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We derive exact form of the piecewise-linear finite element stiffness matrix on
general non-uniform meshes for the integral fractional Laplacian operator in one
dimension, where the derivation is accomplished in the Fourier transformed space.
With such an exact formulation at our disposal, we are able to numerically study
some intrinsic properties of the fractional stiffness matrix on some commonly
used non-uniform meshes (e.g., the graded mesh), in particular, to examine their
seamless transition to those of the usual Laplacian.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

There has been a burgeoning of recent interest in nonlocal and fractional models, largely due to the
advancement in both computing power and computational algorithms. The integral fractional Laplacian
(IFL) is deemed as one of the most prominent nonlocal operators, but unfortunately, it poses more challenges
in numerical solutions of the related models. Among very limited works on finite element approximation
of the IFL, D’Elia and Gunzburger [1] considered the FEM discretisation on non-uniform meshes in one
dimension. The entries of the FEM stiffness matrix therein were computed by the Gauss quadrature rule, and
the adaptive Gauss–Kronrod quadrature (with a built-in function in Matlab) was resorted to approximate
the double integrals with singular kernels when the mesh size is small.

In this paper, we compute the entries of the stiffness matrix in the Fourier transformed space based on
the definition of the IFL: for s ≥ 0,

(−∆)su(x) := F −1[
|ξ|2sF [u](ξ)

]
(x), (1)
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where u(x) on R = (−∞, ∞) is of Schwartz class, and F denotes the Fourier transform with the inverse
−1. In fact, for s ∈ (0, 1), the IFL of u(x) can be equivalently defined by

(−∆)su(x) = Cs p.v.

∫
R

u(x) − u(y)
|x − y|1+2s dy with Cs =

22ssΓ (s + 1
2 )

√
π Γ (1 − s)

, (2)

where “p.v.” stands for the principle value and Γ (·) in the Gamma function. As opposed to [1] and limited
existing works implemented via (2), the use of the formulation (1) enables us to evaluate the entries explicitly.
With such an analytic representation, we can study some intrinsic properties of the stiffness matrix and
related numerical issues when the meshes are highly non-uniform.

2. Main result

Consider the model equation with a global homogeneous Dirichlet boundary condition:

(−∆)su(x) = f(x), x ∈ Ω = (a, b); u(x) = 0, x ∈ Ωc = R\Ω̄ , (3)

where f(x) is a given continuous function. Let {ϕj(x)}N−1
j=1 be the piecewise linear finite element basis

(i.e., the standard “hat” functions) associate with the partition

Ω : a = x0 < x1 < · · · < xN = b, (4)

nd satisfy ϕj(x) ≡ 0 for x ∈ Ωc. The piecewise linear FEM approximation to (3) is to find uh ∈ V 0
h =

pan{ϕj : 1 ≤ j ≤ N − 1} such that

as(uh, vh) =
∫
R
((−∆)s/2uh)((−∆)s/2vh)dx =

∫
Ω

f(x)vh(x) dx, ∀ vh ∈ V 0
h , (5)

hich admits a unique solution by the standard Lax–Milgram lemma.

.1. Main result

Our main purpose is to show that the stiffness matrix, denoted by S, with the entries

Skj = Sjk = as(ϕj , ϕk), 1 ≤ k, j ≤ N − 1,

as the following explicit form.

heorem 1. If s ∈ (0, 1) but s ̸= 1/2, then the entries of the stiffness matrix S can be explicitly evaluated
y

Sjk = Ĉs cj Dk
j ct

k with Ĉs := 1
2Γ (4 − 2s) cos(sπ) , (6)

here

cl =
( 1

hl
, − 1

hl
− 1

hl+1
,

1
hl+1

)
, Dk

j =

⎛⎜⎝(dk−1
j−1 )γ (dk

j−1)γ (dk+1
j−1)γ

(dk−1
j )γ (dk

j )γ (dk+1
j )γ

(dk−1
j+1 )γ (dk

j+1)γ (dk+1
j+1 )γ

⎞⎟⎠ , (7)

ith hℓ = xℓ − xℓ−1, dℓ
ι = |xι − xℓ|, and γ = 3 − 2s.

