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Abstract. Image restoration has drawn much attention in recent years and
a surge of research has been done on variational models and their numerical
studies. However, there remains an urgent need to develop fast and robust
methods for solving the minimization problems and the underlying nonlinear
PDEs to process images of moderate to large size. This paper aims to propose
a two-level domain decomposition method, which consists of an overlapping
domain decomposition technique and a coarse mesh correction, for directly
solving the total variational minimization problems. The iterative algorithm
leads to a system of small size and better conditioning in each subspace, and is
accelerated with a piecewise linear coarse mesh correction. Various numerical
experiments and comparisons demonstrate that the proposed method is fast
and robust particularly for images of large size.

1. Introduction. Image restoration is one of the fundamental and challenging
tasks in image processing [16, 2], and phenomenal advances have been achieved in
variational and PDE-based approaches since the seminal work [43]. The ROF model
minimizes the total variation (TV) over the space of bounded variation (BV), so it is
capable of preserving sharp edges and boundaries with a high quality recovery. More
precisely, given a bounded image domain Ω ⊆ R

d (d = 1, 2, 3), we are interested in
the general minimization problem:

min
u∈BV (Ω)

{
α

∫
Ω

|∇u| +
∫

Ω

f(u)dΩ
}
, α > 0, (1)
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where the gradient is in the distributional sense [22], and f(·) is a differentiable
functional. The associated Euler-Lagrange equation takes the form

− αdiv
( ∇u

|∇u|
)

+ f ′(u) = 0, (2)

which is also known as the curvature equation [40]. As the TV model (1)-(2) con-
tinues to enjoy applications in diverse areas such as image denoising, debluring and
segmentation [43, 12, 37, 54, 5, 63], interface evolution [40, 41], and inverse problems
[17], there still exists a great demand for developing fast and robust methods for
such minimization problems and nonlinear PDEs, although considerable progress
has been made in several directions. Typically, existing methods in the literatures
can be classified into the following types:

i. The gradient descent method (cf. [43, 38]): Instead of solving the nonlinear
PDE, it involves (2) with an artificial time and minimizes the energy along
the gradient descent direct via the evolution of a parabolic equation. This
approach is very reliable, but converges considerably slowly.

ii. The lagged diffusivity fixed-point iteration (see, e.g., [1, 55, 56, 57]): It solves
the linearized version of the nonlinear steady-state PDE (2) iteratively by
treating the nonlinear term 1/|∇u| explicitly. Various iterative solvers have
been considered, but further studies are still needed, in particular, techniques
to speed up the outer solvers for large size images.

iii. The dual approach (cf. [10, 5, 15, 14]): It introduces a dual variable (the
original unknown function u in (1) is referred to as the primal variable). These
methods overcome the non-differentiability of the cost functional in (1). They
often lead to more efficient algorithms, and have received increasing interests
recently.

iv. Graph-cuts method: It is a well-known technique in image analysis and com-
puter vision [33, 42, 3]. Darbon and Sigelle’s work [20] and Chambolle’s
Markov Random Field based method [11], have introduced the Graph-cuts
methods to total variation minimization. Goldfard and Yin [27] have also de-
veloped a parametric maximum-flow based method to the original parametric
maximum-flow/minimum-cut algorithm in [25] to improve its efficiency. They
have also proposed a mixed algorithm for solving the ROF and TV/L1 models
more efficiently by combining the Gallo-Grigoriadis-Tarjan algorithm with the
divide-and-conquer approach proposed in [20].

v. Additive operator splitting (AOS) scheme: Historically, this type of schemes
was first developed for (nonlinear elliptic/parabolic) monotone equation and
Navier-Stokes equations in [34, 35]. In image processing applications, the
AOS scheme was found to be an efficient way for approximating the Perona-
Malik filter [62, 61], especially if symmetry in scale-space is required. The
AOS scheme is first order in time, semi-implicit, and unconditionally stable
with respect to its time-step [35, 62]. These methods have been applied to a
wide range of image processing applications and often lead to very efficient
numerical algorithms.

vi. Bregman iteration: Iterative optimization methods based on penalization or
Bregman distance [60, 58, 28] have been proposed very recently. In [60, 58],
the authors used variable-splitting to separate the L1 and L2 terms and then
solved an equality constrained optimization problem by penalization and alter-
native minimization. Bregman iteration for image processing was originated
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from [36] and was introduced by Osher et. al. in [39]. It has been extended to
wavelet-based denoising [59], nonlinear inverse scale space in [8, 9], and com-
pressed sensing[30, 65]. The basic idea is to transform the equality constrained
optimization problem into a series of unconstrained problems using Bregman
distance. By combining the variable-splitting and Bregman iteration, Gold-
stein et. al. obtained split Bregman method in [28] which is particularly
efficient for L1 regularized problems, e.g., TV restoration.

vii. Augmented Lagrangian method [26]: It was proposed in [51] for total varia-
tion image restoration. It has many advantages over other methods such as
penalty method [4]. As only linear problems need to be solved during the
iterations, FFT can be applied to get extremely efficient implementations. In
addition, the augmented Lagrangian approach provides close connections to
dual methods and split Bregman iteration [65, 51].

viii. Multigrid method [52, 53, 64]: It is one of the most powerful numerical meth-
ods for solving some linear and nonlinear partial differential equations. In
[18, 31], the linear algebraic multigrid method [46] was adopted for solving
the above PDE in each (outer) step of a fixed iteration, while [44] attempted to
use the standard multigrid methods with a non-standard and somewhat global
smoother. Recently, nonlinear multigrid methods based on the subspace cor-
rection approach of [52] have been introduced to image processing in [19, 13].
Numerical experiments indicate their overwhelming numerical potentials.

