation to
reduce the cost of storage requirement and matrix-vector multiplication as the full representation
of the stiffness matrix is not affordable. We also refer to the references therein for some relevant
approaches, though our method is different from these existing ones.

4 Applications and numerical results

In this section, we consider several examples of PDEs with fractional Laplacian and show
the accuracy and efficiency of the algorithm for computing the FEM stiffness matrix. We
start with the fractional Poisson equation in rectangular and L-shaped domains, and then
turn to the fractional-in-space Allen-Cahn equation.

4.1 Fractional Poisson equation on a rectangular domain

We first consider the model problem (1.3) with the weak form (2.4) and finite-element
approximation (2.5). The convergence rate of the finite element approximation to (1.3)
has been intensively studied in a more general setting (see, e.g., [4, 10–12, 25]). Here, we
collect the most relevant estimates summarised in [6] (with original reference to [4, 11]),
in order to demonstrate that our solver can achieve the expected accuracy.

Theorem 4.1. Let Ω be a rectangular domain with a mesh Th defined in (2.1), and let u,uh be
the solution to (2.4) and (2.5), respectively. If f has the following regularity for different ranges
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of s∈ (0,1), then we have

∥u−uh∥H̃s(Ω)≤C


h

1
2 |logh|∥ f ∥

C
1
2−s(Ω̄)

, if s∈ (0,1/2),

h
1
2 |logh|∥ f ∥L∞(Ω), if s=1/2,

h
1
2
√
|logh|∥ f ∥Cβ(Ω̄), if s∈ (1/2,1),

(4.1)

where h=max{hx,hy} and the constant C depends on the domain Ω,s and/or β.
On the other hand, if u∈Hs+1/2−ε(Ω) for any ε>0, we have

∥u−uh∥L2(Ω)≤C

h
1
2+s−ε|u|

Hs+ 1
2−ε(Ω)

, if 0< s<1/2,

h1−2ε|u|
Hs+ 1

2−ε(Ω)
, if 1/2≤ s<1,

(4.2)

where the positive constant C depends on the domain Ω,s, and ε.

Here, the fractional Sobolev space Hs(Ω) is defined as in [35]. Note that it has a close
relation with the fractional space H̃s(Ω)={v∈Hs(R2) : v=0 in Ωc} (cf. [33, Chapter 3]):
(i) for s>1/2, H̃s(Ω) coincides with the space Hs

0(Ω) which is the closure of C∞
0 (Ω) with

respect to the Hs(Ω)-norm; (ii) for s<1/2, H̃s(Ω) is identical to Hs(Ω); and (iii) for s=
1/2, H̃s(Ω)⊂Hs

0(Ω), where the inclusion is strict. Note that the same regularity estimates
on the solution u are derived in [13], but under much less restrictive assumptions on
source function f .

Now we provide some numerical results and first test the algorithm for (1.3) with an
“exact” solution. According to [38, 40, 41], we can compute the fractional Laplacian of a
special function for s>0,

(−∆)s{e−
λ2∥x∥2

2
}
=2sλ2s Γ(s+1)1F1(s+1,1,−λ2∥x∥2/2) := fλ(∥x∥), x∈R2, (4.3)

where 1F1(·;·;z) is the confluent hypergeometric function as in [36]. As a result, given
fλ(∥x∥) with x∈Ω=(−1,1)2, we can choose a relatively large λ> 0 such that uλ(x) :=
e−λ2∥x∥2/2 ≈ 0 for x ∈Ωc. In this case, both uλ and fλ are sufficiently smooth in R2, so
we expect the FEM approximation can achieve the optimal second-order convergence
for any s∈ (0,1), if the stiffness matrix is computed with a satisfactory accuracy. In the
test, we take λ= 12. In Fig. 6, we plot in log-log scale the L∞-, L2-, and Hs-errors with
s= 0.4,0.6, where we adopt the truncation rule in Table 1 to reduce computational cost.
Indeed, we observe from Fig. 6 the optimal second-order convergence in all cases.

Next, we consider (1.3) with f (x)=1 and Ω=(0,1)2. We infer from [27, (7.12)] that the
solution of (1.3) is singular near the boundary ∂Ω which behaves like

u(x)=dist(x,∂Ω)sv(x), (4.4)

where dist(x,∂Ω) denotes the distance from x ∈Ω to ∂Ω and v is a smooth function.
Indeed, the solution has a regularity as in Theorem 4.1 (cf. [4]). In Fig. 7, we plot uh on
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Figure 6: Errors and convergence order of FEM approximation to (1.3) with an “exact” solution given
in (4.3). Left: s=0.4. Right: s=0.6.

sufficiently fine meshes generated by M= N=210 (i.e., hx = hy = h=2−10) for s=0.3,0.7,
and observe the singular layers near the boundary which are thinner and sharper for
smaller s. Moreover, we shall use this as a reference solution to measure the numerical
errors below.

