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Abstract. In this paper, we develop an efficient Hermite spectral-Galerkin method for non-

local diffusion equations in unbounded domains. We show that the use of the Hermite basis
can de-convolute the troublesome convolutional operations involved in the nonlocal Laplacian.

As a result, the “stiffness” matrix can be fast computed and assembled via the four-point sta-

ble recursive algorithm with O(N2) arithmetic operations. Moreover, the singular factor in a
typical kernel function can be fully absorbed by the basis. With the aid of Fourier analysis, we

can prove the convergence of the scheme. We demonstrate that the recursive computation of

the entries of the stiffness matrix can be extended to the two-dimensional nonlocal Laplacian
using the isotropic Hermite functions as basis functions. We provide ample numerical results

to illustrate the accuracy and efficiency of the proposed algorithms.

1. Introduction

Mathematical models involving nonlocal operators such as fractional integrals/derivatives, frac-

tional Laplacian and nonlocal Laplacian, have proven to be of great value and superior to con-

ventional models in modeling many abnormal physical phenomena and engineering processes

[7, 6]. Although these nonlocal operators are defined in different senses, they have interwoven

connections, and share some common numerical difficulties, e.g., the global dependence and the

involvement of singular kernels. In general, a nonlocal operator takes the form

LKu(x) = P.V.

∫
Rd

(u(x)− u(y))K(|x− y|)dy, x ∈ Rd, (1.1)

where the kernel K : Rd → (0,∞) satisfies:

γK ∈ L1(Rd) with γ(z) = min(1, |z|2),

∃ θ, s ∈ (0, 1) such that K(z) ≥ θ|z|−(d+2s), z ∈ Rd \ {0}.
(1.2)

For example, for the hypersingular integral fractional Laplacian (−∆)s, we have

K(η) =
22ssΓ(s+ d/2)

πd/2Γ(1− s) η−(d+2s). (1.3)
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The nonlocal Laplacian operator generally reads

Lδ[u](x) =

∫
Bdδ

(u(x+ s)− u(x))γδ(|s|)ds, x ∈ Rd. (1.4)

Here, γδ(z) is a nonnegative compactly supported kernel whose support is contained in [0, δ] and

Bdδ is a d-dimensional ball of radius δ.

The properties and applications of the nonlocal operator have been extensively investigated.

We refer to [9, 8, 7] for a comprehensive exposition of the nonlocal calculus and nonlocal diffusion

problems with volume constraints. The δ-compatible studies (i.e., the limit case when δ → 0)

at both continuous and discrete levels were conducted in [30, 29] and some other literature. In

fact, when δ → ∞, it demonstrates that the nonlocal operator can become fractional Laplacian

operator in [5]. Many methods and schemes have been exploited to approximate the nonlocal

operator, such as domain decomposition method [1], asymptotically compatible schemes [31], dis-

continuous Galerkin methods [32], and Fourier spectral method [11] among others. Not restricted

to these methods, more attempts have been made in studying the solutions of various equations

comprising the nonlocal operator, including nonlocal equations with Dirichlet boundaries [14],

nonlocal wave equations [3] and nonlocal Allen-Cahn type equations [4].

While most existing works are on the nonlocal problems in bounded domains (and many

are for one spatial dimension), there has been much less concern about nonlocal models in the

unbounded domain, where such nonlocal operators are naturally set without complications from

the boundary. It is noteworthy that a nonlocal diffusion equation on the real line is considered

in [36], where the infinite interval was reduced to a finite one by an artificial layer based on the

z-transform. The study of the nonlocal analogue of artificial boundary conditions/layers is also

a subject of interest [35, 10, 12], but the rigorous error analysis and many other aspects are still

worthy of deeper investigation.

In this paper, we propose an efficient and accurate spectral method to directly solve nonlocal

equations in Rd with d = 1, 2, though the essential idea can be extended to d = 3 (but it is more

involved). To fix the idea, we consider the model equation:

−Lδu(x) + λu(x) = f(x), x ∈ R; lim
|x|→∞

u(x) = 0, (1.5)

where λ > 0, and the nonlocal operator is defined as

Lδu(x) =

∫ δ

−δ
(u(x+ s)− u(x))γδ(|s|)ds, (1.6)

with γδ(·) being a non-negative and radial nonlocal kernel such that

γδ(s) =
ωδ(s)

s2
, 0 < ωδ(s) ≤

Cδ
sµ
, s ∈ (0, δ), µ ∈ [0, 1), (1.7)

for some positive constant Cδ > 0. We find readily that

−
∫ ∞
−∞

Lδu(x)v(x)dx =

∫ δ

0

[ ∫ ∞
−∞

(u(x+ s)− u(x))(v(x+ s)− v(x))dx

]
γδ(s)ds := Bδ(u, v).

It is seen that the main difficulty lies in the convolution and the singular kernel. The key to the

efficiency of the algorithm to be developed resides in that (i) the Hermite basis can analytically

de-convolute the inner integral, and the entries of the stiffness matrix can be computed by some

recursive formulas; and (ii) the typical singularity of the kernel can be absorbed in the compu-

tation. Accordingly, the cost for evaluating the stiffness matrix amounts to O(N2). As we shall

see in both algorithm development and error analysis, the appealing property of the Hermite
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functions under the Fourier transform becomes an important piece of the puzzle. We remark

that there has been much recent interest in Hermite spectral methods for PDEs involving usual

or integral fractional Laplacian in unbounded domains [2, 23, 24, 27, 34, 26] (also see [25, 28]

for rational approximation). However, it is unknown if the Hermite method is equally or more

efficient for the nonlocal Laplacian. In what follows, we aim at giving an affirmative answer to

this.

The rest of the paper is organised as follows. In Section 2, we collect some relevant properties

of Hermite and Laguerre functions, which are important for the development of efficient spectral

algorithms. In Section 3, we present the Hermite spectral-Galerkin approximation scheme with

a detailed implementation and rigorous error analysis in one dimension. In Section 4, we provide

ample numerical results to show the accuracy and efficiency of the proposed method. In Section

5, we extend the algorithm to two-dimensional setting and validate the recursive formula for the

computation of the entries of the stiffness matrix.

2. Properties of Hermite and Laguerre functions

We present some important formulas of Hermite functions together with the closely con-

nected Laguerre polynomials that are crucial for the construction of efficient spectral algorithm.

Throughout this paper, we denote by R, Z, N0 and Z− the set of real numbers, integers, nonneg-

ative integers and negative integers, respectively. We also denote by bac the largest integer ≤ a,

and by a the negative part of a, .i.e., a = max(−a, 0).

2.1. Hermite polynomials/functions. We review some properties of the Hermite polynomi-

als, which can be found from various resources (see, e.g., [16, 22]). The Hermite polynomials

Hn(x), n ∈ N0, defined on R := (−∞,∞), are orthogonal with respect to the Hermite weight

function ω(x) = e−x
2

, namely,∫ ∞
−∞

Hm(x)Hn(x)ω(x) dx = hnδmn, hn :=
√
π 2nn!, m, n ∈ N0. (2.1)

The Hermite polynomials satisfy the three-term recurrence relation:

Hn+1(x) = 2xHn(x)− 2nHn−1(x), n ≥ 1, H0(x) = 1, H1(x) = 2x. (2.2)

Note that Hn(x) is odd (resp. even) for n odd (resp. even), and we have

Hn(−x) = (−1)nHn(x); H2n+1(0) = 0, H2n(0) = (−1)n
(2n)!

n!
. (2.3)

The Hermite polynomials satisfy the derivative relation:

∂kxHn(x) =
2kn!

