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INTEGRATION PROCESSES OF
ORDINARY DIFFERENTIAL EQUATIONS

BASED ON LAGUERRE-RADAU INTERPOLATIONS

BEN-YU GUO, ZHONG-QING WANG, HONG-JIONG TIAN, AND LI-LIAN WANG

Abstract. In this paper, we propose two integration processes for ordinary
differential equations based on modified Laguerre-Radau interpolations, which
are very efficient for long-time numerical simulations of dynamical systems.
The global convergence of proposed algorithms are proved. Numerical results
demonstrate the spectral accuracy of these new approaches and coincide well
with theoretical analysis.

1. Introduction

Numerous problems in science and engineering are governed by ordinary dif-
ferential equations. There have been fruitful results on their numerical solutions;
see, e.g., Butcher [2, 4], Hairer, Norsett and Wanner [16], Hairer and Wanner [17],
Higham [18] and Stuart and Humphries [25]. For Hamiltonian systems, we refer to
the powerful symplectic difference method of Feng [5]; see also [6, 15, 22] and the
references therein.

As a basic tool, the Runge-Kutta method plays an important role in numerical
integrations of ordinary differential equations. We usually design these kinds of
numerical schemes in two ways. The first way is based on Taylor’s expansion
coupled with other techniques. The next is to construct numerical schemes by
using collocation approximation. For instance, Butcher [3] provided some implicit
Runge-Kutta processes based on the Radau quadrature formulas; see also [4, 16, 17]
and the references therein. On the other hand, Babuska and Janik [1], and TalJ-
Ezer [26] used the same trick in time discretization for parabolic equations.

In the existing work, one often used the Legendre-Radau interpolation to design
the Runge-Kutta processes. However, the Legendre-Radau interpolation is available
for finite interval essentially. Conversely, if we use the Laguerre-Radau interpola-
tion, we can approximate the exact solutions on the half line. Thereby, the related
algorithms might be more appropriate for long-time calculations. In particular, the
corresponding Runge-Kutta processes often possess the global convergence. As we
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know, some authors developed the Laguerre approximation with successful applica-
tions to spatial approximations of various partial differential equations on the half
line and a large class of other related problems; see, e.g., Funaro [5], Guo and Shen
[8], Guo, Shen and Xu [9], Guo and Xu [12], Iranzo and Falques [19], Mastroianni
and Monegate [21], Maday, Pernaud-Thomas, and Vandeven [20], Shen [24], and Xu
and Guo [27]. But so far, to our knowledge, there is no work concerning the appli-
cations of Laguerre approximation to integration processes for ordinary differential
equations.

This paper discusses two new integration processes based on modified Laguerre-
Radau interpolation. In the next section, we propose the first algorithm by using
the modified Laguerre polynomials. This process has several advantages. First, it
is easier to be implemented, especially for nonlinear systems. Next, it provides the
global numerical solutions and the global convergence in certain weighted Sobolev
space. Hence, it is very applicable to long-time calculations. Furthermore, by ad-
justing a parameter involved in the process, we may weaken the conditions on the
underlying problems, and so enlarge its applications essentially. In Section 3, by
taking the modified Laguerre functions as base functions, we design the second in-
tegration process. This process not only has the same merits as the first process,
but also possesses the global convergence in the space L2(0,∞). This implies that
the pointwise numerical errors decay to zero rapidly as time goes to infinity. There-
fore, it is more suitable for long-time calculations. We also develop a technique for
refining numerical results in Section 4. In other words, we first use the above meth-
ods with moderate mode to obtain numerical solutions, and then use the shifted
Laguerre approximation to refine them. This simplifies actual computations and
provides more precise numerical solutions. We present numerical results in Section
5, which demonstrate the spectral accuracy of proposed methods and coincide well
with analysis. The final section is for concluding remarks.

2. The first numerical integration process

In this section, we propose the first integration process. Let ωβ(t) = e−βt, β > 0,
and define the weighted space L2

ωβ
(0,∞) as usual, with the following inner product

and norm,

(u, v)ωβ
=

∫ ∞

0

u(t)v(t)ωβ(t)dt, ‖v‖ωβ
= (v, v)

1
2
ωβ .

The modified Laguerre polynomial of degree l is defined by (cf. [13])

L(β)
l (t) =

1
l!

eβt dl

dtl
(tle−βt), l ≥ 0.

They satisfy the recurrence relation

d

dt
L(β)

l (t) =
d

dt
L(β)

l−1(t) − βL(β)
l−1(t), l ≥ 1.(2.1)

The set of Laguerre polynomials is a complete L2
ωβ

(0,∞)-orthogonal system, namely,

(2.2) (L(β)
l ,L(β)

m )ωβ
=

1
β

δ�,m
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where δl,m is the Kronecker symbol. Thus, for any v ∈ L2
ωβ

(0,∞),

v(t) =
∞∑

l=0

v̂lL(β)
l (t), v̂l = β(v,L(β)

l )ωβ
.

Now, let N be any positive integer, and PN (0,∞) the set of all algebraic poly-
nomials of degree at most N . We denote by tNβ,j the nodes of modified Laguerre-
Radau interpolation. Indeed, tNβ,0 = 0, and tNβ,j(1 ≤ j ≤ N) are the distinct zeros

of d
dtL

(β)
N+1(t). By using (2.1) and the formula (2.12) of [10], the corresponding

Christoffel numbers are as follows:

(2.3) ωN
β,0 =

1
β(N + 1)

, ωN
β,j =

1

β(N + 1)L(β)
N (tNβ,j)L

(β)
N+1(t

N
β,j)

, 1 ≤ j ≤ N.

For any φ ∈ P2N (0,∞),
N∑

j=0

φ(tNβ,j)ω
N
β,j =

∫ ∞

0

φ(t)ωβ(t)dt.

Next, we define the following discrete inner product and norm,

(u, v)ωβ,N =
N∑

j=0

u(tNβ,j)v(tNβ,j)ω
N
β,j , ‖v‖ωβ ,N = (v, v)

1
2
ωβ,N .

