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In this article, we present and analyse an unfitted mesh method for the Poisson interface problem. By
constructing a novel ansatz function in the vicinity of the interface, we are able to derive an extended
Poisson problem whose interface fits a given quasi-uniform triangular mesh. Then we adopt a hybridizable
discontinuous Galerkin method to solve the extended problem with an appropriate choice of flux for
treating the jump conditions. In contrast with existing approaches, the ansatz function is designed through
a delicate piecewise quadratic Hermite polynomial interpolation with a post-processing via a standard
Lagrange polynomial interpolation. Such an explicit function offers a third-order approximation to the
singular part of the underlying solution for interfaces of any shape. It is also essential for both stability and
convergence of the proposed method. Moreover, we provide rigorous error analysis to show that the scheme
can achieve a second-order convergence rate for the approximation of the solution and its gradient. Ample
numerical examples with complex interfaces demonstrate the expected convergence order and robustness
of the method.

Keywords: hybridizable discontinuous Galerkin method; Poisson interface equation; quasi-uniform
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1. Introduction

In this article, we are concerned with the Poisson interface problem

−Δ|Ω\Γ u(x) = f (x), in Ω ,

�u�Γ = g1, on Γ ,

�∇u · n�Γ = g2, on Γ ,

u = g, on ∂Ω ,

(1.1)

on a bounded connected polygonal domain Ω ⊂ R2 with a smooth interior interface Γ , where f , g1, g2

and g are given functions with regularity to be specified later. As illustrated in Fig. 1, Γ cuts Ω into two
nonoverlapping subdomains Ω1 and Ω2, i.e., Ω1 ∩ Ω2 = ∅ and Ω̄ = Ω̄1 ∪ Ω̄2. The Laplace operator is
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Fig. 1. A sketch of the domain Ω and the interface Γ .

defined on Ω\Γ and n denotes the unit normal to Γ pointing from Ω1 to Ω2. As usual, the jump of a
function v on Γ is defined as

�v�(x) := lim
ε→0

(
v(x + εn) − v(x − εn)

)
, x ∈ Γ . (1.2)

This problem has important applications in the simulation of immiscible multi-phase flows (Kummer &
Oberlack, 2013), the electroporation state of a biological cell under an electric field (Guyomarc’h et al.,
2009; Hu et al., 2015) and many other fields.

Various numerical approaches have been proposed for this problem which particularly include the
finite difference (FD), finite elements (FEs) and discontinuous Galerkin (DG) method. In general, these
methods can be classified into two categories, i.e., fitted mesh method and unfitted mesh method. The
former is built on body fitted mesh that does not allow the interface to cut across any of the elements
in the mesh, so the jump conditions across the interface can be easily incorporated into a standard FE
formulation (Bramble & King, 1996; Chen & Zou, 1998). However, generating a body fitted mesh of
relatively high quality is challenging and computationally prohibitive, especially when complex and/or
moving interfaces are involved. The latter is more desirable as it only uses a fixed quasi-uniform mesh
regardless of the location of the interface. The success of the unfitted method relies on how to effectively
handle the jump conditions. The well-known immersed interface method (IIM) developed in Leveque &
Li (1994) is a second-order (see Huang & Li, 1999) FD-based unfitted method, where the stencils and FD
approximation should be carefully designed near the interface. This approach has been further studied
and applied to various interface problems (see, e.g., Li, 1997; Zhang & LeVeque, 1997; Li & Lai, 2001;
Gong et al., 2008). The immersed FE methods have also been intensively investigated (see, e.g., Li et al.,
2003; He et al., 2011; Adjerid et al., 2014; Ben-Romdhane et al., 2014) which use special basis functions
constructed from jump conditions. Besides, other FE-based methods are also available (see, e.g., Hansbo
& Hansbo, 2002; Huang & Zou, 2002; Hou & Liu, 2005; Wu & Xiao, 2010; Li et al., 2010; Hiptmair
et al., 2012; Hou et al., 2013; Guzman et al., 2015 and the references therein for further information).
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It is known that the DG method (see, e.g., Arnold, 1982; Arnold et al., 2002) allows the approximation
to be discontinuous across the element boundaries, so it enjoys significant advantages in solving interface
problems. Recently, several fitted and unfitted DG methods have been proposed (see, e.g., Guyomarc’h
et al., 2009; Massjung, 2009; Huynh et al., 2013; Kummer & Oberlack, 2013; Wang & Chen, 2014).
Typically, the proper introduction of numerical fluxes or penalty terms becomes crucial for such schemes.
In the last decade, the hybridizable discontinuous Galerkin (HDG) method has emerged as an important
family of various DG schemes, largely attributed to the remarkable reduction of degree of freedom (see,
e.g., Cockburn et al., 2008, 2009a,b, 2010). It has been successfully applied to solve a variety of PDEs, but
there has been very limited study available for the interface problem. Fitted HDG methods were proposed
for elliptic interface problems in Huynh et al. (2013) and for Stokes interface problems in Wang & Khoo
(2013). It was demonstrated that the jump conditions could be naturally incorporated into the HDG
scheme with a judicious choice of the numerical flux, and such treatment only resulted in some additional
terms in the right-hand side of the global linear system, so the coefficient matrix remains unchanged.
Recently, a new extension technique with HDG discretization was presented for solving PDEs on curved
domains by using unfitted meshes (see Cockburn & Solano, 2012, 2014). Optimal convergence rates are
maintained if the distance of the unfitted mesh to the curved boundary of the computational domain is of
order h.

The purpose of this article is to establish and analyse an unfitted HDG method for Poisson interface
problems. Motivated by the idea of deriving an extended problem via introducing an ansatz function in
Kummer & Oberlack (2013), we propose a novel ansatz function, derive a new extended problem and
then solve it by a HDG method. More precisely, the ingredients of the algorithm and contributions of the
paper lie in the following aspects.

(i) We construct a piecewise polynomial ansatz function (denoted by ua,h) in the vicinity of the
interface by a quadratic Hermite interpolation with a post-processing via a standard Lagrange
polynomial interpolation. Our delicate construction is accomplished by appropriate choice of the
interpolation constraints according to the jump conditions. It provides a third-order approximation
to the singular part of solution and leads to stable computation for interfaces of arbitrary shape. It
is noteworthy that the technique to devise the ansatz function is essentially different from that in
Kummer & Oberlack (2013). A signed distance function was used in Kummer & Oberlack (2013)
to design the anastz function, so it could accurately represent simple interfaces (e.g., circular and
spherical interfaces), but it became much more involved for general interfaces.

(ii) By subtracting the singular part ua from the solution u of (1.1), we can obtain an equivalent
intermediate problem involving unknown ua. With the ansatz function at our disposal, we further
derive an extended problem from the intermediate problem with ua,h in place of ua. On account
of the good approximability of ua,h to ua, we can achieve a second-order accuracy between the
solutions of these two problems. Remarkably, the interface of the extended problem aligns with the
given quasi-uniform mesh, and the HDG (see Huynh et al., 2013; Wang & Khoo, 2013) becomes
the method of choice.

(iii) We rigorously show that the unfitted HDG method has a second-order L2-convergence in both
the potential u and its gradient. We remark that the convergence analysis of unfitted methods for
interface problems is challenging yet and very limited results are available along this line.

The outline of this article is as follows. In Section 2, we first introduce some notation to be used
throughout this article, then derive an extended Poisson interface problem by using a novel ansatz function.
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In Section 3, the delicated techniques for the construction of the ansatz function are discussed in detail.
Rigorous theoretical analysis for the numerical solution are presented in Section 4. Then, in Section
5 we provide various numerical examples to validate the proposed method and the theoretical results.
Concluding remarks and future works are given in Section 6. Proofs of the error estimates have been
gathered in the appendix.

2. The unfitted HDG method

2.1 Notation and well-posedness of (1.1)

We first introduce some notation to be used throughout the article. Let L2(D) be the space of square
integrable functions on a generic domain D ⊂ R2, equipped with the standard L2-norm ‖·‖L2(D). Moreover,
let L2(D) = [L2(D)]2 and denote its norm by ‖ · ‖L2(D). Besides, denote by Hr(D) with real r the standard
Sobolev space equipped with the norm ‖ · ‖Hr (D), and correspondingly, denote by Hr(D) := [Hr(D)]2 the
vector version with the norm ‖v‖Hr (D) := ∑2

i=1 ‖vi‖Hr (D) (Adams & Fournier, 2003). Further, let Ck(D)

be the continuous function space consisting of functions up to kth derivatives being continuous with the
norm

‖u‖Ck (D) = inf
{‖ũ‖Ck (R2) : ũ ∈ Ck(R2) and ũ |D = u

}
. (2.1)

Note that we have

max
|α|≤k

max
x∈D

|Dαu(x)| ≤ ‖u‖Ck (D). (2.2)

In order to characterize the regularity of piecewise functions, we define the space and its norm by

Xr = L2(Ω) ∩ Hr(Ω1) ∩ Hr(Ω2), ‖v‖Xr = ‖v‖Hr (Ω1) + ‖v‖Hr (Ω2), ∀ v ∈ Xr . (2.3)

We recall the following result (see Rotberg & Seftel, 1969; Bramble & King, 1996), which asserts
the well-posedness of the model problem (1.1).

Theorem 2.1 Assume that f ∈ L2(Ω), g ∈ Hr−1/2(∂Ω), g1 ∈ Hr−1/2(Γ ) and g2 ∈ Hr−3/2(Γ ). Then the
problem (1.1) has a unique solution u ∈ Xr , and u satisfies the following a priori estimate:

‖u‖Xr ≤ C
(‖f ‖L2(Ω) + ‖g‖Hr−1/2(∂Ω) + ‖g1‖Hr−1/2(Γ ) + ‖g2‖Hr−3/2(Γ )

)
, 0 ≤ r ≤ 2, (2.4)

where C is a positive constant independent of u and the given data.

