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Generalizing Mumford-Shah Model for Multiphase
Piecewise Smooth Image Segmentation

Ying Gu, Wei Xiong, Li-Lian Wang, and Jierong Cheng

Abstract— This paper concerns multiphase piecewise smooth
image segmentation with intensity inhomogeneities. Traditional
methods based on the Mumford–Shah (MS) model require
solving complicated diffusion equations evolving in irregular sub-
domains, leading to significant difficulties in efficient and accurate
segmentation, especially in multiphase scenarios. In this paper, we
propose a general framework to modify the MS model by using
smoothing operators that can avoid the complicated implemen-
tation and inaccurate segmentation of traditional approaches.
A detailed analysis connecting the smoothing operators and
the diffusion equations is given to justify the modification.
In addition, we present an efficient algorithm based on the
direct augmented Lagrangian method, which requires fewer
parameters than the commonly used augmented Lagrangian
method. Typically, the smoothing operator in the general model
is chosen to be Gaussian kernel, the bilateral kernel, and the
directional diffusion kernel, respectively. Ample numerical results
are provided to demonstrate the efficiency and accuracy of
the modified model and the proposed minimization algorithm
through various comparisons with existing approaches.

Index Terms— Mumford-Shah (MS) model, multiphase
image segmentation, smoothing operator, Gaussian, bilateral,
directional diffusion, augmented Lagrangian method.

I. INTRODUCTION

IMAGE segmentation aims to partition a given image into
a number of constituent regions so as to extract objects

of specific, distinctive features from image background.
It finds ubiquitous applications (see, e.g., [1], [2]), where an
important issue is how to segment real images with intensity
inhomogeneities. It is however noteworthy that intensity-based
segmentation based on the piecewise constant models [3]–[5]
often leads to unsatisfactory segmentation in such occasions.
A feasible approach is to assume an image consisting of
piecewise smooth phases, so one can adopt the region-based
piecewise smooth (PS) approximation model [6]–[9], which
leads to better segmentation.

While intensive research has been devoted to piecewise
constant image segmentation, limited works are available for
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image segmentation with PS structures. In this work, we
are committed to PS image segmentation using variational
approaches. Under a variational framework, image segmen-
tation is accomplished by solving a minimisation problem
involving an energy functional that mathematically incorpo-
rates various necessary a priori or a posteriori information
of a given image. Among those variational models for this
purpose [4], [5], [10], [11], the Mumford-Shah (MS) model [4]
becomes the most popular one. Bascally, given an image I
defined in � ⊂ R

2, we search for a piecewise smooth
approximation u of I , and an edge set �(⊂ �) such that

min
u,�

{
EM S(u, �) := |�| + μ

∫
�\�

|∇u|2d x

+ ν

2

∫
�

|u − I |2d x
}
, (1.1)

where μ, ν > 0 are parameters, and |�| is the length of �.
The third term in the energy functional EM S(u, �) is the data
fidelity term that ensures u to be close to the input image I ;
while the second term penalises strong variations of u that
enhances the smoothness of u. Lastly, through penalising the
length of the edges, the model also favours to find a “tight"
enclosure of the smooth regions. It is seen that the model
involves two unknowns {u, �} in different natures, which
presents a great challenge for both mathematical analysis and
numerical solution. We refer to [12] and the references therein
for a review of many insightful analysis and various attempts
of approximating, relaxing or simplifying the MS model.

In order to solve (1.1), two important issues are: how to
represent the edge set � and how to relate it to the unknown u.
Hereafter, we treat the edges as rectifiable closed curves
(cf. [13]). Accordingly, the edge set � separates � into m
disjoint {�i }m

i=1, i.e.

� = ∪m
i=1�i , �i ∩ � j = ∅ for i �= j,

and I is approximated by a smooth function ui in each �i .
Hence, we can rewrite the original MS model (1.1) as

min
{ui ,�i }m

i=1

{
EM S({ui ,�i }m

i=1) :=
m∑

i=1

(
|∂�i |

+ μ

∫
�i

|∇ui |2d x + ν

2

∫
�i

|ui − I |2d x
)}

. (1.2)

Some attempts have tackled this piecewise smooth image
segmentation problem from a continuous perspective by min-
imizing the MS model (1.2) (see, e.g., [6]–[9], [14], [15] and
the references therein). Most notably, Vese and Chan [7] used
the classical level-set method [16] involving multiple phase
functions {φi } to describe the edge �. It requires evolving
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the coupled system of {ui , φi }, where the Euler Lagrangian
equation with respect to ui of (1.2) is

ui − 2μ

ν
�ui = I in �i , (1.3)

where � = div(∇) and �i is determined by the level-set
function φi for i = 1, · · · , m.

