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NONTENSORIAL GENERALISED HERMITE SPECTRAL METHODS FOR PDES
WITH FRACTIONAL LAPLACIAN AND SCHRÖDINGER OPERATORS

Changtao Sheng1, Suna Ma2, Huiyuan Li3, Li-Lian Wang4,˚ and Lueling Jia5

Abstract. In this paper, we introduce two families of nontensorial generalised Hermite polynomi-
als/functions (GHPs/GHFs) in arbitrary dimensions, and develop efficient and accurate spectral meth-
ods for solving PDEs with integral fractional Laplacian (IFL) and/or Schrödinger operators in R𝑑. As a
generalisation of the G. Szegö’s family in 1D (1939), the first family of multivariate GHPs (resp.GHFs)

are orthogonal with respect to the weight function |𝑥|2𝜇e´|𝑥|
2
(resp. |𝑥|2𝜇) in R𝑑. We further construct

the adjoint generalised Hermite functions (A-GHFs), which have an interwoven connection with the
corresponding GHFs through the Fourier transform, and are orthogonal with respect to the inner prod-
uct r𝑢, 𝑣s𝐻𝑠pR𝑑q “ pp´Δq𝑠{2𝑢, p´Δq𝑠{2𝑣qR𝑑 associated with the IFL of order 𝑠 ą 0. As an immediate
consequence, the spectral-Galerkin method using A-GHFs as basis functions leads to a diagonal stiff-
ness matrix for the IFL (which is known to be notoriously difficult and expensive to discretise). The
new basis also finds remarkably efficient in solving PDEs with the fractional Schrödinger operator:
p´Δq𝑠 ` |𝑥|2𝜇 with 𝑠 P p0, 1s and 𝜇 ą ´1{2 in R𝑑. We construct the second family of multivariate
nontensorial Müntz-type GHFs, which are orthogonal with respect to an inner product associated with
the underlying Schrödinger operator, and are tailored to the singularity of the solution at the origin.
We demonstrate that the Müntz-type GHF spectral method leads to sparse matrices and spectrally
accurate solution to some Schrödinger eigenvalue problems.
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1. Introduction

In the seminal monograph ([43], p. 371) (1939), Szegö introduced for the first time a generalisation of the
Hermite polynomials (denoted by 𝐻

p𝜇q
𝑛 p𝑥q, 𝜇 ą ´1{2, 𝑥 P R :“ p´8,8q and dubbed as generalised Hermite
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polynomials (GHPs)), through a second-order differential equation in an exercise problem. The GHPs are
orthogonal with respect to the weight function |𝑥|2𝜇e´𝑥2

in R. Chihara was among the first who systematically
studied the properties of the GHPs, and the associated generalised Hermite functions (GHFs): p𝐻

p𝜇q
𝑛 p𝑥q :“

e´𝑥2
{2𝐻

p𝜇q
𝑛 p𝑥q (orthogonal with respect to the weight function |𝑥|2𝜇 in R) in his PhD thesis [10] entitled as

“Generalised Hermite Polynomials” (1955). Later, some standard properties were collected in his book [11]
(1978). Whereas the usual Hermite polynomials/functions are well-studied especially in spectral approximations,
there have been very limited works on this generalised family (see, e.g., [30,35–37] for the properties or further
generalisations). In particular, the generalised Hermite spectral method in terms of algorithms, analysis and
applications are still under-explored, which is indeed a topic worthy of investigation.

The main purpose of this paper is to construct two families of nontensorial GHPs/GHFs in arbitrary dimen-
sions, and explore their applications in solving PDEs with the IFL and/or Schrödinger operators.

Firstly, we construct the 𝑑-dimensional GHPs t𝐻𝜇,𝑛
𝑘,ℓ p𝑥qu (cf. (2.12)) and GHFs t p𝐻𝜇,𝑛

𝑘,ℓ p𝑥qu (cf. (2.13)), which

are orthogonal with respect to the weight functions |𝑥|2𝜇e´|𝑥|
2

and |𝑥|2𝜇 in R𝑑 with 𝜇 ą ´ 1
2 , respectively. In

one dimension, they reduce to Szegö’s GHPs/GHFs (up to a constant multiple). More importantly, we further
introduce a family of adjoint generalised Hermite functions (A-GHFs) t q𝐻𝜇,𝑛

𝑘,ℓ p𝑥qu (cf. (2.25)) and derive some
appealing properties that are essential for developing fast and accurate spectral algorithms. We show that the
adjoint pair is closely interwoven through the Fourier transform

F r p𝐻𝜇,𝑛
𝑘,ℓ sp𝜉q “ i𝑛`2𝑘

q𝐻𝜇,𝑛
𝑘,ℓ p𝜉q, F r q𝐻𝜇,𝑛

𝑘,ℓ sp𝜉q “ p´iq𝑛`2𝑘
p𝐻𝜇,𝑛

𝑘,ℓ p𝜉q. (1.1)

Notably, by construction, the A-GHFs are orthogonal with respect to the inner product that induces the so-called
Gagliardo semi-norm of the fractional Sobolev space 𝐻𝑠pR𝑑q for 𝑠 P p0, 1s, that is,

r q𝐻𝑠,𝑛
𝑘,ℓ ,

q𝐻𝑠,𝑚
𝑗,𝜄 s𝐻𝑠pR𝑑q “

`

p´∆q
𝑠
2 q𝐻𝑠,𝑛

𝑘,ℓ , p´∆q
𝑠
2 q𝐻𝑠,𝑚

𝑗,𝜄

˘

R𝑑 “ 𝛿𝑗𝑘𝛿𝑚𝑛𝛿ℓ𝜄, (1.2)

where p´∆q𝑠 is the integral fractional Laplacian operator (cf. (2.28) and (2.29)). An immediate implication
is that the use of A-GHFs as basis functions in the spectral-Galerkin approximation of the IFL leads to a
diagonal stiffness matrix. In contrast, it has been a nightmare for computing this matrix in a usual tensorial
Hermite spectral method when 𝑑 “ 3 (cf. [29]). Moreover, this new basis offers efficient spectral algorithm for
solving PDEs with the fractional Schrödinger operator: p´∆q𝑠 ` 𝑉 p𝑥q with 𝑉 p𝑥q “ |𝑥|2𝜇 or more general
𝑉 p𝑥q “ |𝑥|2𝜇𝑊 p𝑥q (where 𝑊 is smooth function of Schwartz class) with 𝑠 P p0, 1s and 𝜇 ą ´1{2. In light
of the orthogonality (1.2), the stiffness matrix under the Galerkin framework using the basis t q𝐻𝑠,𝑛

𝑘,ℓ u becomes
diagonal, while the singular potential |𝑥|2𝜇 can be treated as the weight function, since q𝐻𝑠,𝑛

𝑘,ℓ can be represented
as a linear combination of t p𝐻𝜇,𝑛

𝑗,𝑙 u (cf. (2.20) and (2.25)). Indeed, the A-GHFs can provide a viable tool for the
solutions of fractional Schrödinger problems (see, e.g., [5, 6, 22,47]).

It is noteworthy that the 3D GHPs (with 𝜇 “ 0 and an appropriate scaling) reduce to the Burnett polynomials
[8] (1936), which are mutually orthogonal with respect to the Maxwellian ℳp𝑥q “ p2𝜋q´3{2e´|𝑥|

2
{2, and have

proven to be a useful basis in solving kinetic equations (cf. [9,20] and the references therein). It is important to
point out that the GHFs with 𝜇 “ 0 are eigenfunctions of the harmonic oscillator (cf. (2.23)):

`

´∆` |𝑥|2
˘

p𝐻0,𝑛
𝑘,ℓ p𝑥q “ p4𝑘 ` 2𝑛` 𝑑q p𝐻0,𝑛

𝑘,ℓ p𝑥q. (1.3)

In fact, such an attractive property (in 2D) has been explored in [4] for computing the ground states and
dynamics of the Bose-Einstein condensation.

It is of fundamental and practical interest to search for the explicit eigen-functions of the Schrödinger operator
with a more general potential or some variance of the operator in (1.3), which is the second purpose of this
paper. The main finding (cf. Thm. 4.2) is that for 𝜃 ą maxp1´𝑑{2, 0q, there exists a family of Müntz-type GHFs
t pℋ𝜃,𝑛

𝑘,ℓ u (cf. (4.3)) satisfying
`

´∆` 𝜃2|𝑥|4𝜃´2
˘

pℋ𝜃,𝑛
𝑘,ℓ p𝑥q “ 2𝜃2

`

p𝑛` 𝑑{2´ 1q{𝜃 ` 2𝑘 ` 1
˘

|𝑥|2𝜃´2
pℋ𝜃,𝑛

𝑘,ℓ p𝑥q. (1.4)
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Table 1. Two families of GHPs/GHFs and their essential properties.

Type Property

Generalised Hermite 𝑑-D GHP: 𝐻𝜇,𝑛
𝑘,ℓ p𝑥q in (2.12) Orthogonal w.r.t. |𝑥|2𝜇e´|𝑥|

2
;

polynomials & functions 1D GHP: 𝐻
p𝜇q
𝑛 p𝑥q in [43] Burnett polynomials [8], if 𝜇 “ 0

𝑑-D GHF: p𝐻𝜇,𝑛
𝑘,ℓ p𝑥q in (2.13) Orthogonal w.r.t. |𝑥|2𝜇;

1D GHF: p𝐻
p𝜇q
𝑛 p𝑥q in (2.42) Eigenfunctions of ´Δ` |𝑥|2, if 𝜇 “ 0

𝑑-D A-GHF: q𝐻𝜇,𝑛
𝑘,ℓ p𝑥q in (2.25) Orthogonal w.r.t.pp´Δq

𝜇
2 ¨, p´Δq

𝜇
2 ¨qR𝑑 ;

1D A-GHF: q𝐻
p𝜇q
𝑛 p𝑥q in (2.46) Diagonal stiffness matrix for p´Δq𝜇, if 𝜇 ą 0

Müntz-type generalised 𝑑-D M-GHF: pℋ𝜃,𝑛
𝑘,ℓ p𝑥q in (4.3) Orthogonal w.r.t. p∇ ¨ ,∇ ¨qR𝑑 ` 𝜃2

p|𝑥|4𝜃´2
¨, ¨qR𝑑

Hermite functions pℋ
1
2 ,𝑛

𝑘,ℓ p𝑥q in Subsection 4.2 Eigenfunctions (with a scaling) of ´ 1
2
Δ`

|𝑍|
|𝑥|

pℋ
1

𝜇`1 ,𝑛

𝑘,ℓ p𝑥q in Subsection 4.3 Optimal basis for the Schrödinger operator:

´ 1
2
Δ` |𝑍||𝑥|

2𝜈´2𝜇
𝜇`1 for 𝜇, 𝜈 in (4.16)

In particular, for 𝜃 “ 1{2, we find

´

´∆´
𝑛` 𝑘 ` p𝑑´ 1q{2

|𝑥|

¯

pℋ
1
2 ,𝑛

𝑘,ℓ p𝑥q “ ´
1
4
pℋ

1
2 ,𝑛

𝑘,ℓ p𝑥q. (1.5)

With a proper scaling, this gives the eigen-pairs of the Schrödinger operator with the Coulomb potential:
´ 1

2∆´
|𝑍|
|𝑥| , where 𝑍 is a nonzero constant (cf. Cor. 4.3). By construction, this new family t pℋ𝜃,𝑛

𝑘,ℓ u in the radial
direction turns out to be some special Müntz functions, so it is dubbed as Müntz-type for distinction. We
remark that a Müntz polynomial

ř𝑛
𝑘“0 𝑎𝑘𝑟

𝜆𝑘 is generated by a Müntz sequence: 𝜆0 ă 𝜆1 ă 𝜆2 ă ¨ ¨ ¨ ă 𝜆𝑛

(cf. [31] (1914)), and the set of Müntz polynomials with 𝜆0 “ 0, and real coefficients t𝑎𝑘u are dense in the
space of continuous functions if and only if

ř8

𝑘“0 𝜆
´1
𝑘 “ 8 (cf. [7] and the references therein). Such a tool finds

very effective in approximating singular solutions (see, e.g., [19,39]). We shall demonstrate in Section 4 that the
Müntz-type GHF spectral-Galerkin approach is the method of choice of the Schrödinger eigenvalue problems
with the fractional power potential in terms of both the efficiency and accuracy. In particular, the spectral
accuracy can be achieved by using such basis function to match the singular behaviours of the eigenfunctions.

In Table 1, we provide a roadmap of two types of generalisations and some of their properties that are essential
for developing efficient spectral algorithms for PDEs with integral fractional Laplacian in Section 2 and the
Schrödinger eigenvalue problems in Section 4. In Subsection 2.4, we highlight the differences and connections
with the relevant existing generalisations, and further testify that most of our constructions herein are new.

2. Multivariate nontensorial generalised Hermite polynomials/functions

In this section, we first make necessary preparations by introducing some notation and properties of the
spherical harmonic functions. We then define the GHPs and GHFs upon the generalised Laguerre polynomials
and spherical harmonics, and further construct a family of adjoint GHFs. We present various appealing prop-
erties of these basis functions, which are essential for the efficient spectral algorithms to be developed in the
forthcoming section. We conclude this section by elaborating on their differences and connections with the most
relevant Hermite-related polynomials/functions in literature.
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2.1. Preliminaries

Let R “ p´8,8q, N “ t1, 2, ¨ ¨ ¨ u, and N0 :“ t0u Y N. For 𝑑 P N, we denote by R𝑑 the 𝑑-dimensional
Euclidean space with the inner product and norm x𝑥,𝑦y :“

ř𝑑
𝑖“1 𝑥𝑖𝑦𝑖, and 𝑟 “ |𝑥| :“

a

x𝑥,𝑥y, respectively,
for any 𝑥,𝑦 P R𝑑. Denote the unit vector along any nonzero vector 𝑥 by 𝑥̂ “ 𝑥{|𝑥|. Recall the 𝑑-dimensional
spherical coordinates

𝑥1 “ 𝑟 cos 𝜃1; 𝑥2 “ 𝑟 sin 𝜃1 cos 𝜃2; ¨ ¨ ¨ ¨ ¨ ¨ ; 𝑥𝑑´1 “ 𝑟 sin 𝜃1 ¨ ¨ ¨ sin 𝜃𝑑´2 cos 𝜃𝑑´1;
𝑥𝑑 “ 𝑟 sin 𝜃1 ¨ ¨ ¨ sin 𝜃𝑑´2 sin 𝜃𝑑´1, 𝜃1, ¨ ¨ ¨ , 𝜃𝑑´2 P r0, 𝜋s, 𝜃𝑑´1 P r0, 2𝜋s, (2.1)

with the spherical volume element

d𝑥 “ 𝑟𝑑´1 sin𝑑´2
p𝜃1q sin𝑑´3

p𝜃2q ¨ ¨ ¨ sin p𝜃𝑑´2qd𝑟 d𝜃1 d𝜃2 ¨ ¨ ¨ d𝜃𝑑´1 :“ 𝑟𝑑´1d𝑟 d𝜎p𝑥̂q. (2.2)

In spherical coordinates, the 𝑑-dimensional Laplacian takes the form

∆ “ B2𝑟 `
𝑑´ 1
𝑟
B𝑟 `

1
𝑟2

∆S𝑑´1 , (2.3)

where ∆S𝑑´1 is the Laplace-Beltrami operator on the unit sphere S𝑑´1 :“ t𝑥 P R𝑑 : |𝑥| “ 1u. Define the inner
product of 𝐿2pS𝑑´1q as

x𝑓, 𝑔y S𝑑´1 :“
ż

S𝑑´1
𝑓p𝑥̂q𝑔p𝑥̂qd𝜎p𝑥̂q.

