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Abstract. In this paper, we introduce an efficient Legendre-Gauss collocation
method for solving nonlinear delay differential equations with variable delay.
We analyze the convergence of the single-step and multi-domain versions of the
proposed method, and show that the scheme enjoys high order accuracy and
can be implemented in a stable and efficient manner. We also make numerical
comparison with other methods.

1. Introduction. Delay differential equations (DDEs) naturally arise in diverse
science and engineering applications [25], and in recent years, a large body of lit-
eratures has been devoted to numerical solutions of DDEs (see, e.g., [3]-[6] and
[9, 10, 14, 26]). Among the existing methods, numerical schemes based on Taylor’s
expansions or quadrature formulas have been frequently used (cf. [11, 12, 25, 26, 28]
and the references therein), e.g., the implicit Runge-Kutta methods, which can be
systematically designed and often provide accurate approximations. Over the years,
spectral method has become increasingly popular and been widely used in spatial
discretizations of PDEs owing to its high order of accuracy (cf. [7, 8, 13, 16, 17, 18]).
The solution of a DDE globally depends on its history due to the delay variable,
so a global spectral method could be a good candidate for numerical DDEs. Some
work has been done along this line, and we particularly point out that Ito, Tran
and Manitius [27] proposed and analyzed a Legendre-tau method for linear DDEs
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with one constant delay, where the solution was approximated by a truncated Le-
gendre series, and the unknown expansion coefficients was solved from a Lanczos-
tau formulation. Moreover, Guo and Wang [21], and Guo and Yan [23] developed
the Legendre-Gauss collocation methods for ODEs based on Legendre polynomial
expansions. Meanwhile, Guo and Wang [20], and Guo et al. [22] discussed the
Laguerre-Gauss-type collocation methods for ODEs. However, it is more interest-
ing but challenging to develop and analyze such type of high-order methods for
nonlinear DDEs with variable delay of the form

{
U ′(t) = f(U(t),W (t), t), 0 < t ≤ T,

U(t) = V (t), t ≤ 0,
(1)

where W (t) = U(t − θ(t)), f, θ and V are given functions and the delay variable:
θ(t) ≥ 0. We start with a single-step scheme motivated by [21]. Basically, we
approximate the solution by a finite Legendre series, and collocate the numerical
scheme at Legendre-Gauss points to determine the coefficients. Due to the delay
variable, it’s inevitable to solve nonlinear systems likewise for the implicit Runge-
Kutta methods, but the iterative solvers can be implemented efficiently thanks to
the fast transform [2]. The scheme has an infinite order of accuracy both in time and
the delay variable, and is particularly attractive for DDEs with highly oscillatory
solutions and/or stiff behavior. Therefore, it enjoys some remarkable advantages
over the Runge-Kutta-type methods.

For a more effective implementation, we suggest a multi-domain scheme to ad-
vance in time subinterval by subinterval due to the following twofold considerations.
Firstly, the resultant system for the expansion coefficients can be solved more stably
and efficiently for a small or modest number of unknowns. In particular, for large T,
it is desirable to partition the solution interval (0, T ) and solve the subsystems suc-
cessively. We also want to make a point that we merely need to store the Legendre
coefficients of the solution in relevant “delay” subintervals to recover the solution
in the subinterval that needs to resolve. Hence, the scheme can be implemented
efficiently and economically. On the other hand, the multi-domain scheme provides
us a flexibility to handle DDEs involving non-smooth initial data and/or solutions.
In such cases, the partition of the interval can be adapted to the evolution process
as the adaptive Runge-Kutta methods, and we are able to place more points in the
subintervals that are needed.

The rest of the paper is organized as follows. In the next section, we present
and analyze the single-step Legendre-Gauss collocation method, and provide some
numerical results to justify our theoretical analysis. The multi-domain version is
described, and the convergence result is also derived and numerically illustrated in
Section 3. The final section is for some concluding discussions.

2. Single-step Legendre-Gauss collocation method. In this section, we de-
scribe and analyze a single-step numerical integration process for the DDE (1) us-
ing the Legendre-Gauss interpolation, which serves as a base for the multi-domain
scheme to be presented in the forthcoming section.

2.1. Preliminaries. Let Ll(·) be the Legendre polynomial of degree l defined on
[−1, 1]. The shifted Legendre polynomials LT,l(t), t ∈ [0, T ], are defined by (cf.
[21])

LT,l(t) = Ll

(2t

T
− 1

)
=

(−1)l

l!

dl

dtl

{
tl
(
1 − t

T

)l}
, l = 0, 1, 2, · · · .
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According to the properties of the standard Legendre polynomials, we have

(l + 1)LT,l+1(t) − (2l+ 1)
(2t

T
− 1

)
LT,l(t) + lLT,l−1(t) = 0, l ≥ 1,

LT,0(t) = 1, LT,1(t) =
2t

T
− 1, LT,2(t) =

6t2

T 2
− 6t

T
+ 1.

(2)

Moreover, there holds the recursive relation

L′
T,l+1(t) − L′

T,l−1(t) =
2

T
(2l+ 1)LT,l(t), l ≥ 1. (3)

The set of LT,l(t) forms a complete L2(0, T )−orthogonal system, namely,
∫ T

0

LT,l(t)LT,m(t)dt =
T

2l + 1
δl,m, (4)

where δl,m is the Kronecker symbol. Thus for any v ∈ L2(0, T ), we write

v(t) =

∞∑

l=0

v̂T,lLT,l(t), v̂T,l =
2l+ 1

T

∫ T

0

v(t)LT,l(t)dt. (5)

We now turn to the Legendre-Gauss interpolation. Let {tNj , ωN
j }N

j=0 be the
Legendre-Gauss quadrature nodes (in (−1, 1) and arranged in ascending order) and
weights. Accordingly, we define the shifted Legendre-Gauss interpolation nodes and
weights as

tNT,j =
T

2
(tNj + 1), ωN

T,j =
T

2
ωN

j , j = 0, 1, · · · , N.
Let PN (0, T ) be the set of all real polynomials of degree at most N. We recall that
for any φ ∈ P2N+1(0, T ),

∫ T

0

φ(t)dt =
T

2

∫ 1

−1

φ
(T

2
(t+ 1)

)
dt =

T

2

N∑

j=0

ωN
j φ

(T
2

(tNj + 1)
)

=
N∑

j=0

ωN
T,jφ(tNT,j).

(6)
Denote by (u, v)T and ‖v‖T the inner product and the norm of the space L2(0, T ),
respectively. Define the following discrete inner product and norm associated with
the Legendre-Gauss quadrature:

〈u, v〉T,N =
N∑

j=0

u(tNT,j)v(t
N
T,j)ω

N
T,j , ‖v‖T,N = 〈v, v〉

1

2

T,N .

Thanks to (6), for any φψ ∈ P2N+1(0, T ) and ϕ ∈ PN(0, T ),

(φ, ψ)T = 〈φ, ψ〉T,N , ‖ϕ‖T = ‖ϕ‖T,N . (7)

For any v ∈ C(0, T ), the shifted Legendre-Gauss interpolant IT,Nv(t) ∈ PN (0, T )
is determined by

IT,Nv(t
N
T,j) = v(tNT,j), 0 ≤ j ≤ N.

In view of (7), we have that for any φ ∈ PN+1(0, T ),

(IT,Nv, φ)T = 〈IT,Nv, φ〉T,N = 〈v, φ〉T,N . (8)

We can expand IT,Nv(t) as

IT,Nv(t) =

N∑

l=0

ṽN
T,lLT,l(t), (9)
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where by (4) and (8),

ṽN
T,l =

2l+ 1

T
(IT,Nv, LT,l)T =

2l+ 1

T
〈v, LT,l〉T,N , 0 ≤ l ≤ N. (10)

Furthermore, one verifies from (4), (7) and (10) that for any ψ ∈ PN+1(0, T ),

ψ(t) =

N+1∑

l=0

ψ̂N
T,lLT,l(t), IT,Nψ(t) =

N∑

l=0

ψ̃N
T,lLT,l(t) =⇒ ψ̃N

T,l = ψ̂N
T,l, 0 ≤ l ≤ N.

which implies that (cf. [21])

‖ψ‖T,N ≤ ‖ψ‖T , ∀ψ ∈ PN+1(0, T ). (11)

Let r be a nonnegative integer, Hr(0, T ) be the usual Sobolev space as defined in
[1], and denote by its norm and semi-norm by ‖ ·‖r,T and | · |r,T , respectively. There
holds the following estimates (see, e.g., Formulas (5.4.33) and (5.4.34) of [13]).