2.2 Extended problem

Without loss of generality, let Th be a quasi-uniform triangular mesh of the domain Ω . As usual, the set
of edges of the triangulation Th is denoted by Eh, and the boundary of any element T is denoted by ∂T .
Let Pk(D) be the space of polynomials of degree at most k on a generic domain D. The corresponding
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Fig. 2. Illustration of the set Th,c of all cut triangles (left); subdomains Ω1
c and Ω2

c , and the new mesh fitted interface Γ̃ (right).

discontinuous FE spaces are given by

Vk
h := {

v ∈ L2(Th) : v|T ∈ [Pk(T)]2, ∀ T ∈ Th

}
,

Wk
h := {

w ∈ L2(Th) : w|T ∈ Pk(T), ∀ T ∈ Th

}
,

Mk
h := {

μ ∈ L2(Eh) : μ|F ∈ Pk(F), ∀ F ∈ Eh

}
.

For any vector functions v, w ∈ L2(Th), and any scalar functions v, w ∈ L2(Th), the corresponding inner
products are given by

(v, w)Th := ∑
T∈Th

(v, w)T , (v, w)Th := ∑
T∈Th

(v, w)T , 〈v, w〉∂Th := ∑
T∈Th

〈v, w〉∂T ,

where

(v, w)T :=
∫

T
v · w dx, (v, w)T :=

∫
T

vw dx, (v, w)∂T :=
∫

∂T
vw ds.

Moreover, we need to introduce some notation and concepts related to the intersection of the inter-
face with the triangular Cartesian meshTh. In what follows, for any T ∈ Th, we assume the following
hypothesis:

(H1) Γ does not intersect an edge of T at more than two points unless this edge is part of Γ ;

(H2) If Γ meets a triangle at two points, then these two points must be on different edges of T .

Define the set of all cut cells (see the shaped part in Fig. 2 (left)) and the neighborhood of Γ (see Fig. 2
(right)), respectively, by

Th,c := {
T ∈ Th : T ∩ Γ �= ∅}, Ωc :=

⋃
T∈Th,c

T , Ω i
c = Ωc ∩ Ωi, i = 1, 2.
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Note that the outer boundary of Ω2
c , denoted by Γ̃ := ∂Ω2

c \Γ , becomes the new interface of the extended
problem.

We decompose the exact solution u of the model problem (1.1) as

u =
{

u1, x ∈ Ω1,

u2, x ∈ Ω2.

Conventionally, we assume that u has a good regularity in both Ω1 and Ω2, and the singularity of the
solution only occurs on Γ . Define

V = {
u ∈ L2(Ω) : u|Ωi ∈ H3(Ωi) and u|Ω i

c
∈ C3(Ω i

c), i = 1, 2
}
. (2.5)

For the sake of theoretical analysis, we assume that the solution u ∈ V and define the ‘broken’ norm of
u on Ωc by

‖u‖C̃3(Ωc) = ‖u1‖C3(Ω1
c ) + ‖u2‖C3(Ω2

c ).

We also introduce the Whitney’s extension theorem (see Fefferman, 2007, Theorem 1).

Theorem 2.2 For an arbitrary E ⊂ Rn and m ≥ 1, there exists a linear map T : Cm(E) → Cm(Rn), such
that Tφ = φ on E, for any φ ∈ Cm(E). Moreover, the norm of T is bounded by a constant depending
only on m and n.

By using the above extension theorem, there exist linear bounded extensions ũi of ui from subdomains
Ω i

c to the domain Ωc, such that

ũi(x) = ui(x), x ∈ Ω i
c, ũi|Ωc ∈ C3(Ωc), ‖ũi‖C3(Ωc) ≤ C‖ui‖C3(Ω i

c), i = 1, 2, (2.6)

where C is a positive constant independent of Ω i
c, the triangulation Th and the mesh size h. Set

d(x) = ũ2(x) − ũ1(x), ∀ x ∈ Ωc,

and further define the ansatz function

ua(x) =
{

d(x), x ∈ Ω2
c ,

0, x ∈ Ω\Ω2
c .

(2.7)

Note that ua is discontinuous on both Γ and Γ̃ , and we can compute the jumps across Γ as follows:

�ua�Γ = d(x) = �u�Γ , �Δua�Γ = Δd(x) = �Δu�Γ ,

�∂x1ua�Γ = ∂x1d(x) = �∂x1u�Γ , �∂x2 ua�Γ = ∂x2 d(x) = �∂x2 u�Γ .
(2.8)

Then the solution u can be decomposed as u = up + ua and

up = u − ua =

⎧⎪⎨⎪⎩
u1, in Ω1,

ũ1, in Ω2
c ,

u2, in Ω2\Ω2
c ,

(2.9)
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Fig. 3. An illustration of the decomposition: u − ua = up.

which is a piecewise smooth function, see Fig. 3. Indeed, for u ∈ V , we have

up|Ω1\Ω1
c

∈ H3(Ω1\Ω1
c ), up|Ω2\Ω2

c
∈ H3(Ω2\Ω2

c ), up|Ωc ∈ C3(Ωc),

and up is discontinuous only on Γ̃ , which aligns with the triangular Cartesian mesh Th (see Fig. 2).
Plugging the decomposition u = up + ua into the model problem (1.1) leads to

−Δ|Ω\Γ̃ up = f + Δ|Ω\(Γ ∪Γ̃ )ua, in Ω ,

�up�Γ̃ = −�ua�Γ̃ , on Γ̃ ,

�∇up · n�Γ̃ = −�∇ua · n�Γ̃ , on Γ̃ ,

up = g, on ∂Ω .

(2.10)

In contrast with (1.1), the jump conditions initially on the interface Γ are now replaced by new jump
conditions on Γ̃ . However, the function ua in the right-hand side of (2.10) is unknown. In fact, the model
problem (2.10) will be only used as an intermediate problem for the theoretical analysis.

Indeed, the shifting of jump conditions to Γ̃ in (2.10) significantly facilitates the numerical
implementation. This inspires us to explicitly construct a good approximation: ua,h ≈ ua, such that

supp{ua,h} = Ω2
c , ua,h|Ω2

c
∈ C(Ω2

c ), (2.11)

by using the jump conditions (2.8). With this, we define the following approximate problem of (2.10):

−Δ|Ω\Γ̃ up,h = f + Δ|Ω\(Γ ∪Γ̃ )ua,h, in Ω ,

�up,h�Γ̃ = −�ua,h�Γ̃ , on Γ̃ ,

�∇up,h · n�Γ̃ = −�∇ua,h · n�Γ̃ , on Γ̃ ,

up,h = g, on ∂Ω .

(2.12)

This approximate problem turns out to be a variant of (2.10), where the unknown ua is replaced by a known
approximate function ua,h. It is worthwhile to point out that (2.12) is well posed when �ua,h�Γ̃ ∈ H1/2(Γ̃ ).
We postpone the detailed construction of ua,h in Section 3 and provide rigorous error analysis of this
approach in Section 4.
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2.3 HDG formulation

In what follows, we formulate the HDG scheme for the extended interface problem (2.12), which has
interface Γ̃ fitted with the triangular Cartesian mesh Th.

We rewrite (2.12) into a first-order system

qp,h = ∇|Ω\Γ̃ up,h, in Ω ,

−∇|Ω\Γ̃ · qp,h = f + Δ|Ω\(Γ ∪Γ̃ )ua,h, in Ω ,

�up,h�Γ̃ = −�ua,h�Γ̃ , on Γ̃ ,

�∇up,h · n�Γ̃ = −�∇ua,h · n�Γ̃ , on Γ̃ ,

up,h = g, on ∂Ω .

(2.13)

Note that up,h is double valued on the interface Γ̃ . However, the trace ûh
p,h ∈ M1

h solved by standard HDG
method can only be the approximation of trace of up,h from one side of Γ̃ . With ûh

p,h an approximation
of up,h|Ω1∩Γ̃ , we take ûh

p,h − �ua,h�Γ̃ as an approximation of up,h|Ω2
c ∩Γ̃ to mimic the jump of up,h on Γ̃ .

Accordingly, we define

ũh
p,h =

{
ûh

p,h − �ua,h�Γ̃ , if ∂T ∩ Γ̃ �= ∅ and T ∈ Ω2\Ω2
c ,

ûh
p,h, otherwise.

(2.14)

Apparently, ũh
p,h is double valued on the interface Γ̃ and satisfies �ũh

p,h�Γ̃ = −�ua,h�Γ̃ . We first consider
the first two equations of (2.13) on a typical element T of Th. By multiplying the test functions v and
w on both sides of them, and integrating by parts, the classical DG scheme reads: find uh

p,h ∈ W1
h and

qh
p,h ∈ V1

h , such that

(qh
p,h, v)T + (uh

p,h, ∇ · v)T − 〈ũh
p,h, v · n〉∂T = 0,

(qh
p,h, ∇w)T − 〈q̃h

p,h · n, w〉∂T = (f , w)T + (Δ|Ω\Γ ua,h, w)T , (2.15)

for any v ∈ V1
h and w ∈ W1

h . In order to capture the jumps across the interface, the numerical flux is taken
as (cf. Huynh et al., 2013)

q̃h
p,h = qh

p,h − τ(uh
p,h − ũh

p,h)n =
{

q̂h
p,h − τ�ua,h�Γ̃ n, if ∂T ∩ Γ̃ �= ∅ and T ∈ Ω2\Ω2

c ,

q̂h
p,h, otherwise,

(2.16)

where q̂h
p,h = qh

p,h−τ(uh
p,h−ûh

p,h)n is the numerical flux of standard HDG method, and the local stabilization
parameter τ which has an important effect on both the stability and accuracy of the numerical scheme is
piecewise, non-negative constant defined on ∂Th. In order to weakly enforce the jump condition in the
flux across the interior faces, we reformulate the flux equation as

〈q̃h
p,h · n, μ〉∂Th\∂Ω = 〈�∇up,h · n�, μ〉Γ̃ = −〈�∇ua,h · n�, μ〉Γ̃ , ∀μ ∈ M1

h. (2.17)
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Then, substituting (2.14) and (2.16) into (2.15), summing up the resulting equations over all elements
and re-arranging some terms, we obtain the HDG formulation: Find (qh

p,h, uh
p,h, ûh

p,h) ∈ V1
h × W1

h × M1
h

such that

(qh
p,h, v)Th + (uh

p,h, ∇ · v)Th − 〈ûh
p,h, v · n〉∂Th = −〈�ua,h�Γ̃ , v · n〉Γ̃ , (2.18a)

(qh
p,h, ∇w)Th − 〈q̂h

p,h · n, w〉∂Th = (f , w)Th − 〈τ�ua,h�Γ̃ , w〉Γ̃ + (Δ|Ω\Γ ua,h, w)Th,c , (2.18b)

〈q̂h
p,h · n, μ〉∂Th\∂Ω = −〈�∇ua,h · nΓ̃ � − τ�ua,h�, μ〉Γ̃ , (2.18c)

〈ûh
p,h, μ〉∂Ω = 〈g, μ〉∂Ω , (2.18d)

for all (v, w, μ) ∈ V1
h × W1

h × M1
h.