Observe that a set of PDEs for {ui } has to be solved
in each subdomain �i , which is time consuming and at
times, inaccurate in segmentation for many phases. There
are some other region-based methods using the MS model
for PS image segmentation. For example, Piovano et al. [8]
solved the segmentation problem by using local statistics
formulation, and evolved the contour through local averaging
of image intensities inside and outside the contour separately.
Brox and Cremers [17] used the statistical interpretation of
the MS functional where the piecewise smooth approxima-
tion was evolved locally as with [7]. In a nutshell, in the
aforementioned typical PS MS models, the smooth approxima-
tion ui was numerically solved in each irregular subdomain,
and the algorithms were computationally time consuming.
These motivated the efforts in developing models for solving
the smooth functions in the whole domain. In particular,
Li et al. [18] proposed a region-based active contour model
with a classical level-set formulation for two phases. A more
efficient minimisation algorithm was reported in Gu et al. [19]
for an extended model for multiple phases. More recently,
Zhang et al. [20] developed a statistical active contour model
based on the MS model, which integrated a bias field with
a classical leve-set formulation. In addition, Ali et al. [21]
proposed a variational model with two fitting terms of the
region and edge enhanced quantities.

There has been much recent interest in processing images
with intensity inhomogeneity (see, e.g., [22]–[26]). Under
the assumption that the “smooth” bias field (i.e., intensity
inhomogeneity) b(≈ 1) as “small” perturbation of piecewise
constant intensities, the following model is proposed
(cf. [22], [23], [27], [28]):

I (x) = b(x)ci + n(x), x ∈ �i , (1.4)

where n is the noise. With a modification of the MS model,
Li et al. [23] introduced the energy minimization problem:

min
b,{ci ,�i }m

i=1

{ m∑
i=1

(ν

2

∫
�i

(I − bci)
2d x + νλ

2

∫
�i

(I − ci )
2d x

+ |∂�i |
)

+ μ

∫
�

|∇b|2 d x
}
, (1.5)

where ν, λ,μ > 0 are constants. Very recently, Spencer and
Chen [26] further incorporated a stabilised term to enforce b
to be close to 1. From a different perspective, we reported
in [24] the decomposition model:

I (x) = λb(x) + (1 − λ)

m∑
i=1

ciχi (x) + n(x), (1.6)

a.e. in �, where χi is the indicator function of �i (cf. (3.1)),
and λ > 0 is a constant. Basically, a clear image I − n is
viewed as a combination of piecewise constant and smooth

components. The associated minisation problem for this
decomposition in [24] reads

min
b,{ci ,�i }m

i=1

{
νλ2

∫
�

|I − b|2d x +
m∑

i=1

(
μλ2

∫
�i

|∇b|2 d x

+ (1 − λ)2ν

∫
�i

|I − ci |2 d x + |∂�i |
)}

. (1.7)

The recent work of Jung [25] further modified the L2-terms
involving I in (1.7) to L1-data fidelity terms.

With the understanding that the gradient descent flow related
to (1.3) can be expressed as an integral form of a diffusion
operator, we reported in [29] the idea of replacing the second
term in EM S of the MS model (1.2) by an integral operator,
where only preliminary results were presented and some
advantages were observed.

Inspired by [29], we explore the idea of using smoothing
operators to modify the MS model for fast and accurate
multiphase PS image segmentation. Based on the principle,
we can derive new variational models, e.g., for segmentation
of images with density inhomogeneity (see (2.9) below), and
for image decomposition (see (2.11) below). We intend to
provide a general framework together with basic principles
for selecting the involved smoothing operators and some
mathematical justifications. We outline the main contributions
of this paper as follows:

• We provide some insights into the connections between
the diffusion equations and the modified MS models with
smoothing operators.The analysis leads to some basic
criteria for the choice of smoothing operators and justifies
the proposed simplifications.

• With the aid of the smoothing operators, the complicated
implementation of (1.3) can be replaced by some closed-
form formulas. Meanwhile, the convolution can be solved
by the fast Fourier transform (FFT). Moreover, the use
of the indicator functions for multiple phases can be
solved by the direct approach in [30] without convex
relaxation. With all these at our disposal, we can develop
very efficient minimisation algorithms for the modified
MS model for PS image segmentation with many phases.

• The proposed general model together with the algorithm
outperforms many existing methods, and can further
incorporate additional a priori and a posteriori informa-
tion of images for other related image processing tasks.

The rest of the paper is organised as follows. In Section
II, we present the basic idea of the approach in [29], and
then introduce two smoothing kernels. With some analysis
of the connection between the diffusion equations and these
kernels, we provide a general framework using the smoothing
operators to modify the MS model. We develop efficient
algorithms for the general model in Section III based on a split-
ting technique and the direct augmented Lagrangian method.
In Section IV, we focus on the modified MS models with three
different smoothing operators: the Gaussian kernel, bilateral
kernel and the directional diffusion kernel, and then show
their performances of the models and minimisation algorithms
for different images, and compare them with other existing
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methods. Some important notation used in this paper is listed
as follows:

• Boldface letters for vectors, e.g., x = (x1, x2) and
u = (u1, · · · , um);

• ∂ : partial derivative operator;
• ∗: the convolution;
• ∇: the gradient operator;
• �: the Laplacian operator;
• v0: initial condition of v.

