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Abstract. A family of orthogonal generalised Müntz-Jacobi functions is introduced and

used for solving singularly perturbed fractional differential equations. Such basis func-

tions can provide much better approximation for boundary layers or endpoint singulari-

ties than usual polynomial bases. The fractional integrals and derivatives of generalised

Müntz-Jacobi functions are accurately calculated. The corresponding Petrov-Galerkin

and Galerkin methods are very efficient. Numerical examples demonstrate a significant

improvement in the accuracy of the methods.
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1. Introduction

It is well-known that compared to low-order methods, spectral methods based on global

orthogonal polynomials provide a very accurate approximation of smooth solutions with

significantly smaller degree of freedom — cf. [4, 9, 21] and references therein. However,

they can lose their efficiency if solution exhibits sharp interfaces, strong corner singularities,

thin internal and/or boundary layers. In such situations, the usual spectral methods based

on Gauss-type grids often fail to produce approximations satisfying the requirements of

real physics. A possible solution to this problem would be the use of adaptive method

with mesh/grid refinement but the global character of spectral methods does not gracefully

handle local mesh refinements. Even for grid adaptation with a moving mesh, the adaptive
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spectral approximations generated by moving mesh PDEs have to satisfy strong regularity

conditions. Therefore, one usually employs a suitable preassigned mapping redistributing

the grid points to where they are mostly needed [1,2,12,20]. For example, spectral methods

with singular mapping techniques have been successfully used for resolving boundary layers

— cf. Refs. [13,14,24,26].

The approach here continues this line. We first show that the application of the singu-

lar mapping introduced in [26] to Jacobi polynomials with special parameters, produces

mutually orthogonal non-polynomial functions, closely related to the Müntz-Jacobi func-

tions [22] and fractional Jacobi polynomials [10]. The mapped Jacobi polynomials can

be now considered as generalised Müntz-Jacobi functions. The present work also focuses

on singularly perturbed fractional differential equations, the solutions of which may have

sharp boundary layers and corner singularities. One of the main problems here is that the

change of variables can lead to more complicated operators and additional singularities. In

order to overcome this difficulty, we develop a very accurate scheme to evaluate the results

of the action of fractional operators on generalised Müntz-Jacobi functions. Moreover, we

consider efficient Petrov-Galerkin methods using special basis functions which can lead to

diagonal or symmetric stiffness matrices and to better conditioned linear systems.

The rest of the paper is organised as follows. In Section 2, we introduce mapped Jacobi

polynomials, consider their properties and connections with the Müntz-type functions and

present an accurate scheme for the evaluation of their fractional integrals and derivatives.

The next two sections are devoted to efficient Galerkin methods for singularly perturbed

fractional initial value and boundary value problems. In addition, we also consider various

examples aimed to show the advantage of the mapping technique proposed.

2. Mapped Jacobi Polynomials and Their Properties

In this section, we introduce mapped Jacobi polynomials and establish accurate formu-

las for computing the fractional integrals and derivatives of such aggregates. Moreover, we

show the close connection of the mapped Jacobi polynomials to the Müntz-type functions.

It turns out that the mapped Jacobi polynomials we study, can be considered as generalised

Müntz-Jacobi functions. The approximation properties of the mapped Jacobi polynomials

are also studied. In particular, we note an improved convergence order for functions with

boundary layers and endpoint singularities.

2.1. Singular mappings

Let N and R be, respectively, the sets of positive integers and real numbers and let

N0 := {0} ∪N, R+ :=
�
a ∈ R : a > 0
	
, R+0 := {0} ∪R+. (2.1)

Following [26], we consider the one-to-one mapping g : [−1,1]→ [−1,1] defined by

x = g(y; r, l) = −1+σr,l

∫ y

−1

(1− t)r (1+ t)l d t, r, l ∈ N0, (2.2)
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where

σr,l =
(r + l + 1)!

2r+l r! l!
. (2.3)

The inverse of this mapping is denoted by

y = h(x ; r, l) = g−1(x ; r, l), x , y ∈ [−1,1]. (2.4)

We note that for r = 0 and an integer l ≥ 0, the mappings (2.2)-(2.4) take the form

x = g(y; 0, l) = −1+ 2
�1+ y

2

�l+1
,

y = h(x ; 0, l) = −1+ 2
�1+ x

2

�1/(l+1)
,

x , y ∈ [−1,1].

(2.5)

For r, l 6= 0, such mappings can redistribute and adapt the grid (collocation) points cluster-

ing many of them near the endpoints x = ±1 — cf. [26]. More precisely, if {y j}
N
j=0

is a set

of Jacobi-Gauss-Lobatto (JGL) points — cf. [21, Chapter 3], arranged in ascending order

and {x j = g(y j; r, l)}Nj=0 are the mapped JGL points, then the mean-value theorem yields

x j − x j−1 = g(y j; r, l)− g(y j−1; r, l) = g′(ξ j; r, l)(y j − y j−1)

= σr,l(1− ξ j)
r(1+ ξ j)

l(y j − y j−1), (2.6)

with a ξ j ∈ (y j−1, y j). It follows from [23] that y1, yN−1 = O (N
−2) and (2.6) implies

1+ x1 = O (N
−2(l+1)), 1− xN−1 = O (N

−2(r+1)). (2.7)

Hence, the sets of the mapped collocation points {x j} in the corresponding half-neighbour-

hoods of the endpoints x = ±1 become denser as r, l increase.

Set

x̃ :=
1+ h(x ; r, l)

2
=

1+ y

2
∈ [0,1]. (2.8)

In particular, if r = 0, then

x̃ =
�1+ x

2

�1/(l+1)
. (2.9)

2.2. Mapped Jacobi polynomials

For α,β > −1, let P
(α,β)
n+1

(x) be the Jacobi polynomials defined by the three-term recur-

rence relation [23]— viz.

P
(α,β)

n+1
(x) = (aα,β

n x − bα,β
n )P(α,β)

n (x)− cα,β
n P

(α,β)

n−1
(x), n≥ 1,

P
(α,β)
0

(x) = 1, P
(α,β)
1

(x) =
1

2
(α+ β + 2)x +

1

2
(α− β),

(2.10)
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where

aα,β
n
=
(2n+α+ β + 1)(2n+α+ β + 2)

2(n+ 1)(n+α+ β + 1)
,

bα,β
n =

(β2 −α2)(2n+α+ β + 1)

2(n+ 1)(n+α+ β + 1)(2n+α+ β)
,

cα,β
n
=

(n+α)(n+ β)(2n+α+ β + 2)

(n+ 1)(n+α+ β + 1)(2n+α+ β)
.