The HDG formulation (2.18) is a natural extension of the standard HDG method. In fact, the standard
HDG scheme is a particular case of the formulation (2.18) with ua,h = 0.

3. Construction of the ansatz function

In the previous discussions, the approximation ua,h of the ansatz function ua was assumed known. In this
section, we detail its construction and show that the approximation is of third order.

For the approximation of the ansatz function ua, more information regarding the jumps of the derivative
of u on Γ are needed. For this purpose, we set up a local coordinate system in the normal and the tangential
directions at a given point (x∗

1 , x∗
2) ∈ Γ as follows:

ξ = (x1 − x∗
1) cos θ + (x2 − x∗

2) sin θ , η = −(x1 − x∗
1) sin θ + (x2 − x∗

2) cos θ , (3.1)

where θ is the angle between the x1-axis and ξ -axis (see Fig. 4 (left)). In the neighborhood of the point
(x∗

1 , x∗
2), the interface can be written as ξ = γ (η), where γ (η) is a smooth function with respect to η due

to the smoothness of Γ and γ (0) = γξ (0) = 0. Note that the coordinate transformation (3.1) is invertible.
As a matter of fact, we have

x1 = x1(ξ , η) = ξ cos θ − η sin θ + x∗
1 , x2 = x2(ξ , η) = ξ sin θ + η cos θ + x∗

2 .

Therefore, in the neighborhood of the point (x∗
1 , x∗

2), the jump functions gi(x) can be expressed as functions
of η, i.e.,

gi(x) = gi(x1(γ (η), η), x2(γ (η), η)), i = 1, 2.

For simplicity, g′
1 and g′

2 are used to denote dg1
dη

and dg2
dη

, respectively. Then under local coordinate system,
the following jump conditions hold:

�uξ �Γ = g2, �uη�Γ = g′
1. (3.2)

A detailed derivation can be found in Li & Ito (2006). Thus the jump conditions in the x1 and x2 directions
are given by

�ux1�Γ = g2 cos θ − g′
1 sin θ , �ux2�Γ = g2 sin θ + g′

1 cos θ . (3.3)
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Fig. 4. A diagram of the local coordinates in the normal and tangential directions at a point (x∗
1 , x∗

2) ∈ Γ (left). A typical triangle
element T with an interface cutting through, the curve between E and F is part of the interface Γ (right).

Moreover, the jump condition involving the Laplacian of u

�Δu�Γ = −�f �Γ , (3.4)

can be derived from the governing equation (1.1) straightforwardly.
Recalling the definition of ua in (2.7), we actually need to establish an approximation of the function

d(x) on the subdomain Ωc. Importantly, we have the information of d(x) on the interface Γ available, i.e.,
the jump conditions (2.8). We first construct a multi-variable Hermit type interpolation ID

h d element by
element. Let T = �ABC ∈ Th,c be a cut triangle with E and F the two intersection points of the interface
Γ and the edges of T (see Fig. 4 (right)). Moreover, denote the coordinates of two intersection points E, F
by a = (a1, a2) and b = (b1, b2), respectively. The triangle T is cut by the interface Γ into two subsets
denoted by T1 = T ∩ Ω1 and T2 = T ∩ Ω2, respectively. We now establish p(x) := ID

h d(x)|T ∈ P2(T)

such that

p = �u�, px1 = �ux1�, px2 = �ux2�, at E,

p = �u�, ∇p · n = �∇u� · n, Δp = �Δu�, at F. (3.5)

Here, additional jump conditions are given in (3.3) and (3.4).
The following Lemma shows the existence and uniqueness of this interpolation.

Lemma 3.1 Under the mesh hypothesis (H1)–(H2) in Subsection 2.2, for a given interface element T as
indicated in Fig. 4, the quadratic polynomial p(x) = ID

h d(x) is uniquely determined by the interpolation
conditions in (3.5).

Proof. The quadratic polynomial p(x) reads

p(x) = c1 + c2x1 + c3x2 + c4x2
1 + c5x1x2 + c6x2

2 ,

where the coefficients {ci}6
i=1 are to be determined.
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The unit normal direction of the line segment EF can be expressed as

n = (n1, n2) = (b2 − a2, a1 − b1)/
√

(b2 − a2)2 + (a1 − b1)2.

By a straightforward calculation, the interpolation conditions (3.5) result in a linear system of {ci}6
i=1 with

the coefficient matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a1 a2 a2
1 a1a2 a2

2

1 b1 b2 b2
1 b1b2 b2

2

0 1 0 2a1 a2 0

0 0 1 0 a1 2a2

0 n1 n2 2b1n1 b2n1 + b1n2 2b2n2

0 0 0 2 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
whose determinant is

det(A) = −2
(
(a1 − b1)

2 + (a2 − b2)
2
) 3

2 .

As long as the two points E, F are distinct, det(A) �= 0. Then the uniqueness of p(x) is proved. �

The following error estimate for the interpolation which is crucial for the error analysis later.

Theorem 3.2 Let T ∈ Th,c be a cut triangle and p(x) = ID
h d(x) be the interpolation constructed above.

If u ∈ V (defined in (2.5)), then

max
x∈T

|d(x) − p(x)| ≤ Ch3‖u‖C̃3(T), (3.6)

where C is a generic constant independent of h, u and the ratio

α =
{

(b2 − a2)/(b1 − a1), if a1 �= b1,

(b1 − a1)/(b2 − a2), otherwise.

Proof. Define the error function

e(x) = d(x) − p(x).

We first consider the error function e(x) on the line segment EF, which can be parameterized by

x(t) = (1 − t)a + tb, t ∈ [0, 1].
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A direct calculation gives

d2e

dt2
(x(t)) =

(
(b1 − a1)

2 ∂2

∂x2
1

+ 2(b1 − a1)(b2 − a2)
∂2

∂x1∂x2
+ (b2 − a2)

2 ∂2

∂x2
2

)
e(x(t))

= (1 + α2)(b1 − a1)
2

(
1

1 + α2

∂2

∂x2
1

+ 2α

1 + α2

∂2

∂x1∂x2
+ α2

1 + α2

∂2

∂x2
2

)
e(x(t))

� (1 + α2)(b1 − a1)
2r1(x(t)), (3.7)

with

r1(x(t)) = 1

1 + α2

∂2e(x(t))

∂x2
1

+ 2α

1 + α2

∂2e(x(t))

∂x1∂x2
+ α2

1 + α2

∂2e(x(t))

∂x2
2

. (3.8)

Without loss of generality, we assume that a1 �= b1 and define the ratio α = (b2 −a2)/(b1−a1), otherwise,
the ratio can be defined as α = (b1 − a1)/(b2 − a2) and the analysis is similar. The unit normal of the
line segment EF can be expressed in terms of α by

n = (α, −1)/
√

α2 + 1. (3.9)

The normal derivative of e(x) along the segment EF is

s(x(t)) � ∇e(x(t)) · n = 1√
α2 + 1

(
∂e(x(t))

∂x1
α − ∂e(x(t))

∂x2

)
.

Accordingly, its derivative with respect to t is

ds

dt
(x(t)) =

√
α2 + 1(b1 − a1)

(
α

α2 + 1

∂2

∂x2
1

+ α2 − 1

α2 + 1

∂2

∂x1∂x2
− α

α2 + 1

∂2

∂x2
2

)
e(x(t))

�
√

α2 + 1(b1 − a1)r2(x(t)), (3.10)

with

r2(x(t)) = α

α2 + 1

∂2e(x(t))

∂x2
1

+ α2 − 1

α2 + 1

∂2e(x(t))

∂x1∂x2
− α

α2 + 1

∂2e(x(t))

∂x2
2

. (3.11)

Further, denote the Laplacian of e(x) by

r3(x(t)) � Δe(x(t)) = ∂2e(x(t))

∂x2
1

+ ∂2e(x(t))

∂x2
2

. (3.12)

Then, combining the definitions of ri(x(t)), i = 1, 2, 3, in (3.8), (3.11) and (3.12), we obtain

⎛⎜⎜⎝
1

1+α2
2α

1+α2
α2

1+α2

α

1+α2
α2−1
1+α2 − α

1+α2

1 0 1

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

∂2e(x(t))

∂x2
1

∂2e(x(t))
∂x1∂x2

∂2e(x(t))

∂x2
2

⎞⎟⎟⎟⎠ =
⎛⎜⎝r1(x(t))

r2(x(t))

r3(x(t))

⎞⎟⎠ . (3.13)



456 H. DONG ET AL.

A direct computation shows that the determinant of the coefficient matrix is −1. Thus ∂2e(x(t))
∂xi∂xj

, i, j = 1, 2,

can be uniquely determined by ri, i = 1, 2, 3. Actually the solution of (3.13) is⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2e(x(t))

∂x2
1

= − α2−1
α2+1

r1(x(t)) + 2α

α2+1
r2(x(t)) + α2

α2+1
r3(x(t)),

∂2e(x(t))
∂x1∂x2

= 2α

α2+1
r1(x(t)) + α2−1

α2+1
r2(x(t)) − α

α2+1
r3(x(t)),

∂2e(x(t))

∂x2
2

= α2−1
α2+1

r1(x(t)) − 2α

α2+1
r2(x(t)) + 1

α2+1
r3(x(t)).