Figure 7: Profiles of the FEM solution uh obtained by M=N=210. Left: s=0.3. Right: s=0.7.

In Fig. 8, we plot the errors in different norms against h for s= 0.2,0.3,0.4,0.6,0.7,0.8
in log-log scale. Indeed, we observe from Fig. 8 (left) that the L2-errors behave like
the prediction in (4.2), that is, roughly of the order O(hs+1/2) for 0< s< 1/2, and O(h)
for 1/2< s < 1. Similarly, Fig. 8 (middle) shows that the errors in Hs-norm agree with
the estimates in (4.1), that is, approximately O(h1/2). We also depict the L∞-errors in
Fig. 8 (right) which shows a slightly higher convergence order than the finite difference
approximation in [24, 28] for the same example. We observe the convergence O(hs+γ)
with some γ≈ 0.2 for the FEM versus O(hs) for the finite difference. Moreover, we plot
the numerical error plots for s=0.1,0.5,0.99 in Fig. 9, together with the integer case s=1
for comparison. We observe that numerical errors under L2-norm and Hs-norm are in
agreement with the theoretical predictions as expected for s = 0.01 and s = 0.5, and the
convergence behavior up to the second order as s→1.
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Figure 8: Errors and convergence order of FEM approximation to (1.3) with f (x)= 1. Left: L2-error.
Middle: Hs-error. Right: L∞-error.
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Figure 9: Errors and convergence order of FEM approximation to (1.3) with f (x)=1. From left to right:
s=0.01, s=0.5, s=0.99, and s=1.

4.2 Fractional Poisson equation on an L-shaped domain

We next show that the FEM solver can be extended to a bounded domain that can be
partitioned by nonoverlapping rectangular meshes. To fix the idea, we consider an L-
shaped domain Ω = Ω1∪Ω2∪Ω3 with each Ωi being a square (see Fig. 10 (left)). We
partition it by a uniform mesh, label all the “interior” first and then “edge” nodes in
order. For notational clarity, we denote by Nd the total degrees of freedom, and by M,N
the number of nodes in the x- and y-direction respectively. We further denote by M̃,Ñ
the number of “interior” nodes for each sub-domain Ωi in x-direction and y-direction,
respectively. Thus, we have M = 2M̃+1, N = 2Ñ+1 and the degrees of freedom Nd =
3M̃Ñ+M̃+Ñ. Accordingly, for the partition in Fig. 10 (right), we have M= N = 5,M̃=
Ñ=2 and Nd =16. The l-th basis function on Ω is given by

φl(x)=ϕm(x)ϕn(y), 1≤ l≤Nd, (4.5)

where ϕℓ(·) is defined in (2.3), and there exists a one-to-one correspondence between l
and (m,n).

Proposition 4.1. With the above setting, the FEM stiffness matrix S = (Sll′)1≤l,l′≤Nd for
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Figure 10: Illustration of an L-shaped domain Ω (left), and its partition and ordering of unknowns
(right).

s∈ (0,1) has the form

S= Ĉs
h4−2s

x
h2

y

(
S̃+Ŝ

)
, (4.6)

where the Toeplitz structure matrix S̃ and non-Toeplitz structure matrix Ŝ are given by

S̃=



T11 T12 T13 T14 0

Tt
12 T11 T23 T24 0

Tt
13 Tt

23 T11 T34 0

Tt
14 Tt

24 Tt
34 T0 0

0 0 0 0 T0


, Ŝ=



0 0 0 0 D15

0 0 0 0 D25

0 0 0 0 D35

0 0 0 0 D45

Dt
15 Dt

25 Dt
35 Dt

45 0


, (4.7)

with T11, T12, T13 and T23 being Ñ-by-Ñ block-Toeplitz matrices, T14, T24, T34 being
Ñ-by-1 block-Toeplitz matrices, and Di5, i = 1,2,3,4 being non-Toeplitz matrices whose
representations can be referred to Appendix E. In the above, the constant Ĉs is defined in
(2.13), and Toeplitz matrix T0 is defined in (2.11).

In actual computations, we adopt the conjugate gradient (CG) method where the
matrix-vector multiplication can be implemented efficiently as in [17] (but block by block).
More precisely, we split the vector u⃗ into five parts, and evaluate the matrix-vector mul-
tiplications Ti1u⃗1,Ti2u⃗2, Ti3u⃗3, i= 1,2,3, and Ti4u⃗4, i= 1,2,3,4 one by one, which can be
done carried out by using FFT (cf. [43]). The non-Toeplitz part involving Di5u⃗5,i=1,2,3,4,
is however of much smaller size.