These methods have been widely used for image processing, and their strength
and weakness have also been observed from real applications. Dual methods and
Bregman iterations are fast, but they are under intensive investigation for the ap-
plications to more general image processing problems. Graph-cut approaches are
usually fast, but they can be only applied to a special class of problems and could
also have matriculation errors. The AOS and multigrid methods also have limita-
tions in the models that they can be applied.

The purpose of this paper is to propose a fast solver based on overlapping domain
decomposition and a coarse mesh correction for image processing tasks. Our aim is
to demonstrate several essential advantages of the proposed method. More precisely,

i. This method can be used for very general variational-based image processing
problems. Indeed, based on this notion, one can easily apply the existing
solvers to the minimization problem of a given task by solving a sequence of
subdomain problems of smaller scale.

ii. In practice, the original problem, e.g., large size 3D data processing, could be
too large, which induces difficulties in applying a given solver. By splitting
a large problem into many smaller sub-problems, we could apply the given
solver.

iii. The proposed method can save CPU time cost. The gain is significant with
an implementation of efficient and relatively accurate subdomain solvers,

iv. The proposed method is well-suited for distributed-memory parallel comput-
ers, hence it can be sped up by parallel implementation.

It is known that domain decomposition (DD) methods are powerful iterative
methods for solving partial differential equations [7, 21, 29, 45, 64]. Some recent
progress has shown that DD methods are also efficient for some nonlinear ellip-
tic problems and some convex minimization problems [49, 48, 50, 52] with mesh
independent convergence. So far, it is still unknown that one can use domain de-
composition methods for the ROF model. Some recent efforts have been devoted
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to study these problems [47, 32, 24, 23]. For simplicity of presentation, we pro-
pose and test this method on the ROF model, see (1), and present the details of
the implementation. We provide ample numerical results to show its capability in
processing images of large size with saving in CPU time and memory. Once again,
the essence of the method is to regard domain decomposition method as a space
decomposition technique. The original minimization problem related to ROF is re-
duced to some sub-minimization problems with smaller size over the sub-domains.
If the sub-minimization problems are solved exactly, the convergence of the gener-
ated sequence is trivial to prove. Due to the degeneracy of the nonlinear equation
of ROF, it is not convincing that we will be able to prove the convergence rate for
the numerical solutions.

The rest of the paper is organized as follows. In section 2, we present the do-
main decomposition algorithm under a general framework of the subspace correction
method. We describe the two-level method in section 3, and we give the detailed
implementation for the ROF model in section 4. We provide various numerical re-
sults to demonstrate the merits of the proposed methods in section 5. We conclude
the paper some discussions.

2. Domain decomposition based subspace correction method. We put the
method in a more general setting and start with the description of the subspace
correction algorithm of [52].

Given a reflexive Banach space V and a convex, Gateaux differentiable functional
F : V → R, we consider the minimization problem:

min
u∈V

F (u). (3)

Under the notion of space correction, we first decompose the space V into a sum of
smaller subspaces:

V = V1 + V2 + · · · + Vm, (4)
which means that for any v ∈ V , there exists vj ∈ Vj such that v =

∑m
i=1 vj .

Following the framework of [64] for linear problems, we solve a finite sequence of
sub-minimization problems over the subspaces:

min
e∈Vj

F (un + e), (5)

where un denotes a previous approximation, to resolve (3). Two types of subspace
correction methods based on (4)-(5), known as the parallel subspace correction
(PSC) and successive subspace correction (SSC) method, were proposed in [64, 52].
Here, we adopt the latter, which can be described as follows:

Algorithm SSC. Choose an initial value u0 ∈ V .

For n = 0,

while j = 1, · · · , m do

Find en
j ∈ Vj such that

F (un+(j−1)/m + en
j ) ≤ F (un+(j−1)/m + vj), ∀vj ∈ Vj .

Set
un+j/m = un+(j−1)/m + en

j .

end
Go to next iteration for n.
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In the following, we apply the algorithm to the (regularized) ROF denoising
model with the cost functional:

F (u) = α

∫
Ω

√
u2

x + u2
y + β dxdy +

1
2

∫
Ω

|u − z|2 dxdy, α, β > 0, (6)

where z is a given noisy image defined on Ω = (0, 1) × (0, 1). Here, the TV-term is
regularized so that F is differentiable and it also avoids the division by zero in the
corresponding Euler-Lagrange equation:

u − αdiv

(
∇u√

|∇u|2 + β

)
= z, (7)

with a homogenous Neumann boundary condition ∂u/∂n = 0 along the boundary.
Recall that the lagged diffusivity fixed-point iteration (cf. [56]) for (7) is to solve
the linearized equation

uk+1 − αdiv

(
∇uk+1√
|∇uk|2 + β

)
= z, k = 0, 1, · · · , (8)

with the initial value u0. We see that each iteration involves all the pixel values
in the image domain, so it will be costly and usually the system is not in good
conditioning when the size of images is large. The domain decomposition based
SSC algorithm will overcome the difficulties by breaking down the whole problem
into sub-problems of much smaller size.