(2.11)

The Jacobi polynomials are orthogonal with respect to the Jacobi-weight functionω(α,β)(x)

= (1− x)α(1+ x)β — i.e.

∫ 1

−1

P(α,β)
n (x)P

(α,β)

n′
(x)ω(α,β)(x) d x = γ(α,β)

n δnn′ , (2.12)

where δnn′ is the Kronecker delta,

γ(α,β)
n =

2α+β+1
Γ (n+α+ 1)Γ (n+ β + 1)

(2n+α+ β + 1)n! Γ (n+α+ β + 1)
, (2.13)

and Γ refers to the Gamma function. Recall [23] that the derivative of Jacobi polynomials

satisfies the following relation:

d

d x
P(α,β)

n (x) =
1

2
(n+α+ β + 1)P

(α+1,β+1)

n−1
(x). (2.14)

Definition 2.1. Let x ∈ [−1,1]. The mapped Jacobi polynomials with parameters r, l ∈ N0

are defined by

L (r,l)n (x) = P(r,l)n (h(x ; r, l)) = P(r,l)n (2 x̃ − 1) = P(r,l)n (y), n≥ 0. (2.15)

These polynomials can be efficiently evaluated by (2.10)-(2.11).

Let us now present important properties of the mapped Jacobi polynomials.

Proposition 2.1. The mapped Jacobi polynomials are orthogonal in L2(−1,1), that is,

∫ 1

−1

L (r,l)
n
(x)L (r,l)

m
(x) d x = σr,lγ

(r,l)
n
δmn, (2.16)

where σr,l and γ(r,l)n are defined in (2.3) and (2.13).

Proof. Using the orthogonality relation (2.12)-(2.13), we find from (2.2)-(2.3) and

(2.15) that

∫ 1

−1

L (r,l)n (x)L (r,l)m (x) d x =

∫ 1

−1

P(r,l)n (y)P(r,l)m (y)
d x

d y
d y

= σr,l

∫ 1

−1

P(r,l)n (y)P(r,l)m (y)ω(r,l)(y) d y = σr,lγ
(r,l)
n δmn,
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as required.

Let µ ∈ R+. Following [18], we define the left-sided −1 I
µ
x and right-sided x I

µ

1
fractional

integrals of order µ on the interval (−1,1) by

(−1 Iµx u)(x) =
1

Γ (µ)

∫ x

−1

u(y)

(x − y)1−µ
d y, (x I

µ

1
u)(x) =

1

Γ (µ)

∫ 1

x

u(y)

(y − x)1−µ
d y. (2.17)

If µ ∈ (k − 1, k), k ∈ N, then

�
C
−1Dµ

x
u
�
(x) =
�
−1 Ik−µ

x
u(k)
�
(x) =

1

Γ (k −µ)

∫ x

−1

u(k)(y)

(x − y)µ−k+1
d y (2.18)

is the left-sided Caputo fractional derivative of order µ. Analogously,

�
C
x D
µ

1
u
�
(x) := (−1)k(x I

k−µ
1

u(k))(x) (2.19)

is the right-sided Caputo fractional derivative of order µ.

We observe that the variable change x = −t, t ∈ (−1,1) shows that (t I
µ
1

v)(t) =

(−1I
µ
x u)(x), where u(x) = v(−x). Similar relations take place for fractional derivatives.

Therefore, here we only consider left-sided fractional integrals and derivatives.

Let us now note the following formulas for fractional integrals and derivatives of the

mapped Jacobi polynomials.

Theorem 2.1. If µ > 0 and r, l ∈ N0, then

−1Iµ
x
L (r,l)

n
(x) =

2r+lσr,l

Γ (µ)
x̃ l+1

∫ 1

−1

P(r,l)
n
(2 x̃τ̂− 1)(1− x̃τ̂)r τ̂l{Φr,l(x ,τ)}µ−1dτ. (2.20)

Moreover, if µ ∈ (0,1) and n≥ 1, then

C
−1Dµx L

(r,l)
n (x) =

n+ r + l + 1

2Γ (1−µ)
x̃

∫ 1

−1

P
(r+1,l+1)

n−1
(2 x̃τ̂− 1){Φr,l(x ,τ)}−µdτ, (2.21)

where τ̂ := (1+τ)/2, x̃ is defined in (2.8) and

Φr,l(x ,τ) = 2r+l+1σr,l x̃ l+1

∫ 1

τ̂

ηl(1− x̃η)r dη. (2.22)

Proof. It follows from (2.15) that

−1Iµx L
(r,l)
n (x) =

1

Γ (µ)

∫ x

−1

P(r,l)n (h(t; r, l))

(x − t)1−µ
d t. (2.23)

Making the variable change

t = g
�
− 1+ (1+ h(x))(1+τ)/2

�
= g(−1+ 2 x̃τ̂), (2.24)
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with g and h defined in (2.2) and (2.4), we obtain

d t = g′(−1+ 2 x̃τ̂) x̃ dτ= 2r+lσr,l x̃ l+1τ̂l(1− x̃ τ̂)r dτ, (2.25)

and

x − t = g(h(x))− g(−1+ 2 x̃τ̂) = g(−1+ 2 x̃)− g(−1+ 2 x̃τ̂)

= σr,l

∫ −1+2x̃

−1

(1− ξ)r(1+ ξ)ldξ−σr,l

∫ −1+2x̃τ̂

−1

(1− ξ)r(1+ ξ)ldξ

= σr,l

∫ −1+2x̃

−1+2x̃τ̂

(1− ξ)r(1+ ξ)l dξ= 2r+l+1σr,l x̃ l+1

∫ 1

τ̂

ηl(1− x̃η)r dη

:= Φr,l(x ,τ), (2.26)

where ξ= −1+ 2 x̃η. Substituting (2.24)-(2.26) into (2.23) yields the Eq. (2.20).

To derive (2.21), we note that according to (2.14)-(2.15), one has

d

d t
L (r,l)

n
(t) =

1

2
(n+ r + l + 1)P

(r+1,l+1)
n−1

�
h(t)
�
h′(t),

and if µ ∈ (0,1), then

C
−1Dµx L

(r,l)
n (x) =

n+ r + l + 1

2 Γ (1−µ)

∫ x

−1

P
(r+1,l+1)

n−1

�
h(t)
�
(x − t)−µdh(t).