II. A GENERAL MODEL

We first present the basic idea reported in [29]. Note that
the gradient descent flow of the MS model (1.2) is given by

∂ui

∂ t
= 2μ

ν
�ui − (ui − I ) in �i , (2.1)

for 1 ≤ i ≤ m. Vese and Chan [7] proposed to solve (2.1)
directly by using explicit methods through an iteration process
in each subdomain. As the regions are time-dependent, i.e.,
�i = �i (t), the whole numerical algorithm is time consuming
and at times, unstable for many phases. It is important to
observe that (2.1) can be associated with the diffusion process⎧⎨

⎩
∂ui

∂ t
= 2μ

ν
�ui in �i ,

ui |t=0 = I.
(2.2)

If �i = R
2, the solution of (2.2) is

ui = Gσ ∗ I =
∫

R2
Gσ (x − y)I (x)d x, (2.3)

where

Gσ (x) = 1√
2π σ

exp
(

− |x|2
2σ 2

)
, σ =

√
4μt

ν
. (2.4)

Within the image domain of I (x), each subregion �i is
bounded. In view of this, we can propose a normalized
approximate solution to (2.2):

ui (y) =
∫
�i

Gσ (x − y)I (x)d x∫
�i

Gσ (x − y)d x
, 1 ≤ i ≤ m. (2.5)

Remark 1: It is worthwhile to point out that
• Formula (2.5) can be viewed as a normalised and locally

weighted average of the image within �i (cf. [31]).
• We propose to use (2.5) to replace the complicated evolu-

tion of ui in (2.1) and the convolution can be computed
by the fast Fourier transform. This is essential for the
efficient algorithm to be introduced in the forthcoming
section.

Note that we can rewrite (2.5) as∫∫
�i×�i

Gσ (x − y)(I (x) − ui (y)) d y d x = 0, (2.6)

which turns out to the equation resulted from the optimality
condition with respect to ui of the minimisation problem:

min
{ui ,�i }m

i=1

m∑
i=1

(
|∂�i | + ν

2

∫∫
�i×�i

Gσ (x − y)|ui (y)

− I (x)|2d y d x
)
. (2.7)

In contrast to (1.2), the smooth term and fidelity term therein
are replaced by the new fidelity term involving the Gaussian
smoothing operator.

We elaborate more on this idea and revisit the model (1.4)
for density inhomogeneity. Note that the gradient descent flow
of (1.5) with respect to b (for fixed ci ) is

∂b

∂ t
= 2μ

νc2
i

�b −
(

b − I

ci

)
in �i . (2.8)

Following (2.2)-(2.3), we can formally write b = Gσ ∗ (I/ci )

with σ =
√

4μt/(νc2
i ). Like (2.7), we can derive the following

model alternative to (1.5):

min
b,{ci ,�i }m

i=1

{ m∑
i=1

(νλ

2

∫
�i

(I − ci )
2d x + |∂�i |

+ ν

2

∫∫
�i×�i

Gσ (x− y)(I (x)−b(y)ci )
2d yd x

)}
.

(2.9)

We see that the segmentation of images with density inhomo-
geneity can be modelled by this framework.

In fact, the same argument applies to the decomposition
model (1.6). The counterpart of (2.8) is

∂b

∂ t
= μ

ν
�b − (b − I ) in �i . (2.10)

Thus alternative to (1.7), we have

min
b,{ci ,�i }m

i=1

{ m∑
i=1

(
ν(1 − λ)2

∫
�i

(I − ci )
2d x + |∂�i |

+ νλ2
∫∫

�i ×�i

Gσ (x− y)(I (x)−b(y))2d yd x
)}

.

(2.11)

To the best of our knowledge, the models (2.9) and (2.11)
appear new. Our general algorithm to be presented can be
directly applied to their minimisation.

In view of the above, we further consider the modification
of the original MS model (1.2) by using a more general
smoothing operator with K in place of Gσ in (2.7), that is,

min
{ui ,�i }m

i=1

m∑
i=1

(
|∂�i | + ν

2

∫∫
�i ×�i

K (x, y)|ui (y)

− I (x)|2d y d x
)
. (2.12)

A. General Properties

In general, smoothing operation on a function f can be
formulated as

TK f (x) =
∫

K (x, y) f (y)dy, (2.13)

where K is a nonnegative kernel function K : R
2 → [0,+∞).

Such a smoothing operator should have the following proper-
ties.

• Normalization: ∫
K (x)d x = 1;
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• Symmetry

TK (x,y) f = TK ( y,x) f ;
• For f and g in C∞

0 (R2), we have∫
TK f (x)g(x)d x =

∫
f (x)TK g(x)d x;

• The composition of two smoothing operators is still a
smoothing operator.∫

K3(x, y) f (y)d y =
∫

K1(x, y)K2(z, y) f (z)d zd y;
• Localization

K (x) ≥ K (y), if |x| ≤ | y|
and

lim|x|→∞ K (x) = 0.