Lemma 2.1. For any u ∈ Hr(0, T ) with integer 1 ≤ r ≤ N + 1,

‖IT,Nu− u‖T ≤ cT rN−r|u|r,T , (12)

and ∥∥(IT,Nu− u)′
∥∥

T
≤ cT r−1N

3

2
−r|u|r,T . (13)

We notice that the Legendre-Gauss interpolation estimate inH1−norm is optimal
(cf. [13]). The semi-norm in the upper bound can be improved to the weighted
semi-norm ‖tr/2(T − t)r/2u(r)‖T as in [19].

2.2. The single-step scheme. We next present the single-step scheme for the
delay differential equation (1). For this purpose, we denote the grid set by ΛN :={
tNT,k : 0 ≤ k ≤ N

}
⊂ (0, T ). The single-step Legendre-Gauss collocation approxi-

mation to (1) is to find uN (t) ∈ PN+1(0, T ), such that

d

dt
uN(t) = f(uN (t), vN (t), t), ∀ t ∈ ΛN ; uN(0) = U(0) = V (0), (14)

where the delay term

vN (t) =

{
uN (t− θ(t)), ∀ t ∈ ΛN ∩ {t : t > θ(t)},
V (t− θ(t)), ∀ t ∈ ΛN ∩ {t : t ≤ θ(t)}. (15)

Here, we recall that θ(t) ≥ 0 and V (·) is a known function. Denote by

Λ0
N =

{
t ∈ ΛN : t ≤ θ(t)

}
, Λ1

N =
{
t ∈ ΛN : t > θ(t)

}
,

and set wN (t) = uN(t−θ(t)). The collocation scheme (14)-(15) can be reformulated
as: Find uN(t) ∈ PN+1(0, T ) such that

d

dt
uN (t) =

{
f
(
uN (t), wN (t), t

)
, ∀ t ∈ Λ1

N ,

f
(
uN (t), V (t− θ(t)), t

)
, ∀ t ∈ Λ0

N ,
(16)

supplemented with the initial condition uN (0) = V (0). We notice that it is an
implicit scheme.

An important problem is how to resolve (16). Indeed, we may follow Lambert [28]
to design an algorithm (mainly for ODEs) to resolve the discrete system (16) based
on the Lagrange interpolation. However, it is known that Lagrange interpolation
is not stable for large N. Hence, we propose a stable approach by expanding uN(t)
directly in terms of the shifted Legendre polynomials and determining the unknown
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coefficients of the collocation scheme (16). This approach is stable for large N, and
much easier to implement particularly for DDEs, since one only needs to store the
coefficients of the numerical solution at each step. One may refer to Remark 2.1 of
[21] for some more features of this method for ODEs.

We next describe the numerical implementation of the collocation scheme (16).
For this purpose, we expand the collocation solution as

uN (t) =

N+1∑

l=0

ûN
T,lLT,l(t) ∈ PN+1(0, T ), 0 < t ≤ T. (17)

Furthermore, let [l] be the integer part of l. According to [21], we have

d

dt
LT,l(t) =

2

T

[ l−1

2
]∑

m=0

(2l − 4m− 1)LT,l−2m−1(t).

On the other hand, LT,l(0) = (−1)l. Hence, (16) is equivalent to

N+1∑

l=1

aN
T,k,lû

N
T,l = fN

T,k, 0 ≤ k ≤ N ;

N+1∑

l=0

(−1)lûN
T,l = V (0), (18)

where

aN
T,k,l =

2

T

[ l−1

2
]∑

m=0

(2l − 4m− 1)LT,l−2m−1(t
N
T,k), 0 ≤ k ≤ N, 1 ≤ l ≤ N + 1,

and

fN
T,k =





f
( N+1∑

l=0

ûN
T,lLT,l(t

N
T,k),

N+1∑

l=0

ûN
T,lLT,l(t

N
T,k − θ(tNT,k)), tNT,k

)
, tNT,k ∈ Λ1

N ,

f
( N+1∑

l=0

ûN
T,lLT,l(t

N
T,k), V (tNT,k − θ(tNT,k)), tNT,k

)
, tNT,k ∈ Λ0

N ,

=






f
(
V (0) +

N+1∑

l=1

ûN
T,l(LT,l(t

N
T,k) − (−1)l), V (0)

+

N+1∑

l=1

ûN
T,l(LT,l(t

N
T,k − θ(tNT,k)) − (−1)l), tNT,k

)
, tNT,k ∈ Λ1

N ,

f
(
V (0) +

N+1∑

l=1

ûN
T,l(LT,l(t

N
T,k) − (−1)l),

V (tNT,k − θ(tNT,k)), tNT,k

)
, tNT,k ∈ Λ0

N .

Further, let

ûN
T =

(
ûN

T,1, û
N
T,2, · · · , ûN

T,N+1

)′
, FN

T (ûN
T ) =

(
fN

T,0, f
N
T,1, · · · , fN

T,N

)′
,

and A
N
T be the matrix with the entries aN

T,k,l, 0 ≤ k ≤ N, 1 ≤ l ≤ N + 1. Then we

can rewrite (18) into the following matrix form:

A
N
T ûN

T = FN
T (ûN

T ); ûN
T,0 = V (0) −

N+1∑

l=1

(−1)lûN
T,l. (19)

In actual computations, we solve
{
ûN

T,l

}N+1

l=0
from (19), and recover the collocation

solution uN(t), 0 < t ≤ T from (17).
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We tabulate in Table 1 the condition numbers of A
N
T with T = 1 and various

N , which indicates that the condition numbers grow like N2/4 as with the normal
collocation scheme using Lagrangian basis.

Table 1. The condition numbers with T = 1.

N Cond. Num. N Cond. Num.

5 13.07571278675941 10 35.50775936479631

20 118.6786221997361 40 430.2160290393170

60 935.2398483834137 80 1633.731574173880

100 2525.687353973011 120 3611.105891809397

2.3. Error analysis. In this subsection, we analyze the convergence of the
scheme (16). In particular, we shall prove the spectral accuracy of numerical so-
lution uN (t). Let IT,N be the Legendre-Gauss interpolation operator as defined
before. Denote

EN (t) = uN(t) − IT,NU(t).

Lemma 2.1. Let U and uN be respectively solutions of (1) and (16). If U ∈
Hr(0, T ), with integer 2 ≤ r ≤ N + 1, then for any ε > 0,

(1
2 − ǫ)‖t−1(EN − EN (0))‖2

T + T−1
∣∣EN (T ) − EN (0)

∣∣2

≤ cǫ−1T 2r−2N3−2r|U |2r,T + 2‖GN
T,1‖2

T,N ,
(20)

where

GN
T,1(t) =





f
(
uN(t), wN (t), t

)
− f

(
IT,NU(t), IT,NW (t), t

)
, t ∈ Λ1

N ,

f
(
uN(t), V (t− θ(t)), t

)
− f

(
IT,NU(t), V (t− θ(t)), t

)
, t ∈ Λ0

N .

(21)

Proof. Let

GN
T,2(t) = IT,N

d

dt
U(t) − d

dt
IT,NU(t).

Then we have from (1) that





d

dt
IT,NU(t) = f

(
U(t),W (t), t

)
−GN

T,2(t), t ∈ Λ1
N ,

d

dt
IT,NU(t) = f

(
U(t), V (t− θ(t)), t

)
−GN

T,2(t), t ∈ Λ0
N .