Recalling the Eq. (2.26) and using the relation dh(t) = x̃dτ, which follows from (2.24),

we arrive at the formula (2.21).

Remark 2.1. If r = 0, then

Φ0,l(x ,τ) = 2 x̃ l+1(1− τ̂l+1),

and the Eqs. (2.20)-(2.21) take the form

−1 Iµx L
(0,l)
n (x) =

l + 1

Γ (µ)

(1+ x)µ

2

∫ 1

−1

P(0,l)
n (−1+ 2 x̃τ̂) τ̂l(1− τ̂l+1)µ−1 dτ, (2.27)

C
−1Dµ

x
L (0,l)

n
(x) =

n+ l + 1

21+µΓ (1−µ)

�1+ x

2

�1/(l+1)−µ
∫ 1

−1

P
(1,l+1)

n−1
(−1+ 2 x̃τ̂)(1− τ̂l+1)−µdτ,

(2.28)

where τ̂ := (1+τ)/2 and x̃ is defined in (2.8).

The case l = 0 and r 6= 0 can be considered analogously.
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2.2.1. Functions Φr,l(x ,τ)

Since the integrals (2.20)-(2.21) have singular kernels, it is important to study the proper-

ties of the functions Φr,l(x ,τ). Assume that r, l > 0 and consider (2.22). Using the mean

value theorem, we obtain

Φr,l(x ,τ) =
2r+l+1σr,l

r + 1
x̃ l ηl

0

�
(1− x̃τ̂)r+1 − (1− x̃)r+1

	

=
2r+l+1σr,l

r + 1
ηl

0 x̃ l+1 (1− τ̂)
r∑

k=0

(1− x̃τ̂)k(1− x̃)r−k,

with an η0 ∈ (τ̂, 1). Since x̃ , τ̂ ∈ (0,1), then for all x ,τ ∈ (−1,1), the inequality

ηl
0 x̃ l+1 (1− τ̂) (1− x̃)r ≤

Φr,l(x ,τ)

2r+l+1σr,l

≤ ηl
0 x̃ l+1 (1− τ̂) (1− x̃τ̂)r

holds. Therefore, Φr,l(x ,τ)→ 0 as x ,τ → 1. In practical computations, it is often useful

to extract the singular factors (1− t) and (1− x)r . However, for arbitrary parameters r, l

it can be a time consuming procedure. Let us now consider the case r = 1 and l 6= 0. For

simplicity, we introduce the terms

Sl(τ̂) = 1+ τ̂+ · · ·+ τ̂l , fl(τ̂) =
Sl(τ̂)

l + 1
=

1+ τ̂+ · · ·+ τ̂l

l + 1
.

Since 1− τ̂l+1 = (1− τ̂)Sl(τ̂), we can write
∫ 1

τ̂

ηl(1− x̃η)dη =

∫ 1

τ̂

ηldη− x̃

∫ 1

τ̂

ηl+1dη = (1− τ̂)
�

Sl(τ̂)

l + 1
− x̃

Sl+1(τ̂)

l + 2

�
,

and, consequently,
∫ 1

τ̂

ηl(1− x̃η)dη = (1− τ̂) ( fl(τ̂)− x̃ fl+1(τ̂)) .

For l = 1,2,3, the terms fl(τ̂) have the form

f1(τ̂) = 1+
1

2
(τ̂− 1), f2(τ̂) = 1+ (τ̂− 1) +

1

3
(τ̂− 1)2,

f3(τ̂) = 1+
3

2
(τ̂− 1) + (τ̂− 1)2 +

1

4
(τ̂− 1)3,

so that
∫ 1

τ̂

η(1− x̃η)dη = (1− τ̂)(1− x̃)A1,1(τ̂, x̃),

∫ 1

τ̂

η2(1− x̃η)dη = (1− τ̂)(1− x̃)A1,2(τ̂, x̃),

∫ 1

τ̂

η3(1− x̃η)dη = (1− τ̂)(1− x̃)A1,3(τ̂, x̃),
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where

A1,1(τ̂, x̃) := 1+
(1− τ̂)( x̃ − 1

2 )−
1
3(1− τ̂)

2 x̃

1− x̃
,

A1,2(τ̂, x̃) := 1+
(1− τ̂)(3

2 x̃ − 1)− (1− τ̂)2( x̃ − 1
3) +

1
4(1− τ̂)

3 x̃

1− x̃
,

A1,3(τ̂, x̃) := 1+
(1− τ̂)(2 x̃ − 3

2)− (1− τ̂)
2(2 x̃ − 1) + (1− τ̂)3( x̃ − 1

4)−
1
5(1− τ̂)

4 x̃

1− x̃
.

Remark 2.2. Using the above representations, we can consider the integrals (2.22) in the

most often appearing case 0≤ r, l ≤ 4, thus obtaining

Φr,l(x ,τ) = 2r+l+1σr,l x̃
l+1(1− τ̂)(1− x̃)rAr,l(τ̂, x̃). (2.29)

2.2.2. Stable and accurate computation of −1I
µ
x L

(r,l)
n
(x) and C

−1D
µ
x L

(r,l)
n
(x)

We now consider fractional integrals and derivatives of the basis functions. Substituting

(2.29) into (2.20)-(2.21) leads to the formulas

−1 Iµ
x
L (r,l)

n
(x) =

2(r+l+1)µ−r σ
µ

r,l

Γ (µ)
x̃ (l+1)µ(1− x̃)r(µ−1)

×

∫ 1

−1

P(r,l)
n
(2 x̃τ̂− 1)(1− x̃ τ̂)r τ̂l(1− τ̂)µ−1(Ar,l(τ̂, x̃))µ−1dτ,

C
−1Dµ

x
L (r,l)

n
(x) =

n+ r + l + 1

21+(r+l+1)µσ
µ

r,l
Γ (1−µ)

x̃1−(l+1)µ(1− x̃)−rµ

×

∫ 1

−1

P
(r+1,l+1)

n−1
(2 x̃τ̂− 1)(1− τ̂)−µ(Ar,l(τ̂, x̃))−µdτ. (2.30)

The explicit extraction of singular fractional powers of 1 − τ̂ and 1 − x̃ , allows us to use

Jacobi-Gauss quadratures. However, if x̃ ≈ 1 and τ approaches 1, then (Ar,l(τ̂, x̃))µ−1 and

(Ar,l(τ̂, x̃))−µ have boundary layers. This effect is demonstrated in Fig. 1 for parameters

r = 1, l = 3,µ = 0.1 and x̃ = 0.99 for τ ∈ (0.5,1). To overcome this problem, we use the

variable (2.2) with r = r1, l = 0 — viz.