In the first place, we use an overlapping domain decomposition to decompose
the solution space V = BV (Ω). More precisely, we partition Ω into m overlapping
subdomains

Ω =
m⋃

j=1

Ωj , Ωj ∩ Ωk �= ∅, k �= j. (9)

For clarity, the subdomain Ωj is colored with a color j, and Ωj consists of mj

subdomains (assumed to be “blocks” for simplicity), which are not intersected.
Hence, the total number of blocks that cover Ω is

M :=
m∑

j=1

mj . (10)

Figure 1 illustrates schematically the decomposition of Ω into four colored subdo-
mains with 25 blocks.

Based on the above domain decomposition, we decompose the space V = BV (Ω)
as

V =
m∑

j=1

Vj , Vj = BV0(Ωj), (11)

where BV0(Ωj) denotes the subspace of BV (Ωj) with zero traces on the “interior”
boundaries ∂Ωj\∂Ω. Applying the SSC algorithm to the TV-denoising model leads
to an iterative method.

Given an initial value u0 ∈ V, Algorithm SSC needs us to solve un from⎧⎨
⎩

F
(
un+ j−1

m + en
j

)
≤ F

(
un+ j−1

m + vj

)
, ∀vj ∈ Vj = BV0(Ωj),

un+ j
m = un+ j−1

m + en
j , 1 ≤ j ≤ m.

(12)
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Figure 1. Schematic illustration of the coloring of the subdomains, and
fine/coarse meshes on Ω = (0, 1)2. This corresponds to the decomposition:

V h = V H
0 +

∑4
i=1 V h

i with H = 5h and in (10), m = 4, m1 = 9, m2 = 6, m3 =
6, m4 = 4, and M = 25.

Here, we notice that en
j is the solution of the subproblem over Ωj. It is also easy to

see that un+ j
m satisfies the associated Euler-Lagrange equations for 1 ≤ j ≤ m,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−αdiv
(

∇un+ j
m√

|∇un+ j
m |2+β

)
+ un+ j

m = z, in Ωj ,

∂un+ j
m

∂n = 0, on ∂Ωj ∩ ∂Ω,

un+ j
m = un+ j−1

m , on ∂Ωj\∂Ω.

(13)

Outside Ωj , we have un+ j
m = un+ j−1

m . Thus, there is no need to solve un+ j−1
m

outside Ωj . As the subdomain Ωj may contain many disjoint ”block”, the values of
un+ j

m can be obtained in parallel in these “blocks” by solving (13).
More details on the disretization of (13) will be described in the forthcoming

section.

3. The two-level domain decomposition method. In this section, we build
another ingredient, i.e., a coarse mesh correction, into the previous domain decom-
position method. For clarity of presentation, we introduce the coarse mesh solver in
the finite element setting. Similar explanations are also valid for the finite difference
approximations.

We first partition the domain Ω into a coarse mesh {TH} with a mesh size H,
and then refine it into a fine mesh partition {Th} with a mesh size h < H . Assume
that both the coarse mesh and the fine mesh are shape-regular, and let {Di}m

i=1 be
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a non-overlapping domain decomposition for Ω and each Di is the union of some
coarse mesh elements (see Figure 1).

Let V := V (Ω) be the space to be specified later. Let SH ⊂ V (Ω) and Sh ⊂ V (Ω)
be the continuous, piecewise linear finite element spaces, over the H-level and h-level
subdivisions of Ω respectively. More specifically,

SH =
{
v ∈ C1(Ω) : v|T ∈ P1(T ), ∀T ∈ TH

}
,

Sh =
{
v ∈ C1(Ω) : v|T ∈ P1(T ), ∀T ∈ Th

}
.

(14)

For each Di, we consider an enlarged sub-domain Ωi = Dδ
i consisting of elements

T ∈ Th with dist(T , Di) ≤ δ. The union of Ωi covers Ω with overlaps of size
δ. Let us denote the piecewise linear finite element space with zero traces on the
boundaries ∂Ωi\∂Ω as Sh(Ωi). Then one can show that

Sh =
∑

Sh(Ωi) and Sh = SH +
∑

Sh(Ωi). (15)

For the overlapping subdomains, assume that there exist m colors such that
each subdomain Ωi can be marked with one color, and the subdomains with the
same color will not intersect with each other. For suitable overlaps, one can always
choose m = 2 if d = 1; m = 4 if d ≥ 2; m ≥ 8 if d = 3. Let Ωi be the union of the
subdomains with the ith color, and define

V h
i =

{
v ∈ Sh : v(x) = 0, x /∈ Ωi

}
, i = 1, 2, · · · , m.

By denoting subspaces V H
0 = SH , V h = Sh, we get from (15) that

a). V h =
m∑

i=1

V h
i and b). V h = V H

0 +
m∑

i=1

V h
i . (16)

Note that the summation index is from 0 to m instead of from 1 to m when the
coarse mesh is added.