(n− k)!
Hn−k(x), n ≥ k ≥ 1, (2.4)

where we denoted the usual derivatives by ∂kx = dk

dxk
. It is important to point out that the

polynomial Hn(x) grows exponentially with respect to x with the upper bound (cf. [22]):

|Hn(x)| < c2n/2
√
n! ex

2/2, c ≈ 1.086435. (2.5)

Moreover, it has the asymptotic behaviour for large n and fixed x on any finite interval (cf. [15]):

Γ(n/2 + 1)

n!
e−x

2/2Hn(x) = cos
(√

2n+ 1x− nπ/2
)

+
x3

6
√

2n+ 1
sin
(√

2n+ 1x− nπ/2
)

+O(n−1).

(2.6)
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The exponential growth of Hermite polynomials causes severe numerical instability, and makes

the basis unsuitable for approximating functions with decay at infinity.

In practice, we employ the Hermite functions with a tunable scaling parameter α > 0,

Ĥ(α)
n (x) =

√
α

hn
e−α

2x2/2Hn(αx), x ∈ R. (2.7)

By (2.1), they are mutually orthogonal, i.e.,∫ ∞
−∞

Ĥ(α)
n (x)Ĥ(α)

m (x) dx = δmn. (2.8)

The Fourier transform of the Hermite function is still a Hermite function but with a different

scaling factor.

Lemma 2.1. We have the explicit formula for the Fourier transform of the Hermite functions:

F [Ĥ(α)
n ](ξ) =

∫ ∞
−∞

Ĥ(α)
n (x)e−iξxdx = (−i)n

√
2π Ĥ(1/α)

n (ξ). (2.9)

Proof. Using the integral formula of the Hermite polynomials (cf. [17, 7.376]):∫ ∞
−∞

eixyHn(x) e−x
2/2 dx =

√
2π ine−y

2/2Hn(y), (2.10)

and the variable substitutions: x = αt and y = −ξ/α, we can obtain (2.9) from (2.3), (2.7) and

the above identity immediately. �

The convolution of two functions is defined by

(f ∗ g)(x) =

∫ ∞
−∞

f(y)g(x− y) dy.

Using Lemma 2.1, we can derive the following convolution property, which is of paramount

importance for the spectral algorithm to be developed.

Theorem 2.1. For α > 0, we have

[
Ĥ(α)
n ∗ Ĥ(α)

m

]
(x) =Y (α)

m,n(x) :=

min(m,n)∑
l=0

(−1)l 2l l!√
2m+nm!n!

(
m

l

)(
n

l

)
(αx)m+n−2le−(αx)

2/4. (2.11)

Proof. Using the convolution property of Fourier transform and the formula (2.9), we find

F [Ĥ(α)
m ∗ Ĥ(α)

n ] = F [Ĥ(α)
m ]×F [Ĥ(α)

n ] = 2(−i)m+nπĤ(1/α)
m (ξ) Ĥ(1/α)

n (ξ). (2.12)

Using the product formula of Hermite polynomials (cf. [15]):

Hn(ξ)Hm(ξ) =

min(m,n)∑
l=0

(
m

l

)(
n

l

)
2ll!Hm+n−2l(ξ), (2.13)

we obtain from (2.7) that

Ĥ(1/α)
m (ξ) Ĥ(1/α)

n (ξ) =

min(m,n)∑
l=0

√
hm+n−2l
αhmhn

(
m

l

)(
n

l

)
2ll! e−ξ

2/(2α2) Ĥ
(1/α)
m+n−2l(ξ). (2.14)

Recall the identity of the Hermite polynomials (cf. [15, 18.18.23]):∫ ∞
−∞

e−xzHn(x) e−x
2

dx =
√
π (−z)n ez

2/4, (2.15)
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for any complex z. Consequently, we find the inverse Fourier transform:

F−1
[
e−ξ

2/(2α2) Ĥ
(1/α)
m+n−2l(ξ)

]
(x) =

1

2π

∫ ∞
−∞

eiξxe−ξ
2/(2α2) Ĥ

(1/α)
m+n−2l(ξ) dξ

=
1

2π

1√
αhm+n−2l

∫ ∞
−∞

eiξxe−ξ
2/α2

Hm+n−2l(ξ/α) dξ

=
1

2π

√
α√

hm+n−2l

∫ ∞
−∞

eiαξxHm+n−2l(ξ) e−ξ
2

dξ

=

√
α im+n−2l

2
√
πhm+n−2l

(αx)m+n−2le−(αx)
2/4.

(2.16)

Applying the inverse Fourier transform to both sides of (2.12), we deduce from (2.14)-(2.16) that

(Ĥ(α)
m ∗ Ĥ(α)

n )(x) =

min(m,n)∑
l=0

√
π(−1)l2ll!√
hmhn

(
m

l

)(
n

l

)
(αx)m+n−2le−(αx)

2/4. (2.17)

Then we obtain (2.11) directly by substituting the constants hm and hn into (2.17). �

2.2. Generalized Laguerre polynomials. Now we introduce generalized Laguerre polynomi-

als and explore their connections with Hermite polynomials/functions. Let us first recall the

definition of classic Laguerre polynomials for µ > −1,

Lµk(x) =

k∑
ν=0

(µ+ ν + 1)k−ν
(k − ν)!ν!

(−x)ν , k = 0, 1, . . . (2.18)

This explicit representation furnishes the extension of Lµk(x) to arbitrary µ ∈ R, which are referred

to as the generalized Laguerre polynomials (cf. [21]). Specifically, we have

Lµ0 (x) = 1, Lµ1 (x) = µ+ 1− x.
Generalized Laguerre polynomials possess the following recurrence relations,

Lµn(x) =Lµ+1
n (x)− Lµ+1

n−1(x), (2.19)

xLµn(x) = (n+ µ)Lµ−1n (x)− (n+ 1)Lµ−1n+1(x) (2.20)

= −(n+ µ)Lµn−1(x) + (2n+ µ+ 1)Lµn(x)− (n+ 1)Lµn+1(x). (2.21)

Moreover, generalized Laguerre polynomials for µ ∈ Z− ∪ (−1,∞) are orthogonal to each other

with respect to the weight function e−xxµ,∫ ∞
0

Lµk(x)Lµj (x)e−xxµdx =
Γ(k + µ+ 1)

k!
δj,k, j, k ≥ bµ c. (2.22)

Besides, the flection property holds for any µ ∈ Z,

Lµk(x) = (−x)−µ
Γ(k + µ+ 1)

k!
L−µk+µ(x), k ≥ µ ; (2.23)

Generalized Laguerre polynomials and Hermite polynomials/functions are closely connected.

On the one hand, Hermite polynomials can be entirely reduced to Laguerre polynomials,

H2k+µ(x) = (−1)k22k+µm!xµLµ−
1
2

k (x2), k ≥ 0, µ = 0, 1.

One the other hand, the following lemma states that the convolution of two Hermite functions in

Theorem 2.1 is actually a generalized Hermite function which can be represented by generalized

Laguerre polynomials.
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Lemma 2.2. It holds that

Y (α)
m,n(x) = (−1)m

√
m!

n!

(
αx√

2

)n−m
e−

(αx)2

4 Ln−mm

(
(αx)2

2

)
(2.24)

=


(−1)m

√
m!

n!

(
αx√

2

)n−m
e−

(αx)2

4 Ln−mm

(
(αx)2

2

)
, n ≥ m,

(−1)n
√
n!

m!

(
αx√

2

)m−n
e−

(αx)2

4 Lm−nn

(
(αx)2

2

)
, m ≥ n.

Proof. Indeed, one readily derives (2.24) from (2.11), (2.18) and (2.23). �

Remark 2.1. Similar results are established by Lasser et al. for the Wigner transform of Hermite

functions [20].