τ = g(t; r1, 0) = 1−
(1− t)r1+1

2r1
,

so that

∫ 1

−1

P(r,l)n (2 x̃τ̂− 1)(1− x̃τ̂)r τ̂l(1− τ̂)µ−1(Ar,l(τ̂, x̃))µ−1dτ

= (r1 + 1)21−(r1+1)µ

∫ 1

−1

qn(g(t))
�
Ar,l((1+ g(t))/2, x̃ )

�µ−1
(1− t)(r1+1)µ−1d t, (2.31)
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Figure 1: Graphs of (A1,3(τ̂, 0.99))−0.1
and (A1,3(τ̂, 0.99))−0.9

for τ ∈ (0.5, 1).

Table 1: Number of Ja
obi-Gauss quadrature points needed to a
hieve a

ura
y 10−13
.

−1 I0.1
x
L (3,3)

n
(x) C

−1D0.9
x
L (3,3)

n
(x)

❍
❍
❍
❍
❍

n

r1 1 2 3 4 5
❍
❍
❍
❍
❍

n

r1 1 2 3 4 5

50 90 70 80 90 90 50 100 90 160 110 100

100 100 110 130 140 160 100 170 150 160 150 180

150 130 160 180 200 220 150 190 230 220 210 230

200 170 200 230 260 280 200 280 350 230 260 260

where

qn(g(t)) = qn(τ) = P(r,l)n (2 x̃τ̂− 1)(1− x̃τ̂)r τ̂l .

Consequently, the integral in (2.31) can be evaluated by the Jacobi-Gauss quadrature with

the weight functionω(µr1+µ−1,0)(t), since (r1+1)µ−1> µ−1> −1. The integral in (2.30)

can be considered analogously.

Table 1 shows the number of quadrature points needed to calculate the fractional inte-

grals and derivatives of the mapped Jacobi polynomials with the accuracy 10−13.

2.3. Connections with Müntz-type polynomials/functions

The mapped Jacobi polynomials are closely connected to Müntz-type polynomials and

functions — cf. Refs. [3, 7, 10, 15, 17, 22]. In fact, they can be considered as a family of

generalised Müntz-Jacobi functions [22].

Let Υ = {λ0,λ1, · · · } be a number sequence such that 0 ≤ λ0 < λ1 < · · · → ∞. The

celebrated Müntz-Szász theorem [5] states that the set of Müntz polynomials
∑n

k=0 ak tλk

with real coefficients {ak} is dense in L2(0,1) if and only if
∑∞

k=1
λ−1

k
=∞. If λ0 = 0, then

it is dense in the space C[0,1].
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It is of practical interest to study the orthogonal Müntz-Legendre polynomials

Pn(t) =

n∑

k=0

Cn,k tλk , Cn,k =

∏n−1

j=0(λk +λ j + 1)
∏n

k 6=i=0
(λk −λi)

, n≥ 0, (2.32)

on the interval [0,1]. For the properties of the polynomials {Pn}, we refer the reader

to [3,15,17]. Here we only note that these polynomials are orthogonal — i.e.

∫ 1

0

Pn(t)Pm(t)d t =
δmn

λm +λn + 1
, (2.33)

but their evaluation based on the representations (2.32) is extremely unstable.

Nevertheless, if λk = kα for an α > 0, the Müntz-Legendre polynomials {Pn} can be

explicitly expressed via Jacobi polynomials [7]:

Pn(t) =Pn(t;α) = P(0,1/α−1)
n (2tα − 1), t ∈ [0,1], α > 0, n≥ 0.

Consequently, they can be computed by using the three-term recurrence relations (2.10)-

(2.11), whereas the orthogonality relation (2.33) takes the form

∫ 1

0

Pn(t)Pm(t)d t =
δmn

2nα+ 1
.

This type of Müntz polynomials is used in [7] in a collocation method for fractional differ-

ential equations.

Setting y(x) = 21−α(1+ x)α − 1, Shen and Wang [22] rewrote the Müntz polynomials

with λk = kα, α > 0 as the Müntz-Jacobi functions

Ĵ0,1/α−1
n (x) = P(0,1/α−1)

n (y(x)), x , y ∈ (−1,1), n≥ 0,

and used them in Müntz-Galerkin methods [22] for approximation of singular solutions of

PDEs with mixed Dirichlet-Neumann boundary conditions. It is worth noting that

Ĵ0,1/α−1
n (x) =Pn((x + 1)/2;α).

On the other hand, for α,β > −1, Hou and Xu [10] introduced the fractional Jacobi poly-

nomials

Jα,β ,λ
n (t) = P(α,β)

n (2tλ − 1), λ ∈ (0,1], t ∈ (0,1), n≥ 0,

using them in spectral methods for various singular problems. Let us also note that relations

(2.10)-(2.11) yield

∫ 1

0

Jα,β ,λ
n (t) Jα,β ,λ

m (t)(1− tλ)α t(β+1)λ−1d t =
γ
(α,β)
n

2α+β+1λ
δmn.

If α = 0 and β = 1/λ− 1, the fractional Jacobi polynomials become the Müntz-Legendre

polynomials, and the variable change t = (x + 1)/2 transforms them into Müntz-Jacobi

functions.
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We now discuss the relationship between the mapped Jacobi polynomials in Defini-

tion 2.1 and the Müntz-type functions. If r = 0, then for any n, l ∈ N0, the Eqs. (2.5),

(2.8), (2.15) show that

L (0,l)
n (x) = P(0,l)

n (2 x̃ − 1) =Pn

�
(1+ x)/2; 1/(l + 1)

�
, x ∈ [−1,1].