For any φ, ψ ∈ PN (0,∞),

(2.4) (φ, ψ)ωβ
= (φ, ψ)ωβ,N , ‖φ‖ωβ

= ‖φ‖ωβ ,N .

The modified Laguerre-Radau interpolant Iβ,Nv ∈ PN (0,∞), is determined by

Iβ,Nv(tNβ,j) = v(tNβ,j), 0 ≤ j ≤ N.

By (2.4), for any φ ∈ PN (0,∞),

(2.5) (Iβ,Nv, φ)ωβ
= (Iβ,Nv, φ)ωβ,N = (v, φ)ωβ,N .

The interpolant Iβ,Nv can be expanded as

Iβ,Nv(t) =
N∑

l=0

ṽN
β,lL

(β)
l (t).

By virtue of (2.2) and (2.4),

(2.6) ṽN
β,l = β(Iβ,Nv,L(β)

l )ωβ
= β(v,L(β)

l )ωβ,N .

We now consider the following model problem

(2.7)

{
d

dt
U(t) = f(U(t), t), t > 0,

U(0) = U0.

We suppose that
d

dt
U(t) is continuous for t ≥ 0. Let

GN
β,1(t) =

d

dt
Iβ,NU(t) − Iβ,N

d

dt
U(t).

Then we obtain from (2.7) that

(2.8)
d

dt
Iβ,NU(tNβ,k) = f(U(tNβ,k), tNβ,k) + GN

β,1(t
N
β,k), 1 ≤ k ≤ N.
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Next, we derive an explicit expression for the left side of (2.8). Let ŨN
β,l be the

coefficients of Iβ,NU in terms of L(β)
l (t). By virtue of (2.1) and (2.6), we deduce

that

(2.9)

d

dt
Iβ,NU(t) =

N∑
l=1

ŨN
β,l

d

dt
L(β)

l (t) = −β

N∑
l=1

ŨN
β,l(

l−1∑
m=0

L(β)
m (t))

= −β2

N∑
l=1

(
N∑

j=0

U(tNβ,j)L
(β)
l (tNβ,j)ω

N
β,j)(

l−1∑
m=0

L(β)
m (t))

= −β2

N∑
j=0

(
N∑

l=1

L(β)
l (tNβ,j)(

l−1∑
m=0

L(β)
m (t)))U(tNβ,j)ω

N
β,j .

For simplicity, we set

(2.10) aN
β,k,j = −β2ωN

β,j

N∑
l=1

L(β)
l (tNβ,j)(

l−1∑
m=0

L(β)
m (tNβ,k)), 1 ≤ k ≤ N, 0 ≤ j ≤ N.

Then, (2.9) reads

(2.11)
d

dt
Iβ,NU(tNβ,k) =

N∑
j=0

aN
β,k,jU(tNβ,j), 1 ≤ k ≤ N.

Furthermore, let
U

N = (U(0), U(tNβ,1), · · · , U(tNβ,N ))T ,

F
N
β (UN ) = (f(U(tNβ,1), t

N
β,1), f(U(tNβ,2), t

N
β,2), . . . , f(U(tNβ,N ), tNβ,N ))T ,

G
N
β,1 = (GN

β,1(t
N
β,1), G

N
β,1(t

N
β,2), · · · , GN

β,1(t
N
β,N ))T ,

and

A
N
β =

⎛⎜⎜⎝
aN

β,1,0 aN
β,1,1 . . . aN

β,1,N

aN
β,2,0 aN

β,2,1 · · · aN
β,2,N

· · ·
aN

β,N,0 aN
β,N,1 · · · aN

β,N,N

⎞⎟⎟⎠ .

Accordingly, we can rewrite (2.8) as

(2.12) A
N
β U

N = F
N
β (UN ) + G

N
β,1.

We are now in a position to construct the numerical scheme for (2.7). To do
this, we approximate U(t) by uN (t) ∈ PN (0,∞). Clearly Iβ,NuN (t) = uN (t).
Furthermore, we set

uN = (uN (0), uN(tNβ,1), · · · , uN (tNβ,N ))T ,

F
N
β (uN ) =

(
f(uN (tNβ,1), t

N
β,1), f(uN (tNβ,2), t

N
β,2), · · · , f(uN (tNβ,N ), tNβ,N )

)T

.

By replacing UN by uN and neglecting GN
β,1 in (2.12), we derive the following

scheme

(2.13)

{
AN

β uN = FN
β (uN ),

uN (0) = U0.
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This is an implicit scheme. If f(z, t) is a nonlinear function for z, then we need
a nonlinear iteration to solve this system. In this work, we shall use the Newton-
Raphson iteration. Finally, the global numerical solution

(2.14) uN (t) =
N∑

l=0

ũN
β,lL

(β)
l (t), t ≥ 0,

where by (2.6),

ũN
β,l = β(uN ,L(β)

l )ωβ ,N = β

N∑
j=0

uN (tNβ,j)L
(β)
l (tNβ,j)ω

N
β,j .

The system (2.13) is equivalent to the system

(2.15)

⎧⎨⎩
d

dt
uN (tNβ,k) = f(uN (tNβ,k), tNβ,k), 1 ≤ k ≤ N,

uN (0) = U0.

It has a unique solution, if f(z, t) fulfills some reasonable conditions; see Appendix
of this paper.

We next analyze the numerical error of (2.13). In particular, we shall prove its
spectral accuracy. It means that for any fixed N , the smoother the exact solution
U , the higher the order of convergence of the numerical solution. To do this, let
EN (t) = uN (t) − Iβ,NU(t). Subtracting (2.15) from (2.8) yields that

(2.16)

⎧⎨⎩
d

dt
EN (tNβ,k) = GN

β,2(t
N
β,k) − GN

β,1(t
N
β,k), 1 ≤ k ≤ N,

EN (0) = 0

where
GN

β,2(t
N
β,k) = f(uN (tNβ,k), tNβ,k) − f(Iβ,NU(tNβ,k), tNβ,k).