(22)

Subtracting (22) from (16) yields

{
d

dt
EN (t) = GN

T,1(t) +GN
T,2(t), t ∈ Λj

N , j = 0, 1,

EN (0) = U(0) − IT,NU(0).
(23)

Clearly, t−1(EN (t)−EN (0)) ∈ PN (0, T ). Thereby, by (7) and integration by parts,
we deduce that
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2
〈
EN − EN (0),

d

dt
(t−1(EN − EN (0)))

〉
T,N

= 2
(
EN − EN (0),

d

dt
(t−1(EN − EN (0)))

)
T

= −2
(
EN − EN (0), t−2(EN − EN (0))

)
T

+2
(
EN − EN (0), t−1 d

dt
(EN − EN (0))

)
T

= −‖t−1(EN − EN (0))‖2
T + T−1

∣∣EN (T ) − EN (0)
∣∣2.

(24)

On the other hand, we have from (23) that

d

dt

(
t−1(EN (t) − EN (0))

)
= −t−2(EN (t) − EN (0)) + t−1 d

dt
EN (t)

= − t−2
(
EN (t) − EN (0)

)
+ t−1

(
GN

T,1(t) +GN
T,2(t)

)
, t ∈ Λj

N , j = 0, 1.

The above fact with (7) leads to that

2
〈
EN − EN (0),

d

dt
(t−1(EN − EN (0)))

〉
T,N

= −2
〈
EN − EN (0), t−2(EN − EN (0))

〉
T,N

+2
〈
EN − EN (0), t−1(GN

T,1 +GN
T,2)

〉
T,N

= −2‖t−1(EN − EN (0))‖2
T +AN

T,1 +AN
T,2,

(25)

where

AN
T,1 = 2

〈
t−1(EN − EN (0)), GN

T,1

〉
T,N

, AN
T,2 = 2

〈
t−1(EN − EN (0)), GN

T,2

〉
T,N

.

Since t−1(EN (t)−EN (0)) ∈ PN (0, T ) and GN
T,2(t) ∈ PN (0, T ), we use (7) to obtain

that for any ǫ > 0,

|AN
T,2| = 2|(t−1(EN − EN (0)), GN

T,2)T | ≤ ǫ‖t−1(EN − EN (0))‖2
T + ǫ−1‖GN

T,2‖2
T .

Inserting the above estimate and (24) into (25) gives that

(1 − ǫ)‖t−1(EN −EN (0))‖2
T + T−1

∣∣EN (T )−EN (0)
∣∣2 ≤ ǫ−1‖GN

T,2‖2
T +AN

T,1. (26)

We next estimate ‖GN
T,2‖T . Clearly, by (12) with dU

dt and r − 1 instead of u and
r, we have that for integer r ≥ 2,

‖IT,N
d

dt
U − d

dt
U‖T ≤ cT r−1N1−r|U |r,T . (27)

Moreover, by (13),

‖ d
dt

(IT,NU − U)‖T ≤ cT r−1N
3

2
−r|U |r,T . (28)

Therefore

‖GN
T,2‖T ≤ ‖ d

dt
(IT,NU − U)‖T + ‖IT,N

d

dt
U − d

dt
U‖T ≤ cT r−1N

3

2
−r|U |r,T . (29)

On the other hand, by (7),

|AN
T,1| ≤

1

2
‖t−1(EN − EN (0))‖2

T + 2‖GN
T,1‖2

T,N .

Substituting the above and (29) into (26), we obtain (20).
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We now consider several typical f and analyze the numerical errors. Hereafter,
β denotes any positive number less than 1

4 .
Case I. Consider (16) with the linear delay:

θ(t) = λt, 0 ≤ λ < 1. (30)

Assume that f(x, y, t) satisfies the following Lipschitz conditions in x and y. That
is, there exists real numbers γ1 ≥ 0 and γ2 ≥ 0 such that

|f(x1, y, t) − f(x2, y, t)| ≤ γ1|x1 − x2|, (31)

and

|f(x, y1, t) − f(x, y2, t)| ≤ γ2|y1 − y2|. (32)

Theorem 2.2. If the conditions (30)-(32) hold, U ∈ Hr(0, T ), with integer 2 ≤
r ≤ N + 1, and for certain δ > 0,

(1 + δ)T 2γ2
1 + (1 + δ−1)(1 − λ)−1T 2γ2

2 ≤ β <
1

4
, (33)

then

‖U − uN‖2
T ≤ cβT

2rN3−2r|U |2r,T , (34)

|U(T ) − uN(T )|2 ≤ cβT
2r−1N3−2r|U |2r,T . (35)

In particular

max
t∈[0,T ]

|U(t) − uN(t)|2 ≤ cβT
2r−1N3−2r|U |2r,T , (36)

where cβ is a positive constant depending only on β.

Proof. Obviously, in this case, Λ0
N = ∅. Moreover, wN (t) ∈ PN+1(0, T ). Therefore,

by virtue of (11), (31) and (32), for any δ > 0,

‖GN
T,1‖2

T,N ≤ (1 + δ)‖f(uN , wN , ·) − f(IT,NU,w
N , ·)‖2

T,N

+ (1 + δ−1)‖f(IT,NU,w
N , ·) − f(IT,NU, IT,NW, ·)‖2

T,N

≤ (1 + δ)γ2
1‖EN‖2

T + (1 + δ−1)γ2
2‖wN − IT,NW‖2

T .

(37)

On the other hand, by virtue of (12) and a direct calculation, we deduce that for
any ǫ > 0,

‖wN − IT,NW‖2
T ≤ (1 + ǫ)‖wN −W‖2

T + (1 + ǫ−1)‖W − IT,NW‖2
T

≤ (1 + ǫ)(1 − λ)−1‖U − uN‖2
T + (1 + ǫ−1)‖W − IT,NW‖2

T

≤ (1 + ǫ)(1 − λ)−1‖U − uN‖2
T + cǫ−1T 2rN−2r|W |2r,T

≤ (1 + ǫ)(1 − λ)−1‖U − uN‖2
T + cǫ−1T 2rN−2r|U |2r,T .

(38)

Due to (33), we have that (1 + δ−1)T 2γ2
2 < 1

4 . Hence, inserting the above two
inequalities into (20), we obtain from (33) that

(1

2
− ǫ

)
‖t−1(EN − EN (0))‖2

T + T−1
∣∣EN (T ) − EN (0)

∣∣2

≤ 2(1 + δ)γ2
1‖EN‖2

T + 2(1 + δ−1)(1 + ǫ)(1 − λ)−1γ2
2‖U − uN‖2

T

+ cǫ−1(1 + δ−1)γ2
2T

2rN−2r|U |2r,T + cǫ−1T 2r−2N3−2r|U |2r,T
≤ 2(1 + δ)γ2

1‖EN‖2
T + 2(1 + δ−1)(1 + ǫ)(1 − λ)−1γ2

2‖U − uN‖2
T

+ cǫ−1T 2r−2N3−2r|U |2r,T .

(39)
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Moreover
(1

2
− ǫ

)
‖EN‖2

T ≤
(1

2
− ǫ

)(
(1 + ǫ)‖EN − EN (0)‖2

T + (1 + ǫ−1)‖EN (0)‖2
T

)

≤
(1

2
− ǫ

)(
(1 + ǫ)T 2‖t−1(EN − EN (0))‖2

T + (1 + ǫ−1)T (EN (0))2
)
.

(40)

Therefore, we use (39) and (40) to derive that
(1

2
− ǫ

)
‖EN‖2

T + (1 + ǫ)T
∣∣EN (T ) − EN (0)

∣∣2

≤ (1 + ǫ)T 2
(
(
1

2
− ǫ)‖t−1(EN − EN (0))‖2

T + T−1
∣∣EN (T ) − EN (0)

∣∣2
)

+ cǫ−1T (EN (0))2

≤(1 + ǫ)T 2
(
2(1 + δ)γ2

1‖EN‖2
T + 2(1 + δ−1)(1 + ǫ)(1 − λ)−1γ2

2‖U − uN‖2
T

)

+ cǫ−1T (EN (0))2 + cǫ−1T 2rN3−2r|U |2r,T ,

(41)

or equivalently,
(1

2
− ǫ− 2(1 + ǫ)(1 + δ)T 2γ2

1

)
‖EN‖2

T + (1 + ǫ)T
∣∣EN (T ) − EN (0)

∣∣2

≤2(1 + δ−1)(1 + ǫ)2(1 − λ)−1T 2γ2
2‖U − uN‖2

T + cǫ−1T (EN (0))2

+ cǫ−1T 2rN3−2r|U |2r,T .