We next introduce the 𝑑-dimensional spherical harmonics as in [12]. Let 𝒫𝑑
𝑛 be the space of all real 𝑑-

dimensional homogeneous polynomials of degree 𝑛 as follows

𝒫𝑑
𝑛 “ span

 

𝑥𝑘 “ 𝑥𝑘1
1 𝑥

𝑘2
2 . . . 𝑥𝑘𝑑

𝑑 : 𝑘1 ` 𝑘2 ` ¨ ¨ ¨ ` 𝑘𝑑 “ 𝑛
(

. (2.4)

As an important subspace of 𝒫𝑑
𝑛, the space of all real harmonic polynomials of degree 𝑛 is defined as

ℋ𝑑
𝑛 :“

 

𝑃 P 𝒫𝑑
𝑛 : ∆𝑃 p𝑥q “ 0

(

. (2.5)

It is known that the dimensionality

dimp𝒫𝑑
𝑛q “

ˆ

𝑛` 𝑑´ 1
𝑛

˙

, dimpℋ𝑑
𝑛q “

ˆ

𝑛` 𝑑´ 1
𝑛

˙

´

ˆ

𝑛` 𝑑´ 3
𝑛´ 2

˙

:“ 𝑎𝑑
𝑛, (2.6)

where it is understood that for 𝑛 “ 0, 1, the value of the second binomial coefficient is zero (cf. [12] (1.1.5)). In
fact, for 𝑑 “ 1, all harmonic polynomials are spanned by t1, 𝑥u.

The 𝑑-dimensional spherical harmonics are the restrictions of harmonic polynomials in ℋ𝑑
𝑛 to S𝑑´1, denoted

by ℋ𝑑
𝑛

ˇ

ˇ

S𝑑´1 . It is important to remark the correspondence between a harmonic polynomial and the related
spherical harmonic function (cf. [12], Ch. 1): for any 𝑌 p𝑥q P ℋ𝑑

𝑛,

𝑌 p𝑥q “ |𝑥|𝑛𝑌 p𝑥{|𝑥|q “ 𝑟𝑛𝑌 p𝑥̂q, (2.7)

with 𝑌 p𝑥̂q P ℋ𝑑
𝑛

ˇ

ˇ

S𝑑´1 . It is noteworthy that 𝑌 p𝑥q is a homogeneous polynomial in R𝑑, while 𝑌 p𝑥̂q is a non-
polynomial function on the unit sphere. For 𝑛 P N0, let t𝑌 𝑛

ℓ : 1 ď ℓ ď 𝑎𝑑
𝑛u be the real (orthogonal) spherical

harmonic basis of ℋ𝑑
𝑛|S𝑑´1 , and note that the spherical harmonics of different degree are mutually orthogonal

(cf. [12], Thm. 1.1.2), i.e., ℋ𝑑
𝑛|S𝑑´1 K ℋ𝑑

𝑚|S𝑑´1 for 𝑚 ­“ 𝑛. Thus, we have

x𝑌 𝑛
ℓ , 𝑌

𝑚
𝜄 y S𝑑´1 “

ż

S𝑑´1
𝑌 𝑛

ℓ p𝑥̂q𝑌
𝑚
𝜄 p𝑥̂qd𝜎p𝑥̂q “ 𝛿𝑛𝑚𝛿ℓ𝜄, pℓ, 𝑛q, p𝜄,𝑚q P Υ𝑑

8, (2.8)
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where we introduce two-related the index sets

Υ𝑑
8 “

 

pℓ, 𝑛q : 1 ď ℓ ď 𝑎𝑑
𝑛, 0 ď 𝑛 ă 8, ℓ, 𝑛 P N0

(

,

Υ𝑑
𝑁 “

 

pℓ, 𝑛q : 1 ď ℓ ď 𝑎𝑑
𝑛, 0 ď 𝑛 ď 𝑁, ℓ, 𝑛 P N0

(

. (2.9)

The spherical harmonic basis functions are eigenfunctions of the Laplace-Beltrami problem

∆S𝑑´1𝑌 𝑛
ℓ p𝑥̂q “ ´𝑛p𝑛` 𝑑´ 2q𝑌 𝑛

ℓ p𝑥̂q. (2.10)

The second building block of the GHPs/GHFs is the generalized Laguerre polynomials, denoted by 𝐿p𝛼q𝑘 p𝑧q
for 𝑧 P p0,8q and 𝛼 ą ´1. They are orthogonal with respect to the weight function 𝑧𝛼e´𝑧, that is,

ż 8

0

𝐿
p𝛼q
𝑘 p𝑧q𝐿

p𝛼q
𝑗 p𝑧q 𝑧𝛼 e´𝑧 d𝑧 “

Γp𝑘 ` 𝛼` 1q
𝑘!

𝛿𝑘𝑗 , 𝑘, 𝑗 P N0, (2.11)

where we refer to [43], ([25], Ch. 4) and ([38], Ch. 7) for more properties.

2.2. Generalized Hermite polynomials/functions in R𝑑

Definition 2.1. For 𝜇 ą ´ 1
2 , 𝑘 P N0 and pℓ, 𝑛q P Υ𝑑

8, we define the 𝑑-dimensional generalised Hermite
polynomials as

𝐻𝜇,𝑛
𝑘,ℓ p𝑥q :“ 𝐻𝜇,𝑛

𝑘,ℓ p𝑥; 𝑑q “ 𝐿
p𝑛` 𝑑´2

2 `𝜇q

𝑘 p|𝑥|2q𝑌 𝑛
ℓ p𝑥q

“ 𝑟𝑛𝐿
p𝑛` 𝑑´2

2 `𝜇q

𝑘 p𝑟2q𝑌 𝑛
ℓ p𝑥̂q, 𝑥 “ 𝑟 𝑥̂, (2.12)

and the 𝑑-dimensional generalised Hermite functions as

p𝐻𝜇,𝑛
𝑘,ℓ p𝑥q “

b

1{𝛾𝜇,𝑑
𝑘,𝑛 e´

|𝑥|2

2 𝐻𝜇,𝑛
𝑘,ℓ p𝑥q, where 𝛾𝜇,𝑑

𝑘,𝑛 :“
Γp𝑘 ` 𝑛` 𝑑

2 ` 𝜇q

2 𝑘!
. (2.13)

Remark 2.2. As we shall see later, the one-dimensional GHPs (up to a constant multiple) coincide with the
one-dimensional generalisation first introduced in Szegö ([43], p. 371) (1939), after which we name the above
new families. Indeed, they include several special types of multivariate Hermite polynomials/functions with
many applications in both theory and numerics. For example, the three-dimensional GHPs with 𝜇 “ 0 and a
proper scaling lead to the Burnett polynomials [8] (1936) which have rich applications in kinetic theory (see
[9] and the references therein). The notion of constructing special Laguerre-Fourier basis functions (relevant
to the two-dimensional GHPs with 𝜇 “ 0) for computing the ground states and dynamics of Bose-Einstein
condensation [34] was found effective in e.g., [4]. �

Before we consider the applications of GHPs and GHFs, we first present some attractive properties. By
construction, they enjoy the following important orthogonality.

Theorem 2.3. For 𝜇 ą ´ 1
2 , 𝑘, 𝑗 P N0 and pℓ, 𝑛q, p𝜄,𝑚q P Υ𝑑

8, the GHPs are mutually orthogonal with respect
to the weight function |𝑥|2𝜇e´|𝑥|

2
, namely,

ż

R𝑑

𝐻𝜇,𝑛
𝑘,ℓ p𝑥q𝐻

𝜇,𝑚
𝑗,𝜄 p𝑥q |𝑥|

2𝜇 e´|𝑥|
2

d𝑥 “ 𝛾𝜇,𝑑
𝑘,𝑛 𝛿𝑚𝑛𝛿𝑘𝑗𝛿ℓ𝜄, (2.14)

and the GHFs are orthonormal, viz.,
ż

R𝑑

p𝐻𝜇,𝑛
𝑘,ℓ p𝑥q

p𝐻𝜇,𝑚
𝑗,𝜄 p𝑥q |𝑥|

2𝜇 d𝑥 “ 𝛿𝑚𝑛𝛿𝑘𝑗𝛿ℓ𝜄. (2.15)
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Proof. The orthogonality (2.15) is a direct consequence of (2.13) and (2.14), so we only need to show (2.14).
In view of the definition (2.12), we use the spherical coordinates transformation (2.1)–(2.2), and find from the
orthogonality (2.8) and (2.11) that

ż

R𝑑

𝐻𝜇,𝑛
𝑘,ℓ p𝑥q𝐻

𝜇,𝑚
𝑗,𝜄 p𝑥q |𝑥|

2𝜇 e´|𝑥|
2

d𝑥

“

ż 8

0

𝐿
p𝑛` 𝑑´2

2 `𝜇q

𝑘 p𝑟2q𝐿
p𝑚` 𝑑´2

2 `𝜇q
𝑗 p𝑟2q 𝑟2𝜇`2𝑛`𝑑´1e´𝑟2

d𝑟
ż

S𝑑´1
𝑌 𝑛

ℓ p𝑥̂q𝑌
𝑚
𝜄 p𝑥̂qd𝜎p𝑥̂q

“ 𝛿𝑚𝑛𝛿ℓ𝜄

ż 8

0

𝐿
p𝑛` 𝑑´2

2 `𝜇q

𝑘 p𝑟2q𝐿
p𝑚` 𝑑´2

2 `𝜇q
𝑗 p𝑟2q 𝑟2𝜇`2𝑛`𝑑´1e´𝑟2

d𝑟

“
1
2
𝛿𝑚𝑛𝛿ℓ𝜄

ż 8

0

𝐿
p𝑛` 𝑑´2

2 `𝜇q

𝑘 p𝜌q𝐿
p𝑛` 𝑑´2

2 `𝜇q
𝑗 p𝜌q 𝜌𝑛` 𝑑´2

2 `𝜇e´𝜌 d𝜌

“
Γp𝑘 ` 𝑛` 𝑑

2 ` 𝜇q

2𝑘!
𝛿𝑚𝑛𝛿𝑘𝑗𝛿ℓ𝜄 “ 𝛾𝜇,𝑑

𝑘,𝑛 𝛿𝑚𝑛𝛿𝑘𝑗𝛿ℓ𝜄,

which yields (2.14) and ends the proof. �

The 𝑑-dimensional GHPs/GHFs satisfy the recurrence relations.

Proposition 2.4. For 𝜇 ą ´ 1
2 and fixed pℓ, 𝑛q P Υ𝑑

8, we have the following recurrence relations in 𝑘:

p𝑘 ` 1q𝐻𝜇,𝑛
𝑘`1,ℓp𝑥q “

`

2𝑘 ` 𝑛`
𝑑

2
` 𝜇´ |𝑥|2

˘

𝐻𝜇,𝑛
𝑘,ℓ p𝑥q ´

`

𝑘 ` 𝑛`
𝑑

2
´ 1` 𝜇

˘

𝐻𝜇,𝑛
𝑘´1,ℓp𝑥q, (2.16)

and for the GHFs,
𝑎𝑘

p𝐻𝜇,𝑛
𝑘`1,ℓp𝑥q “ p𝑏𝑘 ´ |𝑥|

2q p𝐻𝜇,𝑛
𝑘,ℓ p𝑥q ´ 𝑐𝑘

p𝐻𝜇,𝑛
𝑘´1,ℓp𝑥q, (2.17)

where
𝑎𝑘 “

a

p𝑘 ` 1qp𝑘 ` 𝑛` 𝑑{2` 𝜇q, 𝑏𝑘 “ 2𝑘 ` 𝑛` 𝑑{2` 𝜇, 𝑐𝑘 “
a

𝑘p𝑘 ´ 1` 𝑛` 𝑑{2` 𝜇q.

Proof. Recall the three-term recurrence relation of the Laguerre polynomials (cf. [43]):

p𝑘 ` 1q𝐿p𝛼q𝑘`1p𝑧q “ p2𝑘 ` 𝛼` 1´ 𝑧q𝐿p𝛼q𝑘 p𝑧q ´ p𝑘 ` 𝛼q𝐿
p𝛼q
𝑘´1p𝑧q. (2.18)

Then the relation (2.16) is a direct consequence of (2.12) and (2.18). From (2.13), we have

𝐻𝜇,𝑛
𝑘,ℓ p𝑥q “

b

𝛾𝜇,𝑑
𝑘,𝑛 e

|𝑥|2

2 p𝐻𝜇,𝑛
𝑘,ℓ p𝑥q, (2.19)

so substituting it into (2.16) and working out the constants, we obtain (2.17). �

The GHFs with different parameters are connected through the following identity, which finds very useful in
the algorithm development.

Proposition 2.5. For 𝜇, 𝜈 ą ´ 1
2 and pℓ, 𝑛q P Υ𝑑

8, there holds

p𝐻𝜇,𝑛
𝑘,ℓ p𝑥q “

𝑘
ÿ

𝑗“0

𝜇
𝜈 C𝑘

𝑗
p𝐻𝜈,𝑛

𝑗,ℓ p𝑥q, 𝑥 P R𝑑, 𝑘 P N0, (2.20)

where the connection coefficients are given by

𝜇
𝜈 C𝑘

𝑗 “
Γp𝑘 ´ 𝑗 ` 𝜇´ 𝜈q
Γp𝜇´ 𝜈q p𝑘 ´ 𝑗q!

d

𝑘! Γp𝑗 ` 𝑛` 𝑑
2 ` 𝜈q

𝑗! Γp𝑘 ` 𝑛` 𝑑
2 ` 𝜇q

. (2.21)



NONTENSORIAL GENERALISED HERMITE SPECTRAL METHODS 2147

Proof. Recall the property of the generalized Laguerre polynomials (cf. [3] (7.4)):

𝐿
p𝜇`𝛽`1q
𝑘 p𝑧q “

𝑘
ÿ

𝑗“0

Γp𝑘 ´ 𝑗 ` 𝛽 ` 1q
Γp𝛽 ` 1qp𝑘 ´ 𝑗q!