If s = 1/2, then we have

Sjk = 1
2π

cj

⎛⎜⎝(dk−1
j−1 )2 ln dk−1

j−1 (dk
j−1)2 ln dk

j−1 (dk+1
j−1)2 ln dk+1

j−1

(dk−1
j )2 ln dk−1

j (dk
j )2 ln dk

j (dk+1
j )2 ln dk+1

j

(dk−1
j+1 )2 ln dk−1

j+1 (dk
j+1)2 ln dk

j+1 (dk+1
j+1 )2 ln dk+1

j+1

⎞⎟⎠ ct
k, (8)

ℓ 2 ℓ ℓ
here we understand (dι) ln dι = 0 when dι = 0.
2
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Prior to the proof, we discuss some implications and consequences of the main result. Observe from the
above that for fixed s ∈ (0, 1), the matrix S is completely determined by the partition (4), and for fixed j, k,
he entry Sjk only involves the grid points: {xj+p}p=0,±1 and {xk+q}q=0,±1. Interestingly, Sjk turns out be
finite difference approximation of

d̂(x, y) = Ĉs |x − y|3−2s
, if s ̸= 1

2; d̂(x, y) = 1
2π

(x − y)2 ln |x − y|, if s = 1
2 .

ndeed, one verifies from Theorem 1 the following alternative representation.

orollary 1. For s ∈ (0, 1), the entry Sjk can be written as a finite difference form

Sjk = δ2
yδ2

xd̂k
j = δ2

xδ2
y d̂k

j , 1 ≤ j, k ≤ N − 1, (9)

here d̂k
j = d̂(xj , xk) and

δ2
xd̂k

j :=
d̂k

j − d̂k
j−1

hj
−

d̂k
j+1 − d̂k

j

hj+1
, δ2

y d̂k
j :=

d̂k
j − d̂k−1

j

hk
−

d̂k+1
j − d̂k

j

hk+1
.

emark 1. It is noteworthy that from standard finite difference formula, we have

δ2
xd̂k

j = 1
2(hj + hj+1)∂2

xd̂(xj , xk) + O(h2
j + h2

j+1). (10)

Thus, Sjk is a nine-point finite difference approximate of d̂(x, y) on {(xj+p, xk+q)}p,q=0,±1. □

emark 2. When s → 0 and s = 1, the matrix S in Theorem 1 reduces to the usual (tridiagonal) FEM
ass matrix M = diag(hj/6, (hj + hj+1)/3, hj+1/6) and the stiffness matrix S = diag(−1/hj , 1/hj +

/hj+1, −1/hj+1), respectively. If (4) is a uniform partition of (a, b) with h = hj , then (6) reduces to

Sjk = Ĉsh1−2s
2∑

i=−2
wi

⏐⏐|k − j| + i
⏐⏐3−2s with w0 = 6, w±1 = −4, w±2 = 1.

n this case, the stiffness matrix S is a Toeplitz matrix (cf. [2] and also for some other interesting
roperties). □

.2. Proof of Theorem 1

Recap on the piecewise linear FEM basis associated with (4):

ϕj(x) =

⎧⎪⎪⎨⎪⎪⎩
cj(x − xj−1), x ∈ (xj−1, xj),

cj+1(xj+1 − x), x ∈ (xj , xj+1),

0, elsewhere on R,

cℓ = 1
hℓ

, (11)

or 1 ≤ j ≤ N − 1. Using integration by parts leads to

F [ϕj ](ξ) = 1√
2π

∫
R

ϕj(x)e−ixξ dx = 1√
2π

∫ xj+1

xj−1

ϕj(x)e−ixξ dx

= cj√
2π

∫ xj

xj−1

(x − xj−1)e−ixξ dx + cj+1√
2π

∫ xj+1

xj

(xj+1 − x)e−ixξ dx

= 1√
2π

[ cj

ξ2 (e−ixjξ − e−ixj−1ξ) − cj+1

ξ2 (e−ixj+1ξ − e−ixjξ)
]