Here, we first examine the convergence rate of the proposed method on (4.3) with an
“exact” solution. Set Ω=(−1/4,3/4)×(−3/4,1/4)\[1/4,3/4]×[−3/4,−1/4], hx=hy=h,
and λ=25 to ensure uλ(x) to be nearly zero outside Ω. In this case, we expect a second-
order convergence as before. We tabulate in Table 2 the numerical errors, which indicate
a second-order convergence.
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Table 2: Errors for the “exact” solution uλ with λ=25 in an L-shaped domain.

s=0.3 s=0.7
h L∞-error Order L2-error Order L∞-error Order L2-error Order

2−5 6.78e-2 – 9.60e-3 – 5.38e-2 – 7.70e-3 –
2−6 2.21e-2 1.61 2.46e-3 1.96 1.90e-2 1.50 2.13e-3 1.85
2−7 6.03e-3 1.87 6.26e-4 1.97 5.44e-3 1.80 5.68e-4 1.92
2−8 1.55e-3 1.95 1.58e-4 1.98 1.45e-3 1.90 1.44e-4 1.93
2−9 3.93e-4 1.97 3.98e-5 1.98 3.75e-4 1.95 3.90e-5 1.88

We next test the scheme upon (1.3) with f (x) = 1. We illustrate the profiles of the
numerical solutions obtained by the FEM scheme with M= N = 1024 in Fig. 11, which
clearly exhibits the boundary and corner singularities. In Fig. 12, we plot the L∞- and L2-
errors in log-log scale against various h with the reference order of convergence, which,
to the best of our knowledge, has not been reported in the literature.

Figure 11: Profile of uh with M=N=1024. Left: s=0.3. Right: s=0.7.
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Figure 12: The errors for f (x)=1. Left: s=0.3. Right: s=0.7.
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4.3 Applications to the fractional-in-space Allen-Cahn equation

Consider the fractional-in-space Allen-Cahn equation of the form
ut(x,t)+ϵ2(−∆)su(x,t)+ f (u(x,t))=0, in Ω×(0,T],
u(x,t)=0, in Ωc×[0,T],
u(x,0)=u0(x), in Ω̄,

(4.8)

for s∈ (0,1), and ϵ>0, where

f (u)=F′(u)=
u(u−1)(2u−1)

2
with F(u)=

u2(u−1)2

4
.

Let uk
h be the FEM approximation of u at time tk = kτ. Using the semi-implicit Euler

discretization in time and FEM in space, we derive the fully discretised scheme for (4.8)
is to find uk+1

h ∈Vh such that

1
τ

(
uk+1

h −uk
h,vh

)
Ω+ϵ2((−∆)suk+1

h ,vh
)

Ω+
(

f (uk
h),vh

)
Ω =0, ∀vh∈Vh. (4.9)

We refer to [30] for more details of such time-stepping schemes for gradient flows. Then
the corresponding matrix form reads(

M+τϵ2S
)

Uk+1=MUk−τFk, (4.10)

where S is the stiffness matrix defined in (2.10), and

Uk =
(
ũk

11,ũk
21,··· ,ũk

M1, ũk
12,ũk

22,··· ,ũk
M2,······ ,ũk

1N ,ũk
2N ,··· ,ũk

MN
)t∈RMN ,

M=(Mll′)1≤l,l′≤MN , Mll′=
∫

Ω
ϕm(x)ϕn(y)ϕm′(x)ϕn′(y)dxdy,

with l =(n−1)M+m and 1≤ l≤MN. Likewise for Fk, but with the components f k
mn =

( f (uk
n),ϕmϕn)Ω.

4.3.1 Accuracy test

We first test the convergence rate of the full discrete scheme (4.9). For this purpose, we
consider (4.8) with an exact solution by adding an extra right hand side g, that is,

ut(x,t)+ϵ2(−∆)su(x,t)+ f (u(x,t))= g(x,t) in Ω×(0,T].

We choose u(x,t)=e−t−λ2∥x∥2/2, and find from (4.3) that

g(x,t)=2sλ2s Γ(s+1)ϵ2e−t
1F1(s+1,1,−λ2∥x∥2/2)

− 1
2

e−t−λ2∥x∥2/2− 3
2

e−2t−λ2∥x∥2
+e−3t−3λ2∥x∥2/2.
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We take ϵ=0.1, L=1, T=1, λ=12, and s=0.7. To show the convergence of spatial dis-
cretization, we set the time step τ=10−5 so that the time discretization error is negligible.
We tabulate the spatial maximum errors on the left side of Table 3. To illustrate the tem-
poral error, we choose the mesh size h=2−9 so that the temporal error dominates. We list
the temporal maximum errors on the right side of Table 3. We can observe that spatial
error is of order O(h2), while the temporal error is of order O(τ).