Thanks to the fact that the absolute value of all coefficients of ri(x(t)) on the right-hand side are less than
1, we have estimates∣∣∣∣∂2e(x(t))

∂xi∂xj

∣∣∣∣ ≤ |r1(x(t))| + |r2(x(t))| + |r3(x(t))|, t ∈ [0, 1], i, j = 1, 2. (3.14)

Invoking the interpolation conditions (3.5), we obtain

e(x(0)) = e(x(1)) = 0,
de

dt
(x(0)) = (b1 − a1)

∂e

∂x1
(a) + (b2 − a2)

∂e

∂x2
(a) = 0.

Applying the Rolle’s Theorem twice, there exists ξ ∈ (0, 1) such that d2e
dt2

(x(ξ)) = 0, which implies
r1(x(ξ)) = 0 by (3.7). Thus the Taylor expansion of the function r1(x(t)) at t = ξ leads to

|r1(x(t))| =
∣∣∣∣r1(x(ξ)) + dr1

dt
(x(ζ1))(t − ξ)

∣∣∣∣
≤
∣∣∣∣(b1 − a1)

(
1

1 + α2

∂3

∂x3
1

+ 2α

1 + α2

∂3

∂x2
1∂x2

+ α2

1 + α2

∂3

∂x1∂x2
2

)
e(x(ζ1))

∣∣∣∣
+
∣∣∣∣(b2 − a2)

(
1

1 + α2

∂3

∂x2
1∂x2

+ 2α

1 + α2

∂3

∂x1∂x2
2

+ α2

1 + α2

∂3

∂x3
2

)
e(x(ζ1))

∣∣∣∣
≤ h

(∣∣∣∣∂3d(x(ζ1))

∂x3
1

∣∣∣∣ + 2

∣∣∣∣∂3d(x(ζ1))

∂x2
1∂x2

∣∣∣∣ + 2

∣∣∣∣∂3d(x(ζ1))

∂x1∂x2
2

∣∣∣∣ + ∣∣∣∣∂3d(x(ζ1))

∂x3
2

∣∣∣∣)
≤ Ch(‖ũ1‖C3(T) + ‖ũ2‖C3(T))

≤ Ch‖u‖C̃3(T), (3.15)

where ζ1 is between t and ξ and then in (0, 1), and the fact p(x) is a quadratic polynomial and the definition
of the extensions in (2.6) are used.

Moreover, it is clear that by (3.5),

s(x(0)) = 1√
α2 + 1

(
∂e(a)

∂x1
α − ∂e(a)

∂x2

)
= 0, s(x(1)) = ∇e(b) · n = 0.

Therefore, there exists η ∈ (0, 1) such that ds
dt (x(η)) = 0 by Rolle’s Theorem in the interval [0, 1]. This

gives r2(x(η)) = 0 by (3.10). In addition, r3(x(1)) = 0 due to the interpolation conditions (3.5). In
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terms of the expressions of r2(x(t)) and r3(x(t)) in (3.11) and (3.12), and the facts that r2(x(η)) = 0 for
some η ∈ (0, 1) and r3(x(1)) = 0, the Taylor expansion is used for r2(x(t)) and r3(x(t)) at t = η and 1,
respectively. Then just following the same process as that in (3.15), we obtain

|ri(x(t))| ≤ Ch‖u‖C̃3(T), i = 2, 3. (3.16)

Consequently, a combination of (3.14)–(3.16) yields∣∣∣∣∂2e(x(t))

∂xi∂xj

∣∣∣∣ ≤ Ch‖u‖C̃3(T), i, j = 1, 2. (3.17)

Now we are ready to estimate e(x) in the element T . The interpolation conditions (3.5) imply both e
and ∇e vanish at the point E. As a result, using the Taylor expansion of e(x) at the point E leads to

e(x) = 1

2! (Δx)T D2e(a)Δx + 1

3!
2∑

j=1

2∑
k=1

2∑
l=1

∂3e(ξ)

∂xj∂xk∂xl
(xj − aj)(xk − ak)(xl − al),

where Δx = x − a and ξ = a + θ(x − a) ∈ T , θ ∈ (0, 1). Consequently,

|e(x)| ≤
∣∣∣∣ 1

2! (Δx)T D2e(a)Δx

∣∣∣∣ + h3

∣∣∣∣∣
2∑

j=1

2∑
k=1

2∑
l=1

∂3e(ξ)

∂xj∂xk∂xl

∣∣∣∣∣
≤ 1

2

(∣∣∣∣∂2e(a)

∂x2
1

∣∣∣∣ + 2

∣∣∣∣ ∂2e(a)

∂x1∂x2

∣∣∣∣ + ∣∣∣∣∂2e(a)

∂x2
2

∣∣∣∣) h2 + h3
2∑

j=1

2∑
k=1

2∑
l=1

∣∣∣∣ ∂3e(ξ)

∂xj∂xk∂xl

∣∣∣∣
≤ Ch3‖u‖C̃3(T) (3.18)

where (3.17) is implemented. �

Remark 3.3 The fact that the constant C in the estimate (3.6) is independent of the ratio α implies that
the estimate holds for interfaces of arbitrary shape.

Although ID
h d(x) approximates d(x) with the accuracy O(h3) in maximum norm, we shall not use it

to produce ua,h directly due to its discontinuity across the element boundary in Th,c. Instead, it is used to
construct another C0 interpolation

IC
h d(x) ∈ {

dh ∈ C(Ωc) : dh|T ∈ P2(T), ∀ T ∈ Th,c

}
, (3.19)

which also approximates d(x), but with better regularity. Let N = {xi} be the set of all conventional
Lagrange interpolation nodes on the mesh Th,c, see Fig. 5 (left). Since some nodes are associated with at
least two elements, ID

h d(x) is usually multi-valued at certain node xi ∈ N . For example, at the node xi in
Fig. 5 (right), ID

h d(x) can take different values from six associated triangles. There always holds

|ID
h d(xi) − d(xi)| ≤ Ch3‖u‖C̃3(Ωc),
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Fig. 5. Lagrange interpolation nodes of IC
h d(x) on Th,c (left). A diagram for the determination of the approximate node value d̃i

(right).

no matter which associated triangle of xi the value of ID
h d(xi) is taken from. Thus, for each node xi ∈ N ,

we only need to pick up a fixed associated element Ti of xi and take ID
h d(xi) in it as an approximate value

of d(xi). Denoting this approximate value by d̃i, we have

|d(xi) − d̃i| ≤ Ch3‖u‖C̃3(Ωc). (3.20)

Define IC
h d(x) as the classical piecewise quadratical Lagrange interpolation on nodes {xi} in Th,c,

satisfying

IC
h d(xi) = d̃i, ∀ xi ∈ N .

Then IC
h d(x) is implemented to define

ua,h :=
{

IC
h d(x), for x ∈ Ω2

c ,

0, otherwise.
(3.21)

Remark 3.4 In the above, we propose a new approach based on interpolation technique to construct the
ansatz function, which only relies on the location of the interface and jump conditions. Moreover, the
resulted function ua,h is a piecewise polynomial, its gradient and Laplacian can be calculated exactly.
However, the ansatz function in Kummer & Oberlack (2013) heavily depend on a signed-distance func-
tion. The construction of signed-distance level set fields appears not that simple for complex interfaces.
Moreover, the accuracy of the HDG method relies on extra high order accuracy of the approximate
signed-distance function due to the fact that a new term involving the Laplacian of the ansatz function
appears in the righthand side of the extended Poisson equation.
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According to Theorem 3.2, we immediately have the following error estimate for IC
h d(x).

Corollary 3.5 Assume that u ∈ V . Then

max
x∈T

|Dk(IC
h d(x) − d(x))| ≤ Ch3−k‖u‖C̃3(Ωc),

for k = 0, 1, 2 and any T ∈ Th,c.

Proof. The error can be decomposed into two parts by using triangle inequality as follows:

|Dk(IC
h d(x) − d(x))| ≤ |Dk(IC

h d(x) − Ihd(x))| + |Dk(Ihd(x) − d(x))|.

Here Ihd(x) is the classical piecewise quadratical Lagrange interpolation at nodes N in Th,c satisfying

Ihd(x) = d(xi), ∀ xi ∈ N .

It is noted that the standard estimate for Lagrange interpolation can be used for estimate of the second
part. We only need to deal with the first term. It is clear that

|Dk(IC
h d(x) − Ihd(x))| =

∣∣∣∣∣
6∑

i=1

(d̃i − d(xi))D
kNi

∣∣∣∣∣ ≤ Ch3‖u‖C̃(Ωc)

6∑
i=1

|DkNi|,

with {Ni}6
i=1 the quadratic Lagrange interpolation basis functions, where (3.20) is used. The implemen-

tation of the chain rule leads to

∇xNk = J
−1∇ξ Nk ,

(
∂2Nk

∂xi∂xj

)
2×2

= J
−2

(
∂2Nk

∂ξi∂ξj

)
2×2

, k = 1, · · · , 6,

where ξi, i = 1, 2, are barycentric coordinates in the reference triangle and

J =
( ∂x1

∂ξ1

∂x2
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ2

)
,

is the Jacobian matrix. Thanks to the uniform triangulation, J = hI with I the identity matrix. This
completes the proof. �

Recalling the definitions of ua and ua,h in (2.7) and (3.21), we obtain the following approximation
result from the above.