= − 1√ cje−ixj−1ξ − (cj + cj+1)e−ixjξ + cj+1e−ixj+1ξ

2 = − 1√ cjej(ξ),

(12)
2π ξ 2πξ2

3
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where ej(ξ) := (e−ixj−1ξ, e−ixjξ, e−ixj+1ξ)t. In view of (1), (5), and (12), we obtain from direct calculation
nd the parity of cosines and sines that

Sjk =
∫
R

|ξ|2sF [ϕj ](ξ)F [ϕk](ξ) dξ = 1
2π

cj

(∫
R

|ξ|2s−4
ej(ξ)et

k(−ξ)dξ
)

ct
k

= 1
π

∫ ∞

0
ξ2s−4fjk(ξ) dξ,

(13)

here

fjk(ξ) = cjF jk(ξ)ct
k, F jk(ξ) =

⎛⎜⎝cos(dk−1
j−1 ξ) cos(dk

j−1ξ) cos(dk+1
j−1ξ)

cos(dk−1
j ξ) cos(dk

j ξ) cos(dk+1
j ξ)

cos(dk−1
j+1 ξ) cos(dk

j+1ξ) cos(dk+1
j+1 ξ)

⎞⎟⎠ .

ne verifies from direct calculation or finite difference approximation (cf. (9) and (10)) that fjk(0) =
′
jk(0) = f ′′

jk(0) = 0.
We first consider s ∈ (1/2, 1). Recall the integral identity (cf. [3, p. 441]):∫ ∞

0
xµ−1 cos(ax)dx = Γ (µ)

aµ
cos

(µπ

2

)
, a > 0, µ ∈ (0, 1). (14)

e derive from (13) and integration by parts twice that∫ ∞

0
ξ2s−4fjk(ξ) dξ = 1

2s − 3

{
ξ2s−3fjk(ξ)

⏐⏐∞
0 −

∫ ∞

0
ξ2s−3f ′

jk(ξ) dξ
}

= − 1
2s − 3

∫ ∞

0
ξ2s−3f ′

jk(ξ) dξ

= − 1
(2s − 3)(2s − 2)

{
ξ2s−2f ′

jk(ξ)
⏐⏐∞
0 −

∫ ∞

0
ξ2s−2f ′′

jk(ξ) dξ
}

= 1
(2s − 3)(2s − 2)

∫ ∞

0
ξ2s−2f ′′

jk(ξ) dξ

= 1
(2s − 3)(2s − 2)cj

(∫ ∞

0
ξ2s−2F ′′

jk(ξ)dξ
)

ct
k.

(15)

pplying (14) with µ = 2s − 1 to each entry of ξ2s−2F ′′
jk(ξ) yields∫ ∞

0
ξ2s−4fjk(ξ) dξ = −Γ (2s − 3) sin(sπ) cjDk

j ct
k.

We next consider s ∈ (0, 1/2). Recall that (cf. [3, p. 440])∫ ∞

0
xµ−1 sin(ax) dx = Γ (µ)

aµ
sin

(µπ

2

)
, a > 0, µ ∈ (0, 1). (16)

pplying integration by parts one more time to (15), we derive from (16) with µ = 2s that∫ ∞

0
ξ2s−4fjk(ξ)dξ = − 1

(2s − 3)(2s − 2)(2s − 1)

∫ ∞

0
ξ2s−1f ′′′

jk(ξ)dξ

= − 1
(2s − 3)(2s − 2)(2s − 1)cj

(∫ ∞

0
ξ2s−1F ′′′

jk(ξ) dξ
)

ct
k

= −Γ (2s − 3) sin(sπ) cjDk
j ct

k.

hen, using the property: Γ (z)Γ (1 − z) = π/sin πz (z ̸= 0, −1, . . .), we can reformulate the constant and
hen obtain the desired representation in (6) for the two cases.
4
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Finally, for s = 1/2, using the fact and the basic limit

lim
s→ 1

2

cjDk
j ct

k = 0, ln z = lim
δ→0

zδ − 1
δ

, z > 0,

e can directly take limit on (6):

Sjk = 1
4 lim

s→ 1
2

cjDk
j ct

k

cos(sπ) ,

nd use the L’Hospital’s rule to obtain (8). This completes the proof.