We next multiply the first formula of (2.16) by 2EN (tNβ,k)ωN
β,k and sum the resulting

equality for 1 ≤ k ≤ N . Since EN (0) = 0, we deduce that

(2.17) 2(EN ,
d

dt
EN )ωβ ,N = AN

β,1 + AN
β,2

where
AN

β,1 = −2(GN
β,1, E

N )ωβ,N , AN
β,2 = 2(GN

β,2, E
N )ωβ,N .

By (2.4) and integration by parts, we get

2(EN ,
d

dt
EN )ωβ,N = 2(EN ,

d

dt
EN )ωβ

= β‖EN‖2
ωβ

.

Due to GN
β,1(t) ∈ PN (0,∞), we use (2.4) and the Cauchy inequality to obtain that

|AN
β,1| ≤ 2‖GN

β,1‖ωβ ,N‖EN‖ωβ ,N = 2‖GN
β,1‖ωβ

‖EN‖ωβ
.

Substituting the above two estimates into (2.17), we assert that

(2.18) β‖EN‖2
ωβ

≤ AN
β,2 + 2‖GN

β,1‖ωβ
‖EN‖ωβ

.

We now assume that there exists a real number γ such that

(2.19) (f(z1, t) − f(z2, t))(z1 − z2) ≤ γ|z1 − z2|2, ∀z1, z2 ∈ R.

Then by (2.4),
AN

β,2 ≤ 2γ‖EN‖2
ωβ ,N = 2γ‖EN‖2

ωβ
.
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The above fact, along with (2.18), shows that for any β > 2γ,

(2.20) ‖EN‖ωβ
≤ 2

β − 2γ
‖GN

β,1‖ωβ
.

Thus it remains to estimate ‖GN
β,1‖ωβ

.
In order to estimate ‖GN

β,1‖ωβ
, we need some approximation results on the modi-

fied Laguerre-Radau interpolation. For this purpose, we use the following notations:

R(1)
N,r,β(v) = β−1||t

r−1
2

drv

dtr
||ωβ

+ (1 + β− 1
2 )(lnN)

1
2 ||t r

2
drv

dtr
||ωβ

,

R(2)
N,r,β(v) = β−1||t r+1

2 dr+2v
dtr+2 ||ωβ

+ N− 1
2 ||t r+1

2 dr+2v
dtr+2 ||ωβ

+(1 + β− 1
2 )(lnN)

1
2 ||t r+2

2 dr+2v
dtr+2 ||ωβ

.

According to Theorems 3.7 and 3.8 of [10], we know that for the integer r ≥ 1,

(2.21)
‖Iβ,Nv − v‖ωβ

≤ c(βN)
1
2−

r
2R(1)

N,r,β(v),

‖ d

dt
(Iβ,Nv − v)‖ωβ

≤ c(βN)
1
2−

r
2R(2)

N,r,β(v).

We now go back to (2.20). By (2.21), we get

‖GN
β,1‖ωβ

≤ ‖ d
dt (Iβ,NU − U)‖ωβ

+ ‖dU
dt − Iβ,N

dU
dt ‖ωβ

≤ c(βN)
1
2−

r
2 (R(2)

N,r,β(U) + R(1)
N,r,β(dU

dt )).

Therefore, (2.20) reads

‖EN‖ωβ
≤ c

β − 2γ
(βN)

1
2−

r
2 (R(2)

N,r,β(U) + R(1)
N,r,β(

dU

dt
)).

Finally, we use (2.21) again to reach the following result.

Theorem 2.1. Let (2.19) hold and β > 2γ. If R(1)
N,r,β(U),R(2)

N,r,β(U) and

R(1)
N,r,β(dU

dt ) are finite, then

(2.22)
‖U − uN‖ωβ

≤ ‖Iβ,NU − U‖ωβ
+ ‖EN‖ωβ

≤ c
β−2γ (βN)

1
2−

r
2 ((β − 2γ)R(1)

N,r,β(U) + R(2)
N,r,β(U) + R(1)

N,r,β(dU
dt )).

Remark 2.1. According to (2.22),

‖U − uN‖ωβ
=

β − 2γ + 1
β − 2γ

O((1 +
1
β

)(βN)
1
2−

r
2 (lnN)

1
2 ).

Moreover, a suitable choice of β may improve the numerical accuracy.

Remark 2.2. The norms involved on the right side of (2.22) are finite as long as
f(z, t) satisfies certain conditions and β > 2γ. For instance, by (2.7) and (2.10),
for any δ > 0,

2U(t) d
dtU(t) = 2(f(U(t), t) − f(0, t))U(t) + 2f(0, t)U(t)

≤ 2γU2(t) + 2f(0, t)U(t) ≤ (2γ + δ)U2(t) + f2(0,t)
δ .

Thus integrating the above leads to

U2(t) ≤ U2
0 + (2γ + δ)

∫ t

0

U2(s)ds +
1
δ

∫ t

0

f2(0, s)ds.
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Then by the Gronwell inequality,

U2(t) ≤ e(2γ+δ)t(U2
0 +

1
δ

∫ t

0

e−(2γ+δ)sf2(0, s)ds).

This with β > 2γ ensures the finiteness of the norm ||u||ωβ
. We can check the

finiteness of other norms on the right side of (2.22), provided that f(z, t) satisfy
certain conditions.

Remark 2.3. If (2.19) holds and integer r > 1, then scheme (2.13) with β > 2γ has
the global convergence and the spectral accuracy in the weighted space L2

ωβ
(0,∞).

Remark 2.4. For the validity of convergence of usual integration processes, we
impose certain conditions on the constant γ in (2.19). This limits its applications
seriously. However, for any γ, we could use the scheme (2.13) with the suitable
parameter β > 2γ to solve (2.7) efficiently. Therefore, our new process is available
for a large class of dynamical systems.