𝐿
p𝜇q
𝑗 p𝑧q, (2.22)

so we can derive the identity from Definition 2.1 and direct calculation. �

Remark 2.6. As Γp0q “ 8, we can find that in the limiting sense: 𝜇
𝜇C𝑘

𝑗 “ 𝛿𝑘𝑗 . �

Remarkably, for 𝜇 “ 0, the GHFs are the eigenfunctions of the harmonic oscillator: ´∆` |𝑥|2, are essential
for the error analysis to be conducted in the forthcoming section.

Lemma 2.7. For 𝑘 P N0, pℓ, 𝑛q P Υ𝑑
8, the GHFs with 𝜇 “ 0 satisfy

`

´∆` |𝑥|2
˘

p𝐻0,𝑛
𝑘,ℓ p𝑥q “ p4𝑘 ` 2𝑛` 𝑑q p𝐻0,𝑛

𝑘,ℓ p𝑥q. (2.23)

Proof. According to Lemma 2.1 of [28] with 𝛼 “ 𝑛` 𝑑{2´ 1 and 𝛽 “ 𝛼` 1´ 𝑑{2, we have

”

B2𝑟 `
𝑑´ 1
𝑟
B𝑟 ´

𝑛p𝑛` 𝑑´ 2q
𝑟2

´ 𝑟2 ` 4𝑘 ` 2𝑛` 𝑑
ı

“

𝑟𝑛𝐿
p𝑛`𝑑{2´1q
𝑘 p𝑟2q e´

𝑟2
2
‰

“ 0. (2.24)

In view of 𝑌 p𝑥q “ 𝑟𝑛𝑌 p𝑥̂q, we obtain from (2.3), (2.10), (2.12), (2.13) and (2.24) that

´∆ p𝐻0,𝑛
𝑘,ℓ p𝑥q “ ´

b

1{𝛾0,𝑑
𝑘,𝑛

”

B2𝑟 `
𝑑´ 1
𝑟
B𝑟 ´

𝑛p𝑛` 𝑑´ 2q
𝑟2

ı

“

𝑟𝑛 𝐿
p𝑛`𝑑{2´1q
𝑘 p𝑟2q e´

𝑟2
2
‰

𝑌 p𝑥̂q

“

b

1{𝛾0,𝑑
𝑘,𝑛

“

´ 𝑟2 ` 4𝑘 ` 2𝑛` 𝑑
‰ “

𝑟𝑛𝐿
p𝑛`𝑑{2´1q
𝑘 p𝑟2q e´

𝑟2
2
‰

𝑌 p𝑥̂q

“ p´𝑟2 ` 4𝑘 ` 2𝑛` 𝑑q p𝐻0,𝑛
𝑘,ℓ p𝑥q,

which leads to (2.23). �

2.3. Adjoint generalized Hermite functions in R𝑑

Definition 2.8. For 𝜇 ą ´ 1
2 and pℓ, 𝑛q P Υ𝑑

8, the 𝑑-dimensional adjoint GHFs are defined by

q𝐻𝜇,𝑛
𝑘,ℓ p𝑥q “

𝑘
ÿ

𝑗“0

p´1q𝑘´𝑗 𝜇
0C𝑘

𝑗
p𝐻0,𝑛

𝑗,ℓ p𝑥q, 𝑥 P R𝑑, 𝑘 P N0, (2.25)

where the coefficients t𝜇0C𝑘
𝑗 u are given by (2.21).

Remark 2.9. In light of the connection relation in Proposition 2.5, it is evident that q𝐻𝜇,𝑛
𝑘,ℓ p𝑥q can be expressed

as a linear combination of the counterparts
 

p𝐻𝜇,𝑛
𝑗,ℓ p𝑥q

(𝑘

𝑗“0
. �

It is seen from (2.20) (with 𝜈 “ 0) that the GHF can be represented as

p𝐻𝜇,𝑛
𝑘,ℓ p𝑥q “

𝑘
ÿ

𝑗“0

𝜇
0C𝑘

𝑗
p𝐻0,𝑛

𝑗,ℓ p𝑥q, (2.26)

which differs from its adjoint in (2.25) by the sign of the coefficients. Notably, such a subtlety results in an
intimate relation between this adjoint pair through the Fourier transform:

𝑢̂p𝜉q :“ F r𝑢sp𝜉q “
1

p2𝜋q
𝑑
2

ż

R𝑑

𝑢p𝑥q e´ix𝜉,𝑥y d𝑥, F´1rp𝑢sp𝑥q “
1

p2𝜋q
𝑑
2

ż

R𝑑

p𝑢p𝜉q eix𝜉,𝑥y d𝜉. (2.27)
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Moreover, the use of A-GHFs as basis functions in a spectral-Galerkin framework can diagonalise the nonlocal
integral fractional Laplacian p´∆q𝑠 for 𝑠 ą 0. Recall that for 𝑠 ą 0, the fractional Laplacian of 𝑢 P S pR𝑑q

(functions of Schwartz class) can be naturally defined via the Fourier transform:

p´∆q𝑠𝑢p𝑥q “ F´1
“

|𝜉|2𝑠F r𝑢sp𝜉q
‰

p𝑥q, 𝑥 P R𝑑. (2.28)

For 0 ă 𝑠 ă 1, the fractional Laplacian can be equivalently defined by the point-wise formula (cf. [13]):

p´∆q𝑠𝑢p𝑥q “ 𝐶𝑑,𝑠 p.v.
ż

R𝑑

𝑢p𝑥q ´ 𝑢p𝑦q

|𝑥´ 𝑦|𝑑`2𝑠
d𝑦, 𝐶𝑑,𝑠 :“

22𝑠𝑠Γp𝑠` 𝑑{2q
𝜋𝑑{2Γp1´ 𝑠q

, (2.29)

where “p.v.” stands for the principle value.

Theorem 2.10. For 𝜇 ą ´ 1
2 , pℓ, 𝑛q P Υ𝑑

8 and 𝑘 P N0, we have

F r q𝐻𝜇,𝑛
𝑘,ℓ sp𝜉q “ p´iq𝑛`2𝑘

p𝐻𝜇,𝑛
𝑘,ℓ p𝜉q, F´1r p𝐻𝜇,𝑛

𝑘,ℓ sp𝑥q “ i𝑛`2𝑘
q𝐻𝜇,𝑛

𝑘,ℓ p𝑥q, (2.30)

and for 𝑠 ą 0,
F rp´∆q𝑠 q𝐻𝜇,𝑛

𝑘,ℓ sp𝜉q “ p´iq𝑛`2𝑘|𝜉|2𝑠
p𝐻𝜇,𝑛

𝑘,ℓ p𝜉q. (2.31)

Moreover, the adjoint GHFs are orthonormal in the sense that for 𝑠 ą 0,
`

p´∆q
𝑠
2 q𝐻𝑠,𝑛

𝑘,ℓ , p´∆q
𝑠
2 q𝐻𝑠,𝑚

𝑗,𝜄

˘

R𝑑 “ 𝛿𝑗𝑘𝛿𝑚𝑛𝛿ℓ𝜄. (2.32)

Proof. We first show that the GHFs with 𝜇 “ 0 are eigenfunctions of the Fourier transform, namely,

F r p𝐻0,𝑛
𝑘,ℓ sp𝜉q “ p´iq𝑛`2𝑘

p𝐻0,𝑛
𝑘,ℓ p𝜉q. (2.33)

According to Lemma 9.10.2 of [2], we have that for 𝜔 ą 0,
ż

S𝑑´1
𝑌 𝑛

ℓ p𝑥̂q e´i𝜔 x𝜉,𝑥̂yd𝜎p𝑥̂q “
p´iq𝑛p2𝜋q

𝑑
2

𝜔
𝑑´2
2

𝐽𝑛` 𝑑´2
2
p𝜔q𝑌 𝑛

ℓ p𝜉q, 𝜉 P S𝑑´1, (2.34)

where 𝐽𝜈p𝑧q is the Bessel functions of the first kind of order 𝜈. Then using Definition 2.1 with 𝜇 “ 0, and (2.34)
with 𝜔 “ 𝜌𝑟 and 𝜌 “ |𝜉|, leads to

F r p𝐻0,𝑛
𝑘,ℓ sp𝜉q “

1

p2𝜋q
𝑑
2

ż

R𝑑

p𝐻0,𝑛
𝑘,ℓ p𝑥qe

´ix𝜉,𝑥yd𝑥

“
1

b

𝛾0,𝑑
𝑘,𝑛

1

p2𝜋q
𝑑
2

ż 8

0

𝑟𝑛𝐿
p𝑛` 𝑑´2

2 q

𝑘 p𝑟2qe´
𝑟2
2

"
ż

S𝑑´1
𝑌 𝑛

ℓ p𝑥̂qe
´i𝜌𝑟x𝜉,𝑥̂yd𝜎p𝑥̂q

*

𝑟𝑑´1 d𝑟

“
1

b

𝛾0,𝑑
𝑘,𝑛

p´iq𝑛

𝜌
𝑑´2
2

"
ż 8

0

𝑟𝑛` 𝑑
2𝐿
p𝑛` 𝑑´2

2 q

𝑘 p𝑟2q e´
𝑟2
2 𝐽𝑛` 𝑑´2

2
p𝜌𝑟qd𝑟

*

𝑌 𝑛
ℓ p𝜉q, 𝜌 ą 0. (2.35)

Recall the integral identity of the generalised Laguerre polynomials (cf. [17], p. 820): for 𝛼 ą ´1,
ż 8

0

𝑟𝛼`1𝐿
p𝛼q
𝑘 p𝑟2q e´

𝑟2
2 𝐽𝛼p𝜌𝑟qd𝑟 “ p´1q𝑘𝜌𝛼𝐿

p𝛼q
𝑘 p𝜌2q e´

𝜌2

2 , 𝜌 ą 0. (2.36)

Thus, taking 𝛼 “ 𝑛 ` 𝑑´2
2 in (2.36), we can work out the integral in (2.35) and then obtain from (2.13) with

𝜇 “ 0 that

F r p𝐻0,𝑛
𝑘,ℓ sp𝜉q “

p´1q𝑘
b

𝛾0,𝑑
𝑘,𝑛

p´iq𝑛

𝜌
𝑑´2
2

𝜌𝑛` 𝑑´2
2 𝐿

p𝑛` 𝑑´2
2 q

𝑘 p𝜌2qe´
𝜌2

2 𝑌 𝑛
ℓ p𝜉q “ p´iq𝑛`2𝑘

p𝐻0,𝑛
𝑘,ℓ p𝜉q. (2.37)
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This yields (2.33).
From Definition 2.8 and the property (2.37), we obtain

F r q𝐻𝜇,𝑛
𝑘,ℓ sp𝜉q “

𝑘
ÿ

𝑗“0

p´1q𝑘´𝑗 𝜇
0C𝑘

𝑗 F r p𝐻0,𝑛
𝑗,ℓ sp𝜉q “

𝑘
ÿ

𝑗“0

p´1q𝑘´𝑗 p´iq𝑛`2𝑗 𝜇
0C𝑘

𝑗
p𝐻0,𝑛

𝑗,ℓ p𝜉q

“ p´iq𝑛`2𝑘
𝑘
ÿ

𝑗“0

𝜇
0C𝑘

𝑗
p𝐻0,𝑛

𝑗,ℓ p𝜉q “ p´iq𝑛`2𝑘
p𝐻𝜇,𝑛

𝑘,ℓ p𝜉q, (2.38)

where in the last step, we used (2.26). This gives the first identity in (2.30), and the second is its immediate
consequence. The property (2.31) follows directly from (2.30) and the definition of fractional Laplacian (2.28).

Finally, using the Parseval’s identity and (2.31), we derive from the orthogonality (2.15) that
`

p´∆q
𝑠
2 q𝐻𝑠,𝑛

𝑘,ℓ , p´∆q
𝑠
2 q𝐻𝑠,𝑚

𝑗,𝜄

˘

R𝑑 “
`

F rp´∆q
𝑠
2 q𝐻𝑠,𝑛

𝑘,ℓ s,F rp´∆q
𝑠
2 q𝐻𝑠,𝑚

𝑗,𝜄 s
˘

R𝑑

“ p´iq𝑛´𝑚`2𝑘´2𝑗p|𝜉|2𝑠
p𝐻𝑠,𝑛

𝑘,ℓ ,
p𝐻𝑠,𝑚

𝑗,𝜄 qR𝑑 “ 𝛿𝑚𝑛𝛿𝑘𝑗𝛿ℓ𝜄.

This yields (2.32) and ends the proof. �

Note that the GHFs are real-valued, so we infer from (2.27) readily that

F r p𝐻𝜇,𝑛
𝑘,ℓ p𝑥qsp𝜉q “

 

F´1r p𝐻𝜇,𝑛
𝑘,ℓ p𝑥qsp𝜉q

(˚
.

Thus, we find from (2.30) immediately the following “reversed” form of (2.30).

Corollary 2.11. For 𝜇 ą ´ 1
2 , pℓ, 𝑛q P Υ𝑑

8 and 𝑘 P N0, we have

F r p𝐻𝜇,𝑛
𝑘,ℓ sp𝜉q “ i𝑛`2𝑘

q𝐻𝜇,𝑛
𝑘,ℓ p𝜉q, F´1r q𝐻𝜇,𝑛

𝑘,ℓ sp𝑥q “ p´iq𝑛`2𝑘
p𝐻𝜇,𝑛

𝑘,ℓ p𝑥q. (2.39)

Remark 2.12. The fractional Sobolev orthogonality (2.32) has profound implications even for the integral-
order Laplacian p´∆q𝑚 with 𝑚 P N. For example, we find from (2.25) with 𝑠 “ 1 that the A-GHFs read

q𝐻1,𝑛
𝑘,ℓ p𝑥q “

d

𝑘!
Γp𝑘 ` 𝑛` 𝑑

2 ` 1q

𝑘
ÿ

𝑗“0

d

Γp𝑗 ` 𝑛` 𝑑
2 q

𝑗!
p𝐻0,𝑛

𝑗,ℓ p𝑥q,

which are orthogonal with respect to p∇¨,∇¨qR𝑑 . However, this attractive property is not valid for the usual
Hermite-based methods based on tensorial Hermite functions

ś𝑑
𝑗“1

p𝐻𝑛𝑗
p𝑥𝑗q. Thus, it is advantageous to use

the A-GHFs for usual Laplacian and bi-harmonic Laplacian (using the A-GHFs with 𝑠 “ 2) in R𝑑. �

2.4. Differences and connections with some existing generalisations

There have been some existing generalisations of the usual Hermite polynomials/functions in different senses,
so we feel compelled to point out the differences and connections between the GHPs/GHFs herein and some
most relevant ones in literature.