For a better understanding of the above slightly abstract setting, we present
below two illustrative examples.

Example I: overlapping
Divide Ω into only four nonoverlapping subdomains (see Figure 2 (left)):

D1 = (0, 1/4)×(0, 1/4)∪(1/2, 3/4)×(0, 1/4)∪(0, 1/4)×(1/2, 3/4)∪(1/2, 3/4)×(1/2, 3/4)

and get the overlapping subdomains corresponding

Ω1 = (0, 5/16)×(0, 5/16)∪(7/16, 13/16)×(0, 5/16)∪(0, 5/16)×(7/16, 13/16)∪(7/16, 13/16)×(7/16, 13/16)

where δ = 1/16.
Example II: A coarse mesh correction to space decomposition. We con-

sider the simple unit square domain Ω = (0, 1)× (0, 1) and a uniform triangulation
TH(Ω) = {τ} and piecewise linear finite element spaces. If we take H = 4h, then the
values of the 2D basis function may be denoted by matrix Ih

H (called the correction
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Figure 2. Left: an overlapping decomposition. Right: The finite element
basis at the center node. The weights from center towards boundary are 1
(marked by black ‘◦’), 3/4 (marked by green ‘�’ along the innermost hexagon),
1/2 (marked by brown ‘◦’), 1/4 (marked by blue ‘�’), 0 (marked by red ‘◦’
along the innermost hexagon)

operator), which takes the values (see Figure 2 (right)):

Ih
H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

0 1
4

1
4

1
4

1
4 0 0 0 0

0 1
4

1
2

1
2

1
2

1
4 0 0 0

0 1
4

1
2

3
4

3
4

1
2

1
4 0 0

0 1
4

1
2

3
4 1 3

4
1
2

1
4 0

0 0 1
4

1
2

3
4

3
4

1
2

1
4 0

0 0 0 1
4

1
2

1
2

1
2

1
4 0

0 0 0 0 1
4

1
4

1
4

1
4 0

0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

If we apply Algorithm SSC to decomposition (16) with the coarse mesh, we will
get the following domain decomposition algorithm:
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Algorithm DDC. Choose an initial value u0
h ∈ V h.

For n = 0,

Set ũn
h = un

h,

while j = 1, · · · , m do

Find en
h,j ∈ V h

j such that

en
h,j = arg min

vh∈V h
j

F (ũ
n+(j−1)/m
h + vh).

Set
ũ

n+j/m
h = ũ

n+(j−1)/m
h + en

h,j .

end

Find en
H,0 ∈ V H

0 such that

en
H,0 = arg min

vH∈V H
0

F (ũn+1
h + vH).

Set
un+1

h = ũn+1
h + Ih

Hen
H,0.

Go to next iteration for n.

It is seen that the above iteration algorithm requires to solve a sequence of the
minimization problems over the subspaces/subdomains. For the TV-denoising prob-
lem (6), the prototypical variational formulation of the sub-minimization problem
is ⎧⎪⎨

⎪⎩
Given un, find en ∈ V such that

α

(
∇(un + en)√

|∇(un + en)|2 + β
,∇v

)
+ (un + en − z, v) = 0, ∀v ∈ V ,

(18)

where (·, ·) is the L2(Ω) inner product, and V is the finite dimensional space V h
j or

V H
0 .

In real implementations, we linearize (18). For V = V h
j , since ũ

n+j/m
h = ũ

n+(j−1)/m
h +

en
h,j, we solve the problem:

α

⎛
⎝ ∇ũ

n+j/m
h√

|∇ũ
n+(j−1)/m
h |2 + β

,∇v

⎞
⎠ + (ũn+j/m

h − z, v) = 0, ∀v ∈ V h
j , (19)

to obtain ũ
n+j/m
h for all 1 ≤ j ≤ m. For V = V H

0 , the linearized problem for en
H,0 is

α

⎛
⎝∇(ũn+1

h + en
H,0)√

|∇ũn+1
h |2 + β

,∇v

⎞
⎠ +

(
ũn+1

h + en
H,0 − z, v

)
= 0, ∀v ∈ V H

0 . (20)

However, a little care has to be taken for the transition between the coarse mesh
and fine mesh, and the details will be presented in the forthcoming section.

4. Numerical discrete algorithm for TV denoising. We next present the full
two-level algorithm formulated in the previous section for the TV-denoising model.
We partition the image domain Ω = (0, 1)2 into N ×N uniform cells with mesh size
h = 1/N. The cell centers are

(xi, yj) =
(
(i − 1)h, (j − 1)h

)
, 1 ≤ i, j ≤ N + 1. (21)
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Hereafter, let zi,j be the pixel value of the original image z at (xi, yj). It is known
that using proper quadrature rules, finite element methods reduce to finite difference
approximations on uniform grids. Hereafter, we shall adopt finite difference to
discretize (19) and (20). Let ui,j be the finite difference solution at (xi, yj). Denote

δ±x ui,j = ±(ui±1,j − ui,j), δ±y ui,j = ±(ui,j±1 − ui,j).

δc
xui,j = ui+1,j − ui−1,j , δc

yui,j = ui,j+1 − ui,j−1.