Table 3: Errors and convergence rates with respect to (h,τ).

Spatial convergence Temporal convergence

h Errors c.r. τ Errors c.r.
2−4 8.67e-2 – 1/5 6.55e-2 –
2−5 2.87e-2 1.59 1/10 3.42e-2 0.93
2−6 8.02e-3 1.84 1/20 1.75e-2 0.96
2−7 1.42e-3 2.49 1/40 8.84e-3 0.98
2−8 3.18e-4 2.13 1/80 4.43e-3 0.99
2−9 7.36e-5 2.11 1/160 2.21e-3 1.00

4.3.2 Phase separation and interfacial width

We take Ω=(−2,2)2, ϵ=0.01, τ=10−4, M=N=210 and the initial data u0(x)= 4
5 e−∥x∥

2
.

In Fig. 13, we plot the snapshots of the solution at t=0,4,8,12 with s=0.7. We observe a
clear phase separation and see that the interface becomes sharper as time evolves.

Figure 13: The evolution of solution using semi-implicit scheme at t=0,4,8,12 with s=0.7.

The interfacial width of the fractional-in-space Allen-Cahn equation has been studied
numerically in one dimensional case (cf. [16, 32, 37, 39]), and the predicted interfacial is
of the order O(ϵ1/s). We also refer to [2] for some interesting analysis on the asymptotic
behavior of the interfacial width and free energy functional as s→ 0, which leads to the
displacement of the equilibrium states. It is therefore of interest to see what happens to
the two-dimensional case. Here, we measure the width of the interface through a profile
along the x-axis with the threshold 0.01 < u(x,0)< 0.99, i.e., the length of the interval
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Figure 14: Left: Interfacial layer against various ϵ with s= 0.7 zoomed in [0.5,0.9] at T = 20. Right:
Interfacial width against various ϵ and s at T=20.

{x : 0.01 < u(x,0)< 0.99,x ∈ [0,2]}. For this purpose, we consider the fractional order
s=0.7 and take T=20, τ=10−2, and M=N=210. We plot in Fig. 14 (left) the interfacial
region at y= 0 and within a small interval of x, for several values of ϵ. We see that the
interfacial layer becomes sharper as ϵ decreases. In Fig. 14 (right), we plot the interfacial
width against ϵ with various s, which indicates a behaviour of O(ϵ1/s) as with the one-
dimensional case.

Finally, we adopt the scheme to simulate (4.8) with two “kissing” bubbles. The initial
value is chosen as the two “kissing” bubbles of the form

u0(x)=1− 1
2

tanh
(d(x,x1)

δ

)
− 1

2
tanh

(d(x,x2)

δ

)
, (4.11)

where δ>0, the function d(x,xi)=|x−xi|−0.27, and the two bubbles are initially centered
at x1 =(−0.2,−0.2) and x2 =(0.2,0.2). Here Ω=(−1,1)2, δ= 0.03, ϵ= 0.01, M= N = 210,
and the time step τ = 0.0002. In Fig. 15, we plot the time evolution of the two bubbles
for different s= 0.3,0.7,0.9. At t= 1, the two bubbles are connected with each other, and
then coalesce into one bubble as time goes on. We observe indeed from each column of
Fig. 15 that the coalescence of the two bubbles become much faster as s increases, i.e., the
dynamics evolves faster for a bigger fractional power s.

5 Concluding remarks and discussions

In this paper, we showed that the entries of the FEM stiffness matrix, associated with the
IFL with global homogeneous boundary conditions on rectangular meshes, could be ex-
plicitly represented as one-dimensional integrals on a finite interval. Then we developed
an efficient algorithm for computing the one-dimensional integral based on the binomial
expansion and Jacobi-Gauss quadrature for dealing with the boundary and interior sin-
gularities, respectively. This allowed for the computation of the entries accurately within
any controllable accuracy, and enabled us to study the decay rate the entries that led
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Figure 15: Time evolution of two “kissing” bubbles. Top: s=0.3. Middle: s=0.7. Bottom: s=0.9.

to substantial saving in computational cost. As an application, we introduced a semi-
implicit scheme for solving the fractional-in-space Allen-Cahn equation. Our numerical
experiments demonstrated that our algorithms are efficient and accurate.