Our basic idea is to use the smoothing operators K to
replace the smooth term and the data fidelity term, that avoids
solving complicated diffusion equations (1.3). There are some
smoothing methods proposed to smooth ui , e.g., those in [32].
In this work, we mainly consider the Gaussian-type smooth-
ing operators. In the following, we introduce two popular
Gaussian-type kernels, a bilateral kernel and a directional
diffusion kernel, and study the relationship between these two
kernels and the diffusion equations. Such relationship helps us
justify the condition of the smoothing operators K to modify
the MS model.

B. Bilateral Kernel and Directional Diffusion Kernel

• Bilateral kernel. Gaussian kernel is a low-pass filtering.
It may blur the image edges in the smoothing effect.
Hence, some nonlinear filters are constructed to prevent
from the blurring problem, for example, [33] and [34] use
the bilateral kernel. The bilateral kernel combines both
the position domain and range domain filtering;

G B(x, y) = 1

CB(x)
Gσd (x − y)Gσr (I (x) − I (y))

= 1

CB(x)
exp

(
− |x− y|2

2σ 2
d

− |I (x)− I (y)|2
2σ 2

r

)
,

(2.14)

where

CB(x) =
∫

�
exp

(
− |x − y|2

2σ 2
d

− |I (x) − I (y)|2
2σ 2

r

)
d y,

and σd , σr > 0 are control parameters, and
Gσr (I (x) − I (y)) is the Gaussian function for intensity
domain, which can reduce the influence of the intensity
dissimilarities. The bilateral kernel can distinguish well
the flow influence from different regions [35], [36]. The
bilateral kernel plays the role of standard domain filter,
producing faster diffusion inside the homogeneous region
and slower diffusion across the edge of the region. Hence,
image edges can be preserved.

• Directional diffusion kernel. The bilateral kernel is
a nonlinear filter and has the difficulty in reproducing
linear functions [37]. In order to handle such difficulties,
Wang [38] constructed a new directional diffusion kernel.
They replace the term I (x) − I (y) in the bilateral ker-
nel (2.14) with 〈∇ I (x), (x − y)〉, where 〈·, ·〉 is the inner
product in R

2. Hence, the directional diffusion kernel is
given as

G D(x, y)= 1

CD(x)
exp

(
− |x− y|2

4σ
− 〈∇ I (x), (x− y)〉2

4σ 2

)
,

(2.15)

where

CD(x) =
∫

�
exp

(
− |x − y|2

4σ
− 〈∇ I (x), (x − y)〉2

4σ 2

)
d y,

and σ > 0 is a parameter. Note that the term
〈∇ I (x), (x − y)〉2/(4σ 2) equals to 0, when y − x points
the horizontal direction of the level curve of I , and has
the maximum value in the gradient direction. Hence, the
directional diffusion kernel acts like Gaussian diffusion in
the level curve direction and blocks the diffusion in the
gradient direction. This kernel has been studied in [38].

C. Relation Between the Kernels and Diffusion Equations

We next provide some insights into the above kernels.
Barash [36] pointed out the connection between the neighbour-
hood filters and the diffusion equations, and Buades et al. [37]
provided rigorous justifications. Such a relationship was also
studied in [32], [33], [38], and [39] from various perspectives.
Here, we first give a detailed description of the relation
between these Gaussian-type smoothing kernels (Gaussian
kernel, bilateral kernel and the directional diffusion kernel) and
the diffusion equations through the argument in these relevant
references.

Proposition 1: Let v ∈ C2(�), and define the output
functional of the Gaussian kernel as

G(v)(x) = 1√
2π σ

∫
�

exp
(

− |x − y|2
2σ 2

)
v(y)d y.

Then G(v) has the asymptotic expansion

G(v)(x) − v(x) ≈ 2σ 2�v(x), σ → 0.
We can find that the asymptotic expansion is consistent with

the diffusion equations (1.3).
Now, we consider the bilateral kernel (2.14) and the direc-

tional diffusion kernel (2.15) following [37]–[39]. We first
introduce some notation for the study of these two kernels.
At each x = (x1, x2) ∈ �, let

η = ∇v

|∇v| = (vx1, vx2)√
v2

x1
+ v2

x2

, ξ = ∇v⊥

|∇v| = (−vx2, vx1)√
v2

x1
+ v2

x2

,

for ∇v �= 0. Recall the second-order directional derivatives:

vηη = ηH (v)ηT, vξξ = ξ H (v)ξT. (2.16)



946 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 2, FEBRUARY 2017

where T means the transpose and H (v) is the Hessian matrix
of u in the form

H (v) =
(

vx1x1 vx1x2

vx1x2 vx2x2

)
.

Denote the local orthogonal basis associated with v by

B = {b1, b2} =
{

{η, ξ }, |∇v(x)| �= 0,

{e1, e2}, |∇v(x)| = 0,

where {e1, e2} is the standard basis on R
2. In the following

analysis, we use B = {b1, b2} as the local Cartesian coor-
dinate system. Due to the similarity between the bilateral
kernel (2.14) and the Yaroslavsky kernel [40], the asymptotic
expansion of the bilateral kernel can be studied through the
Yaroslavsky kernel, which is expressed in [37]. Note that the
output functional of the Yaroslavsky kernel is

Y (v)(x) = 1

CY (x)

∫
�

exp
(

− |v(x) − v(y)|2
σ 2

r

)
v(y)d y,

where σr is a positive constant and

CY (x) =
∫

�
exp

(
−|v(x) − v(y)|2

σ 2
r

)
d y.