3. Hermite spectral-Galerkin method: implementation and error analysis

In this section, we introduce an efficient spectral-Galerkin method for PDEs with nonlocal

operators and then give some details on its implementation.

We consider the problem (1.5). Define the energy space as

H1
δ(R) :=

{
u ∈ L2(R) :

∫ ∞
−∞

∫ δ

−δ

(
u(x+ s)− u(x)

)2
γδ(|s|) dsdx <∞

}
, (3.1)

which is equipped with the semi-norm

|u|H1
δ

=
{1

2

∫ ∞
−∞

∫ δ

−δ
|u(x+ s)− u(x)|2γδ(|s|) dsdx

}1/2

, (3.2)

and the norm

‖u‖H1
δ

=
(
|u|2H1

δ
+ ‖u‖2

)1/2
, ‖u‖2 =

∫ ∞
−∞
|u(x)|2 dx. (3.3)

Further introduce the bilinear form

Bδ(u, v) =
1

2

∫ ∞
−∞

∫ δ

−δ

(
u(x+ s)− u(x))(v(x+ s)− v(x)

)
γδ(|s|) dsdx

+ λ

∫ ∞
−∞

u(x)v(x) dx, ∀u, v ∈ H1
δ(R).

(3.4)

Then a weak form of (1.5) reads: to find u ∈ H1
δ(R) such that

Bδ(u, v) = (f, v), ∀ v ∈ H1
δ(R). (3.5)

The Hermite spectral-Galerkin scheme for (1.5) is to find

uN ∈ VN := span
{
Ĥ(α)
n : 0 ≤ n ≤ N

}
, (3.6)

such that

Bδ(uN , ψ) = (ÎNf, ψ), ∀ψ ∈ VN , (3.7)

where ÎNf ∈ VN is the Lagrange interpolation associated with the Hermite functions at N + 1

Hermite-Gauss points (cf. [18]), i.e.,[
ÎNf

](x(N)
k

α

)
= f

(
x
(N)
k

α

)
, k = 0, 1, . . . , N,

with x
(N)
0 < x

(N)
1 < · · · < x

(N)
N being the zeros of the Hermite polynomial HN+1(x). It is evident

that by the Lax-Milgram Lemma, both (3.5) and (3.7) admit a unique solution for any fixed

δ > 0.
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3.1. Implementation. To form the matrix form of (3.7), we write uN (x) =
∑N
n=0 ûnĤ

(α)
n (x),

and denote

û = (û0, û1, · · · , ûN )t, f = (f0, f1, · · · , fN )t, fn = (ÎNf, Ĥ
(α)
n ), (3.8)

so the linear system of (3.7) takes the form(
S + λI

)
û = f , (3.9)

where the mass matrix is identity due to the orthogonality (2.8). We now compute the stiffness

matrix

Sm,n =

∫ δ

0

Φ(α)
m,n(s)γδ(s) ds, (3.10)

where

Φ(α)
m,n(s) :=

∫ ∞
−∞

(Ĥ(α)
n (x+ s)− Ĥ(α)

n (x))(Ĥ(α)
m (x+ s)− Ĥ(α)

m (x)) dx

= 2

∫ ∞
−∞

Ĥ(α)
n (x)Ĥ(α)

m (x)dx−
∫ ∞
−∞

Ĥ(α)
n (x+ s)Ĥ(α)

m (x) dx−
∫ ∞
−∞

Ĥ(α)
n (x)Ĥ(α)

m (x+ s) dx.

(3.11)

We infer from (2.3) and (2.11) that∫ ∞
−∞

Ĥ(α)
m (x)Ĥ(α)

n (s+ x) dx = (−1)mY (α)
m,n(s) = (−1)mY (α)

n,m(s). (3.12)

Thus, by (2.8), (3.11) and (3.12),

Φ(α)
m,n(s) = 2δmn −

[
(−1)m + (−1)n

]
Y (α)
m,n(s), s ∈ (0, δ), (3.13)

which implies Φ
(α)
m,n is symmetric with respect to m and n, and Φ

(α)
m,n(s) = 0 if m+ n is odd.

Lemma 3.1. Φ
(α)
m,n in (3.11) with even m+ n satisfy the recurrence relation:

Φ(α)
n,n(s) = 2− 2 e−

(αs)2

4 L0
n

(
α2s2

2

)
, n = 0, 1 . . . , (3.14)

√
n+ 1Φ

(α)
m+1,n+1(s) =

√
m+ 1Φ(α)

m,n(s) +
√
nΦ

(α)
m+1,n−1(s)−

√
m+ 2Φ

(α)
m+2,n(s). (3.15)

Proof. It suffices to prove that Y
(α)
m,n, m ≥ n ≥ 0, satisfy the following recurrence relation,

√
m+ 2Y

(α)
m+2,n(s) +

√
nY

(α)
m+1,n−1(s) =

√
n+ 1Y

(α)
m+1,n+1(s) +

√
m+ 1Y (α)

m,n(s), (3.16)

Y (α)
n,n (s) = (−1)n e−

(αs)2

4 L0
n

(
α2s2

2

)
. (3.17)

Indeed, one verifies readily that

l!

[(
m+ 2

l

)(
n

l

)
−
(
m+ 1

l

)(
n+ 1

l

)]
=

(n−m− 1)(m+ 1)!n!

(l − 1)!(m+ 2− l)!(n+ 1− l)!

=− (l − 1)!

[
(m+ 1)

(
m

l − 1

)(
n

l − 1

)
− n

(
m+ 1

l − 1

)(
n− 1

l − 1

)]
.

Multiplying both sides of the above identity by (−1)l2le−
(αx)2

4 (αs)m+n+2−2l√
2m+n+2(m+1)!n!

and summing them up

with respect to l, one finds that

e−
(αs)2

4

∞∑
l=0

(−1)l2ll!
√
m+ 2√

2m+2+n(m+ 2)!n!

(
m+ 2

l

)(
n

l

)
(αs)m+2+n−2l
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− e−
(αs)2

4

∞∑
l=0

(−1)l2ll!
√
n+ 1√

2m+1+n+1(m+ 1)!(n+ 1)!

(
m+ 1

l

)(
n+ 1

l

)
(αs)m+1+n+1−2l

=e−
(αs)2

4

∞∑
l=0

(−1)l−12l−1(l − 1)!
√
m+ 1√

2m+nm!n!

(
m

l − 1

)(
n

l − 1

)
(αs)m+n+2−2l

− e−
(αs)2

4

∞∑
l=0

(−1)l−12l−1(l − 1)!
√
n√

2m+n(m+ 1)!(n− 1)!

(
m+ 1

l − 1

)(
n− 1

l − 1

)
(αs)m+n+2−2l.

From the definition of Y
(α)
m,n, we can rewrite the above as

√
m+ 2Y

(α)
m+2,n(s)−

√
n+ 1Y

(α)
m+1,n+1(s) =

√
m+ 1Y (α)

m,n(s)−√nY (α)
m+1,n−1(s),

which gives (3.16).

Noting that (3.17) is an immediate consequence of (2.24), we complete the proof. �

With the above preparations, we can calculate the entries of the stiffness matrix. Also we note

that S is symmetric. Thus, it suffices to compute the entries Sm+n,n with nonnegative even m.

Below we state our main result as a direct consequence of Lemma 3.1.