(42)

Thanks to (12), we have that

‖U − uN‖2
T ≤ (1 + ǫ)‖EN‖2

T + (1 + ǫ−1)‖U − IT,NU‖2
T

≤ (1 + ǫ)‖EN‖2
T + cǫ−1T 2rN−2r|U |2r,T .

(43)

The above with (42) yields
(

1
2 − ǫ− 2(1 + ǫ)(1 + δ)T 2γ2

1

)
‖U − uN‖2

T + (1 + ǫ)2T
∣∣EN (T ) − EN (0)

∣∣2

≤ (1 + ǫ)
(

1
2 − ǫ− 2(1 + ǫ)(1 + δ)T 2γ2

1

)
‖EN‖2

T

+(1 + ǫ)2T
∣∣EN (T ) − EN (0)

∣∣2 + cǫ−1T 2rN−2r|U |2r,T
≤ 2(1 + δ−1)(1 + ǫ)3(1 − λ)−1T 2γ2

2‖U − uN‖2
T

+cǫ−1T 2rN3−2r|U |2r,T + cǫ−1T (EN (0))2,

(44)
or equivalently,

(
1
2 − ǫ− 2(1 + ǫ)(1 + δ)T 2γ2

1 − 2(1 + δ−1)(1 + ǫ)3(1 − λ)−1T 2γ2
2

)
‖U − uN‖2

T

+(1 + ǫ)2T
∣∣EN (T ) − EN (0)

∣∣2 ≤ cǫ−1T 2rN3−2r|U |2r,T + cǫ−1T (EN(0))2.

(45)
On the other hand, for any v ∈ H1(0, T ) (see (3.9) of [21]),

max
t∈[0,T ]

|v(t)|2 ≤ 2

T
‖v‖2

T + 2T ‖dv
dt

‖2
T . (46)

This, along with (12) and (13), leads to that

(EN (0))2 = |IT,NU(0) − U(0)|2 ≤ 2

T
‖IT,NU − U‖2

T + 2T ‖ d
dt

(IT,NU − U)‖2
T

≤ cT 2r−1N3−2r|U |2r,T .
(47)
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Next let ǫ = ( 3
4β+2 )

1

3 − 1 > 0. Then (1 + ǫ)3(1 + 2β) = 3
2 . Hence, by (33),

ǫ+ 2(1 + ǫ)(1 + δ)T 2γ2
1 + 2(1 + δ−1)(1 + ǫ)3(1 − λ)−1T 2γ2

2

< (1 + ǫ)3(1 + 2(1 + δ)T 2γ2
1 + 2(1 + δ−1)(1 − λ)−1T 2γ2

2) − 1
≤ (1 + ǫ)3(1 + 2β) − 1 = 1

2 .

A combination of the above estimate, (45) and (47) leads to (34). Further, by (45)
and (47), we deduce that

(EN (T ))2 ≤ 2
∣∣EN (T ) − EN (0)

∣∣2 + 2
∣∣EN (0)

∣∣2 ≤ cβT
2r−1N3−2r|U |2r,T .

Moreover, an argument similar to (47) yields

|IT,NU(T ) − U(T )|2 ≤ cT 2r−1N3−2r|U |2r,T . (48)

Consequently,

|U(T ) − uN (T )|2 ≤ 2|IT,NU(T ) − U(T )|2 + 2
∣∣EN (T )

∣∣2 ≤ cβT
2r−1N3−2r|U |2r,T .

This leads to (35). Next, by using (37), (38), (34) and (12), we deduce that

‖GN
T,1‖2

T,N ≤ (1 + δ)γ2
1‖EN‖2

T + (1 + δ−1)(1 + ǫ)(1 − λ)−1γ2
2‖U − uN‖2

T

+ cǫ−1(1 + δ−1)γ2
2T

2rN−2r|U |2r,T
≤ 2(1 + δ)γ2

1(‖U − IT,NU‖2
T + ‖U − uN‖2

T ) + cβγ
2
2T

2rN3−2r|U |2r,T
≤ cβ(γ2

1 + γ2
2)T 2rN3−2r|U |2r,T .

(49)

Hence, by (7), (23), (28), (29), (49) and (33), we deduce that

‖ d
dt

(U − uN )‖2
T ≤ 2‖ d

dt
EN‖2

T + 2‖ d
dt

(U − IT,NU)‖2
T

= 2‖ d
dt
EN‖2

T,N + 2‖ d
dt

(U − IT,NU)‖2
T

≤ 4‖GN
T,1‖2

T,N + 4‖GN
T,2‖2

T + cT 2r−2N3−2r|U |2r,T
≤ cβT

2r−2N3−2r|U |2r,T .

(50)

Finally, by virtue of (46), (34) and (50), we obtain (36).

Remark 2.1. The condition (33) is necessary for the proof, but it should not be
essential. In fact, some numerical examples do not meet this condition, but the
numerical scheme still converges. This remark also applies to multiple-domain cases.

Case II. Assume that the delay function satisfies:

t− θ(t) ≤ 0, t ∈ [0, T ]. (51)

Moveover, f(x, y, t) satisfies the Lipschitz condition (31).

Theorem 2.3. If the conditions (51) and (31) hold, U ∈ Hr(0, T ), with integer

2 ≤ r ≤ N + 1, and

T 2γ2
1 ≤ β <

1

4
, (52)

then

‖U − uN‖2
T ≤ cβT

2rN3−2r|U |2r,T , (53)

|U(T ) − uN(T )|2 ≤ cβT
2r−1N3−2r|U |2r,T . (54)

In particular

max
t∈[0,T ]

|U(t) − uN(t)|2 ≤ cβT
2r−1N3−2r|U |2r,T . (55)
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Proof. Obviously, in this case, Λ1
N = ∅. Hence, by virtue of (11) and (31),

‖GN
T,1‖2

T,N ≤ γ2
1‖EN‖2

T . (56)

Inserting the above inequality into (20), we obtain

(1
2 − ǫ)‖t−1(EN − EN (0))‖2

T + T−1
∣∣EN (T ) − EN (0)

∣∣2

≤ 2γ2
1‖EN‖2

T + cǫ−1T 2r−2N3−2r|U |2r,T .
(57)

Therefore, we use (40), (57) and (47) to derive that

(1
2 − ǫ)‖EN‖2

T + (1 + ǫ)T
∣∣EN (T ) − EN (0)

∣∣2

≤ (1 + ǫ)T 2
(
(1
2 − ǫ)‖t−1(EN − EN (0))‖2

T + T−1
∣∣EN (T ) − EN (0)

∣∣2
)

+cǫ−1T (EN(0))2 ≤ 2(1 + ǫ)T 2γ2
1‖EN‖2

T + cǫ−1T 2rN3−2r|U |2r,T ,
(58)

or equivalently,
(1

2
− ǫ−2(1+ ǫ)T 2γ2

1

)
‖EN‖2

T +(1+ ǫ)T
∣∣EN (T )−EN(0)

∣∣2 ≤ cǫ−1T 2rN3−2r|U |2r,T .
(59)

Let ǫ = 3
8β+4 − 1

2 > 0. Then by (52),

ǫ+ 2(1 + ǫ)T 2γ2
1 = (1 + ǫ)(1 + 2T 2γ2

1) − 1 ≤ (1 + ǫ)(1 + 2β) − 1 = β +
1

4
<

1

2
.

A combination of the above estimate, (43) and (59) leads to (53). Further, by (59)
and (47), we deduce that

(EN (T ))2 ≤ 2
∣∣EN (T ) − EN (0)

∣∣2 + 2
∣∣EN (0)

∣∣2 ≤ cβT
2r−1N3−2r|U |2r,T .

This, along with (48) yields (54). We can derive the result (55) easily.

Remark 2.2. We see from (34), (35), (53) and (54) that the errors |U(T )− uN (T )|
and ‖U−uN‖T decay rapidly asN and r increase. The convergence rate is O(N

3

2
−r).

Thus, the smoother the exact solution, the smaller the numerical errors. In other
words, the scheme (16) possesses the spectral accuracy.