. FEM on graded meshes

It is known that the graded meshes are commonly used in finite element approximation of solutions with
oundary singularities. In general, the mesh geometry affects not only the approximation error of the finite
lement solution but also the spectral properties of the corresponding stiffness matrix. It is a well-studied
opic in the integer-order case, but much less known in this fractional setting.

.1. A singular mapping

We propose to generate the graded mesh on [a, b] for the solutions with singularities at the endpoint(s)
y the singular mapping [4]:

x = g(y; α, β) = a + (b − a)B(y; α, β)
B(α, β) with B(y; α, β) =

∫ y

0
tα−1(1 − t)β−1dt, (17)

for y ∈ [0, 1], x ∈ [a, b], and α, β ≥ 1, where B(y, α, β) is incomplete Beta function and B(α, β) = B(1; α, β)
is the Beta function. It is a one-to-one mapping such that a = g(0; α, β) and b = g(1; α, β). If α = β = 1,
t reduces to a linear transform. Let {yj = j/N}N

j=0 be a uniform partition of the reference interval [0, 1].
Then the mapped grids on [a, b] are given by

xj := x
(α,β)
N,j = g(yj ; α, β) = g(j/N ; α, β), 0 ≤ j ≤ N. (18)

y the mean value theorem,

hj = xj − xj−1 = dx

dy

⏐⏐⏐
y=ξj

(yj − yj−1) = b − a

B(α, β)
ξα−1

j (1 − ξj)β−1

N
,

for some ξj ∈ (yj−1, yj), 1 ≤ j ≤ N . This implies

h1 ≤ b − a

B(α, β)
1

Nα
, hN ≤ b − a

B(α, β)
1

Nβ
,

nd the grid spacing near x = a (resp. x = b) is of order O(N−α) (resp. O(N−β)), while it remains O(N−1)
lightly away from the endpoints.

emark 3. If α > 1 and β = 1, then (18) reduces to

xj = g(yj ; α, 1) = a + (b − a)(yj)α = a + (b − a)
( j

N

)α

, 0 ≤ j ≤ N, (19)

hich leads to a graded mesh with grid clustering near the left endpoint x = a. Likewise, {xj = g(yj ; 1, β)}
ith β > 1 produces a graded mesh for the right end-point singularity. It is noteworthy that the distribution
5
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of the mapped grids with α = β > 1 for symmetric end-point singularities is slightly different from that
enerated by (19) and used in practice:

xj = g̃(yj ; α) =

⎧⎪⎨⎪⎩
a + b − a

2

(2j

N

)α

, j = 0, 1, . . . , N/2 − 1,

b − b − a

2

(
2 − 2j

N

)α

, j = N/2, N/2 + 1, . . . , N,

(20)

here N > 1 is assumed to be an even integer, and the underlying mapping has a limited regularity at
= (b + a)/2. However, this is not the case, if one uses (17). □

.2. Conditioning of the stiffness matrix

According to [5, (26)], the condition number of stiffness matrix S for an integer-order elliptic problem of
he 2mth order (m = 1 harmonic, m = 2 biharmonic) is given by

Cond(S) = c
(
hmax/hmin

)2m−1
N2m, (21)

here c is a positive numerical constant, N is the degree of freedom, and hmax, hmin are the largest and
mallest mesh sizes, respectively. It indicates a clear dependence of the condition number on the mesh ratio
:= hmax/hmin, and the condition number is greatly magnified for a highly non-uniform mesh, compared
ith a quasi-uniform mesh with constant ρ.
The result (21) is unknown for the fractional case. Here, we explore this numerically, and provide some

redictions or conjectures subject to rigorous proofs in future works. Note that in some critical situations
e.g., small s or very large N), we resort to the Multiprecision Computing Toolbox for Matlab [6]. We
ighlight below the main numerical findings for S on the graded mesh generated by (18) with α = β > 1,
nd mostly consider α = 2/s (the optimal value to achieve the best second-order accuracy for functions with
lgebraic endpoint singularities).