Thus the mapped Jacobi polynomials turn out to be a special type of Müntz-Legendre poly-

nomials with α = 1/(l + 1). Therefore, for α= 1/(l + 1) the space

M (0,l)
N
= span
�
L (0,l)

n
(x) : 0≤ n≤ N

	
= span
�
1, (1+ x)α, · · · , (1+ x)Nα

	
, (2.34)

is dense in L2(−1,1). For r, l 6= 0, the mapped Jacobi polynomials can be considered as

generalised Müntz-Jacobi functions

M (r,l)
N = span
�
L (r,l)n (x) : 0≤ n≤ N

	
= span
�
1, x̃ , · · · , x̃N
	
,

with x̃ defined in (2.8). Note that to the best of the authors’ knowledge, this family of

orthogonal functions has not been studied so far.

2.4. Approximation by mapped Jacobi polynomials

Let us now consider the approximation of functions u ∈ L2 by their orthogonal projec-

tions π
(r,l)
N

u ∈M (r,l)
N

defined by

(π
(r,l)
N

u)(x) =

N∑

n=0

û(r,l)
n
L (r,l)

n
(x), û(r,l)

n
=

1

σr,lγ
(r,l)
n

∫ 1

−1

u(x)L (r,l)
n
(x) d x .

Using [26], we obtain the following result.

Theorem 2.2. Let x = g(y) and y = h(x) be, respectively, the mapping (2.2) and (2.4) and

let

D̃xu :=
d x

d y

du

d x
= σr,lω

(r,l)(h(x))
du

d x
, D̃m

x u := D̃x · · · D̃x︸ ︷︷ ︸
m copies

u;

ω̃
(α,β)

r,l
(x) :=ω(α,β)(h(x))(g′(h(x); r, l))−1.

(2.35)

If D̃
j
xu ∈ L2

ω̃
( j+r, j+l)

r,l

(Λ) for all 0≤ j ≤ m, then

‖π(r,l)
N

u− u‖ ≤ cN−m‖D̃m
x

u‖
ω̃
(m+r,m+l)

r,l

, (2.36)

where the constant c is independent of N and u.

The examples below show how the mapping (2.5) improves the convergence rate.



622 T. Sun, R.Q. Liu and L.L. Wang

Example 2.1. Consider the function

u(x) = v0(x) + (1+ x)ν1 v1(x) + (1+ x)ν2 v2(x) + h.o.t, (2.37)

where {vi} are smooth functions, 0 < ν1 < ν2 < · · · , and the high-order term contains the

singular factor (1+ x)ν with ν > ν2. Direct calculations show that if m < (l + 1)(2ν1 + 1),

then ‖D̃m
x u‖

ω̃
(m,m+l)

0,l

<∞. Thus, for the function (2.37), the expected convergence order

is O (N−(l+1)(2ν1+1)+ε) with a small ε > 0. For a numerical illustration, we consider the

function

u(x) = ex + (1+ x)ν1 sin x + (1+ x)ν2 cos x + (1+ x)ν3 ,

with ν1 = 0.3,ν2 = 0.4 and ν3 = 1.5. Computing |û(0,l)
N+1
|, we expect that



π(0,l)
N u− u


 ∼ |û(0,l)

N+1
| ∼ N−(l+1)(2ν1+1)+ε. (2.38)

For l = 0,1,2,3, the desired convergence orders are, respectively, 1.6− ε, 3.2− ε, 4.8− ε
and 6.4− ε with a small ε > 0, and the left graph in Fig. 2 demonstrates the expected gain

in the convergence order.

Example 2.2. Consider now the approximation of the function

uǫ(x) = 1− exp
�
− ((1+ x)/ǫ)ν
�
, ν ∈ (0,1),

which has a boundary layer due to small ǫ and the singular factor. Direct calculation shows

that

D̃m
x uǫ = ǫ

−mν(1+ x)ml/(l+1)+ν−m
�

cm1ǫ
(m−1)ν + cm2ǫ

(m−2)ν(1+ x)ν + · · ·

+ cmm−1ǫ
ν(1+ x)(m−2)ν+ cmm(1+ x)(m−1)ν

	
exp
�
− ((1+ x)/ǫ)ν
�
.
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Figure 2: The approximation errors measured by (2.38) and (2.41). Left: Example 2.1. Right: Exam-

ple 2.2.
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Here, {cmk}
m
k=1

are constants, which are not in powers of 1/ǫν. It follows from (2.35)-(2.36)

that

‖D̃m
x uǫ‖

2

ω̃
(m,m+l)

0,l

≤ C

∫ 1

−1

(D̃m
x uǫ)

2(1+ x)
m

l+1 d x

≤ C

m∑

j=1

ǫ−2 jν

∫ 1

−1

(1+ x)2 jν− m
l+1 exp
�
− 2((1+ x)/ǫ)ν

�
d x . (2.39)

Note that if α > −1, then the variable change t = 2((1+ x)/ǫ)ν in the integral below shows

that

∫ 1

−1

(1+ x)α exp
�
− 2((1+ x)/ǫ)ν

�
d x

=
1

ν

�
1

2

� α+1
ν

ǫα+1

∫ 2( 2
ǫ )
ν

0

t
α+1
ν −1e−t d t ≤

1

ν

�
1

2

� α+1
ν

ǫα+1

∫ ∞

0

t
α+1
ν −1e−t d t

=
1

ν

�
1

2

� α+1
ν

ǫα+1
Γ

�
α+ 1

ν

�
. (2.40)

If 2ν−m/(l + 1)> −1, we can set α = 2 jν−m/(l + 1) in (2.39)-(2.40) and obtain

‖D̃m
x

uǫ‖ω̃(m,m+l)

0,l

≤ Cǫ(1−m/(l+1))/2,

where C is a constant independent of ǫ. Therefore, it follows from (2.36) that

‖π(0,l)
N uǫ − uǫ‖ ≤ CN−mǫ(1−m/(l+1))/2, m< (l + 1)(2ν+ 1). (2.41)

The convergence order is roughly O (ǫ−νN−(l+1)(2ν+1)+ε) for an 0 < ε < 1. For numerical

illustration, we choose ν = 0.3, l = 3. The right graph in Fig. 2 shows |û(0,l)

ǫ,N+1
| against

N−(l+1)(2ν+1) in log10-scale with N ∈ [20,250] for various ǫ. The expected gain in conver-

gence order is visible even for very small ǫ and thin boundary layer.

3. Applications to Singularly Perturbed FIVPs

We now apply the mapped Jacobi polynomials to singularly perturbed Caputo FIVPs of

order ν ∈ (0,1).