2.4.1. GHPs/GHFs in Szegö [43]

Note from (2.6) that for 𝑑 “ 1, 𝑎1
0 “ 𝑎1

1 “ 1 and 𝑎1
𝑛 “ 0 for 𝑛 ě 2, so there are only two orthonormal

harmonic polynomials: 𝑌 0
1 p𝑥q “

1?
2

and 𝑌 1
1 p𝑥q “

𝑥?
2
. Accordingly, the GHPs in Definition 2.1 (with a constant

multiple) reduce to

𝐻
p𝜇q
2𝑘 p𝑥q :“ p´1q𝑘 22𝑘` 1

2 𝑘!𝐻𝜇,0
𝑘,1 p𝑥q “ p´1q𝑘 22𝑘 𝑘!𝐿p𝜇´

1
2 q

𝑘 p𝑥2q,

𝐻
p𝜇q
2𝑘`1p𝑥q :“ p´1q𝑘 22𝑘` 3

2 𝑘!𝐻𝜇,1
𝑘,1 p𝑥q “ p´1q𝑘 22𝑘`1 𝑘!𝑥𝐿p𝜇`

1
2 q

𝑘 p𝑥2q, (2.40)
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which are mutually orthogonal with respect to the weight function |𝑥|2𝜇 e´𝑥2
on R. In fact, this family of GHPs

is first introduced by Szegö in ([43], p. 371) as an exercised problem and promoted by Chihara [10,11]. According
to Szegö Problem 25 of [43], the GHPs with 𝜇 ą ´ 1

2 satisfy the differential equation:

𝑥𝑦2 ` 2p𝜇´ 𝑥2q𝑦1 ` p2𝑛𝑥´ 𝜃𝑛𝑥
´1q𝑦 “ 0, 𝜃𝑛 “

#

0, 𝑛 even ,
2𝜇, 𝑛 odd ;

𝑦 “ 𝐻p𝜇q𝑛 p𝑥q. (2.41)

Some other properties of t𝐻p𝜇q𝑛 u can be founded in [10,11]. We also refer to some limited works on the analytic
studies or further generalisations (see, e.g., [30, 36]). With the normalisation in (2.40), the orthonormal GHFs
(in (2.13) with 𝑑 “ 1) take the form

p𝐻p𝜇q𝑛 p𝑥q :“
b

1{𝛾p𝜇q𝑛 e´
𝑥2
2 𝐻p𝜇q𝑛 p𝑥q, 𝛾p𝜇q𝑛 :“ 22𝑛

”𝑛

2

ı

! Γ
´”𝑛` 1

2

ı

` 𝜇`
1
2

¯

. (2.42)

In particular, for 𝜇 “ 0, they reduce to the usual Hermite polynomials/functions. For distinction, we denote
them by 𝐻𝑛p𝑥q and p𝐻𝑛p𝑥q, respectively.

From (2.20) and (2.40), we have the following transformation between GHFs with different parameters

p𝐻p𝜇q𝑛 p𝑥q “
𝑛
ÿ

𝑗“0
𝑗`𝑛 even

𝜇
𝜈
p𝐶𝑛

𝑗
p𝐻
p𝜈q
𝑗 p𝑥q, (2.43)

where for even 𝑗 ` 𝑛, the connection coefficients are given by

𝜇
𝜈
p𝐶𝑛

𝑗 “
p´1q

𝑛´𝑗
2

b

Γpr𝑛2 s ` 1qΓpr 𝑗`1
2 s ` 𝜈 `

1
2 q Γ

`

𝑛´𝑗
2 ` 𝜇´ 𝜈

˘

Γp𝜇´ 𝜈q
b

Γpr𝑛`1
2 s ` 𝜇` 1

2 qΓpr
𝑗
2 s ` 1q Γ

`

𝑛´𝑗
2 ` 1

˘

. (2.44)

It is known that the usual Hermite functions t p𝐻𝑛u are the eigenfunctions of the Fourier transform. However,
this property cannot carry over to the GHFs with 𝜇 ­“ 0. In ([30] (2.34)), the Fourier transform of p𝐻

p𝜇q
𝑛 p𝑥q is

expressed in terms of the Kummer hypergeometric function 1𝐹1p¨q. Here we find from Corollary 2.11 with 𝑑 “ 1
the following more informative representation

1
?

2𝜋

ż

R
p𝐻p𝜇q𝑛 p𝑥qe´i𝜉𝑥d𝑥 “ i𝑛 q𝐻p𝜇q𝑛 p𝜉q, 𝜉 P R, (2.45)

where the one-dimensional adjoint GHFs are given by

q𝐻p𝜇q𝑛 p𝑥q “
𝑛
ÿ

𝑗“0
𝑗`𝑛 even

p´1q
𝑛´𝑗
2

𝜇
0
p𝐶𝑛

𝑗
p𝐻𝑗p𝑥q, 𝑥 P R. (2.46)

We remark that the formulation (2.46) requires some simple calculation from (2.25) and (2.40).

2.4.2. 2D GHFs versus generalised Hermite bases for Bose-Einstein condensates in [4]

For 𝑑 “ 2, the dimensionality of the space ℋ2
𝑛 in (2.6) is 𝑎2

𝑛 “ 2 ´ 𝛿𝑛0, with the orthogonal basis given by
the real and imaginary parts of p𝑥1 ` i𝑥2q

𝑛. In polar coordinates, we have

𝑌 0
1 p𝑥q “

1
?

2𝜋
, 𝑌 𝑛

1 p𝑥q “
𝑟𝑛

?
𝜋

cosp𝑛𝜃q, 𝑌 𝑛
2 p𝑥q “

𝑟𝑛

?
𝜋

sinp𝑛𝜃q, 𝑛 ě 1. (2.47)
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Then by (2.13), the GHFs can be expressed as

p𝐻𝜇,0
𝑘,1 p𝑥q “

1
b

2𝜋𝛾𝜇,2
𝑘,0

e´
𝑟2
2 𝐿

p𝜇q
𝑘 p𝑟2q, p𝐻𝜇,𝑛

𝑘,1 p𝑥q “
1

b

𝜋𝛾𝜇,2
𝑘,𝑛

𝑟𝑛 e´
𝑟2
2 𝐿

p𝑛`𝜇q
𝑘 p𝑟2q cosp𝑛𝜃q,

p𝐻𝜇,𝑛
𝑘,2 p𝑥q “

1
b

𝜋𝛾𝜇,2
𝑘,𝑛

𝑟𝑛 e´
𝑟2
2 𝐿

p𝑛`𝜇q
𝑘 p𝑟2q sinp𝑛𝜃q, 𝑛 ě 1, 𝑘 ě 0. (2.48)

Note that similar constructions for the 2D GHFs with 𝜇 “ 0 have been explored in the computation of the
ground states and dynamics of Bose-Einstein condensation (cf. [4]), governed by the Gross-Pitaevskii equation
with an angular momentum rotation term:

iB𝑡𝜓p𝑥, 𝑡q “
´

´
1
2

∆`
𝛾2

2
|𝑥|2 `𝛺𝐿𝑧 ` 𝛽|𝜓p𝑥, 𝑡q|

2
¯

𝜓p𝑥, 𝑡q, 𝑥 P R2, 𝑡 ą 0,

𝜓p𝑥, 0q “ 𝜓0p𝑥q, 𝑥 P R2; 𝜓p𝑥, 𝑡q Ñ 0 as |𝑥| Ñ 8, 𝑡 ě 0, (2.49)

where the constants 𝛾, 𝛽 ą 0, 𝛺 is the dimensionless angular momentum rotation speed and 𝐿𝑧 “ ´ip𝑥B𝑦 ´

𝑦B𝑥q “ ´iB𝜃 in polar coordinates. The efficient spectral algorithm therein was built upon the constructive basis

t𝑟𝑛e´
𝛾𝑟2

2 𝐿
p𝑛q
𝑘 p𝛾𝑟2qei𝑚𝜃u that could diagonalise the Schrödinger operator: ´∆`𝛾|𝑥|2. Similar idea was extended

to (2.49) in R3 in cylindrical coordinates by using the tensor product of the 2D basis and the usual Hermite
function in the 𝑧-direction in [4].

In view of Lemma 2.7, the GHFs with 𝜇 “ 0 are eigenfunctions of the harmonic oscillator: ´∆ ` |𝑥|2, so
with a proper scaling, the spectral algorithm leads to a diagonal matrix for the scaled harmonic oscillator:
´∆ ` 𝛾2|𝑥|2. As we shall show in the late part, our GHFs with 𝜇 ­“ 0 offer a new and efficient tool for the
solutions of PDEs involving a more general Schrödinger operator: p´∆q𝑠 ` |𝑥|2𝜇 with 𝑠 P p0, 1s and 𝜇 ą ´1{2.

2.4.3. 3D GHPs versus Burnett polynomials [8]

For 𝑑 “ 3, the dimensionality of ℋ3
𝑛 in (2.6) is 𝑎3

𝑛 “ 2𝑛`1. The orthonormal basis in the spherical coordinates
𝑥 “ p𝑟 sin 𝜃 cos𝜑, 𝑟 sin 𝜃 sin𝜑, 𝑟 cos 𝜃q𝑡 takes the form

𝑌 𝑛
1 p𝑥q “

1
?

8𝜋
𝑃 p0,0q

𝑛 pcos 𝜃q; 𝑌 𝑛
2𝑙p𝑥q “

𝑟𝑛

2𝑙`1
?
𝜋
psin 𝜃q𝑙𝑃 p𝑙,𝑙q𝑛´𝑙 pcos 𝜃q cosp𝑙𝜑q,

𝑌 𝑛
2𝑙`1p𝑥q “

𝑟𝑛

2𝑙`1
?
𝜋
psin 𝜃q𝑙𝑃 p𝑙,𝑙q𝑛´𝑙 pcos 𝜃q sinp𝑙𝜑q, 1 ď 𝑙 ď 𝑛, (2.50)

where t𝑃 p𝑙,𝑙q𝑘 u are the Gegenbauer polynomials. Then the 3D GHPs/GHFs in Definition 2.1 read more explicit.
In fact, for 𝜇 “ 0, the GHPs with a scaling turn out to be the Burnett polynomials, which were first proposed
by Burnett [8] as follows

𝐵𝑛
𝑘,ℓp𝑥q “ 𝑐𝑛𝑘 𝑟

𝑛𝐿
p𝑛` 1

2 q

𝑘

´𝑟2

2

¯

𝑌 𝑛
ℓ p𝑥̂q, 𝑘 P N0, pℓ, 𝑛q P Υ3

8, (2.51)

where 𝑐𝑛𝑘 is the normalisation constant so that they are orthogonal in the sense
ż

R3
𝐵𝑛

𝑘,ℓp𝑥q𝐵
𝑚
𝑗,𝜄p𝑥q e´

|𝑥|2

2 d𝑥 “ 𝛿𝑘𝑗𝛿𝑚𝑛𝛿ℓ𝜄. (2.52)

As a result, the Burnett polynomials are mutually orthogonal with respect to the Maxwellian ℳp𝑥q “
1

p2𝜋q3{2
e´

|𝑥|2

2 ¨ It is evident that by (2.12) and (2.14) (with 𝑑 “ 3 and 𝜇 “ 0),

𝐻0,𝑛
𝑘,ℓ p𝑥q “ 𝑐𝑛𝑘 𝐵

𝑛
𝑘,ℓp
?

2𝑥q, 𝑥 P R3. (2.53)

We remark that the Burnett polynomials are frequently used as basis functions in solving kinetic equations
(cf. [9, 20] and the references therein).
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2.4.4. Differences with Hagedorn wavepackets [18] and some other generalisations [46]

The Hagedorn wavepackets first introduced in [18] are deemed as an effective numerical tool in computing
quantum dynamics (see [24] for an up-to-date review). They generalise the usual Hermite functions to several
dimensions that allow for flexible localisation in position and momentum. According to [23], the Hagedorn
wavepackets are constructed from the complex Gaussian function:

𝜙𝜀
0p𝑥q “ p𝜋𝜀q

𝑑
4 detp𝑄q´1{2 exp

´ i
2𝜀
p𝑥´ 𝑞q𝑇 𝑃𝑄´1

p𝑥´ 𝑞q `
i
𝜀
𝑝𝑇 p𝑥´ 𝑞q

¯

,

centred in position 𝑝 P R𝑑 and momentum 𝑞 P R𝑑, where 𝑃 ,𝑄 P C𝑑ˆ𝑑 are complex matrices satisfying certain
symplecticity conditions, and 0 ă 𝜀 ! 1 is the semiclassical scaling parameter in the time-dependent Schrödinger
equation. Then applying the Hagedorns raising operator 𝑘 “ p𝑘1, ¨ ¨ ¨ , 𝑘𝑑q-fold to 𝜙𝜀

0p𝑥q leads to the Hagedorn
wavepackets, which can be represented as a product of the multivariate tensorial Hermite polynomials 𝑝𝑘p𝑥q
(with an appropriate scaling) and the initial complex Gaussian function as follows

𝜙𝜀
𝑘p𝑥q “

1
a

2|𝑘|𝑘!
𝑝𝜀

𝑘p𝑥q𝜙
𝜀
0p𝑥q, 𝑥 P R𝑑,

where |𝑘| “ 𝑘1 ` ¨ ¨ ¨ ` 𝑘𝑑 and 𝑘! “ 𝑘1! ¨ ¨ ¨ 𝑘𝑑!. We refer to [23,24] for more details.
Inspired by the work of Hagedorn, the very recent PhD dissertation [46] discussed the extension of the

tensorial (usual) Hermite polynomials to the generalised anisotropic Hermite functions of the form

𝐻𝐺,𝐸,𝑡
𝑘 p𝑥q “

𝑡|𝑘|{2
a

2|𝑘|𝑘!
𝐻𝑘

´

𝐺𝑇 𝑥
¯

exp
´

´𝑥𝑇 𝐸𝑇 𝐸𝑥
¯

, (2.54)

where 𝐸,𝐺 P R𝑑ˆ𝑑 are arbitrary invertible matrices, 𝑡 ą 0 is a parameter and 𝐻𝑘p𝑥q “ 𝐻𝑘1p𝑥1q ¨ ¨ ¨𝐻𝑘𝑑
p𝑥𝑑q is

a tensor product of the univariate (usual) Hermite polynomials. We refer to [46] for interesting applications in
the context of quantum dynamics.

It is evident that our nontensorial GHPs/GHFs are very different from the Hagedorn wavepackets and their
variances. We also remark that the tensorial GHFs were briefly discussed in ([14], p. 278) under a general
framework with the weight function ℎ2

𝑘p𝑥qe
´}𝑥}2 (where ℎ𝑘 is a reflection-invariant weight function).