The finite difference approximation of (19) is

ul,k − αh

⎧⎨
⎩δ−x

⎡
⎣ δ+

x ul,k√
(δ+

x ul,k)2 + (δc
yul,k)2 + βh

⎤
⎦

+ δ−y

⎡
⎣ δ+

y ul,k√
(δc

xul,k)2 + (δ+
y ul,k)2 + βh

⎤
⎦
⎫⎬
⎭ = zl,k,

(22)

where αh = α/h and βh = h2β. The one-sided second-order finite differences are
used to treat the Neumann boundary conditions, say at x = 0:

u0,k =
4
3
u1,k − 1

3
u2,k. (23)

Boundary conditions are also needed when evaluating δc
x and δc

y at the boundary
nodes.

We now turn to the coarse mesh problem (20). Firstly we note that (20) can be
written in the form:

α
(
an∇en

H,0,∇v
)
+ (en

H,0, v) =
(
z − ũn+1

h , v
)
−α

(
an∇ũn+1

h ,∇v
)
, ∀v ∈ V H

0 . (24)

with

an = (|∇ũn+1
h |2 + β)−1/2.

As before, we need to define a restriction operator for the explanation of the algo-
rithm. For any given r ∈ Sh, we define IH

h r ∈ SH such that

(IH
h r, v) = (r, v), ∀v ∈ SH .

Given a r ∈ Sh, IH
h r can be obtained numerically by a proper summation of r

multiplied with the matrix Ih
H defined in (17) over the support of the finite ele-

ment basis functions. Analysis in [49] showed that we could solve the subproblems
approximately. So we shall use the following finite difference scheme to solve (20)
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approximately:

eL,K − αH

⎧⎨
⎩δ−x

⎡
⎣ δ+

x eL,K√
(δ+

x uL,K)2 + (δc
yuL,K)2 + βH

⎤
⎦

+δ−y

⎡
⎣ δ+

y eL,K√
(δc

xuL,K)2 + (δ+
y uL,K)2 + βH

⎤
⎦
⎫⎬
⎭ =

IH
h

⎡
⎣zl,k − ul,k + αh

⎧⎨
⎩δ−x

⎡
⎣ δ+

x ul,k√
(δ+

x ul,k)2 + (δc
yul,k)2 + βh

⎤
⎦

+δ−y

⎡
⎣ δ+

y ul,k√
(δc

xul,k)2 + (δ+
y ul,k)2 + βh

⎤
⎦
⎫⎬
⎭
⎤
⎦ ,

(25)

where αH = α/H and βH = H2β. Formly, the above system can be written as

ÃHeH = IH
h

(
z − Ahuh

)
, (26)

where {ÃH , Ah} are the coefficient matrices of the systems (22) and (25), respec-
tively, and {eH , z, uh} are vectors of the pixel values. The matrix ÃH is an ap-
proximation of the system matrix for finite element equation (24), that is, we have
replaced an by the known data an−1, and also used the values at the coarse grid
points.

We summarize the above algorithm as follows.

Algorithm DDC-TV. Choose an initial value u0
h ∈ V h.

For n = 0,

Set ũn
h = un

h,

while j = 1, · · · , m do

Solve (22):

Ah,jũ
n+j/m
h = zj .

end
Solve (25):

ÃHen
H,0 = IH

h (z − Ahũn+1
h ).

Set
un+1

h = ũn+1
h + Ih

Hen
H,0.

Go to next iteration for n.

5. Numerical results. We present in this section various numerical results to
demonstrate the efficiency of the proposed domain decomposition algorithms with-
out or with a coarse domain correction, denoted by DD and DDC in short, respec-
tively. Their performance is assessed by comparing with the naive lagged diffusivity
fixed-point iteration (i.e., (8), denoted by TV) in terms of convergence, recovery of
peak signal-to-noise ratio (PSNR) and computational time. We remark that to
the best of our knowledge, these algorithms have not been applied to the image
restoration problems before. Hence, it is interesting to see some good results and
particularly how the methods can be applied to restore images of large size.
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Hereafter, assume that the pixel values of all images lie in the interval [0, 255], and
the Gaussian white noise is added by the normal imnoise function imnoise(I,‘gaussian’,
M, σ) (i.e., the mean M and variance σ) in Matlab. In our tests, we use PSNR
[6] as a criteria for the quality of restoration. This quantity is usually expressed in
terms of the logarithmic decibel scale:

PSNR = 10 log10

2552

1
n1n2

∑
i,j(ui,j − zi,j)2

, (27)

where {ui,j − zi,j} are the differences of the pixel values between the restored and
original images of size n1 × n2. Typical values for the PSNR in lossy image and
video compression are between 30dB and 50dB (the higher implies the better).
Acceptable values for wireless transmission quality loss are considered to be about
20dB to 25dB. We shall also use the relative dynamic error between two consecutive
iterations:

‖uk − uk−1‖2

‖uk‖2
< ε, (28)

for a prescribed tolerance ε, as the stopping rule.
We test the methods on three typical images: lena-512× 512, boat-1024× 1024,

and cow-2048 × 2048. All the computations are done in Matlab on an IBM server
with 2.93 GHz, 8 Intel(R) Xeon(R) Quad-Core CPU and 128GB RAM. In the first
two sets of experiments, we fix β = ε = 10−4, and choose the mean value M = 0
and the variance σ = 0.04 for the noise level, whose signal-to-noise ratio (SNR) is
roughly between 8.8 to 9.1. We compare the methods with different α, subdomain
size d (pixels) and overlapping size δ (pixels), and show their performance with
respect to the iteration number k and computational time T. Finally, we test the
methods with smaller regularization constant β, and other noise levels.