Finally, we demonstrate the idea of dealing with the fractional Poisson equation with
nonhomogeneous Dirichlet boundary conditions. To this end, let u(x) be a function de-
fined on R2 and denote its restriction on the finite domain Ω by uΩ(x)=u(x)|x∈Ω. Given
g(x) defined on Ωc, we look for

u(x)=

{
uΩ(x), x∈Ω,
g(x), x∈Ωc,

i.e., the unknown uΩ(x), (5.1)

such that
(−∆)su(x)= f (x) in Ω. (5.2)

It is clear that we can write the solution as

u(x)= ũΩ(x)+ g̃(x), x∈R2,

where ũΩ (resp. g̃) is the zero extension of uΩ (resp. g) on Ω (resp. Ωc) to R2. Then the
problem of interest becomes

(−∆)sũΩ(x)= f (x)−(−∆)s g̃(x). (5.3)
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Thus our proposed approach can be applied with extra cost for evaluating (−∆)s g̃(x)
at the FEM grids. In practice, we can use a suitable approximation of g̃(x) so that its
fractional Laplacian can be computed efficiently or ideally explicitly. For example, a good
candidate is the radial basis approximation, since the fractional Laplacian of such a basis
can be expressed in terms of hypergeometric functions (cf. [15, (2.4)]).

Appendix A: Proof of Proposition 3.1

Recall the basic binomial expansion: if |A|< |B| and B ̸=0. Then we have

|A−B|γ+|A+B|γ = |B|γ
(

1− A
B

)γ
+|B|γ

(
1+

A
B

)γ
=2|B|γ

∞

∑
n=0

(γ)2n

(2n)!

(A
B

)2n
. (A.4)

Taking A = xj+p sinθ and B = yk+q cosθ in (A.4), we obtain immediately that if tanθ <

tanϑ
k+q
j+p for all p∈Υj,q∈Υk in (3.2), then∣∣xj+p sinθ−yk+q cosθ

∣∣γ
+
∣∣xj+p sinθ+yk+q cosθ

∣∣γ

=2|B|γ
∞

∑
n=0

(γ)2n

(2n)!

(A
B

)2n
=2(yk+q cosθ)γ

∞

∑
n=0

(γ)2n

(2n)!

( xj+p sinθ

yk+q cosθ

)2n
(A.5)

=2(ȳk+qCk(θ))
γ

∞

∑
n=0

(γ)2n

(2n)!

( x̄j+p

ȳk+q

)2n(Sj(θ)

Ck(θ)

)2n
.

If k≥3, then yk+q >0, then we derive from (2.30) and (A.5) that

Fk
j (θ)=

2x4
j+2y4

k+2

hγ

∞

∑
n=0

(γ)2n C̄j,k
2n

(2n)!
(Sj(θ))

2n−4

(Ck(θ))2n−2+2s , (A.6)

where the constant

C̄j,k
2n =

2

∑
p,q=−2

cpcq ȳγ
k+q

(
x̄j+p

ȳk+q

)2n

=

( 2

∑
|p|=0

cp x̄2n
j+p

)( 2

∑
|q|=0

cq ȳγ−2n
k+q

)
. (A.7)

Given {cp} in (2.13), we find readily that for m=0,1,2,3,

2

∑
|p|=0

cp x̄m
j+p =

1
(j+2)m

2

∑
|p|=0

cp (j+p)m =0, (A.8)

but for m = 4, it does not vanish. Then using the substitution: n→ n−2 and denoting
Cj,k

2n = C̄j,k
2n+4, we integrate both sides of the resulted equation over (0,ϑ) and obtain (3.8)

with j≥ k≥3.
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If k= 0,1,2, then for q=−k, yk+q = 0, so the corresponding term at the left-hand side
of (A.5) can be kept intact. Accordingly, we have

Fk
j (θ)=

h−γ

sin4 θcos4 θ

2

∑
|p|=0

cp

{
2c−k

(
xj+p sinθ

)γ

+
2

∑
|q|=0;q ̸=−k

(
|xj+p sinθ−yk+q cosθ|γ+|xj+p sinθ+yk+q cosθ|γ

)}

=
2x4

j+2 y4
k+2

hγ

{
C̃j,k (Sj(θ))

2−2s

(Ck(θ))4 +
∞

∑
n=0

(γ)2n C̃j,k
2n

(2n)!
(Sj(θ))

2n−4

(Ck(θ))2n−2+2s

}
,

(A.9)

where C̃j,k
2n is the same as C̄j,k

2n in (A.7) but excluding the term q=−k in the summation

∑2
|q|=0 . In view of (A.8), we have C̃j,k

0 = C̃j,k
2 = 0, so with a change of index n→ n−2,

denoting Cj,k
2n = C̃j,k

2n+4, and integrating both sides over (0,ϑ), we can obtain (3.8) with
0≤ k≤2 similarly.