3.1. Singularly perturbed FIVPs

Let us start with the following singularly perturbed Caputo FIVP of order ν ∈ (0,1):

ǫ C
−1Dν

x
Uǫ(x) +λ(x)Uǫ(x) = f (x), x ∈ (−1,1),

Uǫ(−1) = u−,
(3.1)
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where λ(x) and f (x) are continuous functions such that λ(x) > 0 for all x ∈ [−1,1],

ǫ ∈ (0,1) is the singular perturbation parameter and u− a given constant.

Following the approaches to singularly perturbed Volterra integral and integro-differen-

tial equations [11] and the singular perturbed problems of integer order [16, Page 6], we

obtain

λ(x)Uǫ(x) = f (x) + O (ǫ), ǫ→ 0,

so that if

lim
x→−1

lim
ǫ→0

Uǫ(x) 6= lim
ǫ→0

lim
x→−1

Uǫ(x) = u−,

then (3.1) is a singularly perturbed problem with a boundary layer near x = −1. We

illustrate this situation by a special case with constant functions f and λ.

Proposition 3.1. If f (x) = A and λ(x) = B with A∈ R, B ∈ R+ for all x ∈ (−1,1), then the

solution of (3.1) has the form

Uǫ(x) =
A

B
+

�
u− −

A

B

�
Eν,1(−B(x + 1)ν/ǫ), (3.2)

where Eα,β is a two-parameter Mittag-Leffler function defined by

Eα,β(z) :=

∞∑

k=0

zk

Γ (kα+ β)
, α,β > 0. (3.3)

Proof. If ν ∈ (0,1), then according to Refs. [6,8], we have

C
−1Dνx (1+ x)η =






Γ (η+ 1)

Γ (η− ν+ 1)
(1+ x)η−ν, η > 0,

0, η = 0.

(3.4)

Since Eν,1 an analytic function, it follows directly from (3.3)-(3.4) that

C
−1Dνx Eν,1

�
− B(x + 1)ν/ǫ
�
= −

B

ǫ
Eν,1

�
− B(x + 1)ν/ǫ
�
,

which implies that (3.2) is the solution of (3.1).

Straightforward calculation shows that

lim
x→−1

lim
ǫ→0

Uǫ(x) =
A

B
, lim

ǫ→0
lim

x→−1
Uǫ(x) = u−,

and the boundary layer appears if A 6= Bu−.
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3.2. Petrov-Galerkin schemes

The previous considerations suggest that the collocation method might not provide the

results required. As (2.6) shows, the set of the mapped JGL points is very dense in the

neighbourhood of x = −1 with the distance O (N−2(l+1)) to the nearest interior node. As

a result, the matrix of the collocation scheme becomes very ill-conditioned as l increases.

Therefore, we prefer to employ a Petrov-Galerkin scheme, where the appropriate choice of

testing functions can lead to a diagonal stiffness matrix.

Let us also assume that the term u− is equal to zero and recall the mappings (2.5) and

the notation x̃ — viz.

x = −1+2

�
1+ y

2

�l+1

, y = −1+2

�
1+ x

2

�1/(l+1)

, x̃ =

�
1+ x

2

�1/(l+1)

=
1+ y

2
. (3.5)

We denote

Φ(ν)n (x) := −1Iνx L
(0,l)
n (x), Ψn(x) :=L (0,l)

n (x), (3.6)

and introduce

X
(ν)
N := span
�
Φ(ν)n : 0≤ n≤ N

	
, YN := span
�
Ψn : 0≤ n≤ N

	
. (3.7)

It follows from the Eqs. (2.27), (2.34) that

X
(ν)
N = span
�
(1+ x)ν, (1+ x)ν+α, · · · , (1+ x)ν+Nα

	
, YN =M

(0,l)
N , (3.8)

where α= 1/(l + 1).

A Petrov-Galerkin spectral scheme for (3.1) with u− = 0 is to find uN ∈ X
(ν)
N

such that

ǫ
�

C
−1Dν

x
uN , vN

�
+ (λuN , vN ) = ( f , vN ), vN ∈ YN . (3.9)

We recall that the left-sided Riemann-Liouville fractional derivative of order ν ∈ (0,1) are

defined by
�

R
−1Dµx u
�
(x) =

d

d x

�
−1I1−µ

x u
�
(x).

Using the relations

R
−1Dνx −1 Iνx v(x) = v(x), R

−1Dνx v(x) = C
−1Dνx v(x), if v(−1) = 0,

presented in [6] and (2.16), we obtain

Smn :=

∫ 1

−1

C
−1Dν

x
Φ(ν)

n
(x)Ψm(x)d x = ρ(0,l)

n
δmn, ρ(0,l)

n
=

2(l + 1)

2n+ l + 1
. (3.10)

Moreover, the Eqs. (2.27), (3.5) yield

Φ(ν)
n
(x) = (1+ y)(l+1)νQn(y), Qn ∈ Pn,
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so that

Tmn :=

∫ 1

−1

λ(x)Φ(ν)n (x)Ψm(x)d x =
l + 1

2l

∫ 1

−1

λ(g(y))Qn(y)P
(0,l)
m (y)(1+ y)l+(l+1)νd y,

which can be evaluated by means of the Jacobi-Gauss quadratures with the weight function

(1+ y)(l+1)ν. The terms

fm :=

∫ 1

−1

f (x)Ψm(x)d x =
l + 1

2l

∫ 1

−1

f (g(y))P(0,l)
m (y)(1+ y)l d y

can be computed by the Jacobi-Gauss or Legendre-Gauss quadratures.

Representing uN as uN (x) =
∑N

n=0 ûnΦ
(ν)
n (x), one can write the system (3.9) in the

matrix form �
ǫS+ T
�
u = f , (3.11)

where

S = (Smn), T = (Tmn), f = ( f0, · · · , fN )
t , u = (û0, · · · , ûN )

t .

We observe that according to (3.10), the stiffness matrix S is diagonal.

3.3. Numerical results

Example 3.1. We consider the singularly perturbed FIVP (3.1)

ǫ C
−1Dνx Uǫ(x) + Uǫ(x) = 1, x ∈ (−1,1), ν ∈ (0,1); Uǫ(−1) = 0. (3.12)

According to (3.2), the solution of (3.12) is

Uǫ(x) = 1− Eν,1

�
− (x + 1)ν/ǫ
�
.