Remark 2.5. The algorithm (2.13) with fixed parameter β is still applicable, even
if β ≤ 2γ. For example, we assume that for a certain real number α1 ≥ 1

2β,

(2.23) (f(z1(t)), t) − f(z2(t), t))(z1 − z2) ≤ α1|z1 − z2|2.

In this case, we take α > α1 − 1
2β and make the variable transformation

(2.24) U(t) = eαtV (t), F (V (t), t) = e−αtf(eαtV (t), t) − αV (t).

Then (2.7) becomes

(2.25)

⎧⎨⎩
dV (t)

dt
= F (V (t), t), t > 0,

V (0) = U0.

We may use (2.13) to resolve (2.25), and obtain the numerical solution vN . More-
over, the condition (2.23) ensures the global spectral accuracy of vN . The numerical
solution of (2.7) is given by uN (t) = eαtvN (t).

Remark 2.6. Suppose that f(z, t) fulfills the following Lipschitz condition:

(2.26) |f(z1, t) − f(z2, t)| ≤ L|z1 − z2|, L ≥ 0.

Then we have an error estimate similar to (2.22) for any β > 2L.

Remark 2.7. It is easy to generalize the method (2.13) to a system of ordinary
differential equations. If it fulfills certain conditions like (2.19) or (2.26), then the
same result as in Theorem 2.1 holds.

Remark 2.8. The proposed method is also applicable to Hamilton systems, which
do not satisfy (2.26). For example, we consider the system

(2.27)

⎧⎨⎩
d

dt
P (t) = −4Q(t),

d

dt
Q(t) = P (t), t > 0,

P (0) = P0, Q(0) = Q0.

The corresponding Hamiltonian function is H(P, Q) = 1
2P 2+2Q2. We approximate

P (t) and Q(t) by pN (t) and qN (t), respectively. The numerical algorithm for (2.27)



188 B. GUO, Z. WANG, H. TIAN, AND L. WANG

is as follows:

(2.28)

⎧⎨⎩
d

dt
pN (tNβ,k) = −4qN (tNβ,k),

d

dt
qN (tNβ,k) = pN (tNβ,k), 1 ≤ k ≤ N,

pN (0) = P0, qN (0) = Q0.

By using (2.21), we can prove that for any β > 0,

‖P − pN‖ωβ
+2‖Q − qN‖ωβ

≤ c(1 + 1
β )(βN)

1
2−

r
2 (R(1)

N,r,β(P ) + R(1)
N,r,β(Q)

+R(2)
N,r,β(P ) + R(2)

N,r,β(Q) + R(1)
N,r,β(

dP

dt
) + R(1)

N,r,β(
dQ

dt
)).

This implies the global convergence and the spectral accuracy of numerical solution.

3. The second integration process

In the last section, we provided an integration process with the spectral accuracy
in the weighted space L2

ωβ
(0,∞). However, the small error in the weighted space

does not imply the small error in the maximum norm. On the other hand, such a
measurement is not the most appropriate, if the exact solution decays fast enough
as t → ∞. In this section, we develop another integration process for the model
problem (2.7), with the global spectral accuracy in the space L2(0,∞). The main
idea is to take the modified Laguerre functions L̃(β)

l (t) = e−
1
2βtL(β)

l (t) as the base
functions, instead of L(β)

l (t).
According to (2.1), the functions L̃(β)

l (t) satisfy the recurrence relation (cf. [14])

(3.1)
d

dt
L̃(β)

l (t) =
d

dt
L̃(β)

l−1(t) −
1
2
βL̃(β)

l (t) − 1
2
βL̃(β)

l−1(t), l ≥ 1.

Denote by (u, v) and ‖v‖ the inner product and the norm of the space L2(0,∞),
respectively. The set of L̃(β)

l (t) is a complete L2(0,∞)-orthogonal system, i.e.,

(3.2) (L̃(β)
l , L̃(β)

m ) =
1
β

δl,m.

We now introduce the new Laguerre-Radau interpolation. Set QN (0,∞) =
span{L̃(β)

0 , L̃(β)
1 , · · · , L̃(β)

N }. Let tNβ,j and ωN
β,j be the same as in (2.3), and take

the nodes and weights of the new Laguerre-Radau interpolation as

(3.3) t̃Nβ,j = tNβ,j , ω̃N
β,j =

1

L̃(β)
N (tNβ,j)L̃

(β)
N+1(t

N
β,j)

= eβtN
β,j ωN

β,j .

We also define the following discrete inner product and norm,

(u, v)β,N =
N∑

j=0

u(tNβ,j)v(tNβ,j)ω̃
N
β,j , ‖v‖β,N = (v, v)

1
2
β,N .

For any φ1, φ2 ∈ QN (0,∞), we have φ1 = e−
1
2βtψ1, φ2 = e−

1
2βtψ2 and ψ1, ψ2 ∈

PN (0,∞). Thus by (2.4),

(3.4) (φ1, φ2)β,N = (ψ1, ψ2)ωβ ,N = (ψ1, ψ2)ωβ
= (φ1, φ2).

The new Laguerre-Radau interpolant Ĩβ,Nv ∈ QN (0,∞) is determined by

Ĩβ,Nv(tNβ,j) = v(tNβ,j), 0 ≤ j ≤ N.
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Thanks to (3.4), for any φ ∈ QN (0,∞),

(3.5) (Ĩβ,Nv, φ) = (Ĩβ,Nv, φ)β,N = (v, φ)β,N .

Let

Ĩβ,Nv(t) =
N∑

l=0

ṽN
β,lL̃

(β)
l (t).

Then, with the aid of (3.2) and (3.5), we derive that

(3.6) ṽN
β,l = β(Ĩβ,Nv, L̃(β)

l ) = β(Ĩβ,Nv, L̃(β)
l )β,N = β(v, L̃(β)

l )β,N .