3. GHF approximation of the IFL and the Schrödinger equation

In this section, we implement and analyse the GHF-spectral-Galerkin method for PDEs involving integral
fractional Laplacian.

3.1. GHF-spectral-Galerkin method for a fractional model problem

As an illustrative example, we consider

p´∆q𝑠𝑢p𝑥q ` 𝛾𝑢p𝑥q “ 𝑓p𝑥q in R𝑑; 𝑢p𝑥q Ñ 0 as |𝑥| Ñ 8, (3.1)

where 𝑠 P p0, 1q, 𝛾 ą 0, 𝑓 P 𝐻´𝑠pR𝑑q, and the fractional Laplacian operator is defined in (2.28)-(2.29). Here, the
fractional Sobolev space 𝐻𝑠pR𝑑q with real 𝑠 is defined as in [13].

A weak formulation of (3.1) is to find 𝑢 P 𝐻𝑠pR𝑑q such that

𝒜𝑠p𝑢, 𝑣q “
`

p´∆q
𝑠
2𝑢, p´∆q

𝑠
2 𝑣
˘

R𝑑 ` 𝛾p𝑢, 𝑣qR𝑑 “ p𝑓, 𝑣qR𝑑 , @𝑣 P 𝐻𝑠pR𝑑q. (3.2)

From (2.28), we find readily the continuity and coercivity of the bilinear form 𝒜𝑠p¨, ¨q.
Then we conclude from the standard Lax-Milgram lemma that the problem (3.2) admits a unique solution

satisfying }𝑢}𝐻𝑠pR𝑑q ď 𝑐}𝑓}𝐻´𝑠pR𝑑q.
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We choose the finite dimensional approximation space spanned by the 𝑑-dimensional GHFs in Definition 2.1
or equivalently by the A-GHFs in Definition 2.8. However, in view of (2.32), it is advantageous to use the latter
as the basis functions, so we define

𝒱𝑑
𝑁 :“ span

 

q𝐻𝑠,𝑛
𝑘,ℓ p𝑥q : 0 ď 𝑛 ď 𝑁, 1 ď ℓ ď 𝑎𝑑

𝑛, 0 ď 2𝑘 ď 𝑁 ´ 𝑛, 𝑘, ℓ, 𝑛 P N0

(

. (3.3)

Then, the spectral-Galerkin approximation to (3.2) is to find 𝑢𝑁 P 𝒱𝑑
𝑁 such that

𝒜𝑠p𝑢𝑁 , 𝑣𝑁 q “ p𝑓, 𝑣𝑁 qR𝑑 , @𝑣𝑁 P 𝒱𝑑
𝑁 . (3.4)

As with the continuous problem (3.2), it has a unique solution 𝑢𝑁 P 𝒱𝑑
𝑁 .

In the real implementation, we write

𝑢𝑁 p𝑥q “
𝑁
ÿ

𝑛“0

𝑎𝑑
𝑛
ÿ

ℓ“1

r
𝑁´𝑛

2 s
ÿ

𝑘“0

𝑢̃𝑛
𝑘,ℓ

q𝐻𝑠,𝑛
𝑘,ℓ p𝑥q, (3.5)

and arrange the unknown coefficients in the order

𝑢 “
`

𝑢̃0
1, 𝑢̃

0
2, ¨ ¨ ¨ , 𝑢̃

0
𝑎𝑑
0
, 𝑢̃1

1, 𝑢̃
1
2, ¨ ¨ ¨ , 𝑢̃

1
𝑎𝑑
1
, ¨ ¨ ¨ , 𝑢̃𝑁

1 , 𝑢̃
𝑁
2 , ¨ ¨ ¨ , 𝑢̃

𝑁
𝑎𝑑

𝑁

˘𝑡
,

𝑢̃𝑛
ℓ “

`

𝑢̃𝑛
0,ℓ, 𝑢̃

𝑛
1,ℓ, ¨ ¨ ¨ , 𝑢̃

𝑛
r

𝑁´𝑛
2 s,ℓ

˘𝑡
, (3.6)

and likewise for 𝑓 , but with the components 𝑓𝑛
𝑘,ℓ “ p𝑓, q𝐻𝑠,𝑛

𝑘,ℓ qR𝑑 . The orthogonality (2.32) implies that the
stiffness matrix is an identity matrix. Moreover, in view of the orthogonality of the spherical harmonic basis
(cf. (2.8)), the corresponding mass matrix is block diagonal as follows

𝑀 “ diag
 

𝑀0
1,𝑀

0
2, ¨ ¨ ¨ ,𝑀

0
𝑎𝑑
0
,𝑀1

1,𝑀
1
2, ¨ ¨ ¨ ,𝑀

1
𝑎𝑑
1
, ¨ ¨ ¨ ,𝑀𝑁

1 ,𝑀
𝑁
2 , ¨ ¨ ¨ ,𝑀

𝑁
𝑎𝑑

𝑁

(

, (3.7)

where the entries of each diagonal block can be computed by

p𝑀𝑛
ℓ q𝑘𝑗 “

`

q𝐻𝑠,𝑛
𝑘,ℓ ,

q𝐻𝑠,𝑛
𝑗,ℓ

˘

R𝑑 “

𝑘
ÿ

𝑝“0

p´1q𝑘´𝑝 𝑠
0C𝑘

𝑝

𝑗
ÿ

𝑞“0

p´1q𝑗´𝑞 𝑠
0C𝑗

𝑞

`

p𝐻0,𝑛
𝑝,ℓ ,

p𝐻0,𝑛
𝑞,ℓ

˘

R𝑑

“ p´1q𝑘`𝑗
mint𝑗,𝑘u
ÿ

𝑝“0

𝑠
0C𝑘

𝑝
𝑠
0C𝑗

𝑝 . (3.8)

Thus the linear system of (3.4) can be written as

p𝐼 ` 𝛾𝑀q𝑢 “ 𝑓 . (3.9)

Remark 3.1. With the new basis at our disposal, the above method has remarkable advantages over the exist-
ing Hermite approaches (cf. [29,45]). Although the usual one-dimensional Hermite functions are eigenfunctions
of the Fourier transform, we observe from (2.28) that the factor |𝜉|2𝑠 is non-separable and singular, so the use
of tensorial Hermite functions leads to a dense stiffness matrix whose entries are difficult to evaluate due to the
involved singularity for 𝑑 ě 2. �

3.1.1. Error analysis

Applying the first Strang lemma [42] for the standard Galerkin framework (i.e., (3.2) and (3.4)), we obtain
immediately that

}𝑢´ 𝑢𝑁 }𝐻𝑠pR𝑑q ď 𝑐 inf
𝑣𝑁P𝒱𝑑

𝑁

}𝑢´ 𝑣𝑁 }𝐻𝑠pR𝑑q . (3.10)
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To obtain optimal error estimates, we have to resort to some intermediate approximation results related to
certain orthogonal projection. To this end, we consider the 𝐿2-orthogonal projection 𝜋𝑑

𝑁 : 𝐿2pR𝑑q Ñ 𝒱𝑑
𝑁 such

that
p𝜋𝑑

𝑁𝑢´ 𝑢, 𝑣qR𝑑 “ 0, @𝑣 P 𝒱𝑑
𝑁 . (3.11)

From Definition 2.8 and with a change of basis functions, we find readily that

𝒱𝑑
𝑁 :“ span

 

p𝐻0,𝑛
𝑘,ℓ p𝑥q : 0 ď 𝑛 ď 𝑁, 1 ď ℓ ď 𝑎𝑑

𝑛, 0 ď 2𝑘 ď 𝑁 ´ 𝑛, 𝑘, ℓ, 𝑛 P N0

(

. (3.12)

Thus, we can equivalently write

𝜋𝑑
𝑁𝑢p𝑥q “

𝑁
ÿ

𝑛“0

𝑎𝑑
𝑛
ÿ

ℓ“1

r
𝑁´𝑛

2 s
ÿ

𝑘“0

p𝑢𝑛
𝑘,ℓ

p𝐻0,𝑛
𝑘,ℓ p𝑥q. (3.13)

Based on (2.23), we introduce the function space ℬ𝑟pR𝑑q equipped with the norm

}𝑢}2ℬ𝑟pR𝑑q “

$

&

%

}p´∆` |𝑥|2q𝑚𝑢}2𝐿2pR𝑑q
, 𝑟 “ 2𝑚,

1
2
`

}p𝑥`∇qp´∆` |𝑥|2q𝑚𝑢}2𝐿2pR𝑑q ` }p𝑥´∇qp´∆` |𝑥|2q𝑚𝑢}2𝐿2pR𝑑q

˘

, 𝑟 “ 2𝑚` 1,
(3.14)

where integer 𝑟 ě 0, and 𝑥`∇ and 𝑥´∇ are the lowering and raising operators, respectively.
The main approximation result is stated below.

Theorem 3.2. Let 𝑠 P p0, 1q. For any 𝑢 P ℬ𝑟pR𝑑q with integer 𝑟 ě 1, we have

}𝜋𝑑
𝑁𝑢´ 𝑢}𝐻𝑠pR𝑑q ď p2𝑁 ` 𝑑` 2qp𝑠´𝑟q{2}𝑢}ℬ𝑟pR𝑑q. (3.15)

Proof. (i). We first estimate the 𝐿2-error. For 𝑟 “ 2𝑚` 1, a direct calculation gives

}𝑢}2ℬ𝑟pR𝑑q “
1
2

´

}p𝑥`∇qp´∆` |𝑥|2q𝑚𝑢}2𝐿2pR𝑑q ` }p𝑥´∇qp´∆` |𝑥|2q𝑚𝑢}2𝐿2pR𝑑q

¯

“
`

p´∆` |𝑥|2q𝑚`1𝑢, p´∆` |𝑥|2q𝑚𝑢
˘

R𝑑 . (3.16)

Thanks to the orthogonality (2.15), (2.23)–(3.14) and (3.16), we have that for any 𝑟 ě 0,

}𝑢}2ℬ𝑟pR𝑑q “

8
ÿ

𝑛“0

𝑎𝑑
𝑛
ÿ

ℓ“1

8
ÿ

𝑘“0

ℎ𝑛,𝑟
𝑘,𝑑|𝑢̂

𝑛
𝑘,ℓ|

2, ℎ𝑛,𝑟
𝑘,𝑑 “ p4𝑘 ` 2𝑛` 𝑑q𝑟. (3.17)

Then, we derive from (3.13) and (3.17) that

}𝜋𝑑
𝑁𝑢´ 𝑢}

2
𝐿2pR𝑑q “

8
ÿ

𝑛“0

𝑎𝑑
𝑛
ÿ

ℓ“1

8
ÿ

𝑘“r
𝑁`1´𝑛

2 s

ℎ𝑛,0
𝑘,𝑑 |𝑢̂

𝑛
𝑘,ℓ|

2

ď max
2𝑘`𝑛ě𝑁`1

#

ℎ𝑛,0
𝑘,𝑑

ℎ𝑛,𝑟
𝑘,𝑑

+

8
ÿ

𝑛“0

𝑎𝑑
𝑛
ÿ

ℓ“1

8
ÿ

𝑘“r
𝑁`1´𝑛

2 s

ℎ𝑛,𝑟
𝑘,𝑑|𝑢̂

𝑛
𝑘,ℓ|

2

ď p2𝑁 ` 2` 𝑑q´𝑟}𝑢}2ℬ𝑟pR𝑑q. (3.18)

If 𝑟 “ 2𝑚, we find from (3.14) that (3.16) simply becomes

}𝑢}2ℬ𝑟pR𝑑q “
`

p´∆` |𝑥|2q𝑚𝑢, p´∆` |𝑥|2q𝑚𝑢
˘

R𝑑 , (3.19)

so we can follow the same lines as above to derive the 𝐿2-estimate.
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(ii). We next estimate the 𝐻1-error. Using the triangle inequality and (3.16), we obtain that

}∇p𝜋𝑑
𝑁𝑢´ 𝑢q}

2
𝐿2pR𝑑q ď

1
2

´

}p𝑥`∇qp𝜋𝑑
𝑁𝑢´ 𝑢q}

2
𝐿2pR𝑑q ` }p𝑥´∇qp𝜋𝑑

𝑁𝑢´ 𝑢q}
2
𝐿2pR𝑑q

¯

“
`

p´∆` |𝑥|2qp𝜋𝑑
𝑁𝑢´ 𝑢q, p𝜋

𝑑
𝑁𝑢´ 𝑢q

˘

R𝑑 ď

8
ÿ

𝑛“0

𝑎𝑑
𝑛
ÿ

ℓ“1

8
ÿ

𝑘“r
𝑁`1´𝑛

2 s

ℎ𝑛,1
𝑘,𝑑 |𝑢̂

𝑛
𝑘,ℓ|

2

ď max
2𝑘`𝑛ě𝑁`1

#

ℎ𝑛,1
𝑘,𝑑

ℎ𝑛,𝑟
𝑘,𝑑

+

8
ÿ

𝑛“0

𝑎𝑑
𝑛
ÿ

ℓ“1

8
ÿ

𝑘“r
𝑁`1´𝑛

2 s

ℎ𝑛,𝑟
𝑘,𝑑|𝑢̂

𝑛
𝑘,ℓ|

2

ď p2𝑁 ` 2` 𝑑q1´𝑟}𝑢}2ℬ𝑟pR𝑑q. (3.20)

Finally, the desired results can be obtained by the 𝐿2- and 𝐻1-bounds derived above and the following space
interpolation inequality (cf. [1], Ch. 1)

}𝑢}𝐻𝑠pR𝑑q ď }𝑢}
1´𝑠
𝐿2pR𝑑q

}𝑢}𝑠𝐻1pR𝑑q, 𝑠 P p0, 1q. (3.21)

This ends the proof. �

Taking 𝑣𝑁 “ 𝜋𝑑
𝑁𝑢 in (3.10) and using Theorem 3.2, we immediately obtain the following error estimate.

Theorem 3.3. Let 𝑢 and 𝑢𝑁 be the solutions to (3.2) and (3.4), respectively. If 𝑢 P ℬ𝑟pR𝑑q with integer 𝑟 ě 1,
then we have

}𝑢´ 𝑢𝑁 }𝐻𝑠pR𝑑q ď 𝑐p2𝑁 ` 𝑑` 2qp𝑠´𝑟q{2}𝑢}ℬ𝑟pR𝑑q, 𝑠 P p0, 1q, (3.22)

where 𝑐 is a positive constant independent of 𝑁 and 𝑢.

3.1.2. Numerical results

We conclude this section with some numerical results. For the convenience of implementation, we fix the
degree of the numerical solution in both radial and angular direction in (3.5), so the numerical solution takes
the form

𝑢𝑁,𝐾p𝑥q “
𝑁
ÿ

𝑛“0

𝑎𝑑
𝑛
ÿ

ℓ“1

𝐾
ÿ

𝑘“0

𝑢̂𝑛
𝑘,ℓ

q𝐻𝑠,𝑛
𝑘,ℓ p𝑥q. (3.23)

Here, we focus on 𝑑 “ 2, 3.