It turns out that

lim
x→−1

lim
ǫ→0

Uǫ(x) = 1 6= 0= lim
ǫ→0

lim
x→−1

Uǫ(x),

so Uǫ(x) has a boundary layer at x = −1.

We now set ν = 0.5 in (3.9) and apply the Petrov-Galerkin scheme to the corresponding

equation. Fig. 3 shows the discrete L2-norms of Uǫ − uN against N in log-log scale on the

Legendre-Gauss points {ξi}
500
i=1

for fixed ǫ or l. In particular, for a fixed ǫ the increase of

the parameter l significantly improves accuracy and convergence rate. On the other hand,

smaller ǫ lead to larger errors. Summarising we note that for thin boundary layers the

scheme with l = 3 or l = 4 works well. Another advantage of Petrov-Galerkin scheme (3.9)

is that it actually incorporates a pre-conditioning technique in the sense of works [19,25].

Thus the Eqs. (3.6)-(3.7) show that the approximate solution is represented via fractional

integrals of mapped Jacobi polynomials rather than the mapped polynomials themselves,

which leads to a diagonal stiffness matrix. Therefore, the conditioning of the linear system

(3.11) does not depend on N but on ǫ being of order O (ǫ−1). Table 2 provides the condition

number of the linear system (3.11) for various N and ǫ.
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Figure 3: L2
-errors against N in log-log s
ale. Left: ǫ = 10−5

, l varies; Right: l = 3, ǫ varies.

Table 2: S
aled 
ondition numbers, ν = 0.5, l = 4.

❍
❍
❍
❍
❍

N

ǫ
10−5 10−6 10−7 10−8 10−9

64 0.9493 0.3319 0.0438 0.0045 0.0004

128 1.1608 1.0845 0.6261 0.1164 0.0127

256 1.1692 1.1666 1.1406 0.9171 0.2941

512 2.1722 2.1819 2.1885 2.2019 2.2167

1024 9.5211 9.5231 9.5232 9.5233 9.5233

Example 3.2. We now consider the Eq. (3.1) with non-constant smooth functions f (x)

and λ(x). The exact solution of the corresponding equation is not known. Therefore, we

compute an approximate solution on a very fine grid and use it as the reference solution to

examine the convergence. Thus, let ν ∈ (0,1), and consider the equation

ǫ C
−1Dνx Uǫ(x) + (2− x)Uǫ(x) = 2− sin x , x ∈ (−1,1),

Uǫ(−1) = 0.
(3.13)

We note that the solution Uǫ(x) has a boundary layer at x = −1, since

lim
x→−1

lim
ǫ→0

Uǫ(x) =
1

3
(2+ sin 1) 6= 0= lim

ǫ→0
lim

x→−1
Uǫ(x).

Fig. 4 shows that for ǫ = 10−5, the use of the corresponding mapping with l = 4 sub-

stantially diminishes L2-error. On the other hand, even for the very thin boundary layer of

ǫ = 10−9, the scheme (3.9) with l = 4 works reasonably well.

4. Applications to Singularly Perturbed FBVPs

Here we apply mapped spectral Petrov-Galerkin and spectral-Galerkin methods to sin-

gularly perturbed Riesz FBVPs of order ν ∈ (1,2). Numerical examples demonstrate the

efficiency of the schemes.
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Figure 4: L2
-errors against N . Left: ǫ = 10−5

, l varies. Right: l = 4, ǫ varies.

4.1. Singularly perturbed Riesz FBVPs

Let ν ∈ (1,2) and p,q ≥ 0 are constants such that p2+q2 6= 0. We consider the boundary

value problem

− ǫ Dνx Uǫ(x) +λ(x)Uǫ(x) = f (x), x ∈ (−1,1),

Uǫ(±1) = 0,
(4.1)

with the modified Riesz fractional derivative defined by

Dν
x
u(x) =
�

p R
−1Dν

x
+ q R

x Dν
1

�
u(x) =

d2

d x2

�
p −1 I2−ν

x
+ q x I2−ν

1

�
u(x).

For p = q = 1, the operator Dν
x

represents the usual fractional Riesz derivative — viz.

Dνx u(x) =
1

Γ (2− µ)
d2

d x2

∫ 1

−1

u(t)

|x − t|ν−1
d t, ν ∈ (1,2).

If

lim
x→±1

f (x)

λ(x)
6= 0 or f (±1) 6= 0, λ(±1) 6= 0,

then the problem (4.1) has boundary layers.

4.2. A spectral-Petrov-Galerkin scheme

We consider the following basis and test functions:

bΦ(ν)n (x) := −1Iν−1
x L

(r,l)
n (x) + an × −1Iν−1

x L
(r,l)

n+1
(x),

bΨn(x) := −1I1
x L

(r,l)
n (x) + bn × −1I1

x L
(r,l)

n+1
(x),

where {an} and {bn} are so that the boundary conditions bΦ(ν)n (1) = 0, bΨn(1) = 0 are satis-

fied. It is clear that bΦ(ν)
n
(−1) = 0, bΨn(−1) = 0 and we can introduce the solution and test
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function spaces

bX (ν)
N

:= span
�bΦ(ν)

n
: 0≤ n≤ N
	
, bYN := span
�bΨn : 0≤ n≤ N

	
.

The Petrov-Galerkin spectral scheme for the Eq. (4.1) consists in finding uN ∈ bX (ν)N such

that

ǫ p
�

R
−1Dν−1

x uN , v′N

�
− ǫ q
�
uN , R

−1Dνx vN

�
+ (λuN , vN ) = ( f , vN ), vN ∈ bYN . (4.2)

The second term in the left hand side of (4.2) was obtained by the fractional integration by

parts. Representing the approximate solution uN (x) as uN (x) =
∑N

n=0 ũn
bΦ(ν)n (x) and using

bΨm(x), m = 0,1, · · · , N for vN (x), we write the corresponding system (4.2) in the matrix

form �
ǫpbS− ǫqbR+ bT
�
bu = bf , (4.3)

where

bS = (bSmn), bR = (bRmn), bT = (bTmn), bf = (bf0, · · · , bfN )
t , bu = (ũ0, · · · , ũN )

t ,

are the matrices with the entries

bSmn :=

∫ 1

−1

R
−1Dν−1

x
bΦ(ν)n (x)
bΨ ′m(x)d x , bRmn :=

∫ 1

−1

bΦ(ν)n (x)
R
−1Dνx
bΨm(x)d x ,

bTmn :=

∫ 1

−1

λ(x)bΦ(ν)n (x)
bΨm(x)d x , bfm :=

∫ 1

−1

f (x)bΨm(x)d x .