We shall see that the proposed methods lead to significant time and memory
saving. Moreover, they are not sensitive to the image size, and the choice of the
intrinsic parameters d and δ can be fairly relaxed. Hence, they provide fast and
robust means to process images in particular of large size.
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Figure 3. The impact of α to PSNR: lena-512× 512 (left) and boat-1024×
1024 (right).
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Figure 4. The dynamic error (cf. (28)) (left column) and the PSNR (right
column) at iteration step k for three methods (for DD and DDC, d = 32 and
δ = 4) with lena-512 × 512 (upper row) and boat-1024 × 1024 (lower row).

5.1. Convergence. To set up a more quantified and reasonable rule for compari-
son, we fix β = ε = 10−4, and first identify a suitable α in the TV model with larger
PSNR values (i.e, a better restoration). We plot in Figure 3 the PSNR against α
obtained by TV (i.e., (8)) and the DD (i.e., (13)) with different subdomain and
overlapping sizes for lena-512 × 512 and boat-1024 × 1024. For both cases, a good
choice is α between 30 and 50. Hereafter, we fix α = 40. We also observe from
Figure 4 that the PSNR reaches the “maximum” values after about ten iterations
for TV, DD and DDC.

In Figure 4, we plot the dynamic error history of the three methods and PSNR
values against the iteration steps. We see that the DD and DDC exhibit a con-
vergence behavior similar to that of the fixed-point iteration. Hence, the domain
decomposition method produces as good quality as the classical TV restoration via
local operations and/or some global corrections. In Figure 5, we plot the computed
solution for the first iteration for the boat-1024×1024 image. We have used d = 32
and δ = 4. These plots visualize the local step-by-step denoising effect and the
recovery through overlapping subdomains.
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Figure 5. The intermediate results of DD for the boat image for un+ j
m with

n = 0, j = 1, 2, 3, 4. The subdomains are painted with 4 colors. From left to
right: the intermediate image obtained by solving (13) for n = 0, j = 1, 2, 3, 4.
Here, the image size: 1024×1024, the subdomain size: 32, and the overlapping
size: 4.

Table 1. Different overlapping size with parameters ε = 10−4,
σ = 0.04, α = 40 and β = 10−4.

image d δ k PSNR Time image d δ k PSNR Time

lena512 TV 45 25.9725 415.9900 boat1024 TV 40 27.3254 1880.2

1 63 25.9135 16.32% 1 57 27.3394 12.81%
2 51 25.8780 15.32% 2 46 27.3523 11.40%
3 46 25.8724 15.82% 3 43 27.3495 11.74%

lena512 32 4 43 25.9261 16.41% boat1024 32 4 42 27.3081 12.96%
5 41 25.9022 17.86% 5 42 27.2982 14.28%
6 41 25.8859 19.84% 6 43 27.3290 15.88%
7 45 25.9778 24.71% 7 42 27.2660 18.54%
8 46 25.9247 28.62% 8 42 27.3165 21.10%
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5.2. Sensitivity to the subdomain size and overlapping size. After under-
standing some general behaviors of the algorithms, we next demonstrate the time-
saving by DD and DDC, and also provide some guidelines on the choice of the
subdomain and overlapping sizes.

To illustrate the impact of overlapping sizes, we tabulate in Table 1 the PSNR and
CPU time of the classic TV by the lagged diffusivity fixed-point iteration and DD
with subdomain size 32, but with different overlapping size δ. Here, the percentage
of the CPU time is against TV, and likewise for other tables. We see that that
the PSNR obtained by DD is not so sensitive to the overlapping size δ, while the
computational time increases as δ increases, as expected. To have a good trade-off
between convergence rate and quality of restoration, it is advisable to choose δ to
be 2, 3 or 4. It is essential to point out that the use of DD leads to a remarkable
reduction of computational time in particular for images of large size. One also
refers to Figure 6. the restored lena-512 × 512 image.

We further examine the impact of subdomain size to the overall performance
of DD. For this purpose, we fix the overlapping size δ = 4, but vary α and the
subdomain size d. Once again, Table 2 indicates a significant gain in computation
time. It also shows that a good choice of d is roughly 1/16 of the given image size.