Remark 2.3. If
drU

dtr
∈ L∞(0, T ), N ≥ r − 1 and T ≤ 1, then we use Theorems 2.1

and 2.2 to deduce that

‖U − uN‖T ≤ c
1

2

βT
r+ 1

2N
3

2
−r

∥∥∥
drU

dtr

∥∥∥
L∞(0,T )

, (60)

|U(T ) − uN(T )| ≤ c
1

2

βT
rN

3

2
−r

∥∥∥
drU

dtr

∥∥∥
L∞(0,T )

. (61)

In particular, if 1
N ≤ T ≤ 1, then we may take r = N + 1 in (60) and (61), to reach

that
‖U − uN‖T = O(T 2N+1), |U(T ) − uN(T )| = O(T 2N+ 1

2 ). (62)

2.4. Numerical results. In this subsection, we present some numerical results to
illustrate the efficiency of our single-step algorithm.

❶ Linear variable delay (Case I):
{

d

dt
u(t) =

1

2
e

t
2u

( t
2

)
+

1

2
u(t), for 0 ≤ t ≤ T,

u(0) = 1.
(63)

As pointed out in [15], the exact solution is u(t) = et. Obviously, the conditions

(31) and (32) hold with γ1 =
1

2
and γ2 =

1

2
e

T
2 . Moreover, the inequality (33) is
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satisfied for T = 0.3. But for T = 1, the inequality (33) is no longer valid. In Fig.
1, we plot the numerical errors at t = T with T = 0.3, 1 and various values of
N. They indicate that the numerical errors decay exponentially as N increases. In
particular, we can observe from Fig. 1 that even if the condition (33) is not satisfied
(for instance, T=1), our algorithm is still valid.
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Figure 1. The numerical errors of Legendre-Gauss
collocation method at t = T .
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Figure 2. The numerical errors of Legendre-Gauss
collocation method at t = 1.

❷ Nonlinear variable delay (Case I):
{

d

dt
u(t) = 1 − 2u2

( t
2

)
, for 0 ≤ t ≤ 1,

u(0) = 0.
(64)

This is a nonlinear DDE with the exact solution u(t) = sin(t), see [15]. In Fig.
2, we plot the numerical errors at t = 1 using the single-step scheme (16) and
Newton-Raphson iteration method with various values of N. They indicate that
the numerical errors decay exponentially as N increases. We also note that the
condition (32) is not satisfied for problem (64), but our algorithm is still valid.
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❸ Linear constant delay (Case II):
{

d

dt
u(t) = −u

(
t− π

2

)
, 0 ≤ t ≤ π

2 ,

u(t) = sin(t), −π
2 ≤ t ≤ 0.

(65)

The exact solution is u(t) = sin(t). Obviously, the condition (31) hold with
γ1 = 0. Moreover, the inequality (51) is satisfied. In Fig. 3, we plot the numerical
errors at t = π

2 with various values of N. They indicate that the numerical errors
decay exponentially as N increases.
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Figure 3. The numerical errors of Legendre-Gauss
collocation method at t = π

2 .

3. Multiple-domain Legendre-Gauss collocation method. In the last sec-
tion, we investigated the single-step Legendre-Gauss collocation method. The nu-
merical errors decay very rapidly as N and r increase. While the foregoing single-
step collocation method provide accurate results, in actual computation, it is not
convenient to resolve the discrete system (19) with very large mode N. As com-
mented in the introduction, it is advisable to partition the interval (0, T ) into a
finite number of subintervals and solve the equations subsequently on each subin-
terval.

3.1. The multiple-domain scheme. We now describe the multiple-domain
scheme. Let M and Nm, 1 ≤ m ≤ M be any positive integers. We first de-
compose the interval (0, T ] into M subintervals (Tm−1, Tm], 1 ≤ m ≤M, such that
the set of Tm includes all breaking points, where T0 = 0 and TM = T. Denote by
τm = Tm−Tm−1, 1 ≤ m ≤M. We shall use uNm

m (t) ∈ PNm+1(0, τm) to approximate
the solution U in the subinterval (Tm−1, Tm].

Firstly, replacing T and N by τ1 and N1 in (16) and all other formulas in Sub-
section 2.2, we can derive an alternative algorithm, with which we obtain the nu-
merical solution uN1

1 (t) ∈ PN1+1(0, τ1). Then we evaluate the numerical solutions
uNm

m (t) ∈ PNm+1(0, τm), 2 ≤ m ≤ M, step by step. Finally, the global numerical
solution of (1) is given by

uN (Tm−1 + t) = uNm
m (t), 0 ≤ t ≤ τm, 1 ≤ m ≤M. (66)
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We now present the numerical scheme for uNm
m (t). Denote by tNm

τm,k and ωNm

τm,k, 0 ≤
k ≤ Nm the nodes and the corresponding Christoffel numbers of the shifted Legendre-
Gauss interpolation on the interval (0, τm). Let

Λ0
N,m = {tNm

τm,k | Tm−1 + tNm

τm,k − θ(Tm−1 + tNm

τm,k) ≤ 0, 0 ≤ k ≤ Nm},
and

Λj
N,m

={tNm

τm,k | Tm−1 + tNm

τm,k − θ(Tm−1 + tNm

τm,k) ∈ (Tj−1, Tj], 0 ≤ k ≤ Nm}, 1 ≤ j ≤ m.

The multiple-domain collocation method for (1) is to seek uNm
m (t) ∈ PNm+1(0, τm),

such that



d

dt
uNm

m (t) = f(uNm
m (t), wj

m(t), Tm−1 + t), t ∈ Λj
N,m, j > 0,

d

dt
uNm

m (t) = f(uNm

m (t), V (Tm−1 + t− θ(Tm−1 + t)), Tm−1 + t), t ∈ Λ0
N,m,

uNm
m (0) = u

Nm−1

m−1 (τm−1), 2 ≤ m ≤M,
(67)

where

wj
m(t) = uN(Tm−1 + t− θ(Tm−1 + t)) = u

Nj

j (Tm−1 − Tj−1 + t− θ(Tm−1 + t)).

Denote by Um(t) = U(Tm−1 + t) for 0 ≤ t ≤ τm. Then by (1),




d

dt
Um(t) = f(Um(t),W j

m(t), Tm−1 + t), t ∈ Λj
N,m, j > 0,

d

dt
Um(t) = f(Um(t), V (Tm−1 + t− θ(Tm−1 + t)), Tm−1 + t), t ∈ Λ0

N,m,

Um(0) = Um−1(τm−1), 2 ≤ m ≤M,
U1(0) = U(0) = V (0),

(68)

where

W j
m(t) = U(Tm−1 + t− θ(Tm−1 + t)) = Uj(Tm−1 − Tj−1 + t− θ(Tm−1 + t)).

We see from (67) and (68) that the local numerical solution uNm
m (t) is actually

an approximation to the local exact solution Um(t), with the approximate initial

data uNm
m (0) = u

Nm−1

m−1 (τm−1).

3.2. Error analysis. We next analyze the numerical errors. Denote

ENm

m (t) = uNm

m (t) − Iτm,Nm
Um(t).

Lemma 3.1. Let Um and uNm
m be respectively solutions of (68) and (67). If Um ∈

Hr(0, τm), with integer 2 ≤ r ≤ Nm + 1, then for any ε > 0,

(
1

2
− ǫ)‖t−1(ENm

m − ENm

m (0))‖2
τm

+ τ−1
m

∣∣ENm

m (τm) − ENm

m (0)
∣∣2

≤cǫ−1τ2r−2
m N3−2r

m |Um|2r,τm
+ 2‖GNm

τm,1‖2
τm,Nm

,
(69)

where

GNm

τm,1(t) =






f(uNm
m (t), wj

m(t), Tm−1 + t) − f(Iτm,Nm
Um(t),W j

m(t), Tm−1 + t),

t ∈ Λj
N,m, j > 0,

f(uNm
m (t), V (Tm−1 + t− θ(Tm−1 + t)), Tm−1 + t)

−f(Iτm,Nm
Um(t), V (Tm−1 + t− θ(Tm−1 + t)), Tm−1 + t), t ∈ Λ0

N,m.
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Proof. Let

GNm

τm,2(t) = Iτm,Nm

d

dt
Um(t) − d

dt
Iτm,Nm

Um(t).