Example 3.4. (Problem (3.1) with exact solution). We first consider (3.1) with the following exact solutions:

𝑢𝑒p𝑥q “ e´|𝑥|
2
, 𝑢𝑎p𝑥q “ p1` |𝑥|2q´𝑟, 𝑟 ą 0, 𝑥 P R𝑑. (3.24)

According to Propositions 4.2 & 4.3 of [40], the source terms 𝑓𝑒p𝑥q and 𝑓𝑎p𝑥q are respectively given by

𝑓𝑒p𝑥q “ 𝛾e´|𝑥|
2
`

22𝑠Γp𝑠` 𝑑{2q
Γp𝑑{2q 1𝐹1

´

𝑠`
𝑑

2
;
𝑑

2
;´|𝑥|2

¯

,

𝑓𝑎p𝑥q “ 𝛾p1` |𝑥|2q´𝑟 `
22𝑠Γp𝑠` 𝑟qΓp𝑠` 𝑑{2q

Γp𝑟qΓp𝑑{2q 2𝐹1

´

𝑠` 𝑟, 𝑠`
𝑑

2
;
𝑑

2
;´|𝑥|2

¯

.

For 𝑑 “ 2, 3, we take 𝑠 “ 0.3, 0.5, 0.7 and the degree in angular direction is fixed 𝑁 ” 10 (see (3.23)). In
Figure 1 (c)-(f), we plot the maximum errors, in semi-log scale and log-log scale, for 𝑢𝑒 and 𝑢𝑎 with 𝑑 “ 2, 3
against various 𝐾, respectively. As expected, we observe the exponential and algebraic convergence for 𝑢𝑒 and
𝑢𝑎, respectively.
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Figure 1. The maximum errors of the GHF-spectral-Galerkin scheme with 𝛾 “ 1 for Exam-
ple 3.4 with exact solutions in (3.24). Here 𝑠 “ 0.3, 0.5, 0.7. (a) 𝑑 “ 2 and 𝑢𝑒p𝑥q “ 𝑒´|𝑥|

2
. (b)

𝑑 “ 2 and 𝑢𝑎p𝑥q “ p1`|𝑥|2q´2. (c) 𝑑 “ 3 and 𝑢𝑒p𝑥q “ 𝑒´|𝑥|
2
. (d) 𝑑 “ 3 and 𝑢𝑎p𝑥q “ p1`|𝑥|2q´2.

Example 3.5. [Problem (3.1) with a source term.] We next consider (3.1) with the following source functions:

𝑓𝑒p𝑥q “ sinp|𝑥|qe´|𝑥|
2
, 𝑓𝑎p𝑥q “ cosp|𝑥|qp1` |𝑥|2q´𝑟, 𝑟 ą 0, 𝑥 P R𝑑. (3.25)

The exact solutions are unknown, and we use the numerical solution with 𝐾 “ 80, 𝑁 “ 20 as the reference
solution. For 𝑑 “ 2, 3, we plot the maximum errors, in log-log scale, for (3.1) against various 𝐾 in Figure 2(c)–(f),
which we take 𝑠 “ 0.3, 0.5, 0.7 and fix 𝑁 ” 10. As shown in [40], the solution of (3.1) decays algebraically,
even for exponentially decaying source terms. Indeed, we observe an algebraic order of convergence.

3.2. GHF-spectral-Galerkin method for fractional Schrödinger equations

As a second example, we consider the fractional Schrödinger equation:

iB𝑡𝜓p𝑥, 𝑡q “
”1

2
p´∆q𝑠 `

𝛾2

2
|𝑥|2𝜇

ı

𝜓p𝑥, 𝑡q, 𝑥 P R2, 𝑡 ą 0,

𝜓p𝑥, 0q “ 𝜓0p𝑥q, 𝑥 P R2; 𝜓p𝑥, 𝑡q Ñ 0 as |𝑥| Ñ 8, 𝑡 ě 0, (3.26)
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Figure 2. The maximum errors of the GHF-spectral-Galerkin scheme with 𝛾 “ 1 for Exam-
ple 3.5 with given source functions in (3.25). Here 𝑠 “ 0.3, 0.5, 0.7 and 𝑟 “ 2. (a) 𝑑 “ 2 with
given source term 𝑓𝑒p𝑥q. (b) 𝑑 “ 2 with given source term 𝑓𝑎p𝑥q. (c) 𝑑 “ 3 with given source
term 𝑓𝑒p𝑥q. (d) 𝑑 “ 3 with given source term 𝑓𝑎p𝑥q.

where 𝑠 P p0, 1s, 𝜇 ą ´1{2, the constant 𝛾 ą 0, and the function 𝜓0 is given. Here, we focus on the linear
equation. Indeed, using a suitable time-splitting scheme, one only needs to solve a linear Schrödinger equation
at each time step for some typical nonlinear cases (see, e.g., [4]). We remark that the fractional Schrödinger
Equation (3.26) is the model of interest in the study of fractional quantum mechanics, see [22,47], where in [22],
this fractional Hamiltonian appeared more reasonable to study the problem of quarkonium.

To solve (3.26) efficiently, we adopt the A-GHFs spectral method in space and the Crank-Nicolson scheme in
time discretization. Let ∆𝑡 be the time-stepping size, and 𝜓𝑘p𝑥q « 𝜓p𝑥, 𝑘∆𝑡q. Then we look for 𝜓𝑛`1 P 𝐻𝑠pR2q

such that

i
´𝜓𝑛`1 ´ 𝜓𝑛

∆𝑡
, 𝑣
¯

R2
“

1
2
`

p´∆q
𝑠
2𝜓𝑛` 1

2 , p´∆q
𝑠
2 𝑣
˘

R2 `
𝛾2

2
p|𝑥|2𝜇𝜓𝑛` 1

2 , 𝑣qR2 , @𝑣 P 𝐻𝑠pR2q, (3.27)

where 𝜓𝑛` 1
2 “ p𝜓𝑛`1`𝜓𝑛q{2. We can implement the GHF-spectral scheme as with the problem (3.4), but only

need to evaluate the matrix 𝑉 associated with the potential |𝑥|2𝜇. It is a block diagonal matrix

𝑉 “ diag
 

𝑉 0
1,𝑉

0
2, ¨ ¨ ¨ ,𝑉

0
𝑎𝑑
0
,𝑉 1

1,𝑉
1
2, ¨ ¨ ¨ ,𝑉

1
𝑎𝑑
1
, ¨ ¨ ¨ ,𝑉 𝑁

1 ,𝑉
𝑁
2 , ¨ ¨ ¨ ,𝑉

𝑁
𝑎𝑑

𝑁

(

, (3.28)
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Figure 3. (a) The temporal errors for Crank-Nicolson scheme at 𝑡 “ 1 with different 𝑠, 𝜇;
(b) The spatial errors of GHF-spectral-Galerkin method at 𝑡 “ 1 with different 𝑠, 𝜇.

and the entries of each diagonal block can be evaluated explicitly by using (2.15), (2.20) and (2.25):

p𝑉 𝑛
ℓ q𝑘𝑗 “

`

|𝑥|2𝜇
q𝐻𝑠,𝑛

𝑘,ℓ ,
q𝐻𝑠,𝑛

𝑗,ℓ

˘

R𝑑 “

𝑘
ÿ

𝑝“0

p´1q𝑘´𝑝 𝑠
0C𝑘

𝑝

𝑗
ÿ

𝑞“0

p´1q𝑗´𝑞 𝑠
0C𝑗

𝑞

`

|𝑥|2𝜇
p𝐻0,𝑛

𝑝,ℓ ,
p𝐻0,𝑛

𝑞,ℓ

˘

R𝑑

“

𝑘
ÿ

𝑝“0

p´1q𝑘´𝑝 𝑠
0C𝑘

𝑝

𝑗
ÿ

𝑞“0

p´1q𝑗´𝑞 𝑠
0C𝑗

𝑞

𝑝
ÿ

𝑝1“0

0
𝜇C𝑝

𝑝1

𝑞
ÿ

𝑞1“0

0
𝜇C𝑞

𝑞1

`

|𝑥|2𝜇
p𝐻𝜇,𝑛

𝑝1,ℓ ,
p𝐻𝜇,𝑛

𝑞1,ℓ

˘

R𝑑

“

𝑘
ÿ

𝑝“0

p´1q𝑘´𝑝 𝑠
0C𝑘

𝑝

𝑗
ÿ

𝑞“0

p´1q𝑗´𝑞 𝑠
0C𝑗

𝑞

𝑝
ÿ

𝑝1“0

0
𝜇C𝑝

𝑝1

𝑞
ÿ

𝑞1“0

0
𝜇C𝑞

𝑞1 . (3.29)

To test the accuracy of the proposed method, we add an external source term 𝑓p𝑥, 𝑡q so that the exact solution
is 𝜓p𝑥, 𝑡q “ e´|𝑥|

2
´𝑡. In Figure 3 (a), we plot the maximum errors versus ∆𝑡 at 𝑡 “ 1, and the second-order

convergence is observed. Here we take 𝛾 “ 1, 𝑁 “ 10, 𝐾 “ 50 and different 𝑠, 𝜇. We choose the time stepping
size to be small so that the error is dominated by the spatial error. In Figure 3(b), we plot maximum errors in
the semi-log scale versus various 𝐾, for which we take 𝑁 “ 10, 𝛾 “ 1 and different 𝑠, 𝜇. We observe that the
spatial errors decay exponentially as 𝐾 increases.

Next, we investigate the dynamics of beam propagations as in [47] (where the case 𝜇 “ 1 was considered).
We take the following incident Gaussian beam as the initial condition:

𝜓p𝑥, 0q “ 𝜓0p𝑥q “ e´𝜎|𝑥|2´i𝐶|𝑥|, (3.30)

where the constants 𝜎 and 𝐶 are the beam width and the linear chirp coefficient, respectively. In the test, we
take 𝜎 “ 𝐶 “ 1. In Figure 4, we depict the profiles of the real part of the numerical solutions for various 𝑠, 𝜇
at 𝑡 “ 2. Figure 4 (a) shows the solution profile of the usual case with a harmonic potential: ´∆ ` |𝑥|2 for
comparison. We observe from the other profiles that the solutions have different peak intensities and singular
behaviours, from which we find the smaller the value of 𝜇, and the stronger the singularity. In fact, some similar
observations was made in [47] for the case with 𝜇 “ 1.
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Figure 4. The profiles of numerical solution at 𝑡 “ 2 with different 𝑠, 𝜇. (a) 𝑠 “ 1 and 𝜇 “ 1.
(b) 𝑠 “ 1 and 𝜇 “ 0.7. (c) 𝑠 “ 1 and 𝜇 “ 0.3. (d) 𝑠 “ 1 and 𝜇 “ ´0.3. (e) 𝑠 “ 0.7 and 𝜇 “ 1.
(f) 𝑠 “ 0.7 and 𝜇 “ 0.7. (g) 𝑠 “ 0.7 and 𝜇 “ 0.3. (h) 𝑠 “ 0.7 and 𝜇 “ ´0.3. (i) 𝑠 “ 0.3 and
𝜇 “ 1. (j) 𝑠 “ 0.3 and 𝜇 “ 0.7. (k) 𝑠 “ 0.3 and 𝜇 “ 0.3. (l) 𝑠 “ 0.3 and 𝜇 “ ´0.3.

4. Müntz-type GHFs with applications to Schrödinger eigenvalue problems

In this section, we introduce the second family of generalised Hermite functions for efficient and spectrally
accurate solutions of the Schrödinger eigenvalue problem:

#
“

´ 1
2∆` 𝑉 p𝑥q

‰

𝑢p𝑥q “ 𝜆𝑢p𝑥q in R𝑑,

𝑢p𝑥q Ñ 0 as |𝑥| Ñ 8,
(4.1)

where the potential function 𝑉 p𝑥q “ 𝑍|𝑥|2𝛼 with 𝛼,𝑍 being given constants. It is known that (i) if 𝛼 ą ´1, all
eigenvalues of (4.1) are distinct; (ii) if 𝛼 “ ´1 or 𝑍 “ 0, the spectrum of the Schrödinger operator ´ 1

2∆` 𝑍
|𝑥|2

is a continuous one (cf. [15]).
The variational form of (4.1) is to find 𝜆 P R and 𝑢 P 𝐻1pR𝑑qzt0u such that

ℬp𝑢, 𝑣q :“
1
2
p∇𝑢,∇𝑣qR𝑑 ` 𝑍p|𝑥|2𝛼𝑢, 𝑣qR𝑑 “ 𝜆p𝑢, 𝑣qR𝑑 , @ 𝑣 P 𝐻1pR𝑑q. (4.2)
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As shown in Lemma 2.7, the Hermite functions t p𝐻0,𝑛
𝑘,ℓ p𝑥qu are the eigenfunctions of the Schrödinger operator:

´∆ ` |𝑥|2. Here, we intend to explore similar properties for the more general operator by introducing the
Müntz-type Hermite functions, and construct efficient and spectrally accurate spectral approximation to (4.2).

4.1. Müntz-type generalised Hermite functions

To solve (4.2) accurately and efficiently, we introduce the following M-GHFs that are orthogonal in the sense
of (4.5) below.

Definition 4.1. For 𝜃 ą 0, pℓ, 𝑛q P Υ𝑑
8 and 𝑘 P N0, the Müntz-type GHFs are defined by

pℋ𝜃,𝑛
𝑘,ℓ p𝑥q “ 𝑐𝜃,𝑑

𝑘,𝑛 𝐿
p𝛽𝑛q

𝑘 p|𝑥|2𝜃qe´
|𝑥|2𝜃

2 𝑌 𝑛
ℓ p𝑥q, 𝑥 P R𝑑, (4.3)

where

𝑐𝜃,𝑑
𝑘,𝑛 “

d

2 𝑘!
Γp𝑘 ` 𝛽𝑛 ` 1q

, 𝛽𝑛 “ 𝛽𝜃,𝑑
𝑛 “

𝑛` 𝑑{2´ 1
𝜃

.

It is seen from (2.13) and (4.3) that if 𝜃 “ 1, it reduces the GHFs p𝐻0,𝑛
𝑘,ℓ p𝑥q, i.e., pℋ1,𝑛

𝑘,ℓ p𝑥q “
p𝐻0,𝑛

𝑘,ℓ p𝑥q. The
so-defined Müntz-type GHFs enjoy the following remarkable properties, which are key to the success of the
spectral algorithm for (4.2).