The corresponding asymptotic expansion of the Yaroslavsky
kernel is stated as follows. We refer to [37] for the detailed
proof.

Proposition 2: Let E(ω) = 2
∫ ω

0 e−s2
ds,

g(ω) =
{

1
3E(ω)ωe−ω2

, ω > 0,

1/6, ω = 0,

and

f (ω) =
{

1
2ω2 [6g(ω)(ω2 + 1) − 1], ω > 0,

1/6, ω = 0.

Suppose that v ∈ C2(�), and let σd , σr > 0 such that
σd , σr → 0 and σr = O(σd ). Then we have

Y (v)(x) − v(x) ≈ σ 2
d

[
f
(σd

σr
|∇v(x)|

)
vηη(x)

+ g
(σd

σr
|∇v(x)|

)
vξξ (x)

]
.

The output functional of the directional diffusion
kernel (2.15) is

D(v)(x) = 1

CD(x)

∫
�

exp

(
− ‖x − y‖2

4σ

− 〈∇v(x), (x − y)〉2

4σ 2

)
v(y)d y,

where σ > 0 is a constant and

CD(x) =
∫

�
exp

(
− ‖x − y‖2

4σ
− 〈∇v(x), (x − y)〉2

4σ 2

)
d y.

Here, we have the asymptotic expansion of this directional
diffusion kernel (cf. [38], [39]).

Proposition 3: For v ∈ C2(�), we have

D(v)(x) − v(x) ≈ σ(Lv,xv)(x), σ → 0,

where

Lv,xv =
⎧⎨
⎩

∂2v

∂η2 , if ∇v(x) �= 0,

�v, if ∇v(x) = 0.
From Propositions 2-3, we find the corresponding diffusion

equations of the bilateral kernel (2.14) and the directional
diffusion kernel (2.15) can be written as

vt = c1vξξ + c2vηη. (2.17)

It is known from Buades et al. [37] that the neighborhood
filter can be linked to the Perona-Malik model [41]–[43].

vt = div(g(|∇v|2)∇v), (2.18)

where g is decreasing such that

g(0) = 1, lim
s→+∞ g(s) = 0, s = |∇v|2.

Note that the evolution of ui of the smooth term in the
Mumford-Shah model (1.2) can be expressed as

∂ui

∂ t
= div(c(x)∇ui ), (2.19)

where c(x) can be taken as a nonlinear diffusion coefficient
c(x) = c(|∇ui |). This coefficient c(|∇ui |) → 0 when
|∇ui | → ∞, Hence, it has a small weightage when the
gradient is very large (i.e., across the edges). From the above
analysis, (2.19) can be formally written as

∂ui

∂ t
= ĉ1

∂2ui

∂ξ∂ξ
+ ĉ2

∂2ui

∂η∂η
. (2.20)

Observe from (2.17) and (2.20) that the diffusion equations
of the kernels (2.14) and (2.15) are in the same form as that
of the equation reduced from the MS model. As such, these
two kernels can play the role as the smoothing operators to
modify the MS model.

III. MINIMIZATION ALGORITHM

Next, we will provide the minimization algorithms for the
general minimisation problem (2.12).

Denote the indicator function of �i by

χi (x) =
{

1, if x ∈ �i ,

0, if x ∈ � \ �i .
(3.1)

The length of � can be characterized by the total varia-
tion (TV) [44], that is,

|∂�i | = T V (χi ) =
∫

�
|∇χi | d x.

Then we can reformulate (2.12) as

min
u,χ

{
E(u,χ) :=

m∑
i=1

∫
�

|∇χi (x)|d x

+ ν

2

∫∫
�×�

K (x, y)|ui (y) − I (x)|2χi (x)d y d x
}
,

(3.2)

where u = (u1, · · · , um) and χ = (χ1, · · · , χm).
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Next we use the splitting technique as follows:
(a). Fixing χ , find u such that

min
u

m∑
i=1

∫∫
�×�

K (x, y)|ui (y) − I (x)|2χi (x)d yd x.

(3.3)

(b). Fixing u, find χ such that

min
χ

{ m∑
i=1

∫
�

|∇χi (x)|d x + ν

2

∫∫
�×�

K (x, y)|ui (y)

− I (x)|2χi (x)d yd x
}
, (3.4)

with the constraint

χi ∈ {0, 1}, 1 ≤ i ≤ m;
m∑

i=1

χi ≡ 1.

In the following, we describe the algorithms for
(3.3) and (3.4).