Table 2. Comparison of computational time of TV and DD for
different subdomain sizes of lena-512 × 512 and boat-1024 × 1024
with ε = β = 10−4, σ = 0.04 and the PSNR depicted in Figure 3.

d \ α 200 100 67 50 40 35 30 25 22 20

TV512 570.90 516.20 392.57 415.48 415.99 359.06 357.23 326.31 313.74 300.79

8 71.30% 48.02% 46.40% 37.85% 34.98% 38.99% 36.51% 36.47% 34.33% 37.50%
16 38.62% 24.32% 23.17% 20.02% 18.79% 22.80% 22.54% 24.29% 23.57% 25.73%
32 26.58% 17.36% 18.81% 17.02% 15.86% 21.76% 19.77% 20.58% 19.07% 19.27%
64 33.83% 22.95% 29.86% 24.26% 24.16% 27.71% 26.26% 25.42% 27.98% 26.85%
128 34.16% 34.67% 42.94% 37.61% 26.60% 38.24% 35.65% 38.38% 31.70% 30.96%

TV1024 3145.4 2197.3 2061.4 1884.0 1880.2 1935.5 1805.1 1768.9 1859.6 1736.3

8 45.85% 43.26% 37.78% 34.07% 31.68% 28.56% 27.82% 26.85% 24.40% 23.89%
16 22.37% 20.42% 17.47% 16.24% 15.88% 16.44% 17.41% 16.81% 15.67% 15.85%
32 16.17% 13.53% 13.17% 14.09% 13.74% 13.63% 13.87% 13.98% 12.47% 12.67%
64 16.45% 16.91% 17.05% 19.35% 18.95% 18.01% 19.87% 19.77% 17.79% 17.48%
128 25.52% 33.50% 26.47% 30.09% 29.74% 29.23% 26.81% 25.02% 24.86% 26.00%

We now particularly examine the effect of coarse mesh correction. We tabulate in
Table 3 the computational time and PSNR for three methods with various choice of
subdomain sizes. We also test them on large size image cow-2048×2048. Once more,
it indicates the notable time saving by using domain decomposition techniques, and
also justifies the 1/16−rule for the choice of subdomain size. However, we realize
that the coarse mesh correction does not help too much to DD in the sense that
almost the same number of iterations are needed for DD and DDC, but more time
is consumed, since additional coarse mesh equations have to be resolved at each
iteration (cf. Algorithm DDC). We believe that the main reason is the regularization
constants α, β are small, which results in stiff elliptic equations and the correcting
effect is expected to be minor. The influence of the coarse mesh correction increases
when β is bigger as shown in Table 4.

We illustrate below some samples of the restored image obtained by DD or DDC
with an ”optimal” choice of the intrinsic parameters. Figure 6 is devoted to the
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Table 3. Comparison of TV, DD and DDC for boat-1024× 1024
and cow-2048 × 2048 with σ = 0.04, β = ε = 10−4, α = 40 and
various subdomain sizes. Here, PSNR1 and PSNR2 refer to the
PSNR of DD and DDC, respectively, and likewise for the iteration
number k and computational time T.

d δ PSNR1 PSNR2 k1 k2 T1 T2

TV1024 27.3254 40 1880.2

8 2 27.3786 27.3429 62 63 31.68% 57.72%
16 4 27.2813 27.3294 43 43 15.88% 33.67%
32 4 27.3089 27.3329 42 42 13.74% 29.32%
64 4 27.3031 27.2892 42 41 18.95% 31.66%
128 4 27.3066 27.2647 40 41 29.74% 39.95%

TV2048 25.3433 41 12319.0

8 2 25.8873 24.4947 79 79 26.47% 48.80%
16 4 25.4409 25.3809 47 46 11.13% 24.06%
32 4 25.3787 25.3675 43 42 8.25% 20.99%
64 4 25.3650 25.3499 42 42 12.57% 21.74%
128 4 25.3808 25.3956 41 41 15.23% 23.94%

Table 4. Comparison of TV, DD and DDC with β = 0.1, σ =
0.04, α = 40, ε = 10−6.

d δ PSNR1 PSNR2 k1 k2 T1 T2

TV512 26.0541 163 1420.2

32 4 25.9820 25.9900 173 157 17.93% 31.44%

TV1024 27.3402 189 8129.9

32 4 27.3954 27.3377 246 202 16.36% 32.01%

TV2048 25.4310 141 35901.0

32 4 25.4304 25.4146 157 145 9.54% 22.49%

lena-512× 512, where we depict the difference images and find that three methods
with the same stopping rule give indistinguishable restored images. Indeed, the
PSNR are very close and the dynamic error ‖u − uK‖2/‖u‖2 (where u is the true
image, and uK is the restored image by TV, DD or DDC with K steps) are TV:
0.8029, DD: 0.8076 and DDC: 0.8060. Figure 7 illustrates the restored image of
larger size by DD.

Now, we examine the methods for very small regularization parameter β, and
for images with considerable higher noise level. We record in Table 5 the iteration
number k, computational time, and PSNR for TV and DD with the regularization
parameter β = 10−12. In this case, the system is very stiff, so TV is extremely
costly, but the stiffness can be significantly relaxed by breaking down the size of
system, so DD is very fast. In a nutshell, DD is still very efficient for small β.

Finally, we illustrate in Figures 8-9, the restoration of boat-1024×1024 and cow-
2048× 2048 with higher noise level by DD. As before, the quality is essentially the
same as that by TV, but recovered by much less CPU time.