Theorem 4.2. For 𝜃 ą maxp1´ 𝑑{2, 0q, pℓ, 𝑛q, p𝜄,𝑚q P Υ𝑑
8 and 𝑘, 𝑗 P N0, we have

“

´∆` 𝜃2|𝑥|4𝜃´2
‰

pℋ𝜃,𝑛
𝑘,ℓ p𝑥q “ 2𝜃2p𝛽𝑛 ` 2𝑘 ` 1q |𝑥|2𝜃´2

pℋ𝜃,𝑛
𝑘,ℓ p𝑥q, (4.4)

and the orthogonality
`

∇ pℋ𝜃,𝑛
𝑘,ℓ ,∇ pℋ𝜃,𝑚

𝑗,𝜄

˘

R𝑑 ` 𝜃
2
`

|𝑥|4𝜃´2
pℋ𝜃,𝑛

𝑘,ℓ ,
pℋ𝜃,𝑚

𝑗,𝜄

˘

R𝑑 “ 2 𝜃
`

𝛽𝑛 ` 2𝑘 ` 1
˘

𝛿𝑗𝑘𝛿𝑚𝑛𝛿ℓ𝜄. (4.5)

Proof. We can derive from (2.3), (2.10), (2.23), (4.3) and the change of variable 𝜌 “ 𝑟𝜃 that

“

´∆` 𝜃2𝑟4𝜃´2
‰

pℋ𝜃,𝑛
𝑘,ℓ p𝑥q

“ 𝑐𝜃,𝑑
𝑘,𝑛

´

´
1

𝑟𝑑´1
B𝑟𝑟

𝑑´1B𝑟 ´
1
𝑟2

∆S𝑑´1 ` 𝜃2𝑟4𝜃´2
¯

r𝑟𝑛 𝐿
p𝛽𝑛q

𝑘 p𝑟2𝜃qe´
𝑟2𝜃

2 𝑌 𝑛
ℓ p𝑥̂qs

“ 𝑐𝜃,𝑑
𝑘,𝑛

´

´
1

𝑟𝑑´1
B𝑟𝑟

𝑑´1B𝑟 `
𝑛p𝑛` 𝑑´ 2q

𝑟2
` 𝜃2𝑟4𝜃´2

¯

r𝑟𝑛 𝐿
p𝛽𝑛q

𝑘 p𝑟2𝜃qe´
𝑟2𝜃

2 𝑌 𝑛
ℓ p𝑥̂qs

“ 𝜃2𝜌2´ 2
𝜃

´

´
1

𝜌
𝑑`2𝜃´2

𝜃 ´1
B𝜌𝜌

𝑑`2𝜃´2
𝜃 ´1B𝜌 `

𝑛
𝜃 p

𝑛
𝜃 `

𝑑`2𝜃´2
𝜃 ´ 2q

𝜌2
` 𝜌2

¯

r𝜌
𝑛
𝜃 𝐿

p𝛽𝑛q

𝑘 p𝜌2qe´
𝜌2

2 𝑌 𝑛
ℓ p𝑥̂qs

“ 𝜃2𝜌2´ 2
𝜃

´

4𝑘 `
2𝑛
𝜃
`
𝑑` 2𝜃 ´ 2

𝜃

¯

r𝜌
𝑛
𝜃 𝐿

p𝛽𝑛q

𝑘 p𝜌2qe´
𝜌2

2 𝑌 𝑛
ℓ p𝑥̂qs

“ 2𝜃2
`

𝛽𝑛 ` 2𝑘 ` 1
˘

𝑟2𝜃´2r𝑟𝑛 𝐿
p𝛽𝑛q

𝑘 p𝑟2𝜃qe´
𝑟2𝜃

2 𝑌 𝑛
ℓ p𝑥̂qs

“ 2𝜃2
`

𝛽𝑛 ` 2𝑘 ` 1
˘

|𝑥|2𝜃´2
pℋ𝜃,𝑛

𝑘,ℓ p𝑥q,

where we used the identity derived from ([28], Lem. 2.1) with 𝛼 “ 𝑛`𝑑{2´1
𝜃 and 𝛽 “ 𝛼` 1´𝑑{2

𝜃 :

”

B2𝜌 `

𝑑`2𝜃´2
𝜃 ´ 1
𝜌

B𝜌 ´

𝑛
𝜃 p

𝑛
𝜃 `

𝑑`2𝜃´2
𝜃 ´ 2q

𝜌2
´ 𝜌2 ` 4𝑘 `

2𝑛
𝜃
`
𝑑` 2𝜃 ´ 2

𝜃

ı

“

𝜌
𝑛
𝜃 𝐿

p𝛽𝑛q

𝑘 p𝜌2q e´
𝜌2

2
‰

“ 0.
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Next, we prove the orthogonality (4.5). By virtue of (4.4), we have from (4.3) and the change of variable 𝜌 “ 𝑟2𝜃

that
`

∇ pℋ𝜃,𝑛
𝑘,ℓ ,∇ pℋ𝜃,𝑚

𝑗,𝜄

˘

R𝑑 ` 𝜃
2
`

|𝑥|4𝜃´2
pℋ𝜃,𝑛

𝑘,ℓ ,
pℋ𝜃,𝑚

𝑗,𝜄

˘

R𝑑

“ 2𝜃2p𝛽𝑛 ` 2𝑘 ` 1qp𝑐𝜃,𝑑
𝑘,𝑛q

2𝛿𝑚𝑛𝛿ℓ𝜄

ż 8

0

𝑟2𝜃`2𝑛`𝑑´3𝐿
p𝛽𝑛q

𝑘 p𝑟2𝜃q𝐿
p𝛽𝑛q

𝑗 p𝑟2𝜃qe´𝑟2𝜃

d𝑟

“ 𝜃p𝛽𝑛 ` 2𝑘 ` 1qp𝑐𝜃,𝑑
𝑘,𝑛q

2𝛿𝑚𝑛𝛿ℓ𝜄

ż 8

0

𝜌𝛽𝑛𝐿
p𝛽𝑛q

𝑘 p𝜌q𝐿
p𝛽𝑛q

𝑗 p𝜌qe´𝜌d𝜌

“ 2 𝜃p𝛽𝑛 ` 2𝑘 ` 1q 𝛿𝑚𝑛𝛿𝑗𝑘𝛿ℓ𝜄.

This completes the proof. �

As a special case of (4.4) (i.e., 𝜃 “ 1
2 ), we can find the explicit representation of the eigen-pairs of the

Schrödinger operator with Coulomb potential: ´ 1
2∆´

|𝑍|
|𝑥| in 𝑑 dimension, where 𝑍 is a nonzero constant.

Corollary 4.3. For any 𝑘 P N0, pℓ, 𝑛q P Υ𝑑
8 and 𝑍 ‰ 0, we have

”

´
1
2

∆´
|𝑍|

|𝑥|

ı

pℋ
1
2 ,𝑛

𝑘,ℓ

´ 4|𝑍|𝑥
2𝑛` 2𝑘 ` 𝑑´ 1

¯

“ ´
2𝑍2

p2𝑛` 2𝑘 ` 𝑑´ 1q2
pℋ

1
2 ,𝑛

𝑘,ℓ

´ 4|𝑍|𝑥
2𝑛` 2𝑘 ` 𝑑´ 1

¯

. (4.6)

Proof. Taking 𝜃 “ 1
2 in (4.4) and rearranging the terms, leads to

”

´∆´
𝛽𝑛 ` 2𝑘 ` 1

2|𝑥|

ı

pℋ
1
2 ,𝑛

𝑘,ℓ p𝑥q “ ´
1
4
pℋ

1
2 ,𝑛

𝑘,ℓ p𝑥q.

With a rescaling in 𝑟 direction

𝑥 Ñ
4|𝑍|𝑥

𝛽𝑛 ` 2𝑘 ` 1
“

4|𝑍|𝑥
2𝑛` 2𝑘 ` 𝑑´ 1

,

we can obtain (4.6) immediately. �

The identity in Corollary 4.3 implies that the spectra of the Schrödinger operator with Coulomb potential
are given by

 

𝜆𝑖, 𝑢
𝑛
𝑖,ℓ

(

:“
"

´
2𝑍2

p2𝑖` 𝑑´ 3q2
, pℋ

1
2 ,𝑛

𝑖´𝑛´1,ℓ

´ 4|𝑍|𝑥
2𝑖` 𝑑´ 3

¯

*

, pℓ, 𝑛q P Υ𝑑
𝑖´1, 𝑖 P N, (4.7)

and the multiplicity of each 𝜆𝑖 is

𝑚𝑑
𝑖 :“ 𝑎𝑑

0 ` 𝑎
𝑑
1 ` ¨ ¨ ¨ ` 𝑎

𝑑
𝑖´1 “

p𝑖´ 1q𝑑´1 ` p𝑖q𝑑´1

p𝑑´ 1q!
, 𝑑 ě 2,

where we recall that 𝑎𝑑
𝑖 (defined in (2.6)) is the cardinality of Υ𝑑

𝑖 zΥ
𝑑
𝑖´1 (defined in (2.9)).

Remark 4.4. The spectrum of the Schrödinger operator with Coulomb potential is of much interest in quantum
mechanics and mathematical physics. For example, one can find the spectrum expressions in e.g., ([33], p. 132)
and ([16], Thm. 10.10) for 𝑑 “ 3 with a different derivation, and the recent work [32] for the asymptotic study
of the eigenfunctions. �

Although the orthogonality (4.5) does not imply the orthogonality of each individual term, the stiffness and
mass matrices are sparse with finite bandwidth.
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Theorem 4.5. For 𝜃 ą maxp1´ 𝑑{2, 0q, pℓ, 𝑛q, p𝜄,𝑚q P Υ𝑑
8 and 𝑘, 𝑗 P N0, we have

`

∇ pℋ𝜃,𝑛
𝑘,ℓ ,∇ pℋ𝜃,𝑚

𝑗,𝜄

˘

R𝑑 “ 𝜃 𝛿𝑚𝑛𝛿ℓ𝜄 ˆ

$

’

’

’

’

&

’

’

’

’

%

𝛽𝑛 ` 2𝑘 ` 1, 𝑗 “ 𝑘,
b

p𝑘 ` 1q
`

𝛽𝑛 ` 𝑘 ` 1
˘

, 𝑗 “ 𝑘 ` 1,
b

p𝑗 ` 1q
`

𝛽𝑛 ` 𝑗 ` 1
˘

, 𝑘 “ 𝑗 ` 1,

0, otherwise,

(4.8)

and for 𝑛` 𝑑{2` 𝛼 ą 0,

`

|𝑥|2𝛼
pℋ𝜃,𝑛

𝑘,ℓ ,
pℋ𝜃,𝑚

𝑗,𝜄

˘

R𝑑 “
1
2𝜃
𝑐𝜃,𝑑
𝑘,𝑛 𝑐

𝜃,𝑑
𝑗,𝑛 𝛿𝑚𝑛 𝛿ℓ𝜄

ˆ

minp𝑘,𝑗q
ÿ

𝑝“0

Γp𝑘 ´ 𝑝` 1´ 1`𝛼
𝜃 qΓp𝑗 ´ 𝑝` 1´ 1`𝛼

𝜃 qΓp𝑝` 𝛽𝑛 `
1`𝛼

𝜃 q

Γ2p1´ 1`𝛼
𝜃 q p𝑘 ´ 𝑝q! p𝑗 ´ 𝑝q! 𝑝!

. (4.9)

Proof. In view of the definition (4.3), we derive from (2.8), (2.11), (2.22) and the change of variable 𝜌 “ 𝑟2𝜃,
we derive

`

|𝑥|2𝛼
pℋ𝜃,𝑛

𝑘,ℓ ,
pℋ𝜃,𝑚

𝑗,𝜄

˘

R𝑑 “ 𝑐𝜃,𝑑
𝑘,𝑛𝑐

𝜃,𝑑
𝑗,𝑛𝛿𝑚𝑛𝛿ℓ𝜄

ż 8

0

𝑟2𝑛`𝑑´1`2𝛼𝐿
p𝛽𝑛q

𝑘 p𝑟2𝜃q𝐿
p𝛽𝑛q

𝑗 p𝑟2𝜃q e´𝑟2𝜃

d𝑟

“
1
2𝜃
𝑐𝜃,𝑑
𝑘,𝑛𝑐

𝜃,𝑑
𝑗,𝑛𝛿𝑚𝑛𝛿ℓ𝜄

ż 8

0

𝜌
𝑛`𝑑{2´1

𝜃 `
𝛼`1´𝜃

𝜃 𝐿
p𝛽𝑛q

𝑘 p𝜌q𝐿
p𝛽𝑛q

𝑗 p𝜌q e´𝜌d𝜌

“
1
2𝜃
𝑐𝜃,𝑑
𝑘,𝑛𝑐

𝜃,𝑑
𝑗,𝑛𝛿𝑚𝑛𝛿ℓ𝜄

𝑘
ÿ

𝑝“0

𝑗
ÿ

𝑞“0

Γp𝑘 ´ 𝑝` 𝜃´1´𝛼
𝜃 q

Γp 𝜃´1´𝛼
𝜃 qp𝑘 ´ 𝑝q!

Γp𝑗 ´ 𝑞 ` 𝜃´1´𝛼
𝜃 q

Γp 𝜃´1´𝛼
𝜃 qp𝑗 ´ 𝑞q!

ˆ

ż 8

0

𝜌
𝑛`𝑑{2`𝛼´𝜃

𝜃 𝐿
p

𝑛`𝑑{2`𝛼´𝜃
𝜃 q

𝑝 p𝜌q𝐿
p

𝑛`𝑑{2`𝛼´𝜃
𝜃 q

𝑞 p𝜌q e´𝜌d𝜌 (4.10)

“
𝑐𝜃,𝑑
𝑘,𝑛 𝑐

𝜃,𝑑
𝑗,𝑛

2𝜃
𝛿𝑚𝑛 𝛿ℓ𝜄

minp𝑘,𝑗q
ÿ

𝑝“0

Γp𝑘 ´ 𝑝` 𝜃´1´𝛼
𝜃 qΓp𝑗 ´ 𝑝` 𝜃´1´𝛼

𝜃 qΓp𝑝` 𝑛`𝑑{2`𝛼
𝜃 q

Γ2p 𝜃´1´𝛼
𝜃 q p𝑘 ´ 𝑝q! p𝑗 ´ 𝑝q! 𝑝!