A. Minimization With Respect to u

Using calculus of variation, we can obtain the Euler-
Lagrange equations of the functions u = (u1, u2, · · · , um)
that minimize (3.3) satisfying∫

�
K (x, y)

(
ui (y) − I (x)

)
χi (x)d x = 0. (3.5)

It admits the closed-form formula

ui =
∫
� K (x, y)

(
χi (x)I (x)

)
d x∫

� K (x, y)χi (x)d x
, 1 ≤ i ≤ m. (3.6)

The original complicated implementation of the smooth func-
tion u in (1.3) is replaced with the closed-form formulation,
and the implementation is easy and fast. Meanwhile, the
convolution in (3.6) can be handled efficiently through the
fast Fourier transform method (see, e.g., [45]).

B. Minimization With Respect to χ

Now we study the minimization problem (3.4) with respect
to χ . With known ui , (3.4) can be seen as the Potts-type
model [46]. The essential methods for such models are to
implement the convexification followed by the thresholding.
Here we use our direct approach proposed in [30], where
the variables can be explicitly expressed through the direct
augmented Lagrangian method. Moreover, the iterative algo-
rithm is based on a shrinkage in the intermediate unknowns
from the augmented Lagrangian formulation. Consequently,
the algorithms involve fewer number of parameters, resulting
in fast and easy implementation. Below we provide detailed
algorithms.

We introduce a new variable q i and rewrite (3.4) into the
following constrained problem:

min
�q,χ

{ m∑
i=1

∫
�

|qi |d x +
m∑

i=1

∫
�

fiχi d x
}
,

subject to qi = ∇χi , χ2
i = χi ,

m∑
i=1

χi = 1,

where for 1 ≤ i ≤ m,

fi (x) = ν

2

∫
�

K (x, y)|ui (y) − I (x)|2d y. (3.7)

The unconstrained problem can be attained by using the
augmented Lagrangian method:

min
χ,�q

max
�λ1,�λ2,λ3

{
L(χ , �q, �λ1, �λ2, λ3) =

m∑
i=1

∫
�

(
|qi |d x

+ fiχi d x + λ1i
(
qi − ∇χi

)
d x + r1

2

(
qi − ∇χi

)2
d x

+ λ2i (χ
2
i − χi )d x + r2

2
(χ2

i − χi )
2d x

)

+
∫

�
λ3

( m∑
i=1

χi − 1
)

d x + r3

2

∫
�

( m∑
i=1

χi − 1
)2

d x
}
,

(3.8)

where r1, r2, r3 > 0 are penalty weights,

�λ1 = (λ11, · · · ,λ1m), λ2 = (λ21, · · · , λ2m)

(with λ2i ≥ 0) and scalar λ3 are Lagrange multipliers. The
optimality conditions imply

∂L
∂χi

= fi + divλ1i + r1div(qi − ∇χi ) + λ2i (2χi − 1)

+ r2(χ
2
i − χi )(2χi − 1) + λ3 + r3

( m∑
i=1

χi − 1
)

= 0,

(3.9a)
∂L
∂qi

= qi

|qi | + λ1i + r1(qi − ∇χi ) = 0, (3.9b)

∂L
∂λ1i

= qi − ∇χi = 0, (3.9c)

∂L
∂λ2i

= χ2
i − χi = 0, (3.9d)

∂L
∂λ3

=
m∑

i=1

χi − 1 = 0. (3.9e)

By (3.9b) and (3.9c),

λ1i = − ∇χi

|∇χi | , 1 ≤ i ≤ m. (3.10)

Following from (3.9c), (3.9d) and (3.9e), Equation (3.9a) can
be simplified into

λ2i (2χi − 1) = −( fi + divλ1i + λ3), (3.11)

which implies

λ2
2i (4χ2

i − 4χi + 1) = ( fi + divλ1i + λ3)
2.

Then by (3.9d) (note: λ2i ≥ 0),

λ2i = | fi + divλ1i + λ3| = |hi + λ3|,
where hi := divλ1i + fi . Plugging it into (3.11) leads to

(2χi − 1)|hi + λ3| + (hi + λ3) = 0. (3.12)

Then the expression of λ3 can be written as

−λ3 = hk + h j − hk

2
, (3.13)
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Algorithm 1 The implementation steps for the general
model (3.2).

where hk is the smallest and h j is the second smallest value
of {hi }m

i=1 respectively.
Therefore, in the computation, the evolution of χi can be

regularized by

χi = 1

2
− hi + λ3

2|hi + λ3|β , (3.14)

where λ3 is defined in (3.13), and

|hi + λ3|β = |divλ1i + fi + λ3| + β,

for sufficiently small β > 0.
Next, for fixed χ , the equation (3.10) satisfies

∇χi + |∇χi |λ1i = 0, 1 ≤ i ≤ m. (3.15)

The iterative semi-implicit Chambolle’s dual scheme [47] can
be applied. With time step size τ , we can approximate λ1i at
t = nτ. The evolution of λ1i is given by

λn+1
1i − λn

1i

τ
= −∇χn

i − |∇χn
i |λn+1

1i ,

⇒ λn+1
1i = λn

1i − τ∇χn
i

1 + τ |∇χn
i | .