Then, following the same line as in the derivation of (23), we obtain from (67) and
(68) that






d

dt
ENm

m (t) = GNm

τm,1(t) +GNm

τm,2(t), t ∈ Λj
N,m, j ≥ 0,

ENm
m (0) = uNm

m (0) − Iτm,Nm
Um(0), 2 ≤ m ≤M,

EN1

1 (0) = U(0) − Iτ1,N1
U(0).

(70)

Like (24), we have

2
〈
ENm

m − ENm

m (0),
d

dt
(t−1(ENm

m − ENm

m (0)))
〉

τm,Nm

= − ‖t−1(ENm

m − ENm

m (0))‖2
τm

+ τ−1
m

∣∣ENm

m (τm) − ENm

m (0)
∣∣2.

(71)

Next, we use (70) to derive that

d

dt
(t−1(ENm

m (t) − ENm
m (0))) = −t−2(ENm

m (t) − ENm
m (0)) + t−1 d

dt
ENm

m (t)

= −t−2(ENm
m (t) − ENm

m (0)) + t−1(GNm

τm,1(t) +GNm

τm,2(t)), t ∈ Λj
N,m, j ≥ 0.

Hence, by (7) with τm and Nm instead of T and N , we deduce from the above
inequality that

2
〈
ENm

m − ENm

m (0),
d

dt
(t−1(ENm

m − ENm

m (0)))
〉

τm,Nm

= − 2(ENm

m − ENm

m (0), t−2(ENm

m − ENm

m (0)))τm

+ 2
〈
t−1(ENm

m − ENm

m (0)), GNm

τm,1

〉
τm,Nm

+ 2(t−1(ENm

m − ENm

m (0)), GNm

τm,2)τm

≤− 2‖t−1(ENm

m − ENm

m (0))‖2
τm

+ (
1

2
+ ǫ)‖t−1(ENm

m − ENm

m (0))‖2
τm

+ 2‖GNm

τm,1‖2
τm,Nm

+ ǫ−1‖GNm

τm,2‖2
τm
.

(72)

According to (29) with the parameters Nm and τm, we have

‖GNm

τm,2‖τm
≤ cτr−1

m N
3

2
−r

m |Um|r,τm
. (73)

A combination of (71)-(73) leads to (69).

We now consider several typical f, and analyze the numerical errors. Hereafter,
let τ = max

1≤j≤M
τj and N = min

1≤j≤M
Nj . Moreover, we always assume that for any

1 ≤ i ≤ j ≤M, τi

τj
is bounded above.

Case I. Consider (67) with the linear delay:

θ(t) = λt, 0 < λ < 1. (74)

Assume that f(x, y, t) satisfies the Lipschitz conditions (31) and (32).

Theorem 3.2. If

❶ the conditions (74), (31) and (32) hold,

❷ (1 − λ)Tm ≤ Tm−1 for all 2 ≤ m ≤M,
❸ U ∈ Hr(0, T ) with integer 2 ≤ r ≤ N + 1,
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❹ for certain δ > 0 and c0 > 0,




(1 + δ)τ2
1 γ

2
1 + (1 + δ−1)(1 − λ)−1τ2

1 γ
2
2 ≤ β <

1

4
,

τmγ1 <
1

2
, τmγ2 ≤ c0, ∀ m > 1,

(75)

then for any 1 ≤ m ≤M,

‖U − uN‖2
L2(Tm−1,Tm) ≤ cβτ

2rN3−2r|U |2r,Tm
, (76)

|U(Tm) − uN(Tm)|2 ≤ cβτ
2r−1N3−2r|U |2r,Tm

. (77)

In particular,

max
t∈[Tm−1,Tm]

|U(t) − uN (t)|2 ≤ cβτ
2r−1N3−2r|U |2r,Tm

. (78)

Proof. Clearly, in this case, Λ0
N,m = ∅ form ≥ 1 and Λm

N,m = ∅ form > 1. Therefore,

by (31), (32), (11), (46) and the fact

Nm∑

k=0

ωNm

τm,k = τm, we deduce that for any ǫ > 0

and m > 1,

‖GNm

τm,1‖2
τm,Nm

≤ (1 + ǫ)

m−1∑

j=1

∑

tNm
τm,k

∈Λj

N,m

(
f(uNm

m (tNm

τm,k), wj
m(tNm

τm,k), Tm−1 + tNm

τm,k)

− f(Iτm,Nm
Um(tNm

τm,k), wj
m(tNm

τm,k), Tm−1 + tNm

τm,k)
)2

ωNm

τm,k

+ (1 + ǫ−1)

m−1∑

j=1

∑

tNm
τm,k

∈Λj

N,m

(
f(Iτm,Nm

Um(tNm

τm,k), wj
m(tNm

τm,k), Tm−1 + tNm

τm,k)

− f(Iτm,Nm
Um(tNm

τm,k),W j
m(tNm

τm,k), Tm−1 + tNm

τm,k)
)2

ωNm

τm,k

≤ (1 + ǫ−1)γ2
2

m−1∑

j=1

∑

tNm
τm,k

∈Λj

N,m

(wj
m(tNm

τm,k) −W j
m(tNm

τm,k))2ωNm

τm,k

+ (1 + ǫ)γ2
1‖ENm

m ‖2
τm,Nm

≤ (1 + ǫ−1)τmγ
2
2 max

1≤j≤m−1
‖Uj − u

Nj

j ‖2
L∞(0,τj)

+ (1 + ǫ)γ2
1‖ENm

m ‖2
τm

≤ (1 + ǫ−1)τmγ
2
2 max

1≤j≤m−1
(

2

τj
‖Uj − u

Nj

j ‖2
τj

+ 2τj‖
d

dt
(Uj − u

Nj

j )‖2
τj

)

+ (1 + ǫ)γ2
1‖ENm

m ‖2
τm
.

(79)

Inserting the above inequality into (69), we obtain that for m > 1,

(1
2 − ǫ)‖t−1(ENm

m − ENm
m (0))‖2

τm
+ τ−1

m

∣∣ENm
m (τm) − ENm

m (0)
∣∣2

≤ 2(1 + ǫ)γ2
1‖ENm

m ‖2
τm

+ cǫ−1τ2r−2
m N3−2r

m |Um|2r,τm

+2(1 + ǫ−1)τmγ
2
2 max

1≤j≤m−1
(

2

τj
‖Uj − u

Nj

j ‖2
τj

+ 2τj‖
d

dt
(Uj − u

Nj

j )‖2
τj

).

(80)

On the other hand, like (40),

(1
2 − ǫ)‖ENm

m ‖2
τm

≤ (1
2 − ǫ)

(
(1 + ǫ)τ2

m‖t−1(ENm
m − ENm

m (0))‖2
τm

+ (1 + ǫ−1)τm|ENm
m (0)|2

)
.

(81)
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Therefore, we use (80) and (81) to derive that for m > 1,

(
1

2
− ǫ)‖ENm

m ‖2
τm

+ (1 + ǫ)τm
∣∣ENm

m (τm) − ENm
m (0)

∣∣2 ≤ cǫ−1τm|ENm
m (0)|2

+ (1 + ǫ)τ2
m

(
(
1

2
− ǫ)‖t−1(ENm

m − ENm
m (0))‖2

τm
+ τ−1

m

∣∣ENm
m (τm) − ENm

m (0)
∣∣2

)

≤ (1 + ǫ)τ2
m

(
2(1 + ǫ)γ2

1‖ENm

m ‖2
τm

+ 2(1 + ǫ−1)τmγ
2
2 max

1≤j≤m−1
(

2

τj
‖Uj − u

Nj

j ‖2
τj

+ 2τj‖
d

dt
(Uj − u

Nj

j )‖2
τj

)
)

+ cǫ−1τ2r
m N3−2r

m |Um|2r,τm
+ cǫ−1τm|ENm

m (0)|2,
(82)

or equivalently,

(1
2 − ǫ− 2(1 + ǫ)2τ2

mγ
2
1)‖ENm

m ‖2
τm

+ (1 + ǫ)τm
∣∣ENm

m (τm) − ENm
m (0)