(i) The result (21) is extendable to s ∈ [1/2, 1], that is,

Cond(S) = c
(
hmax/hmin

)2s−1
N2s, s ∈ [1/2, 1]. (22)

In Fig. 1(a), we illustrate the growth of the condition numbers with various s ∈ [1/2, 1], and find a good
agreement between the numerical results and (22). It is known that the smallest eigenvalue of S for the
usual Laplacian (i.e., s = 1) on a uniform mesh behaves like λmin ≈ π2h with h being the mesh size.
Indeed, we observe from Fig. 1(b) that

λmin(S) = chmax = cN−1, s ∈ [1/2, 1]. (23)

In fact, we also observe similar behaviours in (22)–(23) for various α > 1, though we do not report the
results here.

ii) The result (22) does not hold for s ∈ (0, 1/2). We conjecture from numerical tests that

Cond(S) = c
(
hmax/hmin

)µ(s)(1−2s)
N2s, s ∈ (0, 1/2), (24)

where µ(s) is some function. We refer to Table 1 for some samples, and find from ample tests that
µ ∈ (0, 1). We also observe from Fig. 1(c) that the condition number increases rapidly as s becomes
smaller and closer to 0.
6
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Table 1
Samples of µ(s) with α = 2/s.

s 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

µ(s) 0.9505 0.9394 0.9032 0.8369 0.7167 0.4868 0.0113 0.0144

Fig. 1. Conditioning and the smallest eigenvalue of the stiffness matrix S with α = 2/s. (a)–(b): various s ∈ [1/2, 1]. (c): various
s ∈ (0, 1/2).

3.3. Numerical results

It is known that the solution of the fractional Poisson problem (3) with a smooth source term f(x) exhibits
ingularities near the boundary of Ω (cf. [7]). In particular, we find from [8] that

(−∆)s((1 − x2)s
+P (s,s)

n (x)) = Γ (n + 2s + 1)
n! P (s,s)

n (x), x ∈ Ω = (−1, 1), s > 0,

here P
(s,s)
n (x) is the Jacobi polynomial of degree n, and u+(x) = max{u(x), 0}. In the following

omputation, we take f(x) = 1 in (3), and its exact solution is u(x) = (1 − x2)s
+/Γ (2s + 1). Following

he same lines as in the proof of [9, Thm. 6.2.4], we can show that

max
|x|∈Ω̄

⏐⏐(u − Ihu)(x)
⏐⏐ ≤ cN− min{2,αs}, (25)

here Ihu is the piecewise linear FEM interpolation of u on the mesh (18) with α = β > 1. As a result,
he optimal order can be achieved when α = 2/s. With the explicit form of S in Theorem 1 and the aid of
he Matlab toolbox [6] (for some extreme situations, e.g., s = 0.1 with Cond(S) ∼ N15, see Fig. 1(c)), we
emonstrate that the same accuracy can be attained when the FEM solution uh of (5) is in place of Ihu in
25). We observe from the numerical error plots in Fig. 2 that the convergence rate of the FEM solver agrees
ell with the theoretical prediction.

. Concluding remarks and discussions

Different from the implementation of FEM in the physical space, we computed the stiffness matrix of
iecewise linear FEM for the IFL in the frequency space, and derived the exact form of the entries. In fact,
his approach can be extended to two-dimensional rectangular elements, but it is much more involved, which
e shall report in a separate work. Here, we studied the graded mesh, and numerically demonstrated how

he condition number of the stiffness matrix grew with the parameters. One message is that computation
ith multiple precision is necessary, in order to reduce the round-off errors in evaluating the entries of the

ractional stiffness matrix and battling its large condition number.

7
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(

R

Fig. 2. Convergence order of the FEM solver on graded meshes. (a): s = 0.3 and different α. (b): various s ∈ (0, 1/2) and α = 2/s.
c): various s ∈ [1/2, 1] and α = 2/s.
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