Next, we turn to prove (3.10). Recall the formulas (cf. [26, P. 152]): for any µ,ν∈R and
ν ̸=1,

∫ sinµθ

cosνθ
dθ=

sinµ−1θ

(ν−1)cosν−1θ
− µ−1

ν−1

∫ sinµ−2 θ

cosν−2 θ
dθ (A.10a)

=
sinµ+1θ

(ν−1)cosν−1θ
− µ−ν+2

ν−1

∫ sinµ θ

cosν−2 θ
dθ. (A.10b)

Taking µ=2n and ν=2n+2+2s in (A.10a), we obtain (3.10) from the resulted recurrence
relation and (3.6) straightforwardly.

Finally, we prove (3.11). Using (A.10b) with µ= 2−2s,ν= 4 and µ= 2−2s,ν= 2 con-
secutively, yields

∫ ϑ

0

(sinθ)2−2s

(cosθ)4 dθ=
(sinϑ)3−2s

3(cosϑ)3 +
2s(sinϑ)3−2s

3cosϑ
+

4s(s−1)
3

∫ ϑ

0
(sinθ)2−2s dθ.

With the variable substitution t=sin2 θ, we find that

∫ ϑ

0
(sinθ)2−2sdθ=

1
2

∫ sin2ϑ

0
t

1
2−s(1−t)−

1
2 dt=

1
2

B(sin2ϑ;3/2−s,1/2). (A.11)

Thus, the identity (3.11) follows.

Appendix B: Proof of Proposition 3.2
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Let F̃k
j (θ) be the first Nδ-term truncation of (A.9) that gives the integrand of Ĩk

j (θ) in
(3.13). Thus, we have

Fk
j (θ)− F̃k

j (θ)=
2x4

j+2 y4
k+2

hγ

∞

∑
n=Nδ

(γ)2n+4 Cj,k
2n

(2n+4)!
(Sj(θ))

2n

(Ck(θ))2n+2+2s

=
2

hγ

∞

∑
n=Nδ

(γ)2n+4

(2n+4)!

( 2

∑
|p|=0

cp x2n+4
j+p

)(
∑

q∈Υk

cq y2−2n−2s
k+q

)
(sinθ)2n

(cosθ)2n+2+2s

=
2

hγ(cosθ)2+2s

∞

∑
n=Nδ

(γ)2n+4

(2n+4)!

( 2

∑
|p|=0

cp x4
j+p ∑

q∈Υk

cq y2−2s
k+q

(xj+p sinθ)2n

(yk+q cosθ)2n

)
,

where we substituted Sj(θ)=xj+2sinθ,Ck(θ)=yk+2cosθ (cf. (3.6)) and Cj,k
2n in (3.7) into the

above. Under the condition (3.14), we can obtain the bound

∣∣Fk
j (θ)− F̃k

j (θ)
∣∣≤ 2

hγ(cosθ)2+2s

2

∑
|p|=0
|cp|x4

j+p ∑
q∈Υk

|cq|y2−2s
k+q

∞

∑
n=Nδ

|(γ)2n+4|δ2n

(2n+4)!

≤ 2
(cosθ)2+2s

2

∑
|p|=0
|cp||j+p|4 ∑

q∈Υk

|cq||k+q|2−2s
∞

∑
n=Nδ

|(γ)2n+4|δ2n

(2n+4)!
.

Using (2.25) with z=2n−2+2s, we can rewrite the falling factorial as

(γ)2n+4=(6−2s)2n+4=
Γ(7−2s)

Γ(3−2n−2s)
=π−1Γ(7−2s)Γ(2n+2s−2)sin(2sπ).

Using the Stirling’s formula, we obtain

∞

∑
n=Nδ

|(γ)2n+4|δ2n

(2n+4)!
=

Γ(7−2s)|sin(2sπ)|
π

∞

∑
n=Nδ

Γ(2n+2s−2)δ2n

Γ(2n+5)

≤ cΓ(7−2s)|sin(2sπ)|
π

∞

∑
n=Nδ

δ2n

(2n)7−2s ≤
cΓ(7−2s)|sin(2sπ)|

π

∫ ∞

Nδ

δ2x

(2x)7−2s dx

≤ cΓ(7−2s)|sin(2sπ)|
π|lnδ|

e(2lnδ)Nδ

(2Nδ)7−2s ,

where the constant from c≈1. Therefore, we can bound the truncation error∣∣Ik
j (ϑ)−Ĩk

j (ϑ)
∣∣≤∫ ϑ

0
|Fk

j (θ)− F̃k
j (θ)|dθ

from the above estimates.