There is a close relation between Iβ,N and Ĩβ,N . Indeed by the previous two equal-
ities,

e
1
2 βtĨβ,Nv(t) =

N∑
l=0

ṽN
β,lL

(β)
l (t) = β

N∑
l=0

(v, L̃(β)
l )β,NL(β)

l (t)

= β
N∑

l=0

(e
1
2βtv,L(β)

l )ωβ ,NL(β)
l (t).

This with (2.6) implies

(3.7) Ĩβ,Nv(t) = e−
1
2βtIβ,N (e

1
2 βtv(t)).

Now, we turn to the model problem (2.7). Let

GN
β,1(t) =

d

dt
Ĩβ,NU(t) − Ĩβ,N

d

dt
U(t).

Then we obtain from (2.7) that

(3.8)
d

dt
Ĩβ,NU(tNβ,k) = f(U(tNβ,k), tNβ,k) + GN

β,1(t
N
β,k), 1 ≤ k ≤ N.

Next, we derive an explicit expression of the left side of (3.8). To this end, let
ŨN

β,l be the coefficients of Ĩβ,NU(t) in terms of L̃(β)
l (t). Due to (3.1), we verify that

d

dt
Ĩβ,NU(t) =

N∑
l=0

ŨN
β,l

d

dt
L̃(β)

l (t)

= −1
2β

N∑
l=1

ŨN
β,l(2

l−1∑
m=0

L̃(β)
m (t) + L̃(β)

l (t)) − 1
2
βŨN

β,0L̃
(β)
0 (t).

The above with (3.6) implies that

d

dt
Ĩβ,NU(tNβ,k)=−1

2
β2

N∑
l=1

(
N∑

j=0

U(tNβ,j)L̃
(β)
l (tNβ,j)ω̃

N
β,j)(2

l−1∑
m=0

L̃(β)
m (tNβ,k)+L̃(β)

l (tNβ,k))

− 1
2
β2(

N∑
j=0

U(tNβ,j)L̃
(β)
0 (tNβ,j)ω̃

N
β,j)L̃

(β)
0 (tNβ,k).

Furthermore, we put

(3.9)
aN

β,k,j =−1
2β2ω̃N

β,j(
N∑

l=1

L̃(β)
l (tNβ,j)(2

l−1∑
m=0

L̃(β)
m (tNβ,k) + L̃(β)

l (tNβ,k))

+L̃(β)
0 (tNβ,j)L̃

(β)
0 (tNβ,k)), 0 ≤ j ≤ N, 1 ≤ k ≤ N.
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Then

(3.10)
d

dt
Ĩβ,NU(tNβ,k) =

N∑
j=0

aN
β,k,jU(tNβ,j).

We define the vectors UN , FN
β , GN

β,1, and the matrix AN
β in the same manner as

in the last section. But the entries of GN
β,1 and AN

β are now given as in (3.8) and
(3.9). Finally, we obtain

(3.11)

{
A

N
β U

N = F
N
β (UN) + G

N
β,1,

U(0) = U0.

We now approximate U(t) by uN (t) ∈ QN (0,∞). Clearly, Ĩβ,NuN (t) = uN (t).
We also use the notations uN and F

N
β (uN ) as in the last section. By replacing U

N

by uN and neglecting G
N
β,1 in (3.11), we derive the new integration process, which

is to find uN such that

(3.12)

{
AN

β uN = FN
β (uN ),

uN (0) = U0.

This is also an implicit scheme. The global numerical solution is

uN (t) =
N∑

l=0

ũN
β,lL̃

(β)
l (t), t ≥ 0,

with

ũN
β,l = β(uN , L̃(β)

l )β,N = β

N∑
j=0

uN (tNβ,j)L̃
(β)
l (tNβ,j)ω̃

N
β,j .

Indeed, scheme (3.12) is equivalent to the system

(3.13)

⎧⎨⎩
d

dt
uN (tNβ,k) = f(uN (tNβ,k), tNβ,k), 1 ≤ k ≤ N,

uN (0) = U0.

Next, we estimate the error of numerical solution. Let EN (t) = uN (t)−Ĩβ,NU(t).
Subtracting (3.8) from (3.13) gives that

(3.14)

⎧⎨⎩
d

dt
EN (tNβ,k) = GN

β,2(t
N
β,k) − GN

β,1(t
N
β,k), 1 ≤ k ≤ N,

EN (0) = 0

where
GN

β,2(t
N
β,k) = f(uN (tNβ,k), tNβ,k) − f(Ĩβ,NU(tNβ,k), tNβ,k).

We now multiply (3.14) by 2EN (tNβ,k)ω̃N
β,k and sum the result for 1 ≤ k ≤ N . Due

to EN (0) = 0, we obtain that

(3.15) 2(EN ,
d

dt
EN )β,N = AN

β,1 + AN
β,2

where
AN

β,1 = −2(GN
β,1, E

N )β,N , AN
β,2 = 2(GN

β,2, E
N )β,N .
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Thanks to (3.4) and the Cauchy inequality, we deduce that

2(EN ,
d

dt
EN )β,N = 2(EN ,

d

dt
EN ) = |EN (∞)|2,

|AN
β,1| ≤ 2‖GN

β,1‖β,N‖EN‖β,N = 2‖GN
β,1‖‖EN‖.

Thus (3.15) reads

(3.16) |EN (∞)|2 ≤ AN
β,2 + 2‖GN

β,1‖‖EN‖.
We assume that

(3.17) (f(z1, t) − f(z2, t))(z1 − z2) ≤ −γ0|z1 − z2|2, γ0 > 0, ∀z1, z2 ∈ R.

Then AN
β,2 ≤ −2γ0‖EN‖2 and so by (3.17),

(3.18) |EN (∞)|2 + γ0‖EN‖2 ≤ 1
γ0

‖GN
β,1‖2.

Hence it suffices to estimate ‖GN
β,1‖2.

With the aid of (2.21) and (3.7), we deduce that for r ≥ 1,

(3.19) ‖Ĩβ,Nv − v‖ = ‖Iβ,N (e
1
2 βtv) − e

1
2 βtv‖ωβ

≤ c(βN)
1
2−

r
2R(1)

N,r,β(e
1
2 βtv).