Now, we provide the full algorithm in the top of the page.
In the computation, the selection of σ is related to the nature

of the image; the general model (2.12) can handle a piecewise
smooth image with intensity inhomogeneity when σ is small.
On the contrary, the model performs as a piecewise constant
model when σ is large.

IV. NUMERICAL RESULTS

We demonstrate the performance of the proposed general
framework and algorithms by testing them on typical images

and comparing with some related methods. In the comparison
experiments, we choose three typical smoothing operators:
K (x, y) = {Gσ (x, y), G B(x, y), G D(x, y)} as the modified
Gaussian model, modified bilateral model and modified
directional diffusion model respectively.

A. A Comparison Study

We compare the modified models with the Vese-Chan (CV)
model [7] (code downloadable at http://www.shawnlankton.
com/2007/05/active-contours/), the global Chan-Vese (GCV)
model [48] (code downloadable at personal homepage of
the first author), our previous decomposition work in [24]
(cf. (1.7)), the nonlocal based segmentation algorithm
(code downloadable at http://guygilboa.eew.technion.ac.il/
publications/), and the local statistical model [20] (code is
downloadable at http://www4.comp.polyu.edu.hk/~cslzhang/).
For the sake of clarity, we briefly review these models.

1) Vese-Chan Model (CV) [7] and Global Chan-Vese
Model (GCV) [48]: These two methods use the classical
level set formulations [7]. They label the phases through the
combinations of the signs of the signed distance functions.
Hence, n signed distance functions {φ j }n

j=1 are used to label
m = 2n phases, and the Heaviside functions H (φ j) can be
used to express the corresponding indicator functions. The
minimization problems solved in [7] and [48] are the same.
Here, we present two-phase optimization model for the sake
of comparison:

min
u1,u2,φ

{ν

2

∫
�1

(u1 − I )2 H (φ)d x + μ

∫
�1

|∇u1|2d x

+ ν

2

∫
�\�1

(u2 − I )2(1 − H (φ))d x

+ μ

∫
�\�1

|∇u2|2d x +
∫

�
δ(φ)|∇φ|d x

}
,

where μ, ν > 0 are parameters, δ is the Dirac Delta function,
and u1, u2 are the piecewise smooth function in �1 and
�\�1. The Vese-Chan model [7] and the global Chan-
Vese model [48] solve for the smooth functions u1 and u2
through the iteration process as shown in (1.3). The difference
between these two models is the evolution of φ. One can refer
to [7] and [48] for details.

2) Nonlocal Based Segmentation (Nonlocal, in Short) [49]:
The nonlocal regularization is introduced in [50], which is later
more popular to be used in image denoising (e.g. nonlocal
means [51]). Here we present the nonlocal segmentation
algorithm proposed in [49]. Let I be the input image and
w(x, y) a simple symmetric window. Firstly, we set the initial
condition for u to be u0 (1 inside the region and −1 outside
the region). The evolution is

ut = Lu, u|t=0 = u0.

and the linear operator of nonlocal regularization is
expressed as

Lu(x) =
∫

�
(u(y) − u(x))w(x, y)d y,

Finally, we choose the region of object to be u > 0.
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Fig. 1. Results obtained by eight different models. Column 1: segmented results of Chan-Vese model (CV). Column 2: segmented results of global
Chan-Vese model (GCV). Column 3: segmented results of our previous decomposition model (Prev). Column 4: segmented results of nonlocal based segmen-
tation method (Nonlocal). Column 5: segmented results of local statistical model (Local). Column 6: segmented results of modified Gaussian model (Gaus).
Column 7: segmented results of modified bilateral model (Bila). Column 8: segmented results of modified directional diffusion model (Direc). The latter four
models can produce more accurate results than the former four models.

3) Local Statistical Method (Local, in Short) [20]: The
local statistical method proposed in [20] used the bias
field (1.4), assuming the object is approximated as a combina-
tion of the biased field, the classical level set formulation, and
the constant. Therefore, the two-phase minimization problem
based on MS model is rewritten in the statistical form with
the classical level set formulation

min
b,c1,c2,φ

{ ∫
�

∫
�

Gσ (x, y)
(

log(σ1)H (φ)

+ (I (x) − b(y)c1)
2

2σ 2
1

H (φ) + log(σ2)(1 − H (φ))

+ (I (x) − b(y)c2)
2

2σ 2
2

(1 − H (φ))
)

d yd x
}
,

where σ1, σ2 are the parameters. Gσ is defined in (2.4). The
evolution with respect to b, c1, c2, φ is calculated by using the
gradient descent methods directly.