∣∣2

≤ 2(1 + ǫ−1)(1 + ǫ)τ3
mγ

2
2 max

1≤j≤m−1
(

2

τj
‖Uj − u

Nj

j ‖2
τj

+ 2τj‖
d

dt
(Uj − u

Nj

j )‖2
τj

)

+cǫ−1τ2r
m N3−2r

m |Um|2r,τm
+ cǫ−1τm|ENm

m (0)|2.
(83)

Furthermore, like (43), we have

‖Um − uNm
m ‖2

τm
≤ (1 + ǫ)‖ENm

m ‖2
τm

+ cǫ−1τ2r
m N−2r

m |Um|2r,τm
. (84)

The above two inequalities with (75) lead to that for m > 1,

(1
2 − ǫ− 2(1 + ǫ)2τ2

mγ
2
1)‖Um − uNm

m ‖2
τm

+ (1 + ǫ)2τm
∣∣ENm

m (τm) − ENm
m (0)

∣∣2

≤ (1 + ǫ)(1
2 − ǫ− 2(1 + ǫ)2τ2

mγ
2
1)‖ENm

m ‖2
τm

+ (1 + ǫ)2τm
∣∣ENm

m (τm) − ENm
m (0)

∣∣2

+cǫ−1τ2r
m N−2r

m |Um|2r,τm

≤ 2(1 + ǫ−1)(1 + ǫ)2τ3
mγ

2
2 max

1≤j≤m−1
(

2

τj
‖Uj − u

Nj

j ‖2
τj

+ 2τj‖
d

dt
(Uj − u

Nj

j )‖2
τj

)

+cǫ−1τ2r
m N3−2r

m |Um|2r,τm
+ cǫ−1τm

∣∣ENm
m (0)

∣∣2.
(85)

Thanks to (46), an argument similar to (47) yields

∣∣ENm
m (0)

∣∣2 =
∣∣uNm

m (0) − Iτm,Nm
Um(0)

∣∣2

≤ 2
∣∣uNm−1

m−1 (τm−1) − Um−1(τm−1)
∣∣2 + 2

∣∣Um(0) − Iτm,Nm
Um(0)

∣∣2

≤ 2
∣∣uNm−1

m−1 (τm−1) − Um−1(τm−1)
∣∣2 + cτ2r−1

m N3−2r
m |Um|2r,τm

.

Similarly

(Um(τm) − uNm
m (τm))2 ≤ 2(ENm

m (τm))2 + 2(Um(τm) − Iτm,Nm
Um(τm))2

≤ 2(ENm
m (τm))2 + cτ2r−1

m N3−2r
m |Um|2r,τm

.
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A combination of the above three inequalities gives that for m > 1,

(
1

2
− ǫ− 2(1 + ǫ)2τ2

mγ
2
1)‖Um − uNm

m ‖2
τm

+
1

4
(1 + ǫ)2τm

∣∣Um(τm) − uNm

m (τm)
∣∣2

≤ (
1

2
− ǫ− 2(1 + ǫ)2τ2

mγ
2
1)‖Um − uNm

m ‖2
τm

+
1

2
(1 + ǫ)2τm

∣∣ENm

m (τm)
∣∣2

+ cτ2r
m N3−2r

m |Um|2r,τm
≤ (

1

2
− ǫ− 2(1 + ǫ)2τ2

mγ
2
1)‖Um − uNm

m ‖2
τm

+ (1 + ǫ)2τm(
∣∣ENm

m (τm) − ENm

m (0)
∣∣2 +

∣∣ENm

m (0)
∣∣2) + cτ2r

m N3−2r
m |Um|2r,τm

≤ 2(1 + ǫ−1)(1 + ǫ)2τ3
mγ

2
2 max

1≤j≤m−1
(

2

τj
‖Uj − u

Nj

j ‖2
τj

+ 2τj‖
d

dt
(Uj − u

Nj

j )‖2
τj

)

+ cǫ−1τm
∣∣uNm−1

m−1 (τm−1) − Um−1(τm−1)
∣∣2 + cǫ−1τ2r

m N3−2r
m |Um|2r,τm

.

(86)

Thus by (50), (34), (35) and (75), we obtain from (86) that for a suitable value of
ǫ,

‖U − uN‖2
L2(T1,T2) = ‖U2 − uN2

2 ‖2
τ2

≤ cβτ
2rN3−2r(|U1|2r,τ1

+ |U2|2r,τ2
).

Similarly

|U(T2) − uN (T2)|2 = |U2(τ2) − uN2

2 (τ2)|2 ≤ cβτ
2r−1N3−2r(|U1|2r,τ1

+ |U2|2r,τ2
).

Since τi

τj
is bounded above for 1 ≤ i ≤ j ≤ M , we use (86), (79), (75) and repeat

the above process, to obtain (76) and (77). In particular, by virtue of (46), (76)
and a result similar to (50), we get (78).

Remark 3.1. The estimates (76)-(78) indicate the spectral accuracy of scheme (67).

Remark 3.2. If drU
dtr ∈ L∞(0, Tm), N ≥ r − 1 and τ ≤ 1, then for 1 ≤ m ≤M,

‖U − uN‖L2(0,Tm) ≤ c
1

2

βmτ
r+ 1

2N
3

2
−r‖d

rU

dtr
‖L∞(0,Tm), (87)

|U(Tm) − uN(Tm)| ≤ c
1

2

βm
1

2 τrN
3

2
−r‖d

rU

dtr
‖L∞(0,Tm), (88)

max
t∈[Tm−1,Tm]

|U(t) − uN (t)| ≤ c
1

2

βm
1

2 τrN
3

2
−r‖d

rU

dtr
‖L∞(0,Tm). (89)

If, in addition, 1
N ≤ τ ≤ 1, then we may take r = N + 1 in (87) and (88), to reach

that for 1 ≤ m ≤M,

‖U − uN‖L2(0,T ) = O(τ2N ), |U(Tm) − uN(Tm)| = O(τ2N ). (90)

Case II. Assume that the delay function satisfies:

Tm−1 + t− θ(Tm−1 + t) ≤ Tm−1, for 1 ≤ m ≤M and t ∈ (0, τm). (91)

Moveover, f(x, y, t) satisfies the Lipschitz condition (31) and (32).

Theorem 3.3. If

❶ the conditions (31), (32) and (91) hold,

❷ U ∈ Hr(0, T ) with integer 2 ≤ r ≤ N + 1,
❸ τmγ1 <

1
2 , ∀ m ≥ 1,

❹ for certain c0 > 0 and m > 1, τmγ2 ≤ c0,
then we have the same results (76)-(78).
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Proof. Obviously, in this case, Λm
N,m = ∅. Therefore, by (31), (32) and a similar

argument as in the derivation of (79), we deduce that for any ǫ > 0,

‖GNm

τm,1‖2
τm,Nm

≤
m−1∑

j=1

∑

tNm
τm,k

∈Λj

N,m

(
f(uNm

m (tNm

τm,k), wj
m(tNm

τm,k), Tm−1 + tNm

τm,k)

− f(Iτm,Nm
Um(tNm

τm,k),W j
m(tNm

τm,k), Tm−1 + tNm

τm,k)
)2

ωNm

τm,k

+
∑

tNm
τm,k

∈Λ0

N,m

(
f(uNm

m (tNm

τm,k), V (Tm−1 + tNm

τm,k − θ(Tm−1 + tNm

τm,k)), Tm−1 + tNm

τm,k)

− f(Iτm,Nm
Um(tNm

τm,k), V (Tm−1 + tNm

τm,k − θ(Tm−1 + tNm

τm,k)), Tm−1 + tNm

τm,k)
)2

ωNm

τm,k

≤(1 + ǫ−1)τmγ
2
2 max

1≤j≤m−1
(

2

τj
‖Uj − u

Nj

j ‖2
τj

+ 2τj‖
d

dt
(Uj − u

Nj

j )‖2
τj

)

+ (1 + ǫ)γ2
1‖ENm

m ‖2
τm
.

(92)

Moreover, (80)-(86) still hold. Furthermore, by (56), (53) and (12), we obtain

‖GN1

τ1,1‖2
τ1,N1

≤ γ2
1‖EN1

1 ‖2
τ1

≤ 2γ2
1(‖U1 − Iτ1,N1

U1‖2
τ1

+ ‖U1 − uN1

1 ‖2
τ1

)

≤ cβγ
2
1τ

2r
1 N3−2r

1 |U1|2r,τ1
.