Theorem 3.1. Sm+n,n = 0 if m is odd. Otherwise, we have the following recurrence algorithm

for even m ≥ 0,

Sm+n,n =

√
m+ n− 1

m+ n
Sm+n−2,n +

√
n

m+ n
Sm+n−1,n−1 −

√
n+ 1

m+ n
Sm+n−1,n+1,

n = 0, 1, . . . , m = 2, 4, . . . ,

(3.18)

with the initial conditions

Sn,n = 2

∫ δ

0

[
1− e−

(αs)2

4 L0
n

(
α2s2

2

)]
γδ(s) ds, n = 0, 1, . . . . (3.19)

Typically, we consider in this paper the kernel function:

γδ(s) =
ωδ(s)

s2
, ωδ(s) ≤

Cδ
sµ
, (3.20)

for µ ∈ [0, 1), s ∈ (0, δ) and some positive constant Cδ > 0. Note that the singular factor s−2 can

be absorbed in (3.19) by 1− e−
(αs)2

4 L0
n

(
α2s2

2

)
owing to the fact that L0

n(0) = 1. Hence Sn,n can

be computed accurately by using a Jacobi-Gauss quadrature with respect to the weight s−µ with

µ ∈ [0, 1).

3.2. Error analysis. For clarity of presentation, we shall drop the scaling parameters in the

description of error analysis, and simply denote Ĥn(x) = Ĥ
(1)
n (x).

As with the error analysis of the (local) elliptic problems, it is essential to consider H1
δ -

orthogonal projection under the inner product of the space defined in (3.1). More precisely,

we define the orthogonal projection Π̂δ
N : H1

δ(R)→ VN such that(
u− Π̂δ

Nu, vN
)
H1
δ

= 0, ∀ vN ∈ VN , (3.21)

where the H1
δ -inner product is given by

(u, v)H1
δ

=
1

2

∫ ∞
−∞

∫ δ

−δ
(u(x+ s)− u(x))(v(x+ s)− v(x))γδ(|s|) dsdx

+

∫ ∞
−∞

u(x)v(x) dx, ∀u, v ∈ H1
δ(R).

(3.22)
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By the projection theorem, we have

‖u− Π̂δ
Nu‖H1

δ
= inf
Ψ∈VN

‖u− Ψ‖H1
δ
. (3.23)

The following bound plays an important part in the error analysis.

Lemma 3.2. Let γδ(s) be a general kernel function such that

γδ(s) =
ωδ(s)

s2
, ωδ(s) ≤

Cδ
sµ
, µ ∈ [0, 1), s ∈ (0, δ), δ > 0. (3.24)

Then for any u ∈ H1
δ (R), we have

|u|H1
δ
≤ Dδ,µ‖u′‖, where Dδ,µ :=

√
2Cδδ1−µ

1− µ . (3.25)

Proof. By the definition (3.2),

|u|2H1
δ

=

∫ δ

−δ
Φ(s)γδ(|s|) ds = 2

∫ δ

0

Φ(s)γδ(s) ds, (3.26)

where

Φ(s) :=

∫ ∞
−∞

(
u(x+ s)− u(x)

)2
dx. (3.27)

Using the Parseval’s identity, we find

Φ(s) =

∫ ∞
−∞

(
u(x+ s)− u(x)

)2
dx =

1

2π

∫ ∞
−∞

∣∣F [u(x+ s)− u(x)](ξ)
∣∣2 dξ. (3.28)

By the transition property of the Fourier transform: F [u](ξ+s) = eiξsF [u](ξ), we further obtain

Φ(s) =
1

2π

∫ ∞
−∞

∣∣(eiξs − 1)F [u](ξ)
∣∣2 dξ =

1

π

∫ ∞
−∞

(
1− cos ξs

)∣∣F [u](ξ)
∣∣2 dξ. (3.29)

Substituting (3.29) into (3.26) and changing order of integration, leads to

|u|2H1
δ

=
2

π

∫ ∞
−∞

Iδ(ξ)
∣∣F [u](ξ)

∣∣2 dξ, Iδ(ξ) =

∫ δ

0

(1− cos ξs)γδ(s) ds. (3.30)

We next estimate the bound of Iδ(ξ) with kernel function defined in (3.1). It is easy to show

that for any y ≥ 0, we have y2/2− 1 + cos y ≥ 0. This implies

1− cos ξs

s2
≤ ξ2

2
, s > 0, ξ ∈ R. (3.31)

Hence, by (3.1), we have

Iδ(ξ) ≤
ξ2

2

∫ δ

0

ωδ(s) ds ≤ Cδ
ξ2

2

∫ δ

0

s−µ ds =
Cδδ

1−µ

2(1− µ)
ξ2. (3.32)

Then by (3.30), (3.32) and Parseval’s identity again,

|u|2H1
δ
≤ Cδδ

1−µ

π(1− µ)

∫ ∞
−∞

ξ2
∣∣F [u](ξ)

∣∣2 dξ =
Cδδ

1−µ

π(1− µ)

∫ ∞
−∞

iξF [u](ξ) · iξF [u](ξ) dξ

=
2Cδδ

1−µ

1− µ

∫ ∞
−∞

[u′(x)]2 dx =
2Cδδ

1−µ

1− µ ‖u
′‖2.

(3.33)

This ends the proof. �

With the aid of Lemma 3.2, we can then properly choose Ψ in (3.23) to derive the error estimate

of the orthogonal projection Π̂δ
N . We state the main result as follows.



10 H. LI, R. LIU & L. WANG

Theorem 3.2. Let γδ(s) be a general kernel function as in Lemma 3.2. If ∂̂mx u ∈ L2(R) with

1 ≤ m ≤ N + 1, and ∂̂x = ∂x + x, then we have the estimate

‖u− Π̂δ
Nu‖H1

δ
≤ c(Dδ,µ + 1)N (1−m)/2‖∂̂mx u‖, (3.34)

where Dδ,µ is the same as in (3.25), and c is a positive constant independent of N, δ and u.

Proof. We have to resort to some intermediate orthogonal projections on approximation by Her-

mite functions. Let πN : L2
ω(R)→ PN be the L2

ω-orthogonal projection, defined by

(u− πNu, vN )ω = 0, ∀ vN ∈ PN . (3.35)

For any u ∈ L2(R), we have uex
2/2 ∈ L2

ω(R). Define the operator

π̂Nu = e−x
2/2πN (uex

2/2) ∈ VN . (3.36)

By (3.35), it defines an L2-orthogonal projection upon VN , as

(u− π̂Nu, vN ) = (uex
2/2 − πN (uex

2/2), vNex
2/2)ω = 0, ∀vN ∈ VN . (3.37)

We refer to [18, Thm 7.14] for the estimates: If ∂̂mx u ∈ L2(R) with l ≤ m ≤ N + 1 and l = 0, 1,

then we have

‖∂lx(u− π̂Nu)‖ ≤ cN (l−m)/2‖∂̂mx u‖, (3.38)

where c is a positive constant independent of N and u. With this, we derive from (3.23) and

Lemma 3.2 immediately that

‖u− Π̂δ
Nu‖H1

δ
≤ ‖u− π̂Nu‖H1

δ
≤ (Dδ,µ + 1)‖u− π̂Nu‖H1 ≤ c(Dδ,µ + 1)N (1−m)/2‖∂̂mx u‖. (3.39)

This ends the proof. �

Now, we are ready to estimate the error between the solutions of (3.5) and (3.7).

Theorem 3.3. Let u and uN be respectively the solutions of (3.5) and (3.7) with the kernel

function γδ(s) given in Lemma 3.2. If ∂̂mx u ∈ L2(R), f ∈ C(R) and ∂̂mx f ∈ L2(R) with 1 ≤ m ≤
N + 1, and ∂̂x = ∂x + x, then for λ > 0, we have the estimate

‖u− uN‖H1
δ
≤ c
(
(Dδ,µ + 1)N (1−m)/2‖∂̂mx u‖+N

1
6−m2 ‖∂̂mx f‖

)
, (3.40)

where Dδ,µ is the same as in (3.25), and c is a positive constant independent of N, δ, u and f.