Lemma 3.6 Under the conditions in Theorem 3.2, we have that for any T ∈ Th,c,

max
x∈T∩Ω2

c

∣∣Dkua(x) − Dkua,h(x)
∣∣ ≤ Ch3−k‖u‖C̃3(Ωc), k = 0, 1, 2, (3.22)

where C is a positive constant independent of h, u and the shape of the interface.
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In the end of this section, we outline some basic ideas on how to construct similar ansatz functions in
solving three dimensional interface problems, and highlight the underlying difficulties. Jump conditions
like (3.5) can also be derived for 3D problem, see Li & Ito (2006, Chapter 4). Note that in 3D case, the
interface may cut the edges of a tetrahedral element at three or four points, which must be treated differently
in the construction of the ansatz function ua,h. Although we can use similar polynomial interpolation
techniques to construct ua,h, it is challenging yet to choose appropriate interpolation conditions (from
the jump conditions) so that ua,h always offers a stable approximation of ua, regardless of the shape and
position of the interface. Once ua,h and an estimate similar to Theorem 3.2 are available, the HDG method
and the analysis of the whole algorithm can be extended to 3D case straightforwardly.

In principle, one can construct ua,h to be a higher order approximation of ua by using more interpolation
conditions, and then increase the polynomial degree in HDG discretization to devise a high-order unfitted
method. Interestingly, Guzman et al. (2015) introduced some other techniques for constructing higher-
order interpolation of the singular part of the discontinuous solution.

4. Error analysis

In our unfitted mesh method, the HDG solver is actually used to solve the approximate interface problem
(2.12). Therefore, the well-posedness of it and the estimate of the error up − up,h play a crucial role in the
analysis.

We introduce the standard broken Sobolev space

Hr(Th) := {
u : u ∈ L2(Ω), u|T ∈ Hr(T), ∀ T ∈ Th

}
,

with the norm

‖u‖Hr (Th) =
∑
T∈Th

‖u‖Hr (T),

and

Xr
Γ̃

= L2(Ω) ∩ Hr(Ω1 ∪ Ωc) ∩ Hr(Ω2\Ω2
c ), Xr

Γ ∪Γ̃
= L2(Ω) ∩ Hr(Ω1) ∩ Hr(Ω2

c ) ∩ Hr(Ω2\Ω2
c ),

equipped with norms

‖v‖Xr
Γ̃

= ‖v‖Hr (Ω1∪Ωc) + ‖v‖Hr (Ω2\Ω2
c ), ‖v‖Xr

Γ ∪Γ̃
= ‖v‖Hr (Ω1) + ‖v‖Hr (Ω2

c ) + ‖v‖Hr (Ω2\Ω2
c ).

The first result is on the regularity of the solution of (2.12), and the error estimate between the solutions
of the intermediate problem (2.10) and the extended problem (2.12).

Theorem 4.1 Assume that f ∈ L2(Ω), g ∈ H1(∂Ω) and u ∈ V . Then the approximate problem (2.12)
has a unique solution up,h ∈ X3/2

Γ̃
satisfying the a priori estimate:

‖up,h‖X
3/2
Γ̃

≤ C(‖f ‖L2(Ω) + ‖g‖H1(∂Ω) + ‖u‖C̃3(Ωc)

)
. (4.1)
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Moreover, we have the error estimate

‖up − up,h‖Xr
Γ̃

≤ Ch3−r‖u‖C̃3(Ωc), r = 1, 3/2, (4.2)

where the positive constant C only depends on the area of Ωc and the length of Γ̃ .

Proof. The construction of ua and ua,h shows that ua ∈ C3(Ω2
c ) and ua,h ∈ C0(Ω2

c ). Thus, �ua − ua,h�Γ̃ ∈
H1(Γ̃ ), and

‖�ua − ua,h�‖H1(Γ̃ ) ≤ C
(‖�∇ua − ∇ua,h�‖L2(Γ̃ ) + ‖�ua − ua,h�‖L2(Γ̃ )

) ≤ C|Γ̃ |1/2h2‖u‖C̃3(Ωc), (4.3)

by using the maximum norm estimate (3.22). According to the definition of ua, we can derive

‖�ua�‖H1(Γ̃ ) ≤ C
(‖u2‖H3/2(Ω2

c ) + ‖ũ1‖H3/2(Ω2
c )

) ≤ C|Ω2
c |1/2‖u‖C̃3(Ωc), (4.4)

by using the trace theorem and the estimate (2.6). It is worthwhile to point out that as shown in Ding
(1996), the constant in the trace theorem of Sobolev spaces on Lipschitz domains only depends on the
Lipschitz constant of the boundary and the dimension of the space. Note that here the Lipschitz constant
of Γ̃ is independent of h, so the constant C in (4.4) is independent of h as well.

Applying the triangular inequality to (4.3) leads to

‖�ua,h�‖H1(Γ̃ ) ≤ ‖�ua�‖H1(Γ̃ ) + C|Γ̃ |h2‖u‖C̃3(Ωc) ≤ C(|Ω2
c |1/2 + |Γ̃ |1/2)‖u‖C̃3(Ωc).

This estimate also implies that

‖�∇ua,h · n�‖L2(Γ̃ ) ≤ C(|Ω2
c |1/2 + |Γ̃ |1/2)‖u‖C̃3(Ωc).

Then the existence and uniqueness of the solution and the regularity result (4.1) can be derived
straightforwardly from Theorem 2.1.

Now, we turn to the error estimate (4.2). Subtracting the problem (2.12) from the (2.10), we obtain
the following interface problem

−Δ|Ω\Γ̃ (up − up,h) = Δ|Ω\(Γ ∪Γ̃ )(ua − ua,h), in Ω ,

�up − up,h�Γ̃ = −�ua − ua,h�Γ̃ , on Γ̃ ,

�∇(up − up,h) · n�Γ̃ = −�∇(ua − ua,h) · n�Γ̃ , on Γ̃ ,

up − up,h = 0, on ∂Ω .

(4.5)

Recovering the original interface Γ , the interface problem (4.5) is equivalent to

−Δ|Ω\(Γ ∪Γ̃ )(up − up,h − ua,h + ua) = 0, in Ω ,

�up − up,h − ua,h + ua�Γ = �ua − ua,h�Γ , on Γ ,

�∇(up − up,h − ua,h + ua) · n�Γ = �∇(ua − ua,h) · n�Γ , on Γ ,

�up − up,h − ua,h + ua�Γ̃ = 0, on Γ̃ ,

�∇(up − up,h − ua,h + ua) · n�Γ̃ = 0, on Γ̃ ,

up − up,h − ua,h + ua = 0, on ∂Ω ,

(4.6)
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with two interface Γ and Γ̃ . Since ua − ua,h ∈ H1(Γ ), we use Theorem 2.1 again to derive

‖up − up,h − ua,h + ua‖Xr
Γ̃ ∪Γ

≤ ‖�ua − ua,h�Γ ‖Hr−1/2(Γ ) + ‖�∇(ua − ua,h) · n�Γ ‖Hr−3/2(Γ ), 0 ≤ r ≤ 3/2.

Especially, together with estimates (3.22) , we give more specific estimations for r = 1, 3/2, respectively.
Note that

‖φ‖H−1/2(Γ̃ ) = sup
v∈H1/2(Γ̃ )\{0}

〈φ, v〉Γ̃

‖v‖H1/2(Γ̃ )

≤ sup
v∈H1/2(Γ̃ )\{0}

‖φ‖L2(Γ̃ )‖v‖L2(Γ̃ )

‖v‖H1/2(Γ̃ )

≤ sup
v∈H1/2(Γ̃ )\{0}

C|Γ̃ |1/2‖φ‖L∞(Ω2
c )‖v‖L2(Γ̃ )

‖v‖H1/2(Γ̃ )

≤ C|Γ̃ |1/2‖φ‖L∞(Ω2
c ),

holds for any φ ∈ L∞(Ω2
c ), so we can derive

‖up − up,h‖X1
Γ̃ ∪Γ

≤ ‖ua − ua,h‖X1
Γ̃ ∪Γ

+ ‖�ua − ua,h�Γ ‖H1/2(Γ ) + ‖�∇(ua − ua,h) · n�Γ ‖H−1/2(Γ )

≤ C
(|Ω2

c |1/2 + |Γ̃ |1/2
) ∑

T⊂Th,c

(
max

x∈T∩Ω2
c

|ua − ua,h| + max
x∈T∩Ω2

c

|∇(ua − ua,h)|
)

≤ C
(|Ω2

c |1/2 + |Γ̃ |1/2
)
h2‖u‖C̃3(Ωc),

where the triangular inequality, error estimate (3.22) and the fact supp(ua − ua,h) = Ω2
c were used. Since

up, up,h ∈ X1
Γ̃

, we obtain

‖up − up,h‖X1
Γ̃

≤ ‖up − up,h‖X1
Γ̃ ∪Γ

≤ C
(|Ω2

c |1/2 + |Γ̃ |1/2
)
h2‖u‖C̃3(Ωc). (4.7)

Furthermore, using the interpolation inequality and error estimate (3.22) leads to

‖up − up,h‖X
3/2
Γ̃ ∪Γ

≤ ‖ua − ua,h‖X
3/2
Γ̃ ∪Γ

+ ‖�ua − ua,h�Γ ‖H1(Γ ) + ‖�∇(ua − ua,h) · n�Γ ‖L2(Γ )

≤ C
(‖ua − ua,h‖1/2

X1
Γ̃ ∪Γ

‖ua − ua,h‖1/2

X2
Γ̃ ∪Γ

+ ‖�ua − ua,h�Γ ‖H1(Γ )+ ‖�∇(ua − ua,h) · n�Γ ‖L2(Γ )

)
≤ C

(|Ω2
c |1/2 + |Γ̃ |1/2

)
h3/2‖u‖C̃3(Ωc).