Appendix C: Proof of Proposition 3.3
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We obtain from (2.30), (3.4) and the fundamental trigonometric identity that

J k
j (θ1,θ2)=

∫ θ2

θ1

h−γ

sin4 θcos4 θ

2

∑
p,q=−2

cpcq

{∣∣xj+p sinθ−yk+q cosθ
∣∣γ
+
∣∣xj+p sinθ+yk+q cosθ

∣∣γ
}

dθ

=
1

hγ

2

∑
p,q=−2

cpcq(x2
j+p+y2

k+q)
γ
2 Ip,q,

(C.12)

where

Ip,q :=
∫ θ2

θ1

|sin(θ−ϑ
q
p)|γ

sin4 θcos4 θ
dθ+

∫ θ2

θ1

|sin(θ+ϑ
q
p)|γ

sin4 θcos4(θ)
dθ. (C.13)

We can always assume that x2
j+p+y2

k+q ̸= 0, as the contribution of the term in (C.12)
is zero when x2

j+p+y2
k+q = 0. Then, we only need to consider the following two cases to

carry out the proof.

(i) xj+p =0 or yk+q =0: If yk+q=0, i.e., q=−k (k=0,1,2) and ϑ
q
p=0, then we find from

(C.13) and (3.9) that

Ip,q =2
∫ θ2

θ1

sinγ θ

sin4 θcos4 θ
dθ=

2y4
k+2

x2−2s
j+2

∫ θ2

θ1

(Sj(θ))
2−2s

(Ck(θ))4 dθ=
2y4

k+2

x2−2s
j+2

(
R̃(θ2)− R̃(θ1)

)
. (C.14)

Similarly, if xj+p =0, i.e., p=−j (j=0,1,2) and ϑ
q
p =

π
2 , then

Ip,q =2
∫ θ2

θ1

cosγ θ

sin4 θcos4 θ
dθ=

2x4
j+2

y2−2s
k+2

∫ θ2

θ1

(Ck(θ))
2−2s

(Sj(θ))4 dθ=
2y4

k+2

x2−2s
j+2

(
R̃(π/2−θ2)− R̃(π/2−θ1)

)
.

(C.15)
(ii) xj+p ̸=0 and yk+q ̸=0: In this case, we have 0<θ1≤ϑ

q
p≤θ2<

π
2 . It is evident that the

first integrand of (C.13) is singular at θ=ϑ
q
p, while that of the second integrand is regular.

We only deal with the former, and split it into

∫ θ2

θ1

|sin(θ−ϑ
q
p)|γ

sin4 θcos4 θ
dθ=16

∫ ϑ
q
p

θ1

(sin(ϑq
p−θ))γ

sin4(2θ)
dθ+16

∫ θ2

ϑ
q
p

(sin(θ−ϑ
q
p))

γ

sin4(2θ)
dθ

=16
∫ 1

−1

{
sin(d1(1+z))

d1(1+z)

}γ dγ+1
1 (1+z)5

sin4(2w1(z))
(1+z)1−2s dz

+16
∫ 1

−1

{
sin(d2(1+z))

d2(1+z)

}γ dγ+1
2 (1+z)5

sin4(2w2(z))
(1+z)1−2s dz,

(C.16)

where we used the variable substitutions θ=w1(z) and θ=w2(z) in the second identity,
and d1, d2 are defined in (3.17). This ends the proof.
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Appendix D: Proof of Proposition 3.4

Our starting point is to show that if

(j+p)cosθ+(k+q)sinθ ̸=0, i.e., θ ̸=−arctan
( j+p

k+q

)
, (D.17)

for p,q∈{±2,±1,0} and j≥ k≥0, but j2+k2 ̸=0, then the function f k
j (θ) in (2.12) satisfies

f k
j (θ)=

(6−2s)8

|jcosθ+ksinθ|2+2s

{
1+

(1+s)(3+2s)
3(jcosθ+ksinθ)2 +O(h4)

}
. (D.18)

Recall the finite difference formula derived from the Taylor formula:

cD4
x[v](x) :=

2

∑
p=−2

cp v(x+ph)=v(x−2h)−4v(x−h)+6v(x)−4v(x+h)+v(x+2h)

=h4v(4)(x)+
h6

6
v(6)(x)+

h8

80
v(8)(x)+

∞

∑
k=5

(22k+1−8)h2k

(2k)!
v(2k)(x),

(D.19)

where we assume that all derivatives of v at x exist. In view of (2.12), we define the
function

U(x,y) :=U(x,y;θ)=
∣∣xcosθ+ysinθ

∣∣γ, (D.20)

where θ ∈ (−π/2,π/2) can be viewed as a parameter. We further introduce a set of
“virtual” grids

Xj = jh, Yk = kh, −2≤ j≤ J+2, −2≤ k≤K+2.