Proof. It follows from a standard procedure for error analysis under the Galerkin formulation.

Here, we sketch the proof for completeness. By (3.5) and (3.7), we have

Bδ(u− uN , ψ) = (f − ÎNf, ψ), ∀ψ ∈ VN , (3.41)

By the definition (3.21),

Bδ(Π̂δ
Nu− uN , ψ) = Bδ(Π̂δ

Nu− u, ψ) + (f − ÎNf, ψ)

= (λ− 1)(Π̂δ
Nu− u, ψ) + (f − ÎNf, ψ), ∀ψ ∈ VN .

(3.42)

Taking ψ = Π̂δ
Nu−uN in the above, we infer from the Cauchy-Schwarz inequality that for λ > 0,

|Π̂δ
Nu− uN |2H1

δ
+
λ

2
‖Π̂δ

Nu− uN‖2

≤ (λ− 1)2λ−1‖Π̂δ
Nu− u‖2 + λ−1‖f − ÎNf‖2.

(3.43)

Recall the interpolation approximation result (see [18, Thm 7.18]): For f ∈ C(R) and ∂̂mx f ∈
L2(R) with fixed m ≥ 1, we have

‖ÎNf − f‖ ≤ cN
1
6−m2 ‖∂̂mx f‖, (3.44)
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where c is a positive constant independent of N and f . Using the triangle inequality, we will

obtain the final result (3.40). �

4. Numerical results and discussions

4.1. Test of accuracy. We first consider the nonlocal diffusion model (1.5), and choose

ωδ(s) =
2− 2β

δ2−2β
s1−2β ,

1

2
≤ β < 1 (4.1)

in (3.24) such that γδ(s) = 2−2β
δ2−2β s

−1−2β has a normalised second moment. We test the scheme

on three examples.

Example 4.1. u(x) = e−x
2

(2 + sinx) (exponential decay with oscillation at infinity).

We set λ = 1 in (1.5). Besides, we suppose δ = 0.1 for nonlocal interaction and β = 0.8 in the

kernel function γδ(s). The scaling factor in the basis are chosen in two different ways, as fixed

values or adaptive values depending on the polynomial degree N .

To illustrate the rate of convergence, we depict in the left part of Figure 4.1 the discrete L∞-

errors obtained by 150 Hermite-Gauss points and the H1
δ -errors with the scaling factor α = 1.4.

It indicates that these errors behave like e−cN , where c is a constant independent of N . As the

exact solution is smooth and decays exponentially, the observed convergence behaviour agrees

with the theoretic result in Theorem 3.3.
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Figure 4.1: L∞-errors and H1
δ -errors against N in semi-log scale. Left: fixed α; Right: adaptive αN .

To enhance the resolution of the approximation, we choose the scaling factor α depending on

N (denoted by αN ). For a given accuracy threshold ε, we set

αN = x
(N)
N /M, M = inf

y
{y : |u(x)| ≤ ε, x ≥ y}, (4.2)

where x
(N)
N is the largest zero of the Hermite polynomial HN+1. We use ε = 2×10−9. To illustrate

the rate of convergence, we depict in Figure 4.1 (right) the L∞-errors and the H1
δ -errors. The

graph demonstrates that the approximation has a super-geometric convergence rate for slightly

large N . It turns out that the use of adaptive αN can lift the convergence rate to super-geometric.
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Figure 4.2: Left: Numerical solutions of nonlocal and local models; Right: L2-errors against δ in
log-log scale.

Letting δ approach zero, we investigate the approximation behaviour of nonlocal model (1.5)

to its local counterpart, that is,

− u′′(x) + λu(x) = f(x), x ∈ R; lim
|x|→∞

u(x) = 0. (4.3)

For u(x) = e−x
2

(2 + sinx) and λ = 1, we have

f(x) = e−x
2

[2(3− 4x2) + 4(1− x2) sinx+ 4x cosx]. (4.4)

In (1.5), we choose δ = 100, 10, 0.1, 0.01. In Figure 4.2 (left), we plot the four different nonlocal

numerical solutions together with the local solution. It indicates that as δ becomes smaller, the

nonlocal numerical solution approach the corresponding local one. This demonstrates our scheme

is δ-robust/compatible. Here, we also intend to have some insights into the rate in δ when the

numerical approximation of uδ approaches that of u. For clarity, we denote the nonlocal numerical

solution by uδN and the local one by u0N , respectively. In Figure 4.2 (right), we plot the difference

uδN − u0N in L2-norm against δ, and observe the convergence order O(δ2).

Example 4.2. u(x) = 1
(1+x2)h

(algebraic decay without oscillation at infinity).

We take λ = 2, δ = 0.1 and β = 0.8 in the model problem (1.5) with (4.1). We adopt

the adaptive scaling factor as in (4.2) for two cases: (i) h = 3 and ε = 10−7; and (ii) h = 4

and ε = 10−8. We plot the H1
δ -errors and L∞-errors in Figure 4.3 (left) and it has a higher

convergence rate than any algebraic order. In contrast, if one chooses a fixed α independent of

N , one can only expect an algebraic order of convergence according to Theorem 3.3. In fact, it

verifies that

lim
x→∞

|∂̂mx u(x)|
|x|m

(1+x2)h

= 1,

which means ‖∂̂mx u‖ <∞ if and only if m < 2h− 1
2 , and the H1

δ-errors will decay in O(N3/4−h)

for sufficiently large N . According [18, Remark 7.5], the Hermite approximation with adaptive

scaling factors has a convergence order higher than O(N3/4−h). For comparison, we also plot two

reference lines in the same figure with the dotted line for the slope of − 9
4 , and the dashed line for

the slope of − 13
4 .
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Figure 4.3: Left: L∞-errors (• for h = 3 and 4 for h = 4) and H1
δ -errors (� for h = 3 and ◦ for h = 4)

against N in log-log scale; Right: numerical solutions of nonlocal and local models. The dotted line with
the slope − 9

4
and the dashed line with the slope − 13

4
are used on the left side for reference.

As with the previous example, we take

f(x) =
2

(1 + x2)h
+

2h

(1 + x2)h+1
− 4h(h+ 1)x2

(1 + x2)h+2
(4.5)

in (1.5) and (4.3). When h = 3, we calculate the numerical solutions of (1.5) for δ = 10, 1, 0.1, 0.01

and those of (4.3), as plotted in Figure 4.3 (right). It is seen again that the nonlocal solutions

tend to the local one as δ approaches zero.

Example 4.3. u(x) = sin kx
(1+x2)h

(algebraic decay with oscillation at infinity).

We take λ = 3, δ = 0.1, β = 0.8 and k = 3, and consider two cases: h = 3 and h = 4 with

ε = 10−9 and ε = 10−11 for the adaptive scaling factor αN , respectively. Then the H1
δ -errors and

L∞-errors are plotted in Figure 4.4 (left). Similar to the previous example, higher convergence

rates than any algebraic order are observed, although Theorem 3.3 predicts only an algebraic

order in O(N3/4−h). Meanwhile the accuracy is inferior to the previous one due to the oscillatory

factor sin kx.

To explore the behaviour of the nonlocal solutions with different δ, we fix

f(x) =
(k2 + 3) sin kx

(1 + x2)h
+

2hkx cos kx

(1 + x2)h+1
+

2h sin kx+ 2hkx cos kx

(1 + x2)h+1
− 4h(h+ 1)x2 sin kx

(1 + x2)h+2
(4.6)

in (1.5) and (4.3). When k = 3, h = 4, we compute the numerical solution of (1.5) for δ =

5, 1, 0.1, 0.01 and the solution of (4.3), and plot them in Figure 4.4 (right). When δ = 0.01, the

nonlocal solution almost overlaps the local one as the local solution is the limit of the nonlocal

solution for δ → 0.