Since up ∈ X3
Γ̃

, up,h ∈ X3/2
Γ̃

, then up − up,h ∈ X3/2
Γ̃

and

‖up − up,h‖X
3/2
Γ̃

≤ ‖up − up,h‖X
3/2
Γ̃ ∪Γ

≤ C
(|Ω2

c |1/2 + |Γ̃ |1/2
)
h3/2‖u‖C̃3(Ωc). (4.8)

This ends the proof. �

Another important part of the theoretical analysis is the error analysis of the HDG formulation (2.18).
We follow the technique in Cockburn et al. (2010). The analysis relies on the projection Πh on up,h and
its gradient qp,h, defined by

Πh : L2(Ω) × L2(Ω) → V1
h × M1

h, Πh(qp,h, up,h) := (Πvqp,h, Πwup,h),
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where for any T ∈ Th and all edges/faces F of T , the functions Πvqp,h and Πwup,h satisfy

(Πvqp,h, v)T = (qp,h, v)T , ∀ v ∈ [
P0(T)

]2
, (4.9a)

(Πwup,h, w)T = (up,h, w)T , ∀ w ∈ P0(T), (4.9b)

〈Πvqp,h · n − τΠwup,h, μ〉F = 〈qp,h · n − τup,h, μ〉F , ∀ μ ∈ P1(F). (4.9c)

According to the regularity result in Theorem 4.1, we know that up,h, qp,h ∈ dom(Πh). However, the

regularity conclusion up,h ∈ X3/2
Γ̃

is not enough to ensure a second-order convergence rate for this pro-
jection. We need to use another important fact that up,h is an O(h2) approximation of up ∈ H3(Th). By
introducing the intermediate function up in the error analysis, we prove a second-order convergence rate
for the projection Πh(qp,h, up,h) as stated in the following theorem.

Theorem 4.2 If τ in (2.16) is non-negative and u ∈ V , then the system (4.9) is uniquely solvable for
Πvqp,h and Πwup,h. Furthermore, there is a positive constant C only depending on the maximum of τ , the
area of Ωc and the length of Γ̃ , such that

‖Πwup,h − up,h‖L2(Th) ≤ C max
{

1,
1

τmax

}
h2
(‖u‖C̃3(Ωc) + ‖u‖H3(Th\Th,c)

)
, (4.10a)

‖Πvqp,h − qp,h‖L2(Th) ≤ C max
{
1, τmax

}
h2
(‖u‖C̃3(Ωc) + ‖u‖H3(Th\Th,c)

)
, (4.10b)

where τmax := max τ |∂Th .

With the aid of the projection Πh, we can derive the error estimate for the HDG formulation (2.18).

Theorem 4.3 Let (qh
p,h, uh

p,h, ûh
p,h) solve the system (2.18), and let the solution qp,h, up,h be in the domain

of Πh. Then

‖Πvqp,h − qh
p,h‖L2(Th) ≤ ‖Πvqp,h − qp,h‖L2(Th),

‖Πwup,h − uh
p,h‖L2(Th) ≤ Ch‖Πvqp,h − qp,h‖L2(Th). (4.11)

To avoid distraction from the main result, we postpone the proofs of the above two theorems to the
Appendix A and B, respectively.

Let us introduce uh = uh
p,h + ua,h and qh = qh

p,h + ∇ua,h. Then the main result is stated as follows.

Theorem 4.4 Let u ∈ V such that (q, u) be the solution of (1.1), and let (qh
p,h, uh

p,h) be the solution of
(2.18). Then the following error estimate holds:

‖u − uh‖L2(Th) ≤ Ch2
(‖u‖C̃3(Ωc) + ‖u‖H3(Th\Th,c)

)
, (4.12a)

‖q − qh‖L2(Th) ≤ Ch2
(‖u‖C̃3(Ωc) + ‖u‖H3(Th\Th,c)

)
, (4.12b)

where the positive constant C only depends on τ , the area of Ωc and the length of Γ̃ .
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Proof. Firstly, the triangle inequality gives

‖u − uh‖L2(Th) ≤ ‖up − up,h‖L2(Th) + ‖up,h − uh
p,h‖L2(Th) + ‖ua − ua,h‖L2(Th), (4.13)

where the facts u = up + ua and uh = uh
p,h + ua,h were used. Then, it follows from Theorems 4.2 and 4.3

that

‖up,h − uh
p,h‖L2(Th) ≤ C

(‖up,h − Πwup,h‖L2(Th) + ‖Πwup,h − uh
p,h‖L2(Th)

)
≤ Ch2

(‖u‖C̃3(Ωc) + ‖u‖H3(Th\Th,c)

)
.

Moreover, by using the following fact

‖ua − ua,h‖L2(Th) ≤ C|Ωc| 1
2 max

x∈Ωc
|ua − ua,h| ≤ C|Ωc| 1

2 h3‖u‖C̃3(Ωc),

and Theorem 4.1, we can obtain the estimate (4.12a). The result (4.12b) can be proved in a similar
fashion. �

Remark 4.5 The algorithm and analysis are for the Poisson interface problem (1.1). To solve a general
elliptic interface problem with discontinuous coefficients, one can use the iterative procedure in Kummer
& Oberlack (2013), and resort to the above proposed algorithm to solve a similar type of problem at each
iteration. Another more effective approach is to construct the ansatz function ua,h in a similar fashion, but
the resulted ua,h will depend on the unknown function up,h (see Hou et al. (2013) for some basic ideas).
Accordingly, we need to come up with a stable algorithm to solve them simultaneously. In a nutshell, the
main techniques introduced in this article pave the way for solving and analyzing more general interface
problems.

5. Numerical results

In this section, we present some numerical examples with general curved interfaces to demonstrate the
accuracy and robustness of our approach. In all examples, the computational domain is Ω = [−1, 1] ×
[−1, 1] and divided uniformly by triangular mesh Th with hx = hy = 1

2n .

5.1 Circular interface

We first give two examples with the same circular interface Γ given by
√

x2
1 + x2

2 = 0.5, but with different
jump conditions.

Example 5.1 Choose f such that the exact solution is

u =
{

sin(πx1)sin(πx2) + 1, (x1, x2) ∈ Ω1,

sin(πx1)sin(πx2), (x1, x2) ∈ Ω2.

Accordingly, the jump conditions across the interface are

�u� = 1, �∇u · n� = 0, on Γ .
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Table 1 L2-error and order of convergence for uh, qh and u∗
h (Example 5.1)

k Mesh ‖u − uh‖Th Order ‖q − qh‖Th Order ‖u − u∗
h‖Th Order

1 8 × 8 9.2055e−2 — 3.1281e−1 — 2.3124e−2 —
16 × 16 2.8092e−2 1.774 9.2055e−2 1.765 3.4159e−3 2.759
32 × 32 7.6896e−3 1.870 2.5108e−2 1.874 4.6538e−4 2.876
64 × 64 2.0177e−3 1.930 6.5693e−3 1.934 6.0799e−5 2.936

128 × 128 5.1716e−4 1.964 1.6811e−3 1.966 7.7723e−6 2.968

2 8 × 8 6.5609e−3 — 2.1953e−2 — 9.3507e−4 —
16 × 16 9.2047e−4 2.833 3.0354e−3 2.855 5.9630e−5 3.971
32 × 32 1.2212e−4 2.914 4.0025e−4 2.923 3.7516e−6 3.990
64 × 64 1.5735e−5 2.956 5.1429e−5 2.960 2.3509e−7 3.996

128 × 128 1.9971e−6 2.978 6.5193e−6 2.980 1.4711e−8 3.998

3 8 × 8 3.3237e−4 — 1.1061e−3 — 6.7615e−5 —
16 × 16 2.2629e−5 3.877 7.4572e−5 3.891 2.1463e−6 4.977
32 × 32 1.4770e−6 3.938 4.8464e−6 3.944 6.7372e−8 4.994
64 × 64 9.4349e−8 3.969 3.0898e−7 3.971 2.4222e−9 4.798

Note that ua(x) = u2(x) − u1(x) = −1. Therefore, ua,h is exactly equal to ua. Under this circumstance,
we have up,h = up. Thus, optimal convergence rate can be obtained for both uh and qh in L2-norm, see
Table 1 for k = 1, 2, 3.

According to Stenberg (1989) and Huynh et al. (2013), if the function up,h is sufficiently smooth in
any element T ∈ Th, the accuracy of the numerical solution will be improved by using a local post-
processing. On every element T ∈ Th, we define a new approximate solution uh∗

p,h ∈ Pk+1(T) such that it
satisfies

(∇uh∗
p,h, ∇w)T = (qh

p,h, ∇w)T , ∀ w ∈ Pk+1(T),

(uh∗
p,h, 1)T = (uh

p,h, 1)T . (5.1)

Since the construction of uh∗
p,h is done elementwise, therefore it is very efficient. The new approximation

u∗
h := uh∗

p,h + ua,h has superconvergence of order k + 2, see Table 1. The numerical solution uh on 32 × 32
mesh with k = 1 is depicted in Fig. 6 (left). We need to point out that finer mesh is used in all plots
presented in this section for a better resolution of the interface.

Example 5.2 In this example, the jumps �u� in the solution, �∇u · n� in the flux and �f � in the source
term are computed from the following exact solution:

u =
{

sin(x1 + x2) + cos(x1 + x2), (x1, x2) ∈ Ω1,

−(x2
1 + x2

2), (x1, x2) ∈ Ω2.
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Fig. 6. The numerical solution uh of the circular interface.