Recalling (2.16) and the properties of fractional derivatives [6] once again, we derive the

non-zero entries

bSmn =






σr,lγ
(r,l)
n
+ an bnσr,lγ

(r,l)
n+1

, n= m,

bn−1σr,lγ
(r,l)
n , n= m+ 1,

anσr,lγ
(r,l)

n+1
, n= m− 1,

of the tridiagonal matrix bS. On the other hand, both bR and bT are full matrices. To evaluate

them, one can use the Eqs. (2.20)- (2.21) and Jacobi-Gauss quadratures.

4.3. A spectral-Galerkin scheme

The previous scheme generates non-symmetric system. However, if p = q, the Galerkin

scheme below has symmetric matrices. Thus we seek uN ∈ bX (ν)N such that

ǫp
�

R
−1Dν−1

x
uN , DvN

�
+ ǫq
�
DuN , R

−1Dν−1
x

vN

�
+ (λuN , vN ) = ( f , vN ), vN ∈ bX (ν)N . (4.4)

Representing uN (x) as uN (x) =
∑N

n=0 ũn
bΦ(ν)n (x) and using bΦ(ν)m (x), m = 0,1, · · · , N for

vN (x), we write the system (4.4) in the matrix form

�
ǫpbS+ ǫqbR+ bT
�
bu = bf , (4.5)
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where

bS = (bSmn), bR = (bRmn), bT = (bTmn), bf = (bf0, · · · , bfN )
t , bu = (ũ0, · · · , ũN )

t ,

are the matrices with the entries

bSmn :=

∫ 1

−1

R
−1Dν−1

x
bΦ(ν)n (x)D
bΨ(ν)m (x)d x , bRmn :=

∫ 1

−1

DbΦ(ν)n (x)
R
−1Dν−1

x
bΨ (ν)m (x)d x ,

bTmn :=

∫ 1

−1

λ(x)bΦ(ν)n (x)
bΨ (ν)m (x)d x , bfm :=

∫ 1

−1

f (x)bΨ (ν)m (x)d x .

We note that although bS+bR is a symmetric matrix since bS = bR
T
, all matrices in this scheme

are full.

Thus the scheme (4.2) produces a tridiagonal matrix bS, while the scheme (4.4) gen-

erates a symmetric matrix bS + bR. If p = q, the schemes (4.2) and (4.4) have almost the

same efficiency. However, if p 6= q and p,q > 0, the matrix bS+ bR for (4.4) is not symmetric

anymore, so that the scheme (4.2) looks more attractive.

4.4. Numerical results

Example 4.1. Let ν ∈ (1,2) and p = q = 1. We consider the singularly perturbed Riesz

FBVP

− ǫ
�

R
−1Dνx +

R
x Dν1

�
Uǫ(x) + (2− x)Uǫ(x) = 2− sin x , x ∈ (−1,1),

Uǫ(±1) = 0,

and note that since f (−1) = 2+sin 1 6= 0, λ(−1) = 3 6= 0, f (1) = 2−sin 1 6= 0,λ(1) = 1 6= 0,

the solution Uǫ(x) has boundary layers at x = −1 and x = 1.

Fig. 5 demonstrates the errors of the Petrov-Galerkin scheme (4.2) in the cases where ǫ

or r and l are fixed. In particular, we observe that for all r, l and ǫ, the L2-error diminishes

when N grows. Moreover, the use of mapping technique speeds up the convergence. The

results for the Galerkin scheme (4.4) are displayed in Fig. 6. Note that they are similar to

the results for the scheme (4.2), but the system of the last scheme has smaller condition

numbers — cf. Tables 3 and 4, which leads to smaller round-off errors for larger N .

Example 4.2. Let ν ∈ (1,2) and p = 1, q = 2. We consider the fractional boundary value

problem

− ǫ
�

R
−1Dνx + 2 R

x Dν1

�
Uǫ(x) + (2− x)Uǫ(x) = 2− sin x , x ∈ (−1,1), ν ∈ (1,2),

Uǫ(±1) = 0.

The solution Uǫ(x) has boundary layers again and since p 6= q, here we only employ the

Petrov-Galerkin scheme (4.2). Fig. 7 shows the decay of errors in L2-norm and confirms

that the mapping technique substantially speeds up the convergence.

Tables 3 and 4 contains scaled condition numbers for two schemes. However, it is more

difficult to construct well-conditioned schemes now since the Riesz fractional derivative is,

in a sense, a non-symmetric operator.
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Figure 5: The Petrov-Galerkin s
heme (4.2) for Example 4.1: L2
-errors against N in log-log s
ale,

p = q = 1. Left: ǫ = 10−5
. Right: r = l = 3.
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Figure 6: The Galerkin s
heme (4.4) for Example 4.1: L2
-errors against N in log-log s
ale, p = q = 1.

Left: ǫ = 10−5
. Right: r = l = 3.
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Figure 7: The Petrov-Galerkin s
heme (4.2) for Example 4.2: L2
-errors against N in log-log s
ale with

p = 1, q = 2. Left: ǫ = 10−5
; Right: r = l = 3.
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Table 3: S
aled 
ondition numbers of (4.3) under di�erent N and ǫ.

N N1.8 ǫ = 10−5 ǫ = 10−6 ǫ = 10−7 ǫ = 10−8 ǫ = 10−9

64 1782.89 2342.22 2193.44 2107.34 1862.57 1776.83

128 6028.38 6442.72 6253.28 6321.67 6126.58 5998.21

256 21618.82 22034.26 21967.32 21765.35 21603.43 21589.68

512 75281.10 75344.19 75267.24 75316.29 75227.46 75113.94

Table 4: S
aled 
ondition numbers of (4.5) under di�erent N and ǫ.

N N2.1 ǫ = 10−5 ǫ = 10−6 ǫ = 10−7 ǫ = 10−8 ǫ = 10−9

64 6208.38 7098.34 6847.69 7153.84 6205.04 6387.88

128 26615.89 27962.08 27564.45 27062.61 26364.14 26617.25

256 114104.80 117826.92 116324.66 115948.06 115291.71 114753.48

512 489178.00 491774.69 490341.36 490875.67 489962.93 489453.67
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