On the other hand,

(3.20)

d

dt
(Ĩβ,Nv − v) = −1

2
βe−

1
2 βt(Iβ,N (e

1
2 βtv) − e

1
2βtv))

+ e−
1
2 βt d

dt
(Iβ,N (e

1
2 βtv) − e

1
2βtv).

Using the above result, along with (2.21), we assert that for r ≥ 1,

‖ d

dt
(Ĩβ,Nv − v)‖ ≤ c(βN)

1
2−

r
2 (βR(1)

N,r,β(e
1
2βtv) + R(2)

N,r,β(e
1
2 βtv)).

Consequently,

‖GN
β,1‖ ≤ ‖ d

dt (Ĩβ,NU − U)‖ + ‖ d
dtU − Ĩβ,N

d
dtU‖

≤ c(βN)
1
2−

r
2 (βR(1)

N,r,β(e
1
2 βtU) + R(2)

N,r,β(e
1
2βtU) + R(1)

N,r,β(e
1
2βt dU

dt )).

Thus, (3.18) implies that

|EN (∞)| + γ
1
2
0 ‖EN‖ ≤ c

γ
1
2
0

(βN)
1
2−

r
2 (βR(1)

N,r,β(e
1
2 βtU) + R(2)

N,r,β(e
1
2βtU)

+R(1)
N,r,β(e

1
2 βt dU

dt )).

Finally, the following conclusion follows from the previous statements, (3.19) and
the fact that

|U(∞) − uN (∞)| ≤ |Ĩβ,NU(∞) − U(∞)| + |EN (∞)|
≤ 2‖Ĩβ,NU − U‖ 1

2 ‖Ĩβ,NU − U‖
1
2
1 + |EN (∞)|.

Theorem 3.1. Let (3.17) hold and β > 0. If R(1)
N,r,β(e

1
2βtU),R(2)

N,r,β(e
1
2 βtU) and

R(1)
N,r,β(e

1
2βt dU

dt ) are finite, then

(3.21)
‖U − uN‖ ≤ c

γ0
(βN)

1
2−

r
2 ((γ0 + β)R(1)

N,r,β(e
1
2 βtU)

+ R(2)
N,r,β(e

1
2βtU) + R(1)

N,r,β(e
1
2 βt dU

dt
))
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and

(3.22)
|U(∞) − uN (∞)| ≤ c(βN)

1
2−

r
2 ((βγ

− 1
2

0 + β + 1)R(1)
N,r,β(e

1
2βtU)

+(1 + γ
− 1

2
0 )R(2)

N,r,β(e
1
2βtU) + γ

− 1
2

0 R(1)
N,r,β(e

1
2βt dU

dt )).

Remark 3.1. Because of (3.17), the norm ||U || is finite, as long as for any ε > 0,∫ ∞

0

e−(2γ−ε)t(
∫ t

0

e(2γ−ε)ξf2(0, ξ)dξ)dt < ∞.

Furthermore, if f(z, t) fulfills some additional conditions, then the norms appearing
in the right sides of (3.21) and (3.22) are finite. Therefore, for a certain positive
constant c∗ depending only on β,

‖U − uN‖ + |U(∞) − uN (∞)| = c∗(1 +
1
γ0

)(lnN)
1
2 N

1
2−

r
2 .

Consequently, for r > 1, the scheme (3.12) has the global convergence and the
spectral accuracy in L2(0,∞). Moreover, at the infinity, the numerical solution has
the same accuracy. This also indicates that the pointwise numerical error decays
rapidly as the mode N increases, with the convergence rate as c∗(lnN)

1
2 N

1
2−

r
2 .

On the other hand, for any fixed N , the norm ||U − uN || is bounded, and so
U(t)− uN (t) → 0, a.e., as t → ∞. In particular, for the smooth solution, the error
decays like o(t−

1
2 ). Hence, it is very efficient for long-time numerical simulations of

dynamical systems.

Remark 3.2. A modification of algorithm (3.12) also works well, if (2.23) holds. In
this case, we make the transformation (2.24) and use (3.12) to resolve (2.25). The
numerical solution of the original problem is given by uN (t) = eαtvN (t). If α > α1,
then the global spectral accuracy of vN is ensured.

Remark 3.3. There is a close relation between schemes (2.13) and (3.12). To show
this, we make the variable transformation

(3.23) V (t) = e
1
2βtU(t), F (V (t), t) = e

1
2 βtf(e−

1
2 βtV (t), t) +

1
2
βV (t).

Then (2.7) is changed to

(3.24)

⎧⎨⎩
dV (t)

dt
= F (V (t), t), t > 0,

V (0) = U0.

We may use scheme (2.13) to resolve (3.24) and obtain the numerical solution
vN (t). Finally we have the numerical solution of (2.7) as uN (t) = e−

1
2βtvN (t). If

(3.17) holds, then the error estimates similar to those of Theorem 3.1 also hold.
Conversely, if β > 2γ, then we can use (3.12) to solve the related reformed problem
with the unknown function V (t) = e−

1
2βtU(t), with the spectral accuracy. Then

uN (t) = e
1
2βtvN (t).