Then, we find from (2.12) and (D.20) that

f k
j (θ)=

h−γ

sin4θcos4θ
cD4

y◦cD4
x [U](Xj,Yk), j,k≥0. (D.21)

Thus, using (D.21) and (D.19), we have that for j2+k2 ̸=0

f k
j (θ)=

h2s−2

sin4θcos4θ

2

∑
q=−2

cq

{
∂4

xU(Xj,Yk+q)+
h2

6
∂6

xU(Xj,Yk+q)+O(h4)
}

=
h2+2s

sin4θcos4θ

{
∂4

x∂4
yU(Xj,Yk)+

h2

6
∂6

x∂4
yU(Xj,Yk)+

h2

6
∂4

x∂6
yU(Xj,Yk)+O(h4)

}
.

(D.22)

Direct calculation from (D.20) leads to

∂2n
x ∂2m

y U(x,y)=(6−2s)2n+2m sin2mθcos2nθ
∣∣xcosθ+ysinθ

∣∣γ−2n−2m.

Then the representation (D.18) can be derived from (D.22) directly.
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It is seen from (D.19) that the dependence of the integrand on j2+k2, where we can
write

jcosθ+ksinθ=
√

j2+k2cos(θ−θ∗jk), θ∗jk =arctan(k/j).

Thus, we can extract the leading asymptotic order in Proposition 3.4.

Appendix E: The related matrices in Proposition 4.1

For the part with Toeplitz-structure S̃, the Ñ-by-Ñ block-Toeplitz matrices T11, T12,
T13 and T23 are given by

T11=



T0 T1 . . . T Ñ−2 T Ñ−1

T1 T0
. . . . . . T Ñ−2

...
. . . . . . . . .

...

T Ñ−2
. . . . . . T0 T1

T Ñ−1 T Ñ−2 . . . T1 T0


, T12=



T Ñ+1 T Ñ+2 . . . T2Ñ−1 T2Ñ

T Ñ T Ñ+1
. . . . . . T2Ñ−1

...
. . . . . . . . .

...

T3
. . . . . . T Ñ+1 T Ñ+2

T2 T3 . . . T Ñ T Ñ+1


,

and

T13=



T̃ Ñ+1 T̃ Ñ+2 . . . T̃2Ñ−1 T̃2Ñ

T̃ Ñ T̃ Ñ+1 ···
. . . T̃2Ñ−1

...
. . . . . . . . .

...

T̃3
. . . ··· T̃ Ñ+1 T̃ Ñ+2

T̃2 T̃3 . . . T̃ Ñ T̃ Ñ+1


, T23=



T̃0 T̃1 . . . T̃ Ñ−2 T̃ Ñ−1

T̃1 T̃0 . . .
. . . T̃ Ñ−2

...
. . . . . . . . .

...

T̃ Ñ−2
. . . ··· T̃0 T̃1

T̃ Ñ−1 T̃ Ñ−2 . . . T̃1 T̃0


,

with each block Tk (given by (2.11)) and T̃k being M̃-by-M̃ Toeplitz matrix, and

T̃k =



tk
M̃+1

tk
M̃+2

. . . tk
2M̃−1

tk
2M̃

tk
M̃

tk
M̃+1

. . . . . . tk
2M̃−1

...
. . . . . . . . .

...

tk
3

. . . . . . tk
M̃+1

tk
M̃+2

tk
2 tk

3 . . . tk
M̃

tk
M̃+1


. (E.23)

The entires of Ñ-by-1 block-Toeplitz matrix Ti4, i=1,2,3 are given by

T14=


T Ñ

T Ñ−1
...

T1

, T24=


T1
T2
...

T Ñ

, T34=


T̃

t
1

T̃
t
2

...
T̃

t
Ñ

.
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For the part without Toeplitz-structure Ŝ, we denote the M̃-by-2M̃ matrix

D̃=[D(−1)
← ,D(0)] with D(n)=


tn+1

M̃
tn+2

M̃
. . . tM̃+n

M̃

tn+1
M̃−1

tn+2
M̃−1

. . . tM̃+n
M̃−1

...
. . . . . .

...
tn+1
1 tn+2

1 ··· tM̃+n
1

,

where D← denotes the matrix obtained from D by flipping each column of D in the left-
right direction. Then, the entries of Di5 i=1,2,3,4 are given by

D15=


D(M̃)

D(M̃−1)

...
D(1)

, D25=


D̃(M̃)

D̃(M̃−1)
...

D̃(1)

, D35=


D̃↑(M̃)

D̃↑(M̃−1)
...

D̃↑(1)

, D45= D̃(M̃+1).

where the M̃-by-M̃ matrix D̃(n)= D̃(:,n : n+M̃−1), and D̃↑(n) denote each row of D̃(n)
is flipped in the up-down direction.
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