Table 2 L2-error and order of convergence for uh and qh (Examples 5.2–5.6)

Example Mesh ||u − uh||0 Order ||q − qh||0 Order

8 × 8 1.0674e−2 — 2.4986e−2 —
16 × 16 2.6670e−3 2.001 6.4708e−3 1.949

5.2 32 × 32 6.7042e−4 1.992 1.6548e−3 1.967
64 × 64 1.6832e−4 1.994 4.1888e−4 1.982

128 × 128 4.2180e−5 1.997 1.0541e−4 1.991

16 × 16 4.8309e−3 — 2.4484e−2 —
5.3 32 × 32 1.1520e−3 2.068 6.0670e−3 2.013

64 × 64 2.8090e−4 2.036 1.5074e−3 2.009
128 × 128 6.9345e−5 2.018 3.7566e−4 2.005

32 × 32 2.6760e−3 — 2.1770e−2 —
5.4 64 × 64 6.6576e−3 2.007 5.6110e−3 1.956

128 × 128 1.6642e−4 2.000 1.4253e−3 1.977

8 × 8 1.3909e−2 — 1.0934e−1 —
16 × 16 2.7914e−3 2.317 2.6939e−2 2.021

5.5 32 × 32 6.1992e−4 2.171 6.6936e−3 2.009
64 × 64 1.4619e−4 2.084 1.6663e−3 2.006

128 × 128 3.6205e−5 2.014 4.1538e−4 2.004

32 × 32 6.1768e−4 — 6.9771e−3 —
5.6 64 × 64 1.5144e−4 2.028 1.7877e−3 1.965

128 × 128 3.7671e−5 2.007 4.5215e−4 1.983

This problem has jumps on both u and flux ∇u · n. We only use HDG solver with linear polynomial basis
because up,h has a low regularity. The L2-errors and their corresponding convergence rate are tabulated in
Table 2. A second convergence rate is achieved for both uh and qh. The numerical solution uh on 32 × 32
mesh is depicted in Fig. 6 (right).
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Fig. 7. The numerical solution uh of the elliptic interface (left) and the star shaped interface (right), respectively.

5.2 Interface of complicated shape

In this section, we present some examples with complicated interfaces. The jump in the solution as well
as the jump in the flux is nonzero, which can be obtained from the expression of the exact solution by a
simple calculation.

Example 5.3 The interface Γ is now defined by
x2
1

0.82 + x2
2

0.642 = 1. Choose f such that the exact solution

u =
{

−3x2
1 + 3x2

2 + 2, (x1, x2) ∈ Ω1,

ex1 cos x2, (x1, x2) ∈ Ω2.

The L2-errors and their corresponding convergence rate are listed in Table 2. Figure 7 (left) shows the
numerical solution uh on 32 × 32 mesh.

Example 5.4 The interface is the star-shaped line which is defined by

r = 0.7 + 0.2 sin(5θ), θ ∈ [0, 2π),

where r = √
x2

1 + x2
2 . Suppose that the exact solution is

u =
{

ex2
1+x2

2 , (x1, x2) ∈ Ω1,

(x2
1 + x2

2)
2 − 0.1 ln

(
2
√

x2
1 + x2

2

)
, (x1, x2) ∈ Ω2.

The L2-errors and their corresponding convergence rates are presented in Table 2. We depict the numerical
solution uh on 32 × 32 mesh in Fig. 7 (right).

Example 5.5 In this example, we consider the Kidney-line interface which is determined by(
1.5((x1 + 0.5)2 + x2

2) − 0.5(x1 + 0.5)
)2 − 1.2

(
(x1 + 0.5)2 + x2

2

) + 0.14 = 0.
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Fig. 8. The numerical solution uh of the kidney-line interface (left) and butterfly-line interface (right), respectively.

The exact solution is

u =
{

sin(2x2
1 + x2

2 + 2) + x1, (x1, x2) ∈ Ω1,

0.1cos(1 − x2
1 − x2

2), (x1, x2) ∈ Ω2.

The corresponding L2-errors and convergence rate in Table 2 shows that a second-order convergence rate
is obtained for both uh and qh. The numerical solution uh on 32 × 32 mesh is depicted in Fig. 8 (left).

Example 5.6 In the last example, we consider a butterfly-line interface governed by 6.25x2
2 − 12.25x2

1 +
18.7578x4

1 − 0.5147 = 0. The exact solution is

u =
{

e−x2
1−x2

2 , (x1, x2) ∈ Ω1,

0, (x1, x2) ∈ Ω2.

The L2-errors and their corresponding convergence rates are presented in Table 2. In Fig. 8 (right), we
depict the numerical solution uh on 32 × 32 mesh.

In Table 2, the beginning meshes with different mesh size are just to meet the mesh assumptions
(H1), (H2) given in Subsection 2.2. All the numerical results validate that our unfitted mesh method
possesses a second-order accuracy for both the solution and its gradient for Poisson interface problems
of complicate shape.

6. Conclusions

In this article, we presented an unfitted mesh method for solving Poisson interface problems. A new
piecewise polynomial ansatz function was constructed to approximate the singular part of the solution.
By using this ansatz function, we derived an extended interface problem with interface fitted with a
quasi-uniform triangular mesh. Then, an HDG method was used to solve it. At the end, we proved that
this method had second-order convergence rate not only for the potential u, but also for flux q. To our
best knowledge, the second-order estimate for gradient is the first work concerning the unfitted mesh
methods. At present, our method can only handle the jump condition of the form � ∂u

∂n�. However, in many
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applications what we have is the jump condition of the form �β ∂u
∂n�. Fortunately, the main techniques

proposed in this article can also be used to develop unfitted mesh method for that general case. We leave
this as a future work.
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Appendix A. Proof of Theorem 4.2

Some techniques for the proof below are similar to those in Cockburn et al. (2010), but we feel it is
necessary to provide some details with an emphasis on some different aspects. The proof relies on a
projection Bk

v introduced and studied in Cockburn & Dong (2007). Let F be a face of T and F∗ be a face
at which τ |∂T attains its maximum. For any function σ ∈ L2(T) and σ |F ∈ L2(F) in the domain of Πv,
the restriction of Bk

v to T is defined to be the unique element of Pk(T) satisfying

(Bk
vσ , v)T = (σ , v)T , ∀ v ∈ [

Pk−1(T)
]2

, (A.1a)

〈Bk
vσ · n, μ〉F = 〈σ · n, μ〉F , ∀ μ ∈ Pk(F). (A.1b)

for all faces F of T different from F∗.

Proof. Here, we mainly focus on the interface triangle T ∈ Th,c, and the estimates on noninterface
elements can be derived in a similar fashion. Note that

‖Πwup,h − up,h‖L2(T) ≤ ‖Πwup,h − P
1
hup,h‖L2(T) + ‖P

1
hup,h − up,h‖L2(T),

where P1
hup,h is the L2-projection of up,h into P1(T). For the second term, we have

‖P
1
hup,h − up,h‖L2(T) ≤ ‖P

1
h(up,h − up)‖L2(T) + ‖P

1
hup − up‖L2(T) + ‖up − up,h‖L2(T)

≤ 2‖up,h − up‖L2(T) + Ch2‖up‖H2(T).

Summing up over all interface elements, we obtain

‖P
1
hup,h − up,h‖L2(Th,c) ≤ 2‖up,h − up‖L2(Th,c) + Ch2‖up‖H2(Th,c) ≤ Ch2‖u‖C̃3(Ωc), (A.2)

by using the error estimate (4.2).
Next, we come to deal with the first term. The definition of Πw implies that

Πwup,h − P
1
hup,h ∈ P1

⊥(T) := {
w ∈ P1(T) : (w, ζ )T = 0, ∀ ζ ∈ P0(T)

}
.

Define

bup,h(w) = 〈
τ(Πwup,h − P

1
hup,h), w

〉
∂T

, ∀ w ∈ P1
⊥(T).

Moreover, we have the following estimate (see Lemma A.1 in Cockburn et al. (2010))

‖Πwup,h − P
1
hup,h‖L2(T) ≤ C

h

τmax
T

‖bup,h‖L2(T), (A.3)
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with τmax
T = max τ

∣∣
∂T

. Now we come to estimate ‖bup,h‖L2(T). By (4.9c), we obtain

bup,h(w) = 〈∇up,h − Πv∇up,h, w〉∂T + 〈
τ(up,h − P

1
hup,h), w

〉
∂T

.

Since w ∈ P1
⊥(T), we have〈
(∇up − Πv∇up) · n, w

〉
∂T

= (∇ · (∇up − Πv∇up), w
)

T
+ (∇up − Πv∇up, ∇w)T

= (∇ · (∇up − Πv∇up), w
)

T
= (∇ · ∇up, w)T

= (Δup − P
0
hΔup, w)T ,

and 〈
(Πv∇up − Πv∇up,h) · n, w

〉
∂T

= (∇ · (Πv∇up − Πv∇up,h), w
)

T
+ (

Πv(∇up − ∇up,h), ∇w
)

T

= (
Πv(∇up − ∇up,h), ∇w

)
T

= (∇up − ∇up,h, ∇w)T .

Consequently,〈
(∇up,h − Πv∇up,h) · n, w

〉
∂T

= 〈
(∇up,h − ∇up) · n, w

〉
∂T

+ 〈
(∇up − Πv∇up) · n, w

〉
∂T

+ 〈(Πv∇up − Πv∇up,h) · n, w〉∂T

= 〈(∇up,h − ∇up) · n, w〉∂T + (Δup − P
0
hΔup, w)T

+ (∇up − ∇up,h, ∇w)T

≤ Ch−1/2‖∇up,h − ∇up‖L2(∂T)‖w‖L2(T) + Ch‖up‖H3(T)‖w‖L2(T)

+ Ch−1‖∇(up − up,h)‖L2(T)‖w‖L2(T). (A.4)

Further, by virtue of a trace inequality and the approximation of L2-projection, we have

‖P
1
hup,h − up,h‖L2(∂T) ≤ ‖P

1
hup,h − P

1
hu‖L2(∂T) + ‖P

1
hup − up‖L2(∂T) + ‖up − up,h‖L2(∂T)

≤ 2‖up,h − up‖L2(∂T) + ‖P
1
hup − up‖L2(∂T),

≤ 2‖up,h − up‖L2(∂T) + h−1/2
(‖P

1
hup − up‖L2(T) + h|P1

hup − up|H1(T)

)
≤ 2‖up,h − up‖L2(∂T) + Ch3/2‖up‖H2(T). (A.5)

Thus 〈
τ(up,h − P

1
hup,h), w

〉
∂T

≤ Cτmax
T ‖P

1
hup,h − up,h‖L2(∂T)‖w‖L2(∂T)

≤ Cτmax
T

(
h−1/2‖up,h − up‖L2(∂T) + h‖up‖H2(T)

)‖w‖L2(T). (A.6)

We derive from (A.4) and (A.6) that

‖bu,p‖L2(T) ≤ C max(1, τmax
T )