4.2. Application to (truncated) fractional Laplacian. For s ∈ Rd, we choose

ωδ(s) = Cd,γ |s|2−d−γ with Cd,γ =
γ2γ−1Γ((γ + d)/2)

πd/2Γ((2− γ)/2)
, γ ∈ [1, 2) (4.7)

in (3.24). According to the definition (1.4), we have

Lδu(x) = −Cd,γ
∫
|x−y|≤δ

u(x)− u(y)

|x− y|d+γ dy, x ∈ Rd. (4.8)
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Figure 4.4: Left: L∞-errors (• for h = 3 and 4 for h = 4) and H1
δ -errors (� for h = 3 and ◦ for h = 4)

against N in log-log scale; Right: numerical solutions of nonlocal and local models. The dotted line with
the slope − 9

4
and the dashed line with the slope − 13

4
are used on the left side for reference.

Note that the nonlocal operator in (4.8) truncates the integration domain of the classical fractional

Laplace operator from Rd to the δ-neighborhood of x. Here we denote

(−∆δ)
γ/2u(x) := −Lδu(x). (4.9)

In what follows, we shall consider model problems containing one or more truncated fractional

Laplace operators in one dimension. We adopt some examples as in [27].

Example 4.4. Consider the following fractional equation:

(−∆δ)
γ/2u(x) + 2u(x) = f(x), x ∈ R; lim

|x|→∞
u(x) = 0. (4.10)

Let δ = 0.1, γ = 1.4, and the exact solution be u(x) = e−x
2/2x2 cos(x/2). We present the

numerical errors against the polynomial degree N in Figure 4.5. The scaling parameter is taken

to be α = 0.9. The results in Figure 4.5 (right) shows the exponential decay of the errors as

expected.

For comparison purpose, we consider the fractional model with the usual integral fractional

Laplacian:

(−∆)γ/2u(x) + 2u(x) = f(x), x ∈ R; lim
|x|→∞

u(x) = 0, (4.11)

where (−∆)γ/2 = (−∆∞)γ/2. In the test, we take δ = 0.01, 0.1, 0.5, 5. From Figure 4.5 (right),

we observe that when δ becomes larger, the difference between the nonlocal solution and the usual

one becomes smaller. When δ = 5, the nonlocal solution almost overlaps its usual counterpart.

Example 4.5. Consider the multi-term equation:

J∑
j=1

(−∆δ)
γj/2u(x) = f(x), x ∈ R; lim

|x|→∞
u(x) = 0. (4.12)

Here we set J = 4, δ = 0.1, γ1 =
√

6−
√

2, γ2 =
√

2, γ3 = 3−
√

2, γ4 =
√

3 and the exact solution

u(x) = e−2x
2/5(sinx + x6 + x2 cosx). We choose α = 0.8. The numerical errors in L∞-norm

against the polynomial degree N are plotted in Figure 4.6 (left). Exponential convergence is

observed.
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Example 4.6. Consider the following nonlinear nonlocal model:

(−∆δ)
γ/2u(x) + u2(x) = f(x), x ∈ R; lim

|x|→∞
u(x) = 0. (4.13)

The exact solution is chosen as u(x) = e−x
2/2(sinx+x2). To deal with the nonlinear term u2(x),

we use the Newton iteration method with a tolerance 10−14. We set δ = 0.1 and γ = 1.3, 1.6, 1.9.

The approximation results are then depicted in Figure 4.6 (right), which shows the exponential

convergence as predicted.
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4.3. Application to nonlocal Allen-Cahn equations. We apply the solver for spatial dis-

cretisation of the nonlocal Allen-Cahn equation on the real line:
∂tu(x, t)− ε2Lδu(x, t) + u3(x, t)− u(x, t) = 0, (x, t) ∈ R× (0, T ],

lim
|x|→+∞

u(x, t) = 0, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ R,

(4.14)

where the singular kernel function of the nonlocal operator Lδu(x, t) satisfies (4.1). Let tm =

m∆t, m = 0, 1, ...,K with the time stepping size ∆t = T
K , and let um be the approximation of

u(x, t) at time tm. Then a second-order linearized implicit scheme in time is

um+1 − um
∆t

− ε2Lδu
m+1 + (um)2um+1 − um+1 = 0. (4.15)

The full-discretised scheme is to find um+1
N ∈ VN , such that for all vN ∈ VN ,( 1

∆t
− 1
)

(um+1
N , vN )− ε2(Lδu

m+1
N , vN ) + ((umN )2um+1

N , vN ) =
1

∆t
(umN , vN ). (4.16)

We aim to numerically study the dynamics of the time-dependent equation and the influence

of δ on the behaviour of solutions. We fix ε = 0.1 and choose ∆t = 0.001 as the time step

and β = 0.8 in the kernel. Besides, we put suitable scaling factor into the basis to improve the

efficiency.

Example 4.7. Consider (4.14) with the initial value: u0(x) = e−x
2/2(cosx+2 sin 2x). As before,

we make a comparison between the local and nonlocal solutions. Here we take N = 128 in the

nonlocal model and N = 64 in the local model.

We plot the numerical solutions at different T against x in Figure 4.7, and observe that solutions

under nonlocal setting with small δ are close to the local ones, while for large δ, they have visible

differences. In Figure 4.8, we depict the solutions (with δ = 0.1 for the nonlocal one) in x ∈ [−5, 5]

and t ∈ [0, 10] in mesh and contour plots.

5. Hermite spectral-Galerkin methods in two dimensions

In this section, we extend the previous Hermite spectral-Galerkin method to the two-dimensional

case. Consider the model equation:

− Lδu(x) + λu(x) = f(x), x ∈ R2; lim
|x|→∞

u(x) = 0, (5.1)

where x = (x1, x2) and the kernel γδ(s) in the nonlocal operator is given by (4.7) with d = 2.

Define the energy space

H1
δ(R2) :=

{
u ∈ L2(R2) :

∫
R2

∫
|s|≤δ

∣∣u(x+ s)− u(x)
∣∣2γδ(|s|) dsdx <∞

}
. (5.2)

The weak formulation of (5.1) is to find u ∈ H1
δ (R2) such that

Bδ(u, v) = (f, v), ∀v ∈ H1
δ (R2), (5.3)

where

Bδ(u, v) :=
1

2

∫
R2

∫
|s|≤δ

(u(x+ s)− u(x))(v̄(x+ s)− v̄(x))γδ(|s|)dsdx

+ λ

∫
R2

u(x)v̄(x)dx.

(5.4)
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Figure 4.7: Snapshots of numerical solutions for both local and nonlocal Allen-Cahn equations at different
time with δ = 2, 0.2.
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Figure 4.8: Time evolutions of the nonlocal numerical solution for δ = 0.1. Left: the mesh plot; Right:
the contour.

Note that the domain of s in the integral (5.4) is a disk with radius δ > 0. It is natural to use

polar coordinates (r cos θ, r sin θ) for s. We introduce the isotropic Hermite functions (cf. [23])

Hn
k (x) = Lnk (|x|2)Y n(x)e−

|x|2
2 , n ∈ Z, k ≥ n , (5.5)



18 H. LI, R. LIU & L. WANG

where Lnk is the generalized Laguerre polynomial defined in (2.18), and Y n(x) is the normalized

spherical harmonic function given by

Y n(x) =
(x1 + ix2)n√

2π
=
rneinθ√

2π
, n ∈ Z. (5.6)

Making use of the polar coordinates x = (x1, x2) = (r cos θ, r sin θ), the orthogonality relation of

complex exponential functions, and the orthogonality relation (2.22) of the generalized Laguerre

functions, we derive the following orthogonality relation of the isotropic Hermite functions,∫
R2

Hn
k (x)Hm

j (x) dx =
1

2π

∫ ∞
0

Lnk (r2)Lmj (r2)e−r
2

rn+m+1dr

∫ 2π

0

ei(n−m)θdθ

=
1

2
δn,m

∫ ∞
0

Lnk (η)Lmj (η)e−ηη
n+m

2 dη =
(k + n)!