In the first experiment, we compare these five algorithms
with our modified Gaussian model (2.12) (K = Gσ , denoted
as Gaus), the modified bilateral model (2.12) (K = G B ,
denoted as Bila), and the modified directional diffusion
model (2.12) (K = G D , denoted as Direc). All experiments
were run under Matlab R2010a on a PC with Dual 3.2 GHz
processor. We test in Fig. 1 two synthetic images and two real

TABLE I

COMPARISON OF COMPUTATIONAL TIME (SECONDS)
OF DIFFERENT METHODS IN FIG. 1

vessel images. These four image are PS images with intensity
inhomogeneity. We tabulate in Table I the computational time
(in seconds) obtained by eight algorithms, and we depict
in Fig. 1 the final segmented images. We find that the former
four models fail to get good segmented results, whereas
the methods using the local statistical model and our new
proposed models perform better. This is due to the reason
that the latter four methods utilize local information in the
global optimization framework. Moreover, we plot the decay
of numerical energy functional (3.2) of these four images
in Fig.1 with respect to the iteration for K = Gσ , G B and
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Fig. 2. Decay of the energy functional in (3.2) for three smoothing kernels
and four images in Fig. 1, against the iteration steps.

Fig. 3. Results obtained by four different models. Column 1: Images with
different noise level. Column 2: segmented results of local statistical model.
Column 3: segmented results of the modified Gaussian model. Column 4:
segmented results of the modified bilateral model. Column 5: segmented
results of the modified directional diffusion model. All of our three modified
models can handle large noisy images, and are more robust to the noise.

G D respectively in Fig. 2. The decay of energy functional
can justify the convergence. We visualize that the modified
directional diffusion model converges faster than the other
two models.

The previous comparison showed the advantages of
latter four models. Next, we compare these four models
in the second experiment. We test on a synthetic image of
size 85 × 88 with different noise levels (from low to high).
In all tests, noisy images are generated by adding
Gaussian noise with zero mean and different variances

TABLE II

EVALUATION RESULTS OF THE METHODS IN FIG. 3

Fig. 4. Results obtained by local statistical model, our modified Gaussian
model, bilateral model and directional diffusion model. Row 1: segmented
results of local statistical model. Row 2: segmented results of modified
Gaussian model. Row 3: segmented results of modified bilateral model.
Row 4: segmented results of modified directional diffusion model.
Row 5: ground truth. Our proposed three models produce resembling results
as the ground truth, and all three phases match the ground truth better than
local statistical model.

d = 0.002, 0.02, 0.2. In Fig. 3, we present the noisy images
and segmentation results of four different models. We observe
from Fig. 3: [3.1]-[3.5] that the four models perform similarly
for low noise images. However, the modified Gaussian model,
bilateral model and directional diffusion model yield more
accurate results than the local statistical model for higher
noise-level images. We also provide the comparison results in
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Fig. 5. Segmented results (in red) on cell dataset C3DH-H157 by using
the modified directional diffusion model and the ground truth (in blue). Our
modified model can obtain satisfactory results.

terms of precision and recall in Table II. Precision and recall
are the basic measures used in evaluating results. Precision is
the fraction of the true positive pixels in the segmented results,
while recall (or sensitivity) is the fraction of the true positive
pixels in the ground truth of the foreground. We also observe
from the evaluation results in Table II that the modified
directional diffusion model and the modified bilateral model
produce slightly better results than the modified Gaussian
model. Therefore, the three proposed modified MS models
are more robust to noise.

In medicine area, many research applications using mag-
netic resonance (MR) images involve segmenting PS images
with intensity inhomogeneity. Hence in the third experi-
ment, we test on MRI brain images. This dataset comes
from http://www.bic.mni.mcgill.ca/brainweb/, and we choose
a noise level of 7% and non-uniformity (“RF”) of 20%. There
are three classes that should be segmented: cerebrospinal
fluid (CF), gray matter (GM) and white matter (WM).
Fig. 4 provides the segmented results of the local statistical
model, the modified Gaussian model, the modified bilateral
model, the modified directional diffusion model and the
ground truth (GT). We also compare the evaluation results
in terms of precision and recall for each phase in Table III.
We find that our three proposed modified models can produce
much better results than local statistical model.

TABLE III

EVALUATION RESULTS OF THE METHODS IN FIG. 4

Fig. 6. More tests on images segmentation with intensity inhomogeneities
using the modified directional diffusion model. Our proposed model can
achieve accurate results for the image with low contrast.

In the forth experiment, we perform experiments on human
squamous lung carcinoma cell images. This dataset comes
from C3DH-H157 [52]. In Fig. 5, we present the segmented
results (in red) by using the modified directional diffusion
model and the ground truth (in blue). Meanwhile, we compute
the average precision and the average recall for the cells
detected. The average value is 0.9340 and 0.9617, respectively.
We find that our proposed models can detect the cells well.

Finally, we test some typical images used as examples in the
related references. We present the segmented results by using
the modified directional diffusion model in Fig. 6. We see
that in all tests, the modified directional diffusion model can
provide satisfactory segmentation results.

V. CONCLUSION

In this work, we proposed a general framework to modify
the MS model for multiphase PS image segmentation, where
the essential idea was to use the smoothing operators to
replace the regularisation term. Some insights and analysis
were provided to justify the modification and to understand
the general principles for selecting smooth kernels. Using the
closed-form formula for the targeted smooth approximation
and the direct augmented Lagrangian method, we were able
to come up with a fast minimisation algorithm for the general
model. Through ample numerical results and comparison with
other relevant methods, we demonstrated the efficiency and
accuracy of our proposed model and algorithm.
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