Remark 3.4. It is easy to generalize the method (3.12) to a system of ordinary
differential equations. If it fulfills a certain condition like in (3.17), then the same
result as in Theorem 3.1 holds. The proposed method is also applicable to Hamilton
systems.
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4. Refinement of numerical results

In the previous sections, we introduced two integration processes for ordinary
differential equations. Theoretically, their numerical errors with bigger mode N
are smaller. But in actual computation, it is not convenient to use very big mode.
On the other hand, the distance between the adjacent interpolation nodes tNβ,j and
tNβ,j−1 increases fast as N and j increase, especially for the nodes which are located
far from the original point t = 0. This feature is one of advantages of the Laguerre
interpolation, since we can use moderate mode N to evaluate the unknown function
at large t. But it is also its shortcoming. In fact, if the exact solution oscillates
or changes very rapidly between two large adjacent interpolation nodes, then we
may lose information about the structure of exact solution between those nodes. To
remedy this deficiency, we may refine the numerical results. For example, let N0 be a
moderate positive integer, β0 > 0, and the set of nodes {tN0

0,β0,j}
N0
j=0 = {tN0

β0,j}
N0
j=0. We

use (2.13) or (3.12) with the interpolation nodes {tN0
0,β0,j}

N0
j=0 to obtain the original

numerical solution u(0,N0)(t) = uN0(t), 0 ≤ t < ∞. Then we take tN1
1,β1,0 = tN0

0,β0,N0

and consider the problem

(4.1)

⎧⎪⎨⎪⎩
d

dt
U (1)(t) = f(U (1)(t), t), t > tN1

1,β1,0,

U (1)(tN1
1,β1,0) = u(0,N0)(tN1

1,β1,0).

By a shifting argument and using (2.13) or (3.12) with the parameter β1 and N1

interpolation nodes {tN1
1,β1,j}

N1
j=0, we get the refined numerical solution u(1,N1)(t)

for tN1
1,β1,0 ≤ t < ∞, especially the values of u(1,N1)(t) at the interpolation points

tN1
1,β1,j , 0 ≤ j ≤ N1. Repeating the above procedure, we obtain the refined numerical

solution u(m,Nm)(t) for tNm

m,βm,0 ≤ t < ∞. This algorithm saves work and provides
more accurate numerical results; see Section 5.

Remark 4.1. In actual computation, we may take tNm

m,βm,0 = t
Nm−1
m−1,βm−1,Nm−1−km−1

,

km−1 = 0, 1 or 2.

5. Numerical results

In this section, we present some numerical results. The algorithms are imple-
mented by using MATLAB, and all calculations are carried out with a computer of
CPU P4 3.0G, Mother Board I865PE/FSB 800/Dual Channel DDR400.

5.1. The first interpolation process. We first use scheme (2.13) to solve prob-
lem (2.7) with the test function U(t) = (t + 10)

11
2 + 1

2 sin t, which oscillates and
grows to infinity as t increases. The corresponding right term at (2.7) is

f(U(t), t) =
1
4

exp(sin (U(t)))+
11
2

(t+10)
9
2 +

1
2

cos t− 1
4

exp(sin((t+10)
11
2 +

1
2

sin t)),

which fulfills the condition (2.19) with γ = 1
4e. Therefore, as predicted by (2.22),

for any β > 2γ = 1
2e � 1.36, the global numerical error ‖uN − U‖ωβ

decays
exponentially as N → ∞.

For a description of numerical errors, we introduce the global absolute error
EN

ga = ‖uN −U‖ωβ ,N and the global relative error EN
gr = ‖uN−U

U ‖ωβ ,N . We are also

interested in the pointwise numerical error EN
pr(t) = |u

N (t)−U(t)
U(t) |.
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Figure 1. Global absolute
errors of (2.13).

Figure 2. Global relative er-
rors of (2.13).

Figure 3. Pointwise relative
errors of (2.13).

Figure 4. Pointwise errors
of refined method.

In Figures 1 and 2, we plot the global absolute errors log10 of EN
ga and the

global relative errors log10 of EN
gr with various values of β and N. They indicate

that for β = 1.5 > 2γ, the global errors decay exponentially as N increases, while
the scheme (2.13) is divergent for β = 0.7 < 2γ. They coincide very well with
theoretical analysis.

As pointed out in Section 4, due to the appearance of the weight function e−βt,
the pointwise numerical errors for large t might be bigger than the global weighted
errors. In Figure 3, we plot the pointwise relative errors EN

pr(t) with β = 8 and
N = 10, 15, 20, respectively. We see that the pointwise relative errors for large
j � N are really bigger than those with small j. To remedy this deficiency, we use
the refinement given in Section 4, with tNm

m,βm,0 = t
Nm−1
m−1,βm−1,Nm−1−km−1

, km being
a small positive integer. In Figure 4, we plot the pointwise relative errors EN

pr(t)
with uniform Nm = N = 10, βm = β = 8 and km = k = 2 at all steps. Clearly,
this refined approach provides more stable and accurate numerical results than the
single step method (without refinement), especially for long-time calculations.

5.2. The second interpolation process. Next, we use (3.12) to solve (2.7) with
the test function U(t) = (2 + sin t)e−

1
5 t, which oscillates and decays exponentially
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as t increases. The corresponding right term at (2.7) is

f(U(t), t) =−U3(t) − U(t) − 1
5 (2 + sin t)e−

1
5 t + cos t e−

1
5 t

+(2 + sin t)3e−
3
5 t + (2 + sin t)e−

1
5 t

which fulfills the condition (3.17) with γ0 = 1. According to the estimates (3.21)
and (3.22), we predict that for any β > 0, both the global absolute numerical
error EN

ga = ‖uN − U‖N and the pointwise absolute numerical error EN
pa(t) =

|uN (t)−U(t)|, decay exponentially as N → ∞. In Figure 5, we plot the log10 of EN
ga

with β = 0.5, 1, 2 and 3, respectively, which illustrates that the errors EN
ga decay

exponentially. Moreover, we find that a suitable choice of parameter β can raise
the numerical accuracy. These facts coincide very well with theoretical analysis.
In Figure 6 we plot the pointwise absolute errors EN

pa(t) with fixed N = 100 and
β = 1, 2, 3, respectively. It is shown that the pointwise absolute errors also decay
fast as t → ∞, as mentioned in Remark 3.1, and that suitable parameter β raises
the numerical accuracy. They coincide again very well with theoretical analysis.

Figure 5. Global absolute
errors.

Figure 6. Pointwise abso-
lute errors.