2 k!
δk,j δn,m,

n,m ∈ Z, k ≥ n , j ≥ m .

(5.7)

Further, we define the orthonormal Hermite functions as

Ĥn
k (x) =

√
2k!

(k + n)!
Hn
k (x) =

√
k!

π(k + n)!
Lnk (r2)rneinθe−

r2

2 , n ∈ Z, k ≥ n . (5.8)

The Hermite spectral-Galerkin scheme for (5.3) is to find

uNK ∈ VNK := span
{
Ĥn
k : n ≤ k ≤ n +K, |n| ≤ N

}
, (5.9)

such that

Bδ(uNK , ψ) = (f, ψ), ∀ψ ∈ VNK , (5.10)

For fixed δ > 0, both (5.3) and (5.10) admit a unique solution, in view of the Lax-Milgram

Lemma.

5.1. Implementation. The linear system of (5.10) takes the following equivalent form

(S + λM)u = F , (5.11)

where

M = (Mm,n
j,k ) n ≤k≤n +K, |n|≤N

m ≤j≤m +K, |m|≤N
, Mm,n

j,k = (Hn
k , H

m
j ) = δm,nδj,k, (5.12)

S = (Sm,nj,k ) n ≤k≤n +K, |n|≤N
m ≤j≤m +K, |m|≤N

, Sm,nj,k = Bδ(Hn
k , H

m
j ) =

1

2

∫
|s|≤δ

Φm,nj,k (s)γδ(|s|)ds, (5.13)

and

Φm,nj,k (s) = 2

∫
R2

Ĥn
k (x)Ĥm

j (x)dx−
∫
R2

Ĥn
k (x+ s)Ĥm

j (x)dx−
∫
R2

Ĥn
k (x)Ĥm

j (x+ s)dx. (5.14)

The following result indicates the coefficient matrix of the linear system (5.11) is real symmetric

and block-diagonal.

Theorem 5.1. S is a real symmetric matrix with Sm,nj,k = 0 for m 6= n. For k ≥ n and j ≥ 2,

Sn,nj+k,k = Sn,nk,k+j can be evaluated through the following recurrence relations

Sn,nj+k,k =

√
(k + 1)(k + 1 + n)√
(j + k)(j + k + n)

Sn,nj+k−1,k+1 −
2(j − 1)√

(j + k)(j + k + n)
Sn,nj+k−1,k

+

√
k(k + n)√

(j + k)(j + k + n)
Sn,nj+k−1,k−1 −

√
(j + k − 1)(j + k − 1 + n)√

(j + k)(j + k + n)
Sn,nj+k−2,k,

k = n , n + 1, . . . , j = 2, 3, . . . ,

(5.15)
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with the initial conditions,

Sn,nk,k = 8π

∫ δ
2

0

[
1− L0

k(η2)L0
k+n(η2)e−η

2
]
ηγδ(2η)dη, k = n , n + 1, . . . ,

Sn,nk+1,k =
8π√

(k + 1 + n)(k + 1)

∫ δ
2

0

L1
k(η2)L1

k+n(η2)e−η
2

η3γδ(2η)dη k = n , n + 1, . . . .

(5.16)

5.2. Proof of Theorem 5.1. We need the following two lemmas to prove Theorem 5.1.

Lemma 5.1. The isotropic Hermite functions are the eigenfunctions of the Fourier transform.

More precisely,

F [Ĥn
k ](ξ) = 2π(−i)n+2kĤn

k (ξ). (5.17)

Proof. Using polar coordinates x = (x1, x2) = (r cos θ, r sin θ) and ξ = (ξ1, ξ2) = (ρ cosφ, ρ sinφ),

we derive that

F
[
Hn
k

]
(ξ) =

∫
R2

Hn
k (x)e−iξ·xdx =

1√
2π

∫ ∞
0

Lnk (r2)e−
r2

2 rn+1dr

∫ 2π

0

e−iρr cos(θ−φ)einθdθ.

Next, making change of coordinates θ ← θ + φ− π
2 , we further get from [33, (2.2.5)] that∫ 2π

0

e−iρr cos(θ−φ)einθdθ = ein(φ−
π
2 )

∫ 2π

0

e−iρr sin θeinθdθ = 2π(−i)nJn(ρr)einφ, (5.18)

where Jn is the Bessel function of order n. As a result,

F [Hn
k ](ξ) =

√
2π (−i)n einφ

∫ ∞
0

Lnk (r2)e−
r2

2 rn+1Jn(ρr)dr

=
√

2π (−i)n ρ−
1
2 einφ

∫ ∞
0

Lnk (r2)e−
r2

2 rn+
1
2 Jn(ρr)(ρr)

1
2 dr

=
√

2π (−i)n ρ−
1
2 einφ (−1)kLnk (ρ2)e−

ρ2

2 ρn+
1
2

= 2π (−i)n+2kHn
k (ξ),

where we have used an identity on the Hankel transform of the Bessel function in [13, P. 42] for

the second equality sign. By (5.8), we now verify the conclusion. �

Next we present the convolution formula of isotropic Hermite functions.

Lemma 5.2. We have the convolution property

[Ĥn
k ∗ Ĥm

j ](x) =

∫
R2

Ĥn
k (s− x)Ĥm

j (x)dx = πĤm−k+j
k

(x
2

)
Ĥn−j+k
j

(x
2

)
. (5.19)

Proof. By (5.17) we have

F [Hn
k ∗Hm

j ](ξ) = F [Hn
k ](ξ) ·F [Hm

j ](ξ) = (2π)2 (−i)n+m+2k+2jHn
k (ξ)Hm

j (ξ)

= (2π)2 (−i)n+m+2k+2jLnk (|ξ|2)Lmj (|ξ|2)Y n(ξ)Y m(ξ)e−|ξ|
2

.

Using polar coordinates x = (r cos θ, r sin θ) and ξ = (ρ cosφ, ρ sinφ), we further get

[Hn
k ∗Hm

j ](x) =
1

4π2

∫
R2

F [Hn
k ∗Hm

j ](ξ) eiξ·xdξ

=
(−i)n+m+2k+2j

2π

∫ ∞
0

Lnk (ρ2)Lmj (ρ2)e−ρ
2

ρm+n+1dρ

∫ 2π

0

ei(n+m)φ eiρr cos(φ−θ)dφ.



20 H. LI, R. LIU & L. WANG

Making change of variable φ← φ+ π yields

∫ 2π

0

ei(n+m)φ eiρr cos(φ−θ)dφ = (−1)n+m
∫ 2π

0

ei(n+m)φ e−iρr cos(φ−θ)dφ

(5.18)
= 2π im+nJm+n(ρr)ei(m+n)θ.