Therefore, we can derive the same results (76)-(78).

3.3. Numerical results. In this subsection, we present some numerical results to
illustrate the efficiency of our multiple-domain algorithm.

❶ Linear variable delay (Case I).
We consider the example (63) with T = 1 and uniform step-size grid. As pointed

out before, the conditions (31) and (32) hold with γ1 = 1
2 and γ2 = 1

2e
1

2 . Further-
more, the inequality (75) is satisfied for τm ≡ 0.25, but for τm ≡ 0.5, the inequality
(75) is no longer valid. Moreover, (1 − λ)Tm ≤ Tm−1 with λ = 1

2 . In Fig. 4, we
plot the numerical errors at t = 1 with uniform τm and Nm. They indicate that the
numerical errors decay exponentially as Nm increases and τm decreases. In partic-
ular, we can observe from Fig. 4 that even if the condition (75) is not satisfied, our
multiple-domain algorithm is still valid (see the case τm ≡ 0.5).

❷ Nonlinear variable delay (Case I).
We consider the example (64). In Fig. 5, we plot the numerical errors at t = 1

using the multiple-domain scheme (67) and Newton-Raphson iteration method with
uniform τm and Nm. They indicate that the numerical errors decay exponentially as
Nm increases and τm decreases. Again, we observe from Fig. 5 that our algorithm
is still valid even if the condition (32) is not satisfied.

❸ Linear variable delay (Case II).






d

dt
u(t) = u(t− 1 − 1

t+ 1
), for t > 0,

u(t) = 1, for − 0.5 ≤ t ≤ 0,

u(t) =
2

3
(t+ 2), for − 2 ≤ t < −0.5.

(93)
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Figure 4. The numerical errors of Legendre-Gauss
collocation method at t = 1.

1 2 3 4 5 6
−16

−14

−12

−10

−8

−6

−4

−2

N

lo
g 10

er
ro

r

 

 

τ
m

=1/2

τ
m

=1/6

τ
m

=1/10

Figure 5. The numerical errors of Legendre-Gauss
collocation method at t = 1.
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Figure 6. The numerical errors of Legendre-Gauss
collocation method at t = ξ2.
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Figure 7. The numerical errors of Legendre-Gauss
collocation method at t = 20.

As pointed out in [24], the exact solution is

u(t) =

{
1 + 2

3 t+ t3

3 − 2
3 log(t+ 1), on [0, 1],

1 − 2
3 log 2 + t, on [1,

√
2].

The first derivative of the solution is not continuous at t = −0.5 and t = 0, therefore
the second derivative also has a jump at the points where the time lag is equal to
−0.5 and 0, for instance, t = ξ1 = 1 and t = ξ2 =

√
2.

Denote by n0 = 2k the total number of steps. Obviously, the conditions (31)
and (32) hold with γ1 = 0 and γ2 = 1. Furthermore, by choosing suitably Tm, we
can ensure that the condition (91) holds. In Fig. 6, we plot the numerical errors at

t = ξ2 with τm =
ξ1
k
, 1 ≤ m ≤ k, τm =

ξ2 − ξ1
k

, k + 1 ≤ m ≤ n and uniform Nm.

They indicate that the numerical errors decay exponentially as Nm increases and
τm decreases.

As pointed out, in actual computation, even if the conditions for Theorems 3.1
and 3.2 are not satisfied, the numerical solutions of our method match the exact
solutions very well. We next present some other numerical examples to illustrate
the efficiency of our method, which can be found in [5].

❹ Nonlinear constant delay (Case II):

{
d

dt
u(t) = −3u(t− 1)(1 + u(t)), for t > 0,

u(t) = t, for − 1 ≤ t ≤ 0.
(94)

This is a well-known equation from biology, solution of which has the breaking
points at the integers 0, 1, · · · .

In Table 1, we compare the errors of our method LGC3(5) (N = 3, 5 and the
step-size is constant) with the method UCIRK4(6) (the uniformly corrected implicit
Runge-Kutta method of order 4(6) presented in [5]) and the method IRKSR4(6)
(the implicit Runge-Kutta superconvergence rate 4(6) presented in [4]), at the point
t = 20 with respect to the reference solution u(20) = 4.671437497500. Since the
three methods have the same mesh and the same number of interpolation nodes,
we can observe that our method provides more accurate numerical results.
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Table 2. Numerical results for Eq. (94).

Number of steps LGC3 UCIRK4 IRKSR4 LGC5 UCIRK6 IRKSR6

200 1.7e-04 1.0e+00 1.0e+00 1.9e-9 2.0e-02 2.0e-02

500 1.1e-07 2.5e-02 2.5e-02 4.6e-10 7.6e-05 7.6e-05

1000 1.2e-09 1.5e-03 1.5e-03 3.5e-10 1.2e-06 1.0e-06

In particular, our method is still valid even for large time step-size. In Fig. 7,
we plot the numerical errors at t = 20 with τm = 1, 1 ≤ m ≤ 20 and uniform Nm.
They indicate that the numerical errors decay exponentially as Nm increases.
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Figure 8. The numerical errors of Legendre-Gauss
collocation method at t = ξ2.

❺ Nonlinear variable delay (Case II):




d

dt
u(t) =

t

t+ 1
u(t− log(t+ 1) − 1)u(t), for t > 0,

u(t) = 1, for − 1 ≤ t ≤ 0.
(95)

The solution has the breaking points:

ξ0 = 0, ξ1 = 2.1461932206205825852, ξ2 = 4.9254498245082464926, etc..

In Table 2, we compare the numerical errors of various methods at the point t = ξ2
with respect to the reference solution:

u(ξ2) = 76.3734726693768056269.

Since the three methods have the same mesh and the same number of interpola-
tion nodes, we can observe that our method provides again much better numerical
results.

In particular, our method is still valid even for large time step-size. In Fig. 8,
we plot the numerical errors at t = ξ2 with τ1 = ξ1, τ2 = ξ2 − ξ1 and uniform Nm.
They indicate that the numerical errors decay exponentially as Nm increases.

4. Concluding discussions. In this paper, we proposed the single-step and
multiple-domain Legendre-Gauss collocation integration processes for nonlinear
DDEs. These approaches have several attractive features.
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Table 3. Numerical results for Eq. (95).

Number of steps LGC3 UCIRK4 IRKSR4 LGC5 UCIRK6 IRKSR6

8 1.8e-05 1.8e-01 1.3e-01 5.4e-08 1.6e-03 1.0e-03

84 1.5e-11 1.7e-05 1.2e-05 2.1e-13 9.6e-10 5.7e-10

• The single-step Legendre-Gauss collocation method is easy to be implemented
for nonlinear DDEs, and possesses the spectral accuracy. It enjoys computa-
tional efficiency and accuracy over some popular existing methods.

• By using the multiple-domain Legendre-Gauss collocation method, we can use
moderate mode N to evaluate the numerical solutions more stably and effec-
tively. Moreover, it can be adapted to solutions with jump-discontinuities.For
any fixed mode N, the numerical errors decay as τ → 0. For any fixed step
size in time, the numerical error decays very rapidly as N increases. The rea-
son of this phenomena might be that there exists the factor N−r in the error
estimations of our new method, whereas there is no such factor in the error
estimations of the corresponding implicit Runge-Kutta method. In fact, in
the derivation of algorithm of our method, we benefit from the orthogonality
of Legendre polynomials, while in the derivation of algorithm of the implicit
Runge-Kutta method, one used the Lagrange interpolation on the Legendre-
Gauss interpolation nodes, which is not stable for large N . In particular, our
methods are much easier to be implemented than the implicit Runge-Kutta
method for DDEs, since we only need to save the coefficients of numerical
solutions in each step.

• The numerical errors of our methods are characterized by the semi-norms of
exact solutions in certain Sobolev spaces. These sharp norms are in particular
necessary for problems with degenerated initial data.

The numerical results demonstrated the spectral accuracy of proposed algorithms
and coincided with the theoretical analysis very well.
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