5.3. Comparison with other numerical methods. We now compare our new
integration processes with other numerical methods. We solve the Hamiltonian sys-
tem (2.27) by using algorithm (2.28) coupled with the refinement proposed in Sec-
tion 4. For simplicity, we denote this method by LR method. In actual computation,
we use 2.3×105 steps of refinement. At each step we take uniform Nm = 10, βm = 40
and km = 2. Thus, the final interpolation node is t = 1.0175× 105. In Figure 7, we
plot the numerical orbit (pN (t), qN (t)) for t ≤ 1.0175×105, which is virtually indis-
tinguishable with the exact orbit of movement governed by the Hamiltonian system
(2.27). But the accurate numerical orbit does not imply the accurate numerical so-
lution automatically, since the numerical point (pN (t), qN (t)) may be very far from
the exact point (P (t), Q(t)) even if both of them lie on the same orbit. In other
words, the numerical phase error might be big. Therefore, we are more interested
in the pointwise absolute errors EN (t) = ((pN (t) − P (t))2 + (qN (t) − Q(t))2)

1
2 . In

Figure 8, we plot the pointwise absolute errors EN (t), which grow slowly.
Next, we solve the same problem by using the Runge-Kutta scheme based on the

Legendre-Gauss interpolation of order 6, and the Leap-frog scheme. For simplicity,
they are denoted by RK method and LF method, respectively. Both of them are
symplectic (cf. [5, 6, 17]). We take τ as the mesh size for time-discretization.
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Figure 7. Numerical orbit
(pN (t), qN (t)).

Figure 8. Pointwise absolute
errors.

In Table 1, we list the numerical errors at t = 1.0175 × 105 of LR, Rk and LF
methods, and the corresponding CPU elapsed time. Clearly, our methods cost less
computational time for obtaining the nearly same numerical accuracy.

In Table 2, we list the numerical errors at t = 1.0175 × 105 of LR, Rk and
LF methods, and the corresponding CPU elapsed time. Obviously, our methods
provide much more accurate numerical results than the compared methods with
the same computational time.

Table 1. Error EN (t) and CPU elapsed time, t = 1.0175 × 105.

Method Error EN (t) CPU elapsed time (second)
LR 1.7169 × 10−7 3.245 × 10

RK, τ = 3.7 × 10−2 3.2678 × 10−7 1.333 × 102

LF, τ = 1.6 × 10−6 3.4241 × 10−7 3.235 × 104

Table 2. Error EN (t) and CPU elapsed time, t = 1.0175 × 105.

Method Error EN (t) CPU elapsed time (second)
LR 1.7169 × 10−7 3.245 × 104

RK,τ = 1.5 × 10−1 1.1447 × 10−3 3.334 × 10
LF,τ = 1.4 × 10−3 1.4899 × 10−1 3.355 × 10

6. Concluding remarks

In this paper, we proposed two new integration processes of ordinary differential
equations, which have fascinating advantages.

• The suggested integration processes are based on the modified Laguerre-
Radau interpolations on the half line. They provide the global numerical
solution and the global convergence naturally, and thus are available for
long-time numerical simulations of dynamical systems.
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• Benefiting from the rapid convergence of the modified Laguerre-Radau in-
terpolations, these processes possess the spectral accuracy. In particular,
the numerical results fit the exact solutions well at the interpolation nodes.

• Since the distances between the adjacent nodes increase fast as N and j
increase, we can obtain accurate numerical results even for moderate mode
N . It in turn saves a lot of work. By taking suitable parameter β in the first
proposed process, we weaken the condition on the underlying problems, and
so enlarge its applications.

• The pointwise numerical error of the second process decays with the con-
vergence rate O(N

1
2−

r
2 (lnN)

1
2 ) as N increases. It also decays with the rate

o(t−
1
2 ), as t → ∞. Thus, this process is very efficient.

The numerical experiments showed the efficiency of these two integration pro-
cesses, and coincided with theoretical analysis very well. In particular, our methods
cost less computational time and provide more accurate numerical results than other
methods.

We also developed a technique for refinement of Laguerre approximation. This
trick not only simplifies calculation, but also simulates the long-time behaviors of
dynamical systems more properly.

Although we only considered a model problem, the suggested methods and tech-
niques are also applicable to many other problems, such as various evolutionary
partial differential equations and infinite-dimensional nonlinear dynamical systems.
On the other hand, we may design other integration processes of ordinary differ-
ential equations with high accuracy based on the idea proposed in this paper;
see [11].

Appendix

We prove the existence and uniqueness of numerical solution. For simplicity, we
only focus on the system (2.13) with the condition (2.26). We consider the following
iteration process:⎧⎪⎨⎪⎩

d

dt
uN

m(tNβ,k) = f(uN
m−1(t

N
β,k), tNβ,k), 1 ≤ k ≤ N, m ≥ 1,

uN
m(0) = U0.

Furthermore, we set ũN
m(t) = uN

m(t) − uN
m−1(t). Then by (2.15),

d

dt
ũN

m(tNβ,k) = f(uN
m−1(t

N
β,k), tNβ,k) − f(uN

m−2(t
N
β,k), tNβ,k), 1 ≤ k ≤ N, m ≥ 1.

We multiply the above inequality by ũN
m(tNβ,k)ωN

β,k and sum the result for 1 ≤ k ≤ N .
Due to (2.26) and ũN

m(0) = 0, we deduce that

(ũN
m,

d

dt
ũN

m)ωβ,N ≤ L‖ũN
m‖ωβ ,N‖ũN

m−1‖ωβ ,N .

On the other hand, using (2.4) and integrating by parts yield that

2(ũN
m,

d

dt
ũN

m)ωβ,N = 2(ũN
m,

d

dt
ũN

m)ωβ
= β‖ũN

m‖2
ωβ

, ‖ũN
m‖ωβ ,N = ‖ũN

m‖ωβ
.

A combination of the previous statements leads to ‖ũN
m‖2

ωβ
≤ 2L

β ‖ũN
m−1‖2

ωβ
. Thus,

for β > 2L, the above iteration process is convergent. This fact implies the existence
of the solution of (2.13). We can prove the uniqueness of the solution of (2.13) easily.
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