Resorting the following integral identity for y > 0,<α > 0,<ν > −1 [19, (5)],

∫ ∞
0

ρν+1e−αρ
2Lν−σj (αρ2)Lσk(αρ2)Jν(ρr)dρ

=
(−1)j+k

2α

( r

2α

)ν
e−

r2

4αLσ−j+kj

( r2
4α

)
Lν−σ+j−kk

( r2
4α

)
,

we finally derive that

[Hn
k ∗Hm

j ](x) = (−1)k+j ei(m+n)θ

∫ ∞
0

Lnk (ρ2)Lmj (ρ2)e−ρ
2

ρm+n+1Jm+n(ρr) dρ

=
1

2
ei(m+n)θ

(r
2

)m+n

e−
r2

4 Lm−k+jk

(r2
4

)
Ln−j+kj

(r2
4

)
=πHm−k+j

k

(x
2

)
Hn−j+k
j

(x
2

)
,

which together with (5.8) gives (5.19). This completes the proof. �

We now return to the proof of Theorem 5.1. Noting that

Ĥn
k (x) =

√
k!

π (k + n)!
Lnk (|x|2)(x1 − ix2)ne−

|x|2
2

(2.23)
=

√
(k + n)!

π k!
L−nk+n(|x|2)(−|x|2)−n(x1 − ix2)ne−

|x|2
2

= (−1)n
√

(k + n)!

π k!
L−nk+n(|x|2)(x1 + ix2)−ne−

|x|2
2

= (−1)nĤ−nk+n(x) = Ĥ−nk+n(−x),

we get from (5.19) that

Φm,nj,k (s) = 2(Ĥn
k , Ĥ

m
j )− [Ĥn

k ∗ Ĥ−mj+m](s)− [Ĥn
k ∗ Ĥ−mj+m](−s)

= 2δm,nδj,k − πĤj−k
k

(s
2

)
Ĥn+k−j−m
j+m

(s
2

)
− πĤj−k

k

(−s
2

)
Ĥn+k−j−m
j+m

(−s
2

)
= (1 + (−1)m+n)

[
δm,nδj,k − πĤj−k

k

(s
2

)
Ĥn+k−j−m
j+m

(s
2

)]
= (1 + (−1)m+n)

[
δm,nδj,k −

√
k!(j +m)!

j!(k + n)!
Lj−kk (η2)Ln−m+k−j

j+m (η2)e−η
2

(ηei$)n−m
]
,
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where we have used the polar coordinates s = (2η cos$, 2η sin$) for the last equality sign. In

the sequel, we derive that

Sm,nj,k =
1 + (−1)m+n

2

∫
|s|≤δ

[
δm,nδj,k − πĤj−k

k

(s
2

)
Ĥn+k−j−m
j+m

(s
2

)]
γδ(|s|)ds

= 2(1 + (−1)m+n)

∫ 2π

0

ei(n−m)$d$

×
∫ δ

2

0

[
δm,nδj,k −

√
k!(j +m)!

j!(k + n)!
Lj−kk (η2)Ln−m+k−j

j+m (η2)e−η
2

ηn−m
]
ηγδ(2η)dη

= 8πδm,n

∫ δ
2

0

[
δj,k −

√
k!(j + n)!

j!(k + n)!
Lj−kk (η2)Lk−jj+n(η2)e−η

2

]
ηγδ(2η)dη.

(5.20)

It is now easy to see that the Hermitian matrix S is real symmetric and Sm,nj,k = 0 if m 6= n.

Next, to obtain a recurrence relation for Sn,nj,k , we resort to the identities (2.19)-(2.21), then find

that

(k + 1)Lj−k−1k+1 (ζ)Lk−j+1
j+n (ζ)− jLj−k−1k (ζ)Lk−j+1

j+n−1(ζ)

− (j + 1 + n)Lj−k+1
k (ζ)Lk−j−1j+n+1(ζ) + (k + n)Lj−k+1

k−1 (ζ)Lk−j−1j+n (ζ)

(2.20)
=
[
jLj−k−1k (ζ)− ζLj−kk (ζ)

]
Lk−j+1
j+n (ζ)− jLj−k−1k (ζ)Lk−j+1

j+n−1(ζ)

− Lj−k+1
k (ζ)

[
(k + n)Lk−j−1j+n (ζ)− ζLk−jj+n(ζ)

]
+ (k + n)Lj−k+1

k−1 (ζ)Lk−j−1j+n (ζ)

= jLj−k−1k (ζ)
[
Lk−j+1
j+n (ζ)− Lk−j+1

j+n−1(ζ)
]
− ζLj−kk Lk−j+1

j+n (ζ)

− (k + n)
[
Lj−k+1
k (ζ)− Lj−k+1

k−1 (ζ)
]
Lk−j−1j+n (ζ) + ζLj−k+1

k (ζ)Lk−jj+n(ζ)

(2.19)
=
[
jLj−k−1k (ζ) + ζLj−k+1

k (ζ)
]
Lk−jj+n(ζ)− Lj−kk (ζ)

[
(k + n)Lk−j−1j+n (ζ) + ζLk−j+1

j+n (ζ)
]

(2.19)
=

(2.20)

[
− jLj−kk−1(ζ) + (2j + 1)Lj−kk (ζ)− (k + 1)Lj−kk+1(ζ)

]
Lk−jj+n(ζ)

− Lj−kk (ζ)
[
− (k + n)Lk−jj+n−1(ζ) + (2k + 2n+ 1)Lk−jj+n(ζ)− (j + n+ 1)Lk−jj+n+1(ζ)

]
(2.21)

= (ζ + j − k)Lj−kk (ζ)Lk−jj+n(ζ)− (ζ + k − j)Lj−kk (ζ)Lk−jj+n(ζ)

= 2(j − k)Lj−kk (ζ)Lk−jj+n(ζ).

(5.21)

Let us temporarily define

Φnj,k(ζ) := δj,k −
√
k!(j + n)!

j!(k + n)!
Lj−kk (ζ)Lk−jj+n(ζ)e−ζ .

We further derive from (5.21) that√
(k + 1)(k + 1 + n)Φnj,k+1(ζ) +

√
k(k + n)Φnj,k−1(ζ)−

√
(j + 1)(j + 1 + n)Φnj+1,k(ζ)

−
√
j(j + n)Φnj−1,k(ζ) + 2(k − j)Φnj,k(ζ) = 0,

which yields (5.15).

As for the initial values, we declare from (5.20) that

Sn,nk,k = 8π

∫ δ
2

0

[
1− L0

k(η2)L0
k+n(η2)e−η

2
]
ηγδ(2η) dη, k ≥ n ,

Sn,nk+1,k = −8π

√
k + 1 + n

k + 1

∫ δ
2

0

L1
k(η2)L−1k+1+n(η2)e−η

2

ηγδ(2η)dη,
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(2.23)
=

8π√
(k + 1 + n)(k + 1)

∫ δ
2

0

L1
k(η2)L1

k+n(η2)e−η
2

η3γδ(2η)dη k ≥ n ,

which gives (5.16). Now the proof is complete.

5.3. Numerical results. We take δ = 0.1 and γ = 1.4, and test for two exact solutions u(x) =

e−(x
2
1+x

2
2)/2(1 − x21/10)4(1 + x21/10)6 and u(x) = e−(x

2
1+x

2
2)/2 sin(x1x2). In Figure 5.1, we plot

the errors between the numerical results and the exact solutions in maximum norm against the

polynomial degree N . We observe the spectral convergence in both cases as in one dimension

shown in the previous section.
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Figure 5.1: L∞-errors against N in semi-log scale. Left: u(x) = e−(x21+x
2
2)/2(1 − x21/10)4(1 + x21/10)6;

Right: u(x) = e−(x21+x
2
2)/2 sin(x1x2).

We remark that a common way to discretise (5.3) is based on the tensor product basis of

Hermite functions (cf. [24, 27]). However, the computational cost of the stiffness matrix is O(N6)

and the coefficient matrix is full that the complexity of solving the linear system using Gauss

elimination method is also O(N6). In comparison, our method of isotropic Hermite functions has

remarkable advantages in view of the recursive formula given in Theorem 5.1.
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