(
h−1/2‖∇up,h − ∇up‖L2(∂T) + h‖up‖H3(T)

+ h−1‖∇(up − up,h)‖L2(T) + h−1/2‖up,h − up‖L2(T) + h‖up‖H2(T)

)
(A.7)
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Summing up (A.3) over all interface elements leads to

‖Πwup,h − P
1
hup,h‖L2(Th,c) ≤ C max

(
1,

1

τmax

)
h
(
h−1/2‖∇up,h − ∇up‖X

1/2
Γ̃

+ h‖up‖H3(Th,c)

+ h−1‖∇(up − up,h)‖L2(Th,c) + h−1/2‖up,h − up‖X
1/2
Γ̃

+ h‖up‖H2(Th,c)

)
≤ C max

(
1,

1

τmax

)
h2‖u‖C̃3(Ωc), (A.8)

where τmax = max τ
∣∣
∂Th,c

. It follows from (A.2) and (A.8) that

‖Πwup,h − P
1
hup,h‖L2(Th,c) ≤ C max

(
1,

1

τmax

)
h2‖u‖C̃3(Ωc). (A.9)

Now we begin to deal with the error estimate ‖Πvqp,h − qp,h‖. A basis for Rn is furnished by the
set of unit normals nF for the n faces F �= F∗ of K . Letting {ñF : F �= F∗} denote its dual basis, i.e.,
ñF ·nF′ = δFF′ , we can write Πvqp,h −qp,h = ∑

F �=F∗(Πvqp,h −qp,h ·nF)ñF . Hence, it is enough to estimate
all components (Πvqp,h − qp,h) · nF . Since we have

‖(Πvqp,h − qp,h) · nF‖L2(T) ≤ ‖(Πvqp,h − B1
vqp,h)‖L2(T) + ‖B1

vqp,h − qp,h‖L2(T).

For the second term, the triangular equality gives

‖B1
vqp,h − qp,h‖L2(T) ≤ ‖B1

v(∇up,h − ∇up)‖L2(T) + ‖B1
v∇up − ∇up‖L2(T) + ‖∇up − ∇up,h‖L2(T).

Further, by the approximation properties of Bk
v established in Cockburn & Dong (2007), we obtain

‖B1
v∇up − ∇up‖L2(T) ≤ Ch2|∇up|H2(T),

and

‖B1
v(∇up − ∇up,h)‖L2(T) ≤ C

(‖∇up − ∇up,h‖L2(T) + h1/2‖(∇up − ∇up,h)‖L2(∂T)

)
.

Therefore, the summation over all interface element leads to

‖B1
vqp,h − qp,h‖L2(Th,c) ≤ C‖∇up,h − ∇up‖L2(Th,c) + Ch2|∇up|H2(Th,c)

+ Ch1/2‖∇up − ∇up,h‖L2(∂Th,c)

≤ Ch2‖u‖C̃3(Ωc). (A.10)

Let ΘF := Πvqp,h − B1
vqp,h. We conclude that ΘF is in P1

⊥(T) from (4.9a) and (A.1a). Subtracting (A.1b)
from (4.9c), we obtain

〈ΘF , μ〉∂T = 〈τ(Πwup,h − up,h), μ〉∂T , ∀ μ ∈ P1(F), ∀ F �= F∗.



474 H. DONG ET AL.

From Lemmas A.1 and A.2 in Cockburn et al. (2010), we derive

‖ΘF‖L2(T) ≤ h‖b‖L2(T), (A.11)

where b(w) := 〈τ(Πwup,h − up,h), w〉∂T with w = γ −1
F (μ) and the trace map

γF : P1
⊥(T) �−→ P1(F), defined by γF(w) = μ.

It only remains to estimate ‖b‖L2(T). We have

|b(w)| ≤ Cτmax
T h−1/2‖Πwup,h − up,h‖L2(∂T)‖w‖L2(T)

≤ Cτmax
T h−1‖Πwup,h − P

1
hup,h‖L2(T)‖w‖L2(T) + Cτmax

T h−1/2‖P
1
hup,h − up,h‖L2(∂T)‖w‖L2(T)

≤ Cτmax
T h−1‖Πwup,h − P

1
hup,h‖L2(T)‖w‖L2(T)

+ Cτmax
T h−1/2

(‖up,h − up‖L2(∂T) + h3/2‖up‖H2(T)

)‖w‖L2(T).

Summing up (A.11) over all interface interment, yields

‖ΘF‖L2(Th,c) ≤ Cτmaxh
(
h−1/2‖up,h − up‖L2(∂Th,c) + h‖up‖H2(Th,c)

+ h−1‖P
1
hup,h − Πwup,h‖L2(Th,c)

) ≤ C max(1, τmax)h2‖u‖C̃3(Ωc). (A.12)

Therefore, a combination of (A.10) and (A.12) leads to

‖(B1
vqp,h − Πvqp,h) · nF‖L2(Th,c) ≤ C max(1, τmax)h2‖u‖C̃3(Ωc),

which completes the proof. �

Appendix B. Proof of Theorem 4.3

Its proof is very similar to that of Theorems 3.1 and 4.1 in Cockburn et al. (2010) with the aid of a
consistency result stated in Proposition B.1 below. Note that up,h is double valued on Γ̃ , the value of up,h

restricted on the mesh skeleton Eh taken as

ŭp,h =
{

up,h(x), F ∈ Eh\Γ̃ ,

lim
ε→0

up,h(x − εn), F ∈ Γ̃ ,

with n the unit normal on Γ̃ pointing from Ω2
c to Ωc\Ω2

c . From the jump conditions in (2.12), we obtain

up,h =
{

ŭp,h − �ua,h�Γ̃ , if ∂T ∩ Γ̃ �= ∅ and T ∈ Ω2\Ω2
c ,

ŭp,h, otherwise.

Also, we need the L2-orthogonal projection

〈τ(PMŭp,h − ŭp,h), μ〉∂Th = 0, ∀ μ ∈ M1
h, (B.1)



UNFITTED HDG METHOD FOR INTERFACE PROBLEM AND ITS ERROR ANALYSIS 475

i.e.,

〈τ(PMŭp,h − up,h), μ〉∂Th = 〈τ�ua,h�Γ̃ , μ〉Γ̃ , ∀ μ ∈ M1
h. (B.2)

Proposition B.1 Let

ε
qp,h
h = Πvqp,h − qh

p,h, ε
up,h
h = Πwup,h − uh

p,h, ε
ûp,h
h = PMŭp,h − ûh

p,h.

Then we have

(ε
qp,h
h , v)Th + (ε

up,h
h , ∇ · v)Th − 〈εûp,h

h , v · n〉∂Th = (Πvqp,h − qp,h, v)Th , (B.3a)

(ε
qp,h
h , ∇w)Th − 〈ε̂h · n, w〉∂Th = 0, (B.3b)

〈εûp,h
h , μ〉∂Ω = 0, (B.3c)

〈ε̂h · n, μ〉∂Th\∂Ω = 0, (B.3d)

for all v ∈ V1
h , w ∈ W1

h , and μ ∈ M1
h, where

ε̂h · n := ε
qp,h
h · n − τ(ε

up,h
h − ε

ûp,h
h ), on ∂Th\∂Ω .

Proof. Note that the exact solution qp,h and up,h satisfies

(qp,h, v)Th + (up,h, ∇ · v)Th − 〈up,h, v · n〉∂Th = 0, (B.4a)

(qp,h, ∇w)Th − 〈qp,h · n, w〉∂Th = (f , w)Th + (Δ|T\Γ ua,h, w)Th,c , (B.4b)

for all v ∈ V1
h and w ∈ W1

h . By the definition of Πh and PM , we derive from (B.4) that

(Πvqp,h, v)Th + (Πwup,h, ∇ · v)Th − 〈PMŭp,h, v · n〉∂Th

= (Πvqp,h − qp,h, v)Th − 〈�ua,h�, v · n〉Γ̃ , (B.5a)

(Πvqp,h, ∇w)Th − 〈Πvqp,h · n − τ(Πwup,h − PMŭp,h), w〉∂Th

= (f , w)Th + (Δ|T\Γ ua,h, w)Th,c − 〈τ�ua,h�, w〉Γ̃ , (B.5b)

for all v ∈ V1
h and w ∈ W1

h . Subtracting (B.5a) and (B.5b) from the two equations (2.18a) and (2.18b),
respectively, we obtain (B.3a) and (B.3b).

The equation (B.3c) follows directly from the boundary condition. To prove equation (B.3d), we
proceed as follows:

〈μ, ε̂h · n〉∂Th\∂Ω = 〈(Πvqp,h − qh
p,h) · n − τ(Πwup,h − uh

p,h − PMŭp,h + ûh
p,h), μ〉∂Th\∂Ω

= 〈(qp,h − qh
p,h) · n − τ(up,h − uh

p,h − PMŭp,h + ûh
p,h), μ〉∂Th\∂Ω

= 〈qp,h · n, μ〉∂Th\∂Ω − 〈qh
p,h · n − τ(uh

p,h − ûh
p,h), μ〉∂Th\∂Ω + 〈τ�ua,h�, μ〉Γ̃

= 〈qp,h · n, μ〉∂Th\∂Ω − 〈q̂h
p · n, μ〉∂Th\∂Ω + 〈τ�ua,h�, μ〉Γ̃ , (B.6)
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where we have used the definition of Πh and (B.2). Substituting equations

〈qp,h · n, μ〉∂Th\∂Ω = −〈�∇ua,h · n�, μ〉Γ̃ ,

and

〈q̂h
p · n, μ〉∂Th\∂Ω = −〈�∇ua,h · n�, μ〉Γ̃ + 〈τ�ua,h�, μ〉Γ̃ ,

into (B.6), we obtain

〈ε̂h · n, μ〉∂Th\∂Ω = 0.

It ends the proof. �

With this proposition, the remaining proof of Theorem 4.3 is exactly the same as in Cockburn et al.
(2010).