,

which gives (4.9). In particular, if 𝛼 “ 2𝜃 ´ 1, we derive from (4.10) that

`

|𝑥|4𝜃´2
pℋ𝜃,𝑛

𝑘,ℓ ,
pℋ𝜃,𝑚

𝑗,𝜄

˘

R𝑑 “
1
2𝜃
𝑐𝜃,𝑑
𝑘,𝑛𝑐

𝜃,𝑑
𝑗,𝑛𝛿𝑚𝑛𝛿ℓ𝜄

ż 8

0

𝜌𝛽𝑛`1𝐿
p𝛽𝑛q

𝑘 p𝜌q𝐿
p𝛽𝑛q

𝑗 p𝜌q e´𝜌d𝜌

“
1
𝜃
𝛿𝑚𝑛𝛿ℓ𝜄 ˆ

$

’

’

’

’

&

’

’

’

’

%

𝛽𝑛 ` 2𝑘 ` 1, 𝑗 “ 𝑘,

´

b

p𝑘 ` 1q
`

𝛽𝑛 ` 𝑘 ` 1
˘

, 𝑗 “ 𝑘 ` 1,

´

b

p𝑗 ` 1q
`

𝛽𝑛 ` 𝑗 ` 1
˘

, 𝑘 “ 𝑗 ` 1,

0, otherwise.

(4.11)

Then (4.8) is a direct consequence of (4.5) and (4.11). Note that (4.11) can be also obtained from (4.10) with
the understanding Γp𝑧q “ 0 if 𝑧 is negative integer. �

4.2. Schrödinger eigenvalue problem with a Coulomb potential

In what follows, we implement the Hermite spectral method for the three-dimensional Schrödinger eigenvalue
problem (4.1) with a Coulomb potential 𝑉 p𝑥q “ 𝑍

|𝑥| with 𝑍 ă 0 for the hydrogen atom [41], that is,

´

´
1
2

∆`
𝑍

|𝑥|

¯

𝑢p𝑥q “ 𝜆𝑢p𝑥q, 𝑥 P R3. (4.12)
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Numerical solution of (4.12) poses at least two challenges (i) nonpositive definiteness of the variational form
and (ii) the singularity of the Coulomb potential. To overcome these, we shall propose an efficient and accurate
spectral method by using the Müntz-type GHFs with a suitable parameter 𝜃 “ 1

2 , in light of the Coulomb
potential.

Define the approximation space

𝒲𝑁,𝐾 “ span
 

pℋ
1
2 ,𝑛

𝑘,ℓ p𝜅𝑥q : 0 ď 𝑛 ď 𝑁, 1 ď ℓ ď 2𝑛` 1, 0 ď 𝑘 ď 𝐾, 𝑘, ℓ, 𝑛 P N0

(

,

where a scaling factor 𝜅 ą 0 is used to enhance the performance of the spectral approximation as in usual
Hermite spectral methods in one dimension (see, e.g., [38, 44]). The spectral approximation scheme for (4.2) is
to find 𝜆𝑁,𝐾 P R and 𝑢𝑁,𝐾 P𝒲𝑁,𝐾zt0u such that

ℬp𝑢𝑁,𝐾 , 𝑣𝑁,𝐾q “ 𝜆𝑁,𝐾p𝑢𝑁,𝐾 , 𝑣𝑁,𝐾qR3 , @ 𝑣𝑁,𝐾 P𝒲𝑁,𝐾 . (4.13)

In real implementation, we write

𝑢𝑁,𝐾p𝑥q “
𝑁
ÿ

𝑛“0

2𝑛`1
ÿ

ℓ“1

𝐾
ÿ

𝑘“0

𝑢̂𝑛
𝑘,ℓ

pℋ
1
2 ,𝑛

𝑘,ℓ p𝜅𝑥q,

and denote

𝑢̂𝑛
ℓ “

`

𝑢̂𝑛
0,ℓ, 𝑢̂

𝑛
1,ℓ, . . . , 𝑢̂

𝑛
𝐾,ℓ

˘𝑡
, 𝑢 “

`

𝑢̂0
1, 𝑢̂

1
1, 𝑢̂

1
2, 𝑢̂

1
3, ¨ ¨ ¨ , 𝑢̂

𝑁
1 , 𝑢̂

𝑁
2 , ¨ ¨ ¨ , 𝑢̂

𝑁
2𝑁`1

˘𝑡
. (4.14)

With this ordering, we denote the stiffness and the mass matrices by 𝑆 and 𝑀 , respectively, with the entries
given by

ℬp pℋ
1
2 ,𝑛

𝑘,ℓ p𝜅¨q,
pℋ

1
2 ,𝑚
𝑗,𝜄 p𝜅¨qq “

1
2𝜅

”

p∇ pℋ
1
2 ,𝑛

𝑘,ℓ ,∇ pℋ
1
2 ,𝑚
𝑗,𝜄 qR3 `

1
4
p pℋ

1
2 ,𝑛

𝑘,ℓ ,
pℋ

1
2 ,𝑚
𝑗,𝜄 qR3

ı

`
𝑍

𝜅2

`

|𝑥|´1
pℋ

1
2 ,𝑛

𝑘,ℓ ,
pℋ

1
2 ,𝑚
𝑗,𝜄

˘

R3 ´
1

8𝜅
`

pℋ
1
2 ,𝑛

𝑘,ℓ ,
pℋ

1
2 ,𝑚
𝑗,𝜄

˘

R3 ,

`

pℋ
1
2 ,𝑛

𝑘,ℓ p𝜅¨q,
pℋ

1
2 ,𝑚
𝑗,𝜄 p𝜅¨q

˘

R3 “
1
𝜅3

`

pℋ
1
2 ,𝑛

𝑘,ℓ ,
pℋ

1
2 ,𝑚
𝑗,𝜄

˘

R3 .

Owing to (4.5) and (4.11) with 𝜃 “ 1
2 , both the stiffness matrix 𝑆 and the mass matrix 𝑀 are tridiagonal.

Consequently, the scheme (4.13) has an equivalent form in the following algebraic eigen-system:

𝑆𝑢 “ 𝜆𝑁𝑀𝑢. (4.15)

Interestingly, the matrix 𝑆 ` 𝜅2

8 𝑀 is diagonal, so we can rewrite (4.15) as

´

𝑆 `
𝜅2

8
𝑀

¯

𝑢 “
´

𝜆𝑁 `
𝜅2

8

¯

𝑀𝑢,

which leads a more efficient implementation.
In Figure 5, we plot the errors between the first 30 (counted by multiplicity) smallest numerical eigenvalues

and exact eigenvalues in (4.7) versus 𝐾 for fixed 𝑁 “ 16 and two different scaling factors (so that the error of
the truncation in angular directions is negligible). Observe that the errors decay exponentially in terms of the
cut-off number in the radial direction, along which the eigenfunctions are singular. We also see that the scaling
parameter affects the convergence rate as the usual Hermite method (cf. [44]).
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Figure 5. The errors of the smallest 4 eigenvalues without counting multiplicities versus 𝐾
for solving (4.12) with 𝑍 “ ´1. (a) 𝑁 “ 16 and 𝜅 “ 4. (b) 𝑁 “ 16 and 𝜅 “ 7{4.

4.3. Schrödinger eigenvalue problem with a fractional power potential

Note that for any given rational number 𝑞
𝑝 ą ´2 with 𝑝 P N and 𝑞 P Z, we can always rewrite it as

𝑞

𝑝
“

2𝜈 ´ 2𝜇
𝜇` 1

with 𝜇 “ 2𝑝´ 1 P N, 𝜈 “ 2𝑝` 𝑞 ´ 1 P N0. (4.16)

In the sequel, we consider the following Schrödinger equation with a fractional power potential as follows

´
1
2

∆𝑢p𝑥q ` 𝑍|𝑥|
2𝜈´2𝜇

𝜇`1 𝑢p𝑥q “ 𝜆𝑢p𝑥q, 𝑥 P R𝑑, (4.17)

where 𝜇, 𝜈 P N0. Hereafter, we choose the Müntz-type GHF approximation with 𝜃 “ 1
𝜇`1 , to account for both

the accuracy and efficiency. Accordingly, we define the approximation space

𝒲𝑑, 1
𝜇`1

𝑁,𝐾 “ span
 

pℋ
1

𝜇`1 ,𝑛

𝑘,ℓ p𝜅𝑥q : 0 ď 𝑛 ď 𝑁, 1 ď ℓ ď 𝑎𝑑
𝑛, 0 ď 𝑘 ď 𝐾, 𝑘, ℓ, 𝑛 P N0

(

, 𝑑 ě 2,

and for 𝑑 “ 1, we can always assume 𝜇 is odd and then define the approximation space as

𝒲1, 1
𝜇`1

𝑁,𝐾 “ span
 

pℋ
1

𝜇`1 ,𝑛

𝑘,1 p𝜅𝑥q :
𝜇` 1

2
𝛿𝑛,0 ď 𝑘 ď 𝐾, 𝑛 “ 0, 1

(

,

where t pℋ
1

𝜇`1 ,𝑛

𝑘,1 u are understood as the Müntz-type GHFs defined through generalized Laguerre polynomials 𝐿p𝛽0q

𝑘

with the negative integer 𝛽0 “ ´
𝜇`1

2 (cf. [26]). This turns out important to deal with the strong singularities
at the origin to ensure 𝑢p0q “ 0 in one dimension.

The generalized Hermite spectral method for (4.2) is to find 𝜆𝑁,𝐾 P R and 𝑢𝑁,𝐾 P𝒲𝑑, 1
𝜇`1

𝑁,𝐾 zt0u s.t.

ℬp𝑢𝑁,𝐾 , 𝑣𝑁,𝐾q “ 𝜆𝑁,𝐾p𝑢𝑁,𝐾 , 𝑣𝑁,𝐾qR𝑑 , @ 𝑣𝑁,𝐾 P𝒲𝑑, 1
𝜇`1

𝑁,𝐾 . (4.18)

In the implementation, we write
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Figure 6. The errors of the smallest 5 eigenvalues without counting multiplicities versus 𝐾
for solving (4.17) with 𝑁 “ 10. (a) 𝑑 “ 4, 𝑍 “ 1, 𝜇 “ 3, 𝜈 “ 5 and 𝜅 “ 500. (b) 𝑑 “ 3, 𝑍 “ 1,
𝜇 “ 1, 𝜈 “ 2 and 𝜅 “ 2. (c) 𝑑 “ 2, 𝑍 “ 3, 𝜇 “ 1, 𝜈 “ 4 and 𝜅 “ 10. (d) 𝑑 “ 1, 𝑍 “ ´3, 𝜇 “ 3,
𝜈 “ 2 and 𝜅 “ 70.

𝑢𝑁,𝐾p𝑥q “
𝑁
ÿ

𝑛“0

𝑎𝑑
𝑛
ÿ

ℓ“1

𝐾
ÿ

𝑘“0

𝑢̂𝑛
𝑘,ℓ

pℋ
1

𝜇`1 ,𝑛

𝑘,ℓ p𝜅𝑥q,

and denote

𝑢̂𝑛
ℓ “

`

𝑢̂𝑛
0,ℓ, 𝑢̂

𝑛
1,ℓ, . . . , 𝑢̂

𝑛
𝐾,ℓ

˘𝑡
, 𝑢 “

`

𝑢̂0
1, 𝑢̂

0
2, ¨ ¨ ¨ , 𝑢̂

0
𝑎𝑑
0
, 𝑢̂1

1, 𝑢̂
1
2, ¨ ¨ ¨ , 𝑢̂

1
𝑎𝑑
1
, ¨ ¨ ¨ , 𝑢̂𝑁

1 , 𝑢̂
𝑁
2 , ¨ ¨ ¨ , 𝑢̂

𝑁
𝑎𝑑

𝑁

˘𝑡
. (4.19)

The corresponding algebraic eigen-system of (4.18) is

𝑆𝑢 “ 𝜆𝑁𝑀𝑢. (4.20)

In view of orthogonality (4.8) and (4.9), we find that for any 𝑞 P N0,

`

|𝑥|
2𝑞´2𝜇

𝜇`1 pℋ
1

𝜇`1 ,𝑛

𝑘,ℓ p𝜅¨q, pℋ
1

𝜇`1 ,𝑚

𝑗,𝜄 p𝜅¨q
˘

R𝑑 “ 𝜅´𝑑
`

pℋ
1

𝜇`1 ,𝑛

𝑘,ℓ , pℋ
1

𝜇`1 ,𝑚

𝑗,𝜄

˘

R𝑑



2166 C. SHENG ET AL.

“
𝜇` 1

2
𝜅´𝑑 𝑐

1
𝜇`1 ,𝑑

𝑘,𝑛 𝑐
1

𝜇`1 ,𝑑

𝑗,𝑛 𝛿𝑚𝑛 𝛿ℓ𝜄

minp𝑘,𝑗q
ÿ

𝑝“maxp𝑗´𝑞,𝑘´𝑞,0q

Γp𝑘 ´ 𝑝´ 𝑞qΓp𝑗 ´ 𝑝´ 𝑞qΓp𝑝` 𝛽𝑛 ` 𝑞 ` 1q
Γ2p´𝑞q p𝑘 ´ 𝑝q! p𝑗 ´ 𝑝q! 𝑝!

“
𝜇` 1

2
𝜅´𝑑 𝑐

1
𝜇`1 ,𝑑

𝑘,𝑛 𝑐
1

𝜇`1 ,𝑑

𝑗,𝑛 𝛿𝑚𝑛 𝛿ℓ𝜄

minp𝑘,𝑗q
ÿ

𝑝“maxp𝑗´𝑞,𝑘´𝑞,0q

p´𝑞q𝑘´𝑝p´𝑞q𝑗´𝑝Γp𝑝` 𝛽𝑛 ` 𝑞 ` 1q
p𝑘 ´ 𝑝q! p𝑗 ´ 𝑝q! 𝑝!

.

Furthermore, one has

ℬp pℋ
1

𝜇`1 ,𝑛

𝑘,ℓ p𝜅¨q, pℋ
1

𝜇`1 ,𝑚

𝑗,𝜄 p𝜅¨qq “
1
2
𝜅2´𝑑p∇ pℋ

1
𝜇`1 ,𝑛

𝑘,ℓ ,∇ pℋ
1

𝜇`1 ,𝑚

𝑗,𝜄 qR𝑑

` 𝑍 𝜅´
2𝜈´2𝜇

𝜇`1 ´𝑑
p|𝑥|

2𝜈´2𝜇
𝜇`1 pℋ

1
𝜇`1 ,𝑛

𝑘,ℓ , pℋ
1

𝜇`1 ,𝑚

𝑗,𝜄 qR𝑑 .

These indicate that the stiffness matrix 𝑆 is a sparse banded matrix with a bandwidth maxp𝜈, 1q, and the mass
matrix 𝑀 is also a sparse banded matrix with a bandwidth 𝜇.

In the numerical tests, we fix 𝑁 “ 10, choose different scaling factor 𝜅 and test for different 𝑍, 𝜇, 𝜈 and
dimensions. Numerical errors between the smallest eigenvalues without counting multiplicities and the refer-
ence eigenvalues (obtained by the scheme with large 𝑁 and 𝐾) are depicted in Figure 6. Exponential orders
of convergence are clearly observed in all cases, which demonstrate the effectiveness of the new Hermite spectral
method.
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