5.3. A comparison with dual approaches. To further show the performance
of the domain decomposition method, we compare it with the dual algorithms in
[14, 10, 16], which have been proven to be very efficient for the ROF model.
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Figure 6. Row one: original image (left lena-512 × 512), noise image with
σ = 0.04 (middle) and restored image(right) obtained by DD with subdomain
size d = 32, overlapping size δ = 4, α = 40, ε = β = 10−4. Here, SNR= 9.0597
and PSNR= 25.9388. Row two: difference images between the restored one
and original one (magnified by multiplying 5). From left to right: TV, DD,
DDC with the same parameters chosen as above.

Table 5. Comparing TV with DD using small β = 10−12, σ =
0.04, ε = 10−4 and α = 40.

image d δ PSNR k T

lena512 TV 26.0702 52 14873.0

8 2 26.0221 57 0.89%
16 4 25.9995 53 0.65%

lena512 32 4 25.9089 48 0.54%
64 4 25.7169 54 1.02%
128 4 25.6731 52 2.71%

We first briefly review the algorithm (cf. [16, p.199-200]). To solve (7), we
introduce a new variable

p = − ∇u

|∇u|β
, (29)

where |∇u|β =
√

u2
x + u2

y + β for some β > 0. For the ROF model, we obtain a

system in (u, p) :
u = z − αdivp, ∇u + p|∇u|β = 0. (30)

Eliminating u from the second equation leads to

− H + p
∣∣H∣∣

β
= 0 with H(p) := −∇u/α = ∇

(
divp − z/α

)
. (31)



18 JING XU, XUE-CHENG TAI AND LI-LIAN WANG

Figure 7. DD restoration of boat-1024 × 1024 and cow-2048 × 2048. Clean
image (left), noise image with σ = 0.04 (middle) and restored image (right)
with overlapping size δ = 4, α = 40, and ε = β = 10−4. Note: for boat, d = 64,
SNR= 9.1503 and PSNR= 27.3031, and for cow, d = 128, SNR= 9.1866 and
PSNR= 25.3808.

Figure 8. Original image boat-1024 × 1024 (left), noise image with σ =
0.1 (middle) and restored image(right) by DD with subdomain size d = 64,
overlapping size δ = 4, α = 67, ε = 10−4 and β = 10−12. Here, SNR= 6.0128,
PSNR= 24.2600.

Following [10], we update the dual variable p by the scheme:

p0 = 0, pn+1 =
pn + τH(pn)
1 + τ |H(pn)|β

, n = 0, 1, · · · , (32)
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Figure 9. Original image cow-2048 × 2048 (left), noise image with σ =
0.1 (middle) and restored image(right) by DD with subdomain size d = 128,
overlapping size δ = 4, α = 67, ε = 10−4 and β = 10−4. Here, SNR= 5.8910
and PSNR= 21.6081.

where the gradient and divergence operators can be discretized by the forward
and backward finite difference, respectively, together with the boundary condition
p|∂Ω = 0, as in [10].

We compare the domain decomposition method with the dual algorithm in terms
of decay of the residual

Rn : = −αdiv
( ∇un

|∇un|β

)
+ (un − z), n = 1, 2, · · · . (33)

Setting un = z − αdivpn, we find from (30)-(32) that the residual of the dual
algorithm can be computed by

Rn =
α2

τ
div

(pn+1 − pn

|∇un|β

)
+ (un − un+1), n = 1, 2, · · · . (34)

In Figure 10, we plot the ratio ‖Rn‖2/‖R1‖2 (where ‖·‖ is the l2-norm as before)
versus the iteration number for both methods. In this comparison, we choose the
noise level σ = 0.02, the parameters α = 40, β = 10−6, the time step τ = 1/16 in
(34), and the subdomain size d = 32 and overlapping size δ = 4 in DD. We see
from Figure 10 that the decay rate of the residual (33) of DD is more than 20 times
faster than that of the dual algorithm (and the gain is even more for images of
larger size). In other words, for a given accuracy, the DD with the current inner
solver on each subdomain requires much smaller number of iterations. Hence, with
this trade-off, the total computational cost of DD is comparable to that of the dual
algorithm, in particular, for images of large size, although it is fairly sensitive to give
a fair comparison. It is essential that the use of domain decomposition technique
allows for breaking down the size of the problem, and one might choose a more
efficient subdomain solver with a good balance between the accuracy and efficiency.
We want to emphasis that our method can be used for general image processing
problems. Here, we have used the well-known ROF to demonstrate that the domain
decomposition approach can give superior performance in term of computing and
memory efficiency.
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Figure 10. Comparison of the decay of the l2−norm of the residual (33)
versus the iteration number for DD and the dual method. Here, the PSNRs at
the final step for (a)-(d) are 23.0, 23.2, 23.5 and 23.6, respectively.

Concluding Remarks. We presented in this paper a domain decomposition method
for general image processing problem and we use the ROF model show its advan-
tages. We described the very detailed implementation of the domain decomposition
and coarse mesh correction techniques. We also provided a plenty of numerical re-
sults that demonstrated the effectiveness of the proposed methods in CPU time and
memory saving. We gave useful guidelines for the choices of parameters through
such quantitative studies. Moreover, we compared the proposed method with the
dual algorithms in decay of numerical residuals. Most importantly, these techniques
are very useful to decompose a large scale problem to some subproblems of much
smaller size in an efficient manner. The proposed algorithm could be a viable ap-
proach for practical three dimensional data processing